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Abstract

State Space Models (SSMs), such as001
Mamba, have recently demonstrated po-002
tential in language understanding tasks,003
positioning them as competitors to trans-004
former architectures. However, our inves-005
tigations reveal that the Mamba architec-006
ture still has room for further optimiza-007
tion—not only in linear projections but008
also in state caches, which contribute sig-009
nificantly to memory consumption, partic-010
ularly after quantizing the former into low011
bits. After a theoretical analysis of the012
causes of outliers in states, we propose De-013
coupled Scale Quantization (DSQ),014
which mitigates outliers in both the state015
and channel dimensions by applying sep-016
arate quantization scales. To preserve017
the selective ability of quantized Mamba,018
we introduce Efficient Selectivity Re-019
construction (ESR), a novel quantiza-020
tion simulation scheme in block-wise recon-021
struction that enables fast parallel scan al-022
gorithms with the non-linear quantization023
function. We demonstrate the effective-024
ness of Q-Mamba across various quantiza-025
tion settings, model sizes, and both gen-026
eration and zero-shot tasks. In particu-027
lar, for Mamba2-2.7B with W8A8H4 (8-bit028
weights and activations, 4-bit state caches)029
quantization, Q-Mamba achieves a 50% re-030
duction in memory consumption with only031
a 2.13% average accuracy degradation on032
zero-shot tasks.033

1 Introduction034

Large language models (LLMs), such as LLaMa035
(Touvron et al., 2023) and GPT-4 (OpenAI, 2023),036
have shown exceptional capabilities in general-037
purpose language understanding (Kaplan et al.,038
2020; Hoffmann et al., 2022). However, LLMs039
based on Transformer architectures still face a sig-040
nificant limitation: the computational cost of their041
attention mechanism scales quadratically with the042
sequence length (Vaswani et al., 2017). Therefore,043
prior works have focused on more efficient atten-044

tion variants, such as structured state space mod- 045
els (SSMs) (Gu and Dao, 2023; Dao and Gu, 2024; 046
Smith et al., 2023) and linear attention (Peng et al., 047
2023; Han et al., 2023; Child et al., 2019). Among 048
these, the Mamba architecture (Gu and Dao, 2023; 049
Dao and Gu, 2024) has been shown to match or ex- 050
ceed the downstream accuracy of Transformers on 051
standard language modeling tasks (Waleffe et al., 052
2024). Following its success in natural language 053
understanding, it has also garnered significant at- 054
tention in other research areas, such as vision and 055
multimodal tasks (Qiao et al., 2024; Zhu et al., 056
2024). 057
Like Transformers, Mamba language models also 058

operate in two computation phases (Patel et al., 059
2024). The first is the prefill phase, where all input 060
prompt tokens are processed in parallel through 061
the model’s forward pass to generate the first out- 062
put token. During this phase, Mamba models 063
(Gu and Dao, 2023; Dao and Gu, 2024) employ 064
a hardware-efficient parallel algorithm to compute 065
SSMs (Section 3). The second is the token gener- 066
ation phase, where subsequent output tokens are 067
generated sequentially, relying on the cached state 068
from previous tokens in the sequence. Due to the 069
lack of computational parallelism, this phase tends 070
to be more memory-bound and contributes signif- 071
icantly to the total generation latency. 072
Although Mamba has successfully replaced the 073

O(T 2) attention module with O(T ) selective state 074
space models, our profiling results in Section 4 indi- 075
cate that it still suffers from two inefficiencies dur- 076
ing the generation stage. Firstly, similar to Trans- 077
formers, the Mamba architecture consists of large 078
linear layers, which require substantial GPU mem- 079
ory and slow down token generation (Figure 2b). 080
Secondly, as larger states allow more information 081
to be stored, states in Mamba are expanded to 082
be N times larger than vanilla activations, where 083
N is the state dimension (128 in Mamba-2 mod- 084
els). Consequently, these state caches account for 085
a significant portion of memory consumption, espe- 086
cially after quantizing weights to low bits (79.6% in 087
Mamba2-2.7B with a batch size of 128, as shown 088
in Figure 2a). In this paper, we address a key 089
question: Can Mamba models be further optimized 090
through model compression techniques? 091
In this paper, we propose Q-Mamba, which 092
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Figure 1: Schematic of the PTQ framework for Mamba. Left: The selective parameters B, ∆, and C,
along with the SSM inputs x, are generated by the input projections in the Mamba block. Middle: After
quantizing states using DSQ, ESR updates a small number of selective parameters (approximately 2% of
the total) in a block-wise reconstruction manner. Right: Finally, we quantize the linear projection into
W8A8.

quantizes both linear projections and state093
caches into low-bit integers for Mamba models.094
Although previous research has successfully quan-095
tized Key and Value (KV) caches into low-bit096
representations in transformers (Liu et al., 2023,097
2024b; Hooper et al., 2024), this work is the first098
to explore the quantization of state cache in Mamba099
architectures. We observe that states exhibit both100
outlier channels and outlier states (i.e., the state101
dimension contains large values across all channel102
dimensions), as shown in Figure 3. Further the-103
oretical analysis reveals this phenomenon results104
from the computation of the outer products of two105
activations, each contains outliers in distinct di-106
mensions. This observation motivates us to pro-107
pose Decoupled Scale Quantization (DSQ),108
which utilizes separate quantization scales for both109
dimensions. Additionally, the non-linear nature110
of the quantization function disrupts the original111
equivalence between recurrence and quadratic dual112
form, the latter being essential for efficient train-113
ing. To address this, we propose Efficient Selectiv-114
ity Reconstruction (ESR), which simulates quanti-115
zation errors by quantizing only the final timestep116
during training. Specifically, ESR updates a small117
number of selective parameters (approximately 2%118
of the total) using just 128 training samples in a119
block-wise reconstruction manner.120

