
CVPR
#*****

CVPR 2024 Submission *****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE. CVPR
#*****

Abstract

Non-Euclidean data, such as social networks, and

citation relationships between documents, has node

information and structural information. Graph

Convolutional Network(GCN) can automatically learn

node features and association information between nodes.

For example, social networks are very suitable for using

graph data to express, such as nodes in social networks

and the relationship between nodes. Users (with ID

information, etc.), posts are nodes, the relationship

between user A and user B is attention, and the

relationship between users and posts may be published or

forwarded. Through such a graph, it is possible to analyze

who and what users are interested in, and further

generate the recommendation system. The core ideology

of the graph convolutional network is to aggregate node

information by using edge information, thereby

generating a new node feather. Considering the numbers

and different contributions of neighbor nodes to the

central node, we design the Adaptive Attention

Mechanism(AAM). To further enhance the

representational capability of the model, we utilize Multi-

Head Graph Convolution(MHGC). Based on AAM and

MHGC, we contrive the novel Graph Adaptive Attention

Network (GAAN). Experiments on the CORA dataset

show that the classification accuracy has achieved 85.6%.

Keywords: Non-Euclidean, GCN, Adaptive Attention

Mechanism, Multi-Head Graph Convolution

1. Introduction

Many data in real life have irregular spatial structures,

known as non-Euclidean data, such as social networks,

recommendation systems, citation relationships between

documents, transportation planning, natural language

processing, etc. This type of data has both node

information and structural information, which traditional

deep learning networks like CNN, RNN, Transformer, etc

cannot well represent. Graph Convolutional Network

(GCN) [1], shown in Figure 1, is a class of deep learning

models used for processing graph data, and they have

made significant progress in graph data in recent years. In

the real world, many complex systems can be modeled as

graph structures, such as social networks,

recommendation systems, protein interaction networks,

etc. The nodes and edges of these graph data represent

entities and their relationships, which is of great

significance for understanding information transmission,

node classification, graph classification, and other tasks in

graph structures. However, compared with traditional

regularized data such as images and text, graph data

processing is more complex. Traditional Convolutional

Neural Networks (CNN) and Recurrent Neural Networks

(RNN) cannot be directly applied to graph structures

because the number of nodes and connections in the graph

may be dynamic. Therefore, researchers have begun

exploring new graph neural network models to effectively

process graph data. Graph Convolutional Networks (GCN)

were proposed in this context, making an important

breakthrough in graph data. The main idea of GCN is to

use the neighbor information of nodes to update their

representations, similar to traditional convolution

operations, but on graph structures. By weighted

averaging of neighboring nodes, GCN achieves

information transmission and node feature updates,

allowing the model to better capture the local and global

structures in the graph. More broadly, Graph

Convolutional Networks (GCN) are a special case of

Graph Neural Networks (GNN).

(GAAN)Graph Adaptive Attention Network

Anonymous CVPR submission

Paper ID *****

CVPR
#*****

CVPR 2024 Submission *****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE. CVPR
#*****

Input layer

C F

X1

X2

X3

X4

X5X6

X1'

X2'

X3'

X4'

X5'X6'

hidden
layers

Output layer

Y1

Y2

Y3

Y4

Y5

Y6

Figure 1: The structure of GCN

The previous graph convolution methods have not fully

considered the number and importance of neighboring

nodes. To solve the above problems, we propose the novel

GAAN (Graph Adaptive Attention Network), and our

main contributions are in the following two areas:

(1) To generate different weights for each neighbor

node of the central node, we design the novel adaptive

attention mechanism(AAM).

(2) Based on AAM, we utilize Multi-head Graph

Convolution(MHGC) to model and represent features

better.

2. Related Work

Graph Neural Networks (GNN) are a class of deep

learning models used for processing graph data, which

have made significant progress in graph data in recent

years.

GCN[1] is one of the earliest proposed GNN models.

