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Abstract 

 

Non-Euclidean data, such as social networks, and 

citation relationships between documents, has node 

information and structural information. Graph 

Convolutional Network(GCN) can automatically learn 

node features and association information between nodes. 

For example, social networks are very suitable for using 

graph data to express, such as nodes in social networks 

and the relationship between nodes. Users (with ID 

information, etc.), posts are nodes, the relationship 

between user A and user B is attention, and the 

relationship between users and posts may be published or 

forwarded. Through such a graph, it is possible to analyze 

who and what users are interested in, and further 

generate the recommendation system. The core ideology 

of the graph convolutional network is to aggregate node 

information by using edge information, thereby 

generating a new node feather. Considering the numbers 

and different contributions of neighbor nodes to the 

central node, we design the Adaptive Attention 

Mechanism(AAM). To further enhance the 

representational capability of the model, we utilize Multi-

Head Graph Convolution(MHGC). Based on AAM and 

MHGC, we contrive the novel Graph Adaptive Attention 

Network (GAAN). Experiments on the CORA dataset 

show that the classification accuracy has achieved 85.6%. 

 

Keywords: Non-Euclidean, GCN, Adaptive Attention 

Mechanism, Multi-Head Graph Convolution 

 

1. Introduction 

Many data in real life have irregular spatial structures, 

known as non-Euclidean data, such as social networks, 

recommendation systems, citation relationships between 

documents, transportation planning, natural language 

processing, etc. This type of data has both node 

information and structural information, which traditional 

deep learning networks like CNN, RNN, Transformer, etc 

cannot well represent. Graph Convolutional Network 

(GCN) [1], shown in Figure 1, is a class of deep learning 

models used for processing graph data, and they have 

made significant progress in graph data in recent years. In 

the real world, many complex systems can be modeled as 

graph structures, such as social networks, 

recommendation systems, protein interaction networks, 

etc. The nodes and edges of these graph data represent 

entities and their relationships, which is of great 

significance for understanding information transmission, 

node classification, graph classification, and other tasks in 

graph structures. However, compared with traditional 

regularized data such as images and text, graph data 

processing is more complex. Traditional Convolutional 

Neural Networks (CNN) and Recurrent Neural Networks 

(RNN) cannot be directly applied to graph structures 

because the number of nodes and connections in the graph 

may be dynamic. Therefore, researchers have begun 

exploring new graph neural network models to effectively 

process graph data. Graph Convolutional Networks (GCN) 

were proposed in this context, making an important 

breakthrough in graph data. The main idea of GCN is to 

use the neighbor information of nodes to update their 

representations, similar to traditional convolution 

operations, but on graph structures. By weighted 

averaging of neighboring nodes, GCN achieves 

information transmission and node feature updates, 

allowing the model to better capture the local and global 

structures in the graph. More broadly, Graph 

Convolutional Networks (GCN) are a special case of 

Graph Neural Networks (GNN).  
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Figure 1: The structure  of GCN 

The previous graph convolution methods have not fully 

considered the number and importance of neighboring 

nodes. To solve the above problems, we propose the novel 

GAAN (Graph Adaptive Attention Network), and our 

main contributions are in the following two areas: 

(1) To generate different weights for each neighbor 

node of the central node, we design the novel adaptive 

attention mechanism(AAM). 

(2) Based on AAM, we utilize Multi-head Graph 

Convolution(MHGC) to model and represent features 

better. 

2. Related Work  

Graph Neural Networks (GNN) are a class of deep 

learning models used for processing graph data, which 

have made significant progress in graph data in recent 

years. 

GCN[1] is one of the earliest proposed GNN models. 

GCN learns node representations by aggregating 

information from neighboring nodes and updating node 

features through weighted averaging of neighbors. It has 

achieved excellent performance in semi-supervised node 

classification tasks, making it a pioneering work in graph 

data. GraphSAGE[2] was proposed to address the 

scalability issue of GCN on large-scale graph data. 

GraphSAGE learns node representations by sampling 

neighboring nodes, enabling efficient node classification 

on large graphs. SGCN[3] proposes a simplified version 

of GCN by reducing the multi-layer convolution in GCN 

to a single-layer convolution, thereby reducing 

computational complexity. This simplified version 

achieves good performance on large-scale graph data. 

Due to the previous GNN models overlooking the 

importance of each neighboring node, Graph Attention 

Networks[4] adapt attention mechanisms to weigh 

neighboring nodes, allowing the model to adaptively learn 

the importance between nodes. This approach is of  

great significance in handling large graphs and node 

classification tasks. Graph Transformer Networks[5] 

propose a method for applying the Transformer 

architecture to graph-structured data. It introduces the 

concept of self-attention to graph neural networks by 

effectively processing the relationships between nodes 

and edges through dynamic attention mechanisms. The 

review paper[6] comprehensively introduces the 

development history of graph neural networks, different 

methods, and application areas. It summarizes and 

compares the development in the field of graph data 

analysis and the pros and cons of various models. It is an 

important literature for understanding the field of GNN. 

GNN is an active research field that has emerged many 

important models and techniques. Its application scope 

and domains are increasingly vast, providing more 

innovation and progress for deep learning on graph data. 

From the perspective of adaptive node weights, we 

contrive the GAAN. 