Extensive experiments demonstrate that our121
methods achieve significant performance improve-122
ments for Mamba families on various evaluation123
metrics. To the best of our knowledge, we are the124
first to achieve W8A8H4 (8-bit linear projection125
and 4-bit states) for the Mamba architectures. For126
generation tasks, Q-Mamba achieved perplexities127
of 12.99 and 16.90 with 4-bit states on WikiText2128

(Merity et al., 2017) and C4 (Pal et al., 2023), 129
respectively, while baseline methods degraded to 130
21.18 and 29.86 even with 6-bit quantization. Ad- 131
ditionally, Q-Mamba achieves W8A8H4 quanti- 132
zation for zero-shot tasks with only 2.13% and 133
2.11% average accuracy degradation on Mamba2- 134
2.7B and Mamba2-1.3B, respectively. 135

2 Related Works 136

2.1 Model Quantization 137

In the current era of burgeoning LLM development, 138
model quantization has also become widely em- 139
ployed (Xiao et al., 2023; Lin et al., 2023; Frantar 140
et al., 2022). Considering the substantial compu- 141
tational costs of retraining the entire model, much 142
research has focused on Post-Training Quantiza- 143
tion (PTQ), which requires only a small amount 144
of calibration data to adjust a limited portion of 145
the parameters. Typically, PTQ methods oper- 146
ate by quantizing and finetuning individual lay- 147
ers or small blocks of consecutive layers. For ex- 148
ample, AdaRound (Nagel et al., 2020) uses gra- 149
dient optimization to determine optimal rounding 150
in a single convolution layer. For LLMs, previ- 151
ous quantization methods have identified signifi- 152
cantly larger outliers in activations compared to 153
smaller convolutional neural networks (CNNs). To 154
quantize both weights and activations into INT8, 155
SmoothQuant (Xiao et al., 2023) mitigates activa- 156
tion outliers by shifting the quantization difficulty 157
from activations to weights through a mathemati- 158
cally equivalent transformation. These outliers in 159
activations also pose challenges even in scenarios 160
where activations are not quantized (i.e., weight- 161
only quantization) because they amplify the quan- 162
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tization errors of weights when multiplied with ac-163
tivations.164
For Mamba models, states have an additional165

state dimension compared to standard activations,166
resulting in not only more significant memory con-167
sumption but also a distinctive distribution of out-168
liers. To address this issue, we propose two novel169
methods that enable the quantization of states into170
4-bit integers for the first time.171

3 Foundations172

State Space Model. State space models (SSMs)173
are a recent class of sequence models for deep learn-174
ing inspired by a particular continuous system in175
Equation (2). It maps a 1-dimensional input176
sequence xt ∈ R to an output sequence yt ∈ R177
through a latent state ht ∈ R(N,1):178

ht = Āht−1 + B̄xt (1a)179

yt = Cht (1b)180

181 h′(t) = Ah(t) +Bx(t) (2a)182

y(t) = Ch(t) (2b)183

where Ā ∈ R(N,N), B, B̄, ht−1, ht, h(t) ∈ R(N,1),184
and C ∈ R(1,N). Equation (1) can be viewed as185
discrete versions of a classical continuous system186
described by Equation (2). Specifically, a timescale187
parameter ∆ is introduced to discretize the param-188
eters A and B into their discrete counterparts, Ā189
and B̄, as explained in the following sections.190
Mamba-1. To operate on an input sequence191

xt with D channels, rather than the scalar se-192
quence described earlier, Mamba-1 (Gu and Dao,193
2023) assumes that Ā has a diagonal structure and194
applies the SSM independently to each channel:195

ht = Ā⊙ ht−1 + B̄ ⊙ xt, (3a)196

yt = Cht, (3b)197

where Ā,B̄, ht, ht−1 ∈ R(N,D), xt ∈ R(1,D)198

C ∈ R(1,N), yt ∈ R(1,D)199

where ⊙ denotes the element-wise product, with200
automatic broadcasting applied to dimensions of201
size one.. The discretized parameters are defined as202
Ā = exp(A⊙∆) and B̄ = B⊙∆, whereA ∈ R(N,D),203
B ∈ R(N,1), and ∆ ∈ R(1,D). Unlike previous non-204
selective SSMs, Mamba set ∆, B, and C as func-205
tions of the inputs rather than fixed parameters.206
As a result, the variables Ā, B̄, and C can vary207
across time steps to dynamically select relevant in-208
formation from the context.209
Mamba-2. To integrate the multi-head design210

of modern attention mechanisms into Mamba ar-211
chitectures, Mamba-2 (Dao and Gu, 2024) further212
assumes that Ā and B̄ are identical across all di-213
mensions within the same head where the head214

dimension P ∈ {64, 128}: 215

ht = Ā · ht−1 + B̄ ⊗ xt, (4a) 216

yt = Cht, (4b) 217

where ht,ht−1 ∈ R(N,P ), Ā ∈ R, B̄ ∈ R(N,1) 218

C ∈ R(1,N), xt, yt ∈ R(1,P ) 219

The discretized parameters are still defined as Ā = 220
exp(A ⊙ ∆) and B̄ = B ⊙ ∆. However, unlike 221
Mamba-1, A and ∆ are simplified into two scalars 222
within a single head, transforming the operation 223
between B̄ and x into an outer product. This sim- 224
plification improves training efficiency and allows 225
for a larger state size. Consequently, Mamba-2 in- 226
creases the state sizeN from 16 in Mamba-1 to 128. 227
Figure 1 left shows the architecture of the Mamba- 228
2 block. The selective parameters B, ∆, and C, 229
along with the SSM inputs xt, are produced by the 230
input projections in the Mamba block. Specifically, 231
Mamba-2 employs B = (uWB)

