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Abstract
Wildfires are increasing in intensity and severity
at an alarming rate. Recent advances in AI and
publicly available satellite data enable monitor-
ing critical wildfire risk factors globally, at high
resolution and low latency. Live Fuel Moisture
Content (LFMC) is a critical wildfire risk factor
and is valuable for both wildfire research and oper-
ational response. However, ground-based LFMC
samples are both labor intensive and costly to ac-
quire resulting in sparse and infrequent updates.
In this work, we explore the use of a pretrained,
highly-multimodal earth-observation model for
generating large-scale spatially complete (wall-to-
wall) LFMC maps. Our approach achieves signif-
icant improvements over previous methods using
randomly initialized models (> 20% reduction in
RMSE). We provide an automated pipeline that
enables rapid generation of these LFMC maps
across the United States, and demonstrate its ef-
fectiveness in two regions recently impacted by
wildfire (Eaton and Palisades).

1. Introduction
Live Fuel Moisture Content (LFMC) is a measurement of
the amount of water in live vegetation. It is a critical param-
eter for both wildfire research and operations. LFMC has
been shown to have a strong influence on wildfire ignition
(Chuvieco et al., 2004), fuel availability (Kelley et al., 2019),
and wildfire spread (Rossa, 2017). Live Fuel Moisture Con-
tent is calculated using the following formula:

LFMC [%] =
Wf − Wd

Wd
× 100 (1)

Where Wf is the weight of fresh plant material and Wd is
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the weight of the material after drying (often in an oven).
Lower LFMC values indicate higher wildfire risk (Rao et al.,
2023).

LFMC sampling in the field is a time-consuming and labor-
intensive process. Variations in land cover, plant species,
and topography can all significantly impact LFMC. Effec-
tive and accurate sampling requires expert judgment. Plant
material is collected, weighed, dried for one to two days
in an oven, and weighed again to calculate LFMC as the
percentage change in weight. Depending on site access,
equipment, and fuel type, sampling just a single site takes
12 hours – 4 days. Due to these constraints, only a few
samples can be gathered at a time, limiting spatial coverage.

Accurate, spatially complete, assessments of LFMC have
broad applications, including historical analysis of wildfires,
planning prescribed burns, and supporting decision-making
during active wildfires. Recent work has investigated a com-
bination of machine learning and remote sensing-based tech-
niques to provide wall-to-wall LFMC maps (Miller et al.,
2023; Rao et al., 2020; Marino et al., 2020). In tandem,
the machine learning community has been investigating
self-supervised models, with the stated intent of improving
the spatial and temporal generalization of machine learn-
ing models applied to remote sensing (Astruc et al., 2024;
Szwarcman et al., 2024; Tseng et al., 2023). These mod-
els can be critical tools for LFMC predictions, which often
suffer from imbalanced and heterogeneous labels.

In this work, we develop a pipeline which leverages Galileo
(Tseng et al., 2025) — a pretrained remote sensing model
— to generate on-demand LFMC maps. We validate the
effectiveness of using a pretrained model, and demonstrate
the effectiveness of our pipeline in two study areas.

The contributions of this paper are threefold:

• We develop a pipeline to generate LFMC maps for
spatiotemporal areas of interest, allowing users to gen-
erate LFMC maps for future treatment planning and in
response to historical wildfire events.

• We demonstrate the utility of a highly multimodal pre-
trained geospatial model to make accurate LFMC pre-
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dictions.

• We apply our pipeline to two real-world case stud-
ies without available labels, showing that the model’s
predictions of LFMC are consistent with expert field
observations.

The code is available on GitHub 1.

2. Related Works
Previous work on estimating LFMC with machine learn-
ing has primarily focused on leveraging multimodal remote
sensing data and fully supervised approaches to generate
coarse resolution maps. For example, Rao et al. (2020) de-
veloped a physics-assisted, recurrent neural network (RNN)
model to map the LFMC for the western United States at
a 250-meter spatial resolution, mainly leveraging Sentinel-
1 backscatter and Landsat-8 optical imagery. Miller et al.
(2023) proposed a temporal convolutional neural network
(tempCNN) model to forecast LFMC at a 500-meter reso-
lution with a three-month lead time, mainly using ground
observations, MODIS images, meteorological variables, cli-
mate zone classifications, and elevation data. In this study,
we investigate a model pretrained on multimodal remote
sensing data, and produce maps at a far higher spatial reso-
lution (10-meter).

As part of efforts to modernize the U.S. National Fire Dan-
ger Rating System, Jolly et al. (2024) introduced a physi-
ologically based LFMC model grounded in plant response
mechanisms. Their approach uses a Growing Season In-
dex (GSI) model primarily driven by daily surface weather
variables, including minimum temperature, vapor pressure
deficit, photoperiod, and rainfall derived from both point-
source and gridded weather observations and forecasts. In
contrast, we investigate an empirical model that relies on
observation data, without explicitly modeling plant physio-
logical processes.