GCN learns node representations by aggregating

information from neighboring nodes and updating node

features through weighted averaging of neighbors. It has

achieved excellent performance in semi-supervised node

classification tasks, making it a pioneering work in graph

data. GraphSAGE[2] was proposed to address the

scalability issue of GCN on large-scale graph data.

GraphSAGE learns node representations by sampling

neighboring nodes, enabling efficient node classification

on large graphs. SGCN[3] proposes a simplified version

of GCN by reducing the multi-layer convolution in GCN

to a single-layer convolution, thereby reducing

computational complexity. This simplified version

achieves good performance on large-scale graph data.

Due to the previous GNN models overlooking the

importance of each neighboring node, Graph Attention

Networks[4] adapt attention mechanisms to weigh

neighboring nodes, allowing the model to adaptively learn

the importance between nodes. This approach is of

great significance in handling large graphs and node

classification tasks. Graph Transformer Networks[5]

propose a method for applying the Transformer

architecture to graph-structured data. It introduces the

concept of self-attention to graph neural networks by

effectively processing the relationships between nodes

and edges through dynamic attention mechanisms. The

review paper[6] comprehensively introduces the

development history of graph neural networks, different

methods, and application areas. It summarizes and

compares the development in the field of graph data

analysis and the pros and cons of various models. It is an

important literature for understanding the field of GNN.

GNN is an active research field that has emerged many

important models and techniques. Its application scope

and domains are increasingly vast, providing more

innovation and progress for deep learning on graph data.

From the perspective of adaptive node weights, we

contrive the GAAN.

3. Methodology

The overall structure of GAAN is illustrated in Figure

2, and the specific computational process can be

represented by Equation 1 to Equation 5.

ℎ𝑖𝑗 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝑾ℎ⃗ 𝑖 ,𝑾ℎ⃗ 𝑗), 𝑖, 𝑗 ∈ 𝑁 （1）

where ℎ⃗⃗ 𝑖 and ℎ⃗⃗ 𝑗 represent the ith and jth nodes in the

graph, respectively. 𝑾 is the shared weight matrix to

uniform the node features. ℎ𝑖𝑗 fuses the features of the

ith and jth nodes. Based on ℎ𝑖𝑗, we can calculate the

basic AAM between the ith and jth nodes with the

following Equation 2.

CVPR
#*****

CVPR 2024 Submission *****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE. CVPR
#*****

𝑒𝑖𝑗 =
𝑎 ∗ ℎ𝑖𝑗

√𝐷𝑖 ∗ 𝐷𝑗

（2）

where 𝐷𝑖 and 𝐷𝑗 represent the degree of ith and jth

nodes, respectively. 𝑎 is the weight vector to reshape ℎ𝑖𝑗.

𝑒𝑖𝑗 is the weight coefficient between the ith and jth nodes.

Then, we adopt the softmax function to normalize 𝑒𝑖𝑗, as

shown specifically in Equation 3.

𝛼𝑖𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑗(𝑒𝑖𝑗)

=
exp (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑒𝑖𝑘))

∑ 𝑒𝑥𝑝𝑘𝜖ℎ𝑖
(𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑒𝑖𝑘))

（3）

Based on the normalized weight coefficients between

nodes obtained from Equations 1 to 3, we can perform the

graph convolution layer computation, as shown in

Equation 4.

ℎ⃗ 𝑖
′ = 𝜎(∑ 𝛼𝑖𝑗

𝑗𝜖𝒩𝑖

𝑾ℎ⃗ 𝑗) （4）

Building on Equation 4, we utilize MHGC, which

involves performing the computation of Equation 4 with

MHGC and then averaging these results to obtain the node

features of the subsequent layer. The computation process

is shown in Equation 5.