⊤, C = uWC ,∆ = 232
uW∆, xt = uWx, where WB ,WC ∈ R(D,N),Wx ∈ 233
R(D,P ),W∆ ∈ R(D,1) and u ∈ R(1,D) represents the 234
inputs of Mamba block. 235
Parallel Training. The recurrent mode de- 236

scribed in Equation (1) is used only during the 237
token generation phase, where output tokens are 238
generated sequentially, relying on the cached state 239
from the previous timestep. For parallel train- 240
ing, Mamba (Dao and Gu, 2024) establishes the 241
equivalence between selective SSMs and semisep- 242
arable matrices, enabling the use of efficient 243
algorithms for structured matrix multiplication 244
(e.g, prefix sum algorithm (Goldberg and Zwick, 245
1995) ). Specifically, Equation (5) represents the 246
quadratic form of Equation (1) to compute all 247
timesteps simultaneously: 248

yt =

t∑
s=0

CtĀ
×
t:sBsxs, (5a) 249

y = Mx,Mji := CjAj · · ·Ai+1Bi, (5b) 250

where B̄, C̄⊤ ∈ R(N,1), Ā ∈ R(N,N), 251

xt, yt ∈ R, M ∈ R(T,T ) 252

where M is N-semiseparable matrix. 253
This paper primarily focuses on quantizing the 254

Mamba-2 architecture, which has demonstrated 255
superior performance compared to Mamba-1 across 256
various tasks (Waleffe et al., 2024; Dao and Gu, 257
2024). A detailed comparison between the two ar- 258
chitectures from a quantization perspective is pro- 259
vided in the appendix. For more information on 260
the Mamba architecture, please refer to the origi- 261
nal papers (Gu and Dao, 2023; Dao and Gu, 2024). 262

263

4 Analysis 264

In this section, we first analyze the memory con- 265
sumption and runtime of primary components on 266
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Figure 2: Left: Memory consumption of weights and state caches in Mamba2-2.7B with different batch
sizes. Right: The Runtime of the Mamba2-2.7B model using NVIDIA profiling tools, with both prompt
and generation lengths set to 100 and a batch size of 32.

the Mamba2-2.7B model, i.e., linear projection, 1D267
convolution, SSM, and LayerNorm. Based on the268
results presented in Figures 2a and Figures 2b, we269
can draw the following conclusions:270
Linear projections. Similar to Transformers,271

large linear layers in Mamba not only require sub-272
stantial GPU memory but also slow down token273
generation. When applying quantization to these274
linear layers, experiments in Section A.1 reveal275
that outliers exist in specific activation channels of276
Mamba, particularly in output projections. This277
phenomenon has also been observed in previous278
studies on Transformer-based LLMs (Xiao et al.,279
2023; Wei et al., 2022).280
States in SSMs. As larger states allow more281

information to be stored, states in Mamba are282
expanded to be N times larger than vanilla ac-283
tivations, where N is the state dimension (128284
in Mamba-2 models). Consequently, these state285
caches account for a significant portion of memory286
consumption, especially after quantizing weights287
to low bits (e.g., 79.6% in Mamba2-2.7B with a288
batch size of 128, as shown in Figure 2a). This289
phenomenon not only poses challenges for increas-290
ing the batch size to enhance throughput but also291
prevents further enlargement of state dimensions292
in Mamba models, which would improve their stor-293
age capacity for long contexts (Dao and Gu, 2024;294
Arora et al., 2024).295
To address the above problems, in this paper, we296

aim to quantize both linear projections and state297
caches into low-bit integers for Mamba models.298

5 Method299

5.1 Decoupled Scale Quantization300

5.1.1 Outliers in States301

For Transformers, particularly LLMs, extensive re-302
search (Wei et al., 2022; Xiao et al., 2023; Liu et al.,303
2024a) has shown that the presence of outliers ex-304
tends the range of activation values, which in turn305
increases quantization errors for normal values. In306
Mamba models, we observe a similar or even more307

pronounced issue with outliers in the states. As 308
illustrated in the state distribution visualization in 309
Figure 3(a), outliers are present in both state di- 310
mensions (red row) and channel dimensions (green 311
column). Consequently, either per-channel quanti- 312
zation (i.e., using a different quantization step for 313
each channel) or per-state quantization (i.e., using 314
a different quantization step for each state) tends 315
to ignore outliers in the other dimension. As shown 316
in Table 3, the model’s performance declines sig- 317
nificantly when adopting the above quantization 318
granularity, which calls for a more effective quan- 319
tization method to address the problem. 320

5.1.2 Decoupled Scale Quantization 321

Motivated by the distribution characteristics 322
shown in Figure 3, we present the following the- 323
orem, which reveals the underlying causes of this 324
distribution and provides insights for a solution. 325

Theorem 1. Assuming ut ∼ N (0, σIn) and At is 326
a constant, Bt = (uWB)

⊤, xt = uWx, the variance 327
of states ht = At · ht−1 +Bt ⊗ xt can be factorized 328
into two vectors: 329

V ar[ht] ∝ α · βT , αi = ||W x
i,:||22, βi = ||WB

i,:||22,
where α ∈ RP , β ∈ RN .

330

The above theorem demonstrates that outliers 331
in the channel dimension P and state dimension 332
N can be attributed to variables xt and Bt, re- 333
spectively. A visualization of this phenomenon is 334
provided in Figure 3(b). This motivates us to pro- 335
pose a novel quantization scheme called Decou- 336
pled Scale Quantization (DSQ), which utilizes 337
separate quantization scales for the state dimen- 338
sion and the channel dimension: 339

Q(h) = ⌊ h

Schannel · S⊤
state

⌉ ⊙ (Schannel · S⊤
state) (6) 340

where Schannel ∈ RP , Sstate ∈ RN and ⌈·⌋ de- 341
notes rounding floating-point values to the nearest 342

4



       

S
ta

te
 

Channel

S
ta

te
 d

im
e
n

s
io

n

Channel dimension

       

A
b

s
o

lu
te

 V
a
lu

e

(a)

               

 

  

  

  

  

  

  

     

               
   

   
  

        

        
     

 
 
 
 
 
 
  
 
  

 
 
 
  
   

C
h

a
n

n
e
l 
d

im
e
n

s
io

n

State dimension

Absolute 

Value

(b)