3. Materials and methods
3.1. The Globe-LFMC 2.0 dataset

In 2024, the second iteration of the global LFMC dataset
was published, Globe-LFMC 2.0 (Yebra et al., 2024). This
dataset comprises over 280,000 LFMC values derived from
samples gathered at more than 2,000 locations across 15
countries collected between 1977 and 2023. It includes data
from more than 500 different species or combinations of
species.

Filtering and aggregating the Globe-LFMC 2.0 dataset re-
sulted in 41,214 samples across 1,031 sites (described in

1https://github.com/allenai/lfmc

Section 3.3.1). The median LFMC value was 102.0%, the
1% LFMC value was 51%, and the 99.9% LFMC value
was 301.67%. To prevent outliers from having an outsized
impact on predictions, all samples were capped and normal-
ized with an LFMC value of 302%, rounded up from the
99.9 percentile.

As shown in Figure 1, when grouped by meteorological
season, most samples were taken during summer and the
fewest were taken during winter. Spring and autumn had
a similar number of samples. This aligns with the typical
annual wildfire risk during a calendar year in the United
States. Additionally, the spring and autumn months are often
used for forest treatments such as prescribed burning due to
more favorable weather conditions (Hosten & Stringham,
2020).

Figure 1: Meteorological season breakdown of the Globe-
LFMC 2.0 dataset for CONUS samples 2017-2023.

Also noticeably, as shown in Figure 2, most winter samples
were taken in warmer climates such as Southern California,
Arizona, and Texas.

3.2. The Galileo Pretrained Remote Sensing Model

Recent advancements have created new opportunities for
applications that combine remote sensing with deep learning
(Vatsavai, 2024). Notably, by pretraining on a large volume
of modalities across time and space, geospatial foundation
models enable fine-tuned models to be produced efficiently
and with lower data labeling requirements than traditional
machine learning techniques (Jakubik et al., 2023). A well
trained foundation model can be adapted to a diverse set
of remote sensing applications, from crop mapping to land
cover classification to flood detection (Dionelis et al., 2024).

LFMC estimation is a highly multimodal task; Rao et al.
(2020) report the beneficial impact of including a diversity
of remote sensing modalities, ranging from directly sensed
products such as optical and SAR data to derived products
including topography and land cover. We therefore require
a highly multimodal foundation model, which can process
this diversity of inputs. We select the Galileo model (Tseng
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Figure 2: Location breakdown of Globe-LFMC 2.0 dataset for CONUS samples 2017-2023
by meteorological season.

et al., 2025), a model which can ingest 10 directly-sensed
and derived remote sensing products across both the spatial
and temporal dimensions. We document the inputs we used
in more detail below.

Galileo is a vision transformer based model (Dosovitskiy
et al., 2020) — we use a Galileo-Tiny model, which contains
5.3M parameters. The Galileo-Tiny model is chosen for
its balance between a lightweight architecture and strong
performance.

3.2.1. GALILEO’S REMOTE SENSING INPUTS

We use a subset of Galileo’s remote sensing inputs when
producing our LFMC maps. All remote sensing data was
collected from the Google Earth Engine Data Catalog (Gore-
lick et al., 2017).

• Multispectral Optical Data: We use optical imagery
from the Sentinel-2 satellite, which include the visi-
ble, near-infrared and shortwave infrared bands. In
addition, we compute NDVI (Tucker, 1979) from the
near-infrared and red bands. Following Galileo’s pre-
training, we use the L1C Top of Atmosphere (TOA)
product.

• Synthetic Aperture Radar Data: We include the dual
VV and VH bands from the Sentinel-1 satellite, which
can be useful for distinguishing between water, land
and vegetation.

• Night Lights: We use the night lights from the Visible
Infrared Imaging Radiometer Suite (VIIRS) missions,
including the average (Day/Night Band) DNB radiance
values.

• Weather Data: We include precipitation and temper-
ature data from the ERA-5 Land reanalysis product
(Muñoz Sabater, 2019).

• Climate and Water Balance Data: We include cli-
mate water deficit, soil moisture, and actual evapotran-
spiration from the TerraClimate dataset (Abatzoglou
et al., 2018).

• Topography Data: We include elevation and slope
computed from the SRTM Digital Elevation Model
(Farr & Kobrick, 2000).

• Location Data We provide location awareness to the
model via latitude and longitude coordinates.