3. Methodology 

The overall structure of GAAN is illustrated in Figure 

2, and the specific computational process can be 

represented by Equation 1 to Equation 5. 

ℎ𝑖𝑗 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝑾ℎ⃗ 𝑖 ,𝑾ℎ⃗ 𝑗), 𝑖, 𝑗 ∈  𝑁 （1） 

where ℎ⃗⃗ 𝑖 and ℎ⃗⃗ 𝑗 represent the ith and jth nodes in the 

graph, respectively. 𝑾 is the shared weight matrix to 

uniform the node features. ℎ𝑖𝑗 fuses the features of the 

ith and jth nodes. Based on ℎ𝑖𝑗, we can calculate the 

basic AAM between the ith and jth nodes with the 

following Equation 2. 
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𝑒𝑖𝑗 =
𝑎 ∗ ℎ𝑖𝑗

√𝐷𝑖 ∗ 𝐷𝑗

 
（2） 

where 𝐷𝑖   and 𝐷𝑗  represent the degree of ith and jth 

nodes, respectively. 𝑎 is the weight vector to reshape ℎ𝑖𝑗. 

𝑒𝑖𝑗 is the weight coefficient between the ith and jth nodes. 

Then, we adopt the softmax function to normalize 𝑒𝑖𝑗, as 

shown specifically in Equation 3.  

𝛼𝑖𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑗(𝑒𝑖𝑗)

=
exp (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑒𝑖𝑘))

∑ 𝑒𝑥𝑝𝑘𝜖ℎ𝑖
(𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑒𝑖𝑘))

 

（3） 

Based on the normalized weight coefficients between 

nodes obtained from Equations 1 to 3, we can perform the 

graph convolution layer computation, as shown in 

Equation 4. 

ℎ⃗ 𝑖
′ = 𝜎(∑ 𝛼𝑖𝑗

𝑗𝜖𝒩𝑖

𝑾ℎ⃗ 𝑗) （4） 

Building on Equation 4, we utilize MHGC, which 

involves performing the computation of Equation 4 with 

MHGC and then averaging these results to obtain the node 

features of the subsequent layer. The computation process 

is shown in Equation 5.  

ℎ⃗ 𝑖
′ = 𝜎(

1

𝐾
∑ ∑ 𝛼𝑖𝑗

𝑘

𝑗𝜖𝒩𝑖

𝐾

𝑘=1

𝑾𝑘ℎ⃗ 𝑗) 
（5） 

Based on the aforementioned formula, we have 

completed the normalized weight coefficients and inter-

layer computation processes for GAAN. We have 

designed a single hidden layer, thus constructing the 

GAAN with a total of two layers. 
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Figure 2: The structure  of GAAN 

4. Experiments  

In this paper, we use the Cora dataset, the specific 

statistics of which are shown in Table 1. Cora includes a 

citation network of scientific publications, which we use 

to test the performance of GAAN. 

Table 1 Summary of the datasets used in our experiments. 

Dataset Nodes Edges Features per node Classes 

Cora 2708 5429 1433 7 

As shown in the ablation experiments in Table 2, AAM 

and MHGC respectively increased by 1% and 1.2%. Our 

GAAN has achieved an excellent performance of 85.6%. 

As shown in Table 3, GCNA’s accuracy is 1.9% higher 

than the previous GAT. Even the accuracy of GCNA 

without MHGC is 1.2% higher than GAT. As shown in 

Table 3, GCNA’s accuracy is 1.9% higher than the  

 

 

 

previous GAT. Even the accuracy of GCNA without 

MHGC is 1.2% higher than GAT. 

5. Conclusion and Future Work 

We have proposed AAM and MHGC to construct 

GCNA, which solves the differences between neighbor 

nodes to the central node. Experimental results show that 

our method is superior in accuracy.  

Over-smoothing occurs when multi-layers are stacked, 

leading to the features of all nodes being almost the same. 

However, many situations are necessary to capture the 

features of distant neighbors. Therefore, stacking multiple 

layers of GCN is inevitable. The strategy of stacking 

multi-layers, designed to prevent over-smoothing, is 

urgent.
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Table 2 Ablation experimental results on Cora. ‘n’ and ‘n_hidden’ represent the number of graph convolution heads and the number 

of nodes in hidden layers, respectively. 

 AAM MHGC(n=8) 
n_hidden 

Accuracy(%) 
64 96 128 

Group1 

× × √ × × 83.9 

× × × √ × 83.5 

× × × × √ 83 

Group2 

× √ √ × × 84.6 

× √ × √ × 85.1 

× √ × × √ 84.6 

Group3 

√ × √ × × 84.9 

√ × × √ × 84.3 

√ × × × √ 84.6 

Group4 

√ √ √ × × 84.6 

√ √ × √ × 85.4 

√ √ × × √ 85.6 

Table 3 Compared experimental results 

 Method  Accuracy(%) 

Previous 

MLP  55.1 

SemiEmb 59 

DeepWalk  67.2 

ICA 75.1 

Planetoid  75.7 

Chebyshev  81.2 

GCN  81.5 

MoNet  82.2 

GAT  83.7 

GAAN 

(Ours) 

no MHGC 84.9 

with MHGC 85.6 
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