Figure 3: State distribution in Mamba2-370M. Left: Outliers exist in both specific state dimensions (red)
and channel dimensions (green). Right: Further analysis reveals outliers in channel dimension and state
dimension can be attributed to variables xt and Bt, respectively.
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Figure 4: An illustration of DSQ.

integers, while ⊙ signifies element-wise multiplica-343
tion.344
In this paragraph, we discuss how to compute345

scales given a specific state. To increase the ef-346
fective quantization bits, both state and channel347
scales should accurately represent the magnitude348
of their respective dimensions. Therefore, an in-349
tuitive metric to determine these scales is the vec-350
tor norm, such as maximum norm (∥ · ∥∞) and L1351
norm (∥ · ∥1). However, in practice, we find that352
both norms result in even worse performance (see353
Table 6). Further visualization in Figure 8 shows354
that these norms are highly sensitive to outliers,355
resulting in even greater bit wastage. Therefore,356
for the channel scale, we use the square root of357
the mean values, which offers a more robust metric358
that mitigates the influence of outliers. After mit-359
igating most outliers by smoothing the states with360
channel scale, we employ the MinMax method to361
compute state scale, which effectively compresses362
the data range and reduces information loss during363
quantization:364

Schannel,i = sqrt(mean(abs(hi,:))) =
√
∥|hi,:|∥1 (7)365

Sstate,j = max(abs(
h:,j

Schannel
)) =

∥∥∥∥ |h:,j |
Schannel

∥∥∥∥
∞

(8)366

where i and j denote subscripts indexing into the 367
channel and state dimensions, respectively. Table 3 368
demonstrates that DSQ achieves negligible over- 369
head while significantly improving performance. 370

5.2 Efficient Selectivity Reconstruction 371

To mitigate the performance loss caused by quan- 372
tization, PTQ methods often apply block-wise re- 373
construction (Nagel et al., 2020; Li et al., 2021) 374
with a few data. However, these methods cannot 375
be directly applied to Mamba models due to the 376
challenges introduced in Section 5.2.1. 377

5.2.1 Challenge in Parallel Training 378

To minimize memory bandwidth utilization, we 379
store state caches as low-bit elements, then load 380
and dequantize them before computation at the 381
next timestep. This process defines a new se- 382
quence transformation through the quantized la- 383
tent state hq

t in Equation (9). It is important to 384
distinguish hq

t = ĀQ(hq
t−1) + B̄xt from the di- 385

rectly quantized value of the original ht, denoted 386
as Q(ht) = Q(Āht−1 + B̄xt). 387

hq
t = ĀQ(hq

t−1) + B̄xt, (9a) 388

yqt = Chq
t (9b) 389

However, the quantization function leads to non- 390
linear hidden-to-hidden transformation, i.e., hq

t has 391
a non-linear dependency on hq

t−1. A significant 392
challenge arises because the original parallel train- 393
ing algorithms for linear recurrence are incompat- 394
ible with the quantization scenario. Specifically, 395
Equation (9) can no longer be reformulated into 396
its quadratic form. A naive approach would involve 397
directly applying Equation (9) for token-by-token 398
generation. Specially, However, given the large in- 399
put lengths (e.g., 2048), this method is extremely 400
slow and impractical. Therefore, to apply block- 401
wise reconstruction for Mamba models, it is essen- 402
tial to first investigate how to effectively simulate 403
quantization errors during training 404
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hq
t = ĀtQ(hq

t−1) + B̄txt

= ĀtQ(Āt−1h
q
t−2 + B̄t−1xt−1) + B̄txt

̸= ĀtĀt−1Q(hq
t−2) + ĀtB̄t−1xt−1 + B̄txt

̸=
t∑

s=1

ĀsĀs+1 · · · ĀtB̄sxs

(10)405

5.2.2 Quantization-Aware State Space406
Model407

Motivated by the linear surrogates proposed in408
(Martin and Cundy, 2018), we aim to elimi-409
nate the non-linear function from the hidden-to-410
hidden transformation while effectively simulat-411
ing the quantization errors. To gain insight into412
this problem, we focus on the difference between413
the quantized and original states, defined as δt =414
hq
t − ht. By substituting δt into Equation (9),415

we observe that δt is composed of two parts: the416
quantization error propagated from the previous417
timestep, δt−1, and the quantization error intro-418
duced in the current timestep:419

δt = hq
t − ht = ĀtQ(hq

t−1) + B̄txt − (Ātht−1 + B̄txt)

= Āt · (Q(hq
t−1)− ht−1)

= Āt · (Q(ht−1 + δt−1)− ht−1)
(11)420

Assuming that quantization errors δt−1 are suffi-421
ciently small compared to the hidden state ht−1,422
we discard δt−1 and focus only on the quantization423
errors at the current timestep:424

Q(ht−1 + δt−1) ≈ Q(ht−1) +Q′(ht−1) · δt−1

≈ Q(ht−1)

=⇒ hq
t ≈ ĀtQ(ht−1) + B̄txt

(12)425

Equation (12) enables us to utilize the parallel al- 426
gorithm to compute ht at all timesteps, then simu- 427
late the quantization errors by quantizing only one 428
step during training, as shown in Figure 5. In the 429
appendix, we present the pseudocode for the par- 430
allel training of quantization-aware SSMs for illus- 431
trative purposes. Table 4 demonstrates the effec- 432
tiveness of this quantization simulation, especially 433
in low-bit settings. 434

5.2.3 Selectivity Guided Adaptation 435

In the Mamba block, the selective parameters B, 436
∆, and C, along with the SSM inputs xt, are gen- 437
erated through input projections, as shown in Fig- 438
ure 1. During block-wise reconstruction, we freeze 439
the linear projections corresponding to the SSM in- 440
puts x and z, while keeping the linear projections 441
for selective parameters B, C, and ∆ learnable, 442
which is referred to as Selectivity Guided Adapta- 443
tion (SGA) (Figure 1, middle). Specifically, 444

min
{W q

v |v∈B,C,∆}

∥∥Bl(W
FP
v , hFP

t ;ul)− Bl(W
q
v , h

q
t ;ul)