The input datasets used in this analysis span a wide range of
spatial and temporal resolutions—for example, spatial res-
olution ranges from approximately 10 meters per pixel for
certain Sentinel-2 bands to tens of kilometers per pixel for
ERA5 weather data. Temporal resolution also varies consid-
erably, from a 5-day revisit period for Sentinel-2 to monthly
intervals for datasets such as ERA5, TerraClimate, and VI-
IRS. Some inputs, such as SRTM, are static and do not
vary over time. To accommodate these differences, Galileo
categorizes inputs based on whether they vary spatially, tem-
porally, or both. Inputs with coarse spatial resolution, such
as weather data, are treated as spatially static within the con-
text of a single prediction instance. All temporally varying
inputs are aggregated or resampled to a consistent monthly
time scale to ensure comparability across datasets.
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3.3. Full coverage LFMC mapping pipeline

We combine the Globe-LFMC dataset and the pretrained
Galileo model to generate a fine-tuned LFMC model. We
then apply this fine-tuned model to generate wall-to-wall
LFMC maps. We outline this pipeline in Figure 5.

3.3.1. GENERATING A TRAINING DATASET FROM GLOBE
LFMC-2.0

The Globe-LFMC dataset includes samples from around the
globe, though the vast majority originate from the continen-
tal United States (CONUS). Accordingly, this study focuses
solely on samples within CONUS. To ensure satellite data
availability for all data sources, only samples from 2017 to
2023 were included.

In the Globe-LFMC 2.0 dataset, it is common to find multi-
ple samples collected at the same location on the same day.
Following the guidance of the Globe-LFMC 2.0 paper, such
samples were averaged into a single observation.

For each sample in the Globe-LFMC 2.0 dataset, a 1 km
× 1 km bounding box was created around its latitude–
longitude coordinates. Data within this bounding box was
exported from Google Earth Engine for the following prod-
ucts: Sentinel-1, Sentinel-2, VIIRS, SRTM, ERA5-Land,
and TerraClimate, and elevation data from the SRTM prod-
uct.

In total, the dataset included 41,214 ground-based LFMC
samples, randomly split into training (≈ 70%), validation (≈
15%), and test (≈ 15%) sets. Sample elevations ranged from
15 to 3,187 meters and were grouped into 500-meter ranges
for analysis, as detailed in Figure 3. The breakdown of all
land cover classifications (defined by the ESA WorldCover
2021 product) is shown in Figure 4.

Figure 3: Elevation range breakdown of the Globe-LFMC
2.0 dataset for CONUS samples (2017–2023) in 500 m in-
crements.

Figure 4: Coverage of the Globe-LFMC 2.0 dataset for
CONUS samples 2017-2023 in terms of land cover classes
covered by the labels. We use WorldCover (Zanaga et al.,
2021) to obtain the land cover labels.

3.3.2. FINE-TUNING AN LFMC MODEL

We fine-tuned the Galileo-Tiny pretrained on the Globe
LFMC-2.0 dataset (combined with the exported remote
sensing data, described above in Section 3.3.1) under mean
squared error (MSE) loss.

During fine-tuning, we used the ≈70% training set and used
the ≈15% validation set as an early stopping mechanism.
Training was conducted for up to 100 epochs, with early
stopping applied if no improvement was observed against
the validation set for 5 consecutive epochs. This yielded
a fine-tuned GalileoLFMC model, which could then be de-
ployed to generate LFMC maps.

Figure 5: A pipeline to produce LFMC map for a given
spatiotemporal window. By leveraging a pretrained remote
sensing model and the Globe-LFMC 2.0 dataset, we can
efficiently generate maps for new areas and timesteps.
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Table 1: Using a pretrained model significantly improves
performance compared to a randomly initialized model. In
this table, we compare a pretrained Galileo architecture to
two baselines: (1) a randomly initialized model and (2) a
monthly average, and find a significant reduction in RMSE
and an increase in R2 score.

CATEGORY RMSE MAE R2

PRETRAINED 18.91 12.58 0.72
RANDOM INITIALIZED 23.61 16.33 0.57
MONTHLY PREDICTIONS 33.66 25.38 0.11

3.3.3. GENERATING LFMC MAPS

Generating LFMC maps requires a fine-tuned GalileoLFMC

model, and a bounding box describing the desired mapping
area. We export the relevant remote sensing products using
Google Earth Engine, and run inference over the exported
area using GalileoLFMC .

3.3.4. INFRASTRUCTURE

The model was fine-tuned on a single NVIDIA H100 GPU.
Fine-tuning took approximately 30-60 minutes depending
on the number of epochs it took for the model to reach a
steady validation loss.

4. Experiments and Results
We report results on the (unseen) ≈ 15% test set, using the
random split described in Section 3.3.1. We report root mean
squared error (RMSE), mean absolute error (MAE) and the
R2 score (coefficient of determination) of our predictions
against the test set.