ℎ⃗ 𝑖
′ = 𝜎(

1

𝐾
∑ ∑ 𝛼𝑖𝑗

𝑘

𝑗𝜖𝒩𝑖

𝐾

𝑘=1

𝑾𝑘ℎ⃗ 𝑗)
（5）

Based on the aforementioned formula, we have

completed the normalized weight coefficients and inter-

layer computation processes for GAAN. We have

designed a single hidden layer, thus constructing the

GAAN with a total of two layers.

h2

h3

h1

h4

hi

h1'

α11

α12

α13

α14

α16

average

Graph

Hidden
layers

Input layers Output layers

E
n

co
d

in
g

Figure 2: The structure of GAAN

4. Experiments

In this paper, we use the Cora dataset, the specific

statistics of which are shown in Table 1. Cora includes a

citation network of scientific publications, which we use

to test the performance of GAAN.

Table 1 Summary of the datasets used in our experiments.

Dataset Nodes Edges Features per node Classes

Cora 2708 5429 1433 7

As shown in the ablation experiments in Table 2, AAM

and MHGC respectively increased by 1% and 1.2%. Our

GAAN has achieved an excellent performance of 85.6%.

As shown in Table 3, GCNA’s accuracy is 1.9% higher

than the previous GAT. Even the accuracy of GCNA

without MHGC is 1.2% higher than GAT. As shown in

Table 3, GCNA’s accuracy is 1.9% higher than the

previous GAT. Even the accuracy of GCNA without

MHGC is 1.2% higher than GAT.

5. Conclusion and Future Work

We have proposed AAM and MHGC to construct

GCNA, which solves the differences between neighbor

nodes to the central node. Experimental results show that

our method is superior in accuracy.

Over-smoothing occurs when multi-layers are stacked,

leading to the features of all nodes being almost the same.

However, many situations are necessary to capture the

features of distant neighbors. Therefore, stacking multiple

layers of GCN is inevitable. The strategy of stacking

multi-layers, designed to prevent over-smoothing, is

urgent.

CVPR
#*****

CVPR 2024 Submission *****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE. CVPR
#*****

Table 2 Ablation experimental results on Cora. ‘n’ and ‘n_hidden’ represent the number of graph convolution heads and the number

of nodes in hidden layers, respectively.

 AAM MHGC(n=8)
n_hidden

Accuracy(%)
64 96 128

Group1

× × √ × × 83.9

× × × √ × 83.5

× × × × √ 83

Group2

× √ √ × × 84.6

× √ × √ × 85.1

× √ × × √ 84.6

Group3

√ × √ × × 84.9

√ × × √ × 84.3

√ × × × √ 84.6

Group4

√ √ √ × × 84.6

√ √ × √ × 85.4

√ √ × × √ 85.6

Table 3 Compared experimental results

 Method Accuracy(%)

Previous

MLP 55.1

SemiEmb 59

DeepWalk 67.2

ICA 75.1

Planetoid 75.7

Chebyshev 81.2

GCN 81.5

MoNet 82.2

GAT 83.7

GAAN

(Ours)

no MHGC 84.9

with MHGC 85.6

Reference

[1] Kipf, Thomas and Max Welling. “Semi-Supervised

Classification with Graph Convolutional

Networks.” ArXiv abs/1609.02907 (2016): n. pag.

[2] Hamilton, William L. et al. “Inductive

Representation Learning on Large Graphs.” Neural

Information Processing Systems (2017).

[3] Wu, Felix et al. “Simplifying Graph Convolutional

Networks.” International Conference on Machine

Learning (2019).

[4] Velickovic, P., Cucurull, G., Casanova, A., Romero,

A., Lio’, P., & Bengio, Y. (2017). Graph Attention

Networks. ArXiv, abs/1710.10903.

[5] Yun, Seongjun & Jeong, Minbyul & Kim, Raehyun

& Kang, Jaewoo & Kim, Hyunwoo. (2019). Graph

Transformer Networks.

[6] Izadi, Mohammad Rasool, et al. “Optimization of

Graph Neural Networks with Natural Gradient

Descent.” 2020 IEEE International Conference on

Big Data (Big Data) (2020): 171-179.