∥∥
2
,

(13) 445
where Bl denotes the mapping function for the l-th 446
Mamba block and ul represents the block’s inputs. 447
WFP and W q represent the weights of the original 448
model and the quantized model, respectively. 449

SGA offers two primary advantages: First, the 450
success of Mamba is largely attributed to the se- 451
lectivity of parameters Ā, B̄, and C̄, which dis- 452
tinguishes it from earlier non-selective SSMs (Gu 453
et al., 2020; Smith et al., 2023). Thus, we hypothe- 454
size that this selectivity also plays a critical role in 455
maintaining performance after quantization. Sec- 456
ond, SGA reduces the number of learnable param- 457
eters, mitigating the risk of overfitting with lim- 458
ited calibration data. For example, in Mamba2- 459
2.7B, learnable parameters account for only about 460
2% of the total. Note that during this fine-tuning 461
process, the linear layers remain in floating-point 462
values and can be quantized afterward (Figure 1, 463
right). 464

6 Experiments 465

6.1 Experiment Setup 466

Settings. We conduct experiments on the 467
Mamba-2 (Dao and Gu, 2024) models across 468
various model sizes (130M, 370M, 780M, 1.3B, 469
2.7B). We initialize quantized models using a full- 470
precision model. We utilize the AdamW optimizer 471
with zero weight decay to optimize the learnable 472
parameters in ESR. The learning rate for learn- 473
able parameters is set to 1e-3. RedPajama is an 474
open-source reproduction of the pre-training data 475
for LLaMA(Touvron et al., 2023). We employ a 476
calibration dataset consisting of 128 randomly se- 477
lected 2048-token segments from the RedPajama 478

6



Table 1: Evaluation results of the Mamba-2 models on generation tasks. #W, #A, and #H indicate
weight bits, activation bits, and state bits, respectively.

Bits Method
WikiText2 ↓ C4 ↓

130M 370M 780M 1.3B 2.7B 130M 350M 780M 1.3B 2.7B

FP16 - 20.04 14.16 11.81 10.42 9.06 22.25 16.95 14.66 13.27 11.95

W16A16H4 Baseline 976.56 913.34 865.78 1556.15 116.23 542.048 599.49 911.31 529.55 96.93
Q-Mamba 45.73 22.24 19.07 15.20 11.55 39.46 26.36 22.45 19.14 14.90

W16A16H6 Baseline 249.09 134.91 38.04 23.62 13.60 322.97 101.75 38.24 23.73 19.61
Q-Mamba 23.79 15.33 12.69 11.37 9.59 25.11 18.27 15.66 14.52 12.57

W16A16H8 Baseline 20.97 14.83 12.04 10.52 9.11 22.97 17.45 14.85 13.40 12.01
Q-Mamba 20.49 14.26 11.86 10.51 9.11 22.64 17.05 14.73 13.39 12.04

W8A8H4 Baseline 2024.49 1013.15 7225.39 6375.57 364.84 635.86 795.28 10716.17 2788.23 298.57
Q-Mamba 53.12 27.53 23.53 17.60 12.99 46.90 32.91 26.79 21.56 16.90

W8A8H6 Baseline 357.69 220.09 96.51 47.28 21.18 526.59 171.90 79.70 40.46 29.86
Q-Mamba 26.75 17.27 14.51 13.05 10.84 28.18 20.53 17.79 16.45 14.46

W8A8H8 Baseline 23.60 16.69 14.32 11.85 10.42 25.51 19.50 17.44 14.86 13.73
Q-Mamba 22.88 15.83 13.57 11.93 10.36 25.01 18.84 16.80 15.03 13.69

Table 2: Evaluation results of the Mamba-2 models with W8A8H4 (8-bit weights, activations, and 4-bit
states) on zero-shot tasks.

Model Method OBQA PIQA ARC-E ARC-C HellaSwag WINO AVG ↑
Mamba2-130M FP 30.6 64.9 47.4 24.2 35.3 52.1 42.41

Baseline 30.8 63.4 45.6 24.6 34.1 51.93 41.73
Q-Mamba 30.0 63.0 45.7 23.4 33.9 53.3 41.55

Mamba2-370M FP 32.4 70.5 54.9 26.9 46.9 55.7 47.83
Baseline 28.6 58.6 46.5 24.9 30.4 53.0 40.34
Q-Mamba 32.8 68.4 53.8 26.7 43.8 54.8 46.71

Mamba2-780M FP 36.2 72.0 61.0 28.5 54.9 60.2 52.13
Baseline 32.0 61.8 50.5 25.9 29.5 57.5 42.85
Q-Mamba 34.2 69.6 57.3 27.6 52.1 55.6 49.4

Mamba2-1.3B FP 37.8 73.2 64.3 33.3 59.9 60.9 54.9
Baseline 35.6 67.1 57.6 29.2 36.8 58.5 47.46
Q-Mamba 34.8 72.6 62.5 31.4 55.7 59.5 52.77

Mamba2-2.7B FP 38.8 76.4 69.6 36.4 66.6 64.0 58.63
Baseline 39.8 73.2 66.8 36.0 56.4 59.6 55.30
Q-Mamba 40.0 73.9 66.8 35.4 62.0 61.0 56.52

(Computer, 2023) dataset, except for Mamba2-479
2.7B, which utilizes 256 samples. The entire train-480
ing process is facilitated on a single NVIDIA A800481
GPU, using a batch size of 1 over 3 epochs. For482
linear projections, we apply SmoothQuant (Xiao483
et al., 2023) with per-token quantization. For484
state quantization, we use INT8, INT6, and INT4485
schemes (e.g., W8A8H4 refers to 8-bit linear pro-486
jection and 4-bit quantization of the states). We487
utilize MinMax per-channel quantization (intro-488
duced in Section 5.1.2) as state quantization base-489
line.490

Evaluation Tasks. We evaluate our methods491
on both language generation and zero-shot tasks.492
We report the perplexity on WikiText2 (Merity493
et al., 2017) and C4 (Pal et al., 2023). For zero-494
shot tasks, we provide accuracy on datasets includ-495
ing PIQA (Bisk et al., 2020), ARC (Clark et al.,496
2018), BoolQ (Clark et al., 2019), OpenBookQA497
(Mihaylov et al., 2018), HellaSwag (Zellers et al.,498

2019) and Winogrande (Sakaguchi et al., 2020). 499

6.2 Main Results 500

Generation Tasks. We evaluate generation tasks 501
in recurrent mode with a sequence length of 2048. 502
The results in Table 1 demonstrate the effective- 503
ness of Q-Mamba across various quantization con- 504
figurations. For INT8 state quantization, we ex- 505
clusively utilize DSQ without ESR, as DSQ alone 506
achieves nearly lossless quantization compared to 507
full-precision models. Without our methods, states 508
are limited to 8-bit quantization, with lower-bit 509
quantization, such as 6-bit, leading to significant 510
performance degradation, e.g., 23.62 perplexity for 511
Mamba2-1.3B on the WikiText2 dataset. In con- 512
trast, Q-Mamba facilitates nearly lossless 6-bit 513
quantization, achieving a minimal degradation of 514
only 0.53 perplexity for Mamba2-2.7B and 0.88 515
perplexity for Mamba2-1.3B. Moreover, Q-Mamba 516
enables effective 4-bit quantization and is compat- 517
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Figure 6: Inference latency and memory usage of the Mamba2 models with different batch sizes on
NVIDIA GeForce RTX 3090.

ible with the linear projection quantization ap-518
proach. For example, Q-Mamba achieves 12.99519
perplexity in W8A8H4 quantization settings for520
the Mamba2-2.7B model.521
Zero-shot Tasks. We evaluate the perfor-522

mance of Q-Mamba on zero-shot tasks using the523
lm-eval-harness (Gao et al., 2024) framework in Ta-524
ble 2. Q-Mamba significantly improves the average525
accuracy across various models. For example, it in-526
creases the average accuracy by 6.37%, 6.55%, and527
5.31% on the 370M, 780M, and 1.3B models. Addi-528
tionally, for Mamba2-2.7B and Mamba2-1.3B, Q-529
Mamba achieves W8A8H4 quantization with only530
2.13% and 2.11% accuracy degradation.531

Table 3: The performance and overheads of dif-
ferent quantization methods on Mamba2-370M. P
and N denote channel and state dimensions, re-
spectively.

Granularity WikiText2 ↓ Overheads

Per-tensor 4815.83 1
P×N

Per-channel 3364.58 1
P

Per-state 947.88 1
N

DSQ 25.73 1
P + 1

N

Table 4: Efficacy of each component in ESR. ESR
enables adjusting parameters of Mamba blocks af-
ter quantizing states in block-wise reconstruc-
tion. When combined with SGA, these two tech-
niques further enhance performance.

Method WikiText2 ↓ C4 ↓
DSQ w/o ESR 25.73 29.94
DSQ+ESR (w/o SGA) 23.73 28.19
DSQ+ESR (w/ SGA) 21.92 25.99

6.3 Ablations532

In this section, we conduct experiments to validate533
the efficacy of each component, as well as the de-534
sign choices for DSQ. Due to page limitations, we535
include additional ablations in Section A.4 of the536
Appendix.537

Effectiveness of each component. Table 3 538
demonstrates that DSQ is essential in state quan- 539
tization. The model’s performance declines sig- 540
nificantly when per-channel or per-state quantiza- 541
tion methods are adopted. By decoupling scales 542
in the state and channel dimensions, DSQ miti- 543
gates outliers in both dimensions with negligible 544
overhead. Table 4 shows that we can further en- 545
hance model performance in block-wise reconstruc- 546
tion with ESR. Furthermore, finetuning selective 547
parameters instead of all parameters can help avoid 548
overfitting and yield better results. 549

6.4 Efficiency 550

Figure 6 presents the memory and time require- 551
ments for inference using Mamba2 models. For 552
W8A8 linear projections, we employ CUDA INT8 553
GEMM, following the approach of SmoothQuant 554
(Xiao et al., 2023). For INT4 state quantiza- 555
tion, we implement SSM kernels with quantized 556
and packed states with Triton (Tillet et al., 2019), 557
a language and compiler for CUDA computation. 558
Both the input context and generation length are 559
set to 100. The results show that the quantized 560
models can reduce memory usage by half while 561
maintaining or even improving inference latency. 562

7 Conclusion 563

In this paper, we propose Q-Mamba, a novel quan- 564
tization framework designed for state caches in 565
Mamba models. We conduct a theoretical anal- 566
ysis of outliers in states and propose Decoupled 567
Scale Quantization (DSQ) which decouple scales 568
in the state and channel dimensions, DSQ miti- 569
gates outliers in both dimensions while introducing 570
negligible overhead. To further boost performance 571
through block-wise reconstruction, we propose Ef- 572
ficient Selectivity Reconstruction (ESR), which in- 573
cludes a novel quantization simulation method that 574
enables efficient fine-tuning of selective parameters 575
with parallel scan mode. In conclusion, Q-Mamba 576
demonstrates that Mamba architectures have the 577
potential for further optimization when combined 578
with other model compression techniques. 579
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Limitations580

In this paper, we propose Q-Mamba, a novel581
quantization framework designed for state caches582
in Mamba models. Although Q-Mamba reduces583
memory usage by half and achieves a 1.18x speedup584
on GPUs with only a 2.13% average accuracy585
degradation on zero-shot tasks, maximizing accel-586
eration in large language models LLMs based on587
Mamba via quantization requires greater hardware588
support. Previous research on hardware accelera-589
tors has primarily focused on LLMs (Wang et al.,590
2021; Sridharan et al., 2023) based on transformer591
architectures. We hope this paper will inspire592
more researchers to focus on developing customized593
hardware for low-bit SSM models.594
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A Appendix894

A.1 Previous PTQ methods on Mamba895

In Section 4, we analyze the quantization of linear896
projections in Mamba models. Here, we provide897
more detailed results about previous PTQ meth-898
ods on Mamba-1 and Mamba-2 models. We will899
analyze the difference between Mamba-1 models900
and Mamba-2 models from a view of model quan-901
tization. The results presented in Table 5 indicate902
that Mamba2 models exhibit greater robustness to903
quantization compared to Mamba1 models. Fur-904
ther analysis in Figure 7 reveals that this improve-905
ment is largely due to the additional LayerNorm906
applied before the output projection in Mamba2,907
which helps to reduce outliers to a certain ex-908
tent. Moreover, this LayerNorm simplifies the im-909
plementation of previous PTQ methods based on910
smoothing between weights and activations, such911
as SmoothQuant (Xiao et al., 2023) and AWQ (Lin912
et al., 2023). As a result, this paper primarily fo-913
cuses on Mamba2 models, which not only feature914
larger state dimensions but are also more amenable915
to quantization.916

A.2 Proof917

Theorem 2. Assuming ut ∼ N (0, σIn) and At is918
a constant, Bt = (uWB)

⊤, xt = uWx, the variance919
of states ht = At · ht−1 +Bt ⊗ xt can be factorized920
into two vectors:921

V ar[ht] ∝ α · βT , αi = ||W x
i,:||22, βi = ||WB

i,:||22,
where α ∈ RP , β ∈ RN .

922

Proof. Firstly, we can reformulate Equation (??)923
as a prefix sum:924

ht =

t∑
i

Ai:txiB
⊤
i , where Ai:t = Ai×Ai+1×. . . At

(14)925

Then, we can compute the mean of states ht as926
follows:927

E[ht] =

t∑
i

Ai:tE[xiB
⊤
i ]

=

t∑
i

Ai:tE[W xuiu
⊤
i W

b⊤]

=

t∑
i

Ai:tW
xE[uiu

⊤
i ]W

b⊤

=

t∑
i

Ai:tσW
xW b⊤

(15)928

After computing the mean of the states, we can929
similarly compute the variance of the states ht.930

The equality (a) is attributed to Lemma 1. 931

Var[xiB
⊤
i ] = E[(W xuiu

⊤
i W

b⊤ − σW xW b⊤)]

= E[(W x(uiu
⊤
i )W

b⊤)2]

− 2σ · E[W xW b⊤ ⊙ (W xuiu
⊤
i W

b⊤)]

+ (σW xW b⊤)2

(a)
= σ2α · β⊤ + 2σ2 · (W xW⊤

b )2

− 2σ2 · (W xW⊤
b )2 + σ2 · (W xW b⊤)2

= σ2α · β⊤ + σ2 · (W xW b⊤)2

(16) 932

Here, we assume that the second term (W xW b⊤)2 933
is sufficiently small compared to α · β⊤, and then 934
we obtain: 935

Var[ht] = = (σ2
t∑
i

Ai:t) · (α · β⊤) (17) 936

937

Lemma 1. Assuming z ∼ N (0, In), w1, w2 ∈ Rn, 938
we have the following conclusions: 939

E[(w1
⊤z)2(w2

⊤z)2] = ||w1||22 · ||w2||22 + 2(w1
⊤w2)

2

(18) 940

Proof. Let A and B be two arbitrary symmetric 941
matrices, we have: 942

E
[
x⊤Ax · x⊤Bx

]
= E

∑
i,j

xiaijxj

∑
k,l

xkbklxl


= E

∑
i,k

aiibkkx
2
ix

2
k + 4

∑
i<j

aijbijx
2
ix

2
j


=

∑
i,k

aiibkk + 2
∑
i

aiibii

+ 2

∑
i,j

aijbij −
∑
i

aiibii


=

∑
i

aii
∑
k

bkk + 2
∑
i,j

aijbij

= Tr(A)Tr(B) + 2Tr(AB)
(19) 943

A special case occurs when A = w1w1
⊤ and B = 944

w2w2
⊤: 945

E[(w1
⊤z)2(w2

⊤z)2] = ||w1||22 · ||w2||22 + 2(w1
⊤w2)

2

(20) 946
947

Although this theorem imposes strict constraints 948
on the SSM inputs ut (Gaussian distribution) and 949
At (constant), it sufficiently reveals the following 950
fact: outliers in the channel dimension P and state 951
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Figure 7: Visualization of inputs for linear projections. The out projection suffers from more severe
outliers compared to the in projection.

Model Method WikiText2 C4

Mamba1-370M FP 14.31 17.23
W8A8 18.95 23.04

W8A8+SQ 16.17 19.85
W4A16+ GPTQ 16.03 19.06

Mamba2-370M FP 14.16 16.95
W8A8 17.14 20.10

W8A8+SQ 15.71 18.72
W4A16+GPTQ 15.81 18.71

Table 5: Different PTQ methods for Mamba models. Mamba-1 models suffer much more serious outliers
in output projections because of the absence of LayerNorm before it.

dimension N can be attributed to the variables952
xt ∈ R(T,P ) and Bt ∈ R(T,N), respectively. Fig-953
ure 3 provides a visualization of this phenomenon.954

A.3 Related Works about State Space955
Mode956

Transformer-based LLMs (Touvron et al., 2023;957
OpenAI, 2023) suffer from the computational cost958
of their attention mechanism scales quadratically959
with sequence length. Consequently, much re-960
search has focused on developing more efficient961
variants of attention, such as structured state962
space models (SSMs) (Gu and Dao, 2023; Dao963
and Gu, 2024; Smith et al., 2023). The origi-964
nal structured SSMs (S4) (Gu et al., 2022) were965
linear time-invariant (LTI) systems motivated by966
continuous-time online memorization. Many vari-967
ants of structured SSMs have been proposed, for968
example, Gated SSM architectures, such as GSS969
(Mehta et al., 2023) and BiGS (Wang et al., 2023),970
incorporate a gating mechanism into SSMs for lan-971

guage modeling. Recently, the Mamba (Gu and 972
Dao, 2023; Dao and Gu, 2024) architecture demon- 973
strates promising performance on standard lan- 974
guage modeling tasks (Waleffe et al., 2024), as well 975
as on vision and multimodal tasks (Zhu et al., 2024; 976
Qiao et al., 2024). Mamba showed that state ex- 977
pansion and selective ability are crucial for select- 978
ing and memorizing useful information in the hid- 979
den states. 980

A.4 More Ablation Studies 981

In this section, we conduct more experiments to 982
validate the efficacy of design choices for DSQ, 983
training epochs, and calibration data size. We also 984
provide visualizations of DSQ and a detailed anal- 985
ysis of the impact of trainable parameters in ESR. 986

Visualization of DSQ. Figure 8 illustrates 987
how DSQ improves performance. The presence of 988
outliers causes MinMax quantization to waste a 989
significant portion of available quantization slots, 990
resulting in large rounding errors. Although in- 991
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Figure 8: An illustration of how DSQ enhances
performance.
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Figure 9: Illustration of WikiText2 perplexity of
W16A16H4 quantization with different training
samples and epochs.

troducing channel scales Schannel helps make the992
quantization slots non-uniform, the mean norm re-993
mains sensitive to outliers, even unexpectedly am-994
plifying them (as shown in the middle figure).995

Trainable parameters in ESR. Table 7996
demonstrates the effectiveness of our choice of997
trainable parameters in ESR: Fine-tuning selective998
parameters (B, C, and ∆), layer normalization,999
and convolution yields the best perplexity. In con-1000
trast, including x and z results in worse perfor-1001
mance. We attribute this to the fact that fine-1002
tuning all parameters can lead to overfitting and1003
necessitates end-to-end training.1004

Samples and epochs for block-wise recon-1005
struction. To ensure training efficiency, we set1006
3 epochs and 128 samples for all experiments, ex-1007
cept for Mamba2-2.7B, where we use 256 samples.1008
However, as shown in Figure 9, performance can1009
be further improved by increasing the number of1010
training samples and epochs.1011

Table 6: Impact of different design choices for
DSQ. Experiments are conducted on Mamba2-
370M with W16A16H4 quantization.

Method WikiText2 ↓ C4 ↓
abs.max inf inf
abs.max.sqrt 42.88 46.61
abs.mean inf inf
abs.mean.sqrt 25.73 29.94

Design choices of DSQ. The results in Ta- 1012
ble 6 highlight the critical importance of selecting 1013
appropriate quantization scales for DSQ. Firstly, 1014
squaring the norms as quantization scales is essen- 1015
tial for maintaining stability. Furthermore, using 1016
mean values yields superior performance compared 1017
to relying on maximum values. 1018

Norm ∆,B,C,D Conv-1D X,Z WikiText2 C4

25.73 29.94
✓ 24.76 29.02

✓ 23.27 27.22
✓ 25.24 29.09

✓ 24.99 28.88
✓ ✓ 22.51 27.00
✓ ✓ 24.93 28.87
✓ ✓ 25.31 29.43

✓ ✓ 22.68 26.91
✓ ✓ 22.97 26.41

✓ ✓ 25.66 28.89
✓ ✓ ✓ 21.92 25.99
✓ ✓ ✓ 23.63 27,43
✓ ✓ ✓ 24.89 29.04

✓ ✓ ✓ 23.01 26.98
✓ ✓ ✓ ✓ 23.73 28.19

Table 7: The performance of W16A16H4 quanti-
zation for Mamba2-370M with different trainable
parameters in the ESR.

A.5 Pseudocode 1019

In this section, we present the pseudocode for the 1020
parallel training of quantization-aware SSMs. To 1021
enhance understanding, we also include the pseu- 1022
docode for the recurrent and quadratic modes of 1023
Mamba-2. It is worth noting that these pseu- 1024
docodes are provided solely for illustrative pur- 1025
poses and do not represent actual implementations. 1026
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1 def ParallelSSM(
2 A, # bsz * num_head * len
3 B, # bsz * num_head * len * state_dim
4 C, # bsz * num_head * len * state_dim
5 x # bsz * num_head * len * channel_dim
6 ):
7 BC = C @ B.transpose(-1, -2)
8 prefix_sum = torch.cumsum(A)
9

10 # L : bsz * num_head * len * len
11 L = torch.tril(prefix_sum.unsqueeze(-1) - prefix_sum.unsqueeze(-2))
12

13 ABC = L * BC
14 y = ABC @ x
15 return y

1 def RecurrentSSM_onestep(
2 A, # bsz * num_head
3 B, # bsz * num_head * state_dim
4 C, # bsz * num_head * state_dim
5 x, # bsz * num_head * channel_dim
6 last_state # bsz * num_head * channel_dim * state_dim
7 ):
8 current_state = A * last_state + B.unsqueeze(-2) * x.unsqueeze(-1)
9 output = current_state @ C.unsqueeze(-1)

10 return output.squeeze(-1)

1 def QuantizationAwareParallelSSM(
2 A, # bsz * num_head * len
3 B, # bsz * num_head * len * state_dim
4 C, # bsz * num_head * len * state_dim
5 x # bsz * num_head * len * channel_dim
6 ):
7 BX = B.unsqueeze(-2) * x.unsqueeze(-1)
8 prefix_sum = torch.cumsum(A)
9 L = torch.tril(prefix_sum.unsqueeze(-1) - prefix_sum.unsqueeze(-2))

10 state = torch.einsum(’bhldn,bhll->bhldn’, BX, L)
11

12 # Simulate the quantization errors at the last timestep
13 # Error case: qstate = fake_quant(state)
14 qstate = A[:, :, 1:] * fake_quant(state)[:, :, :-1] + BX[:, :, 1:]
15

16 y = torch.einsum(’bhldn,bhln->bhld’, qstate, C)
17 return y

15
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