We compare the performance of GalileoLFMC against two
baselines: (1) a fine-tuned model initialized with random
weights and (2) a model that predicts values using the
monthly average of all training samples corresponding to the
sample’s month. Previous works applying deep learning to
LFMC estimation have adopted a fully supervised approach
(Rao et al., 2020; Miller et al., 2023; Zhu et al., 2021) - our
“random weights” baseline reflects this previous approach.

4.1. Results

4.1.1. PRETRAINED WEIGHTS ACHIEVE THE BEST
RESULTS

GalileoLFMC achieved an overall MAE of 12.58 and an
RMSE of 18.91, with an R2 score of 0.72 (Table 1). This is a
significant improvement over the randomly initialized model
(≈ 20% reduction in RMSE), highlighting the effectiveness
of pretrained models for LFMC predictions. Our results are

Table 2: Fine-tuned model evaluation across meteorological
seasons. GalileoLFMC performs well across all seasons -
including the winter season, where it sees fewer training
data points.

SEASON RMSE MAE R2

OVERALL 18.91 12.58 0.72
WINTER SEASON 15.31 10.74 0.77
SPRING SEASON 22.85 15.35 0.69
SUMMER SEASON 19.70 13.05 0.67
AUTUMN SEASON 12.70 9.27 0.75

Table 3: Fine-tuned model evaluation across land cover
classes. GalileoLFMC performs well across all land cover
types.

LAND COVER CLASS RMSE MAE R2

OVERALL 18.91 12.58 0.72
TREES 18.00 11.97 0.68
GRASS 20.09 13.62 0.73
SHRUB 19.53 12.28 0.74
BUILT-UP 16.79 11.78 0.77
BARE / SPARSE 20.52 15.67 0.79

comparable to, and in some cases exceed, the performance
of existing LFMC models developed without the use of
pretrained weights (Miller et al., 2023; Rao et al., 2020;
Marino et al., 2020).

In addition to the results in Table 1, we plot model perfor-
mance spatially in Figure 6. To assess the spatial autocor-
relation of the residuals, we compute a Moran’s I (Moran,
1950) using K-Nearest Neighbors based spatial weights ma-
trix. The results yielded a Moran's I of 0.057 with a p-value
of 0.001, suggesting a statistically significant weak posi-
tive spatial autocorrelation in the model errors. A weak
but statistically significant spatial autocorrelation suggests
potential information leakage from the random split, as geo-
graphically proximate samples may appear across training,
validation, and test sets. Future work could adopt spatial
partitioning methods to better assess model generalization.

When analyzed across meteorological seasons (Table 2),
the model's lowest RMSE was for autumn (12.70) and its
highest RMSE was for spring (22.85). It did not demon-
strate lower performance nor explainability (R2 score) in
the winter, despite lower representation in the dataset. This
suggests that Galileo’s pretraining—which exposes it to
data from many different timesteps—is helpful in ensuring
GalileoLFMC can generalize temporally.

The model’s performance across the various land cover
classes was consistent with its overall accuracy (Table 3).
RMSE values ranged from 16.79 for built-up areas to 20.52
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Figure 6: Percentage error for the test dataset. GalileoLFMC performs well across the entire
spatial distribution of the test set. Moran’s I is 0.057 with a p-value of 0.001, indicating a
statistically significant weak positive autocorrelation in model errors.

Table 4: Fine-tuned model evaluation across elevation bands.
R2 values drop at higher elevations, likely due to a sparsity
of training labels above 3,000m.

CATEGORY RMSE MAE R2

OVERALL 18.91 12.58 0.72
ELEVATION: 0-500M 18.34 11.59 0.73
ELEVATION: 500-1000M 17.93 11.98 0.77
ELEVATION: 1000-1500M 21.65 14.54 0.73
ELEVATION: 1500-2000M 18.91 13.56 0.75
ELEVATION: 2000-2500M 19.35 12.44 0.61
ELEVATION: 2500-3000M 15.25 10.00 0.54
ELEVATION: 3000-3500M 14.54 10.41 0.32

for sparse vegetation, with a median value of 18.00. No-
tably, despite their lower representation, built-up and sparse
areas did not exhibit significantly different errors compared
to more prevalent classes such as tree-covered areas, grass-
lands, and shrublands. Land cover types with very lim-
ited representation in the filtered Globe-LFMC 2.0 dataset—
specifically moss/lichen and cropland—were not covered
by the test set.

The model maintained an R2 score above 0.7 for elevation
ranges below 2,000 meters (Table 4). However, performance
declined substantially at higher elevations, with R2 values
dropping to 0.54 for the 2,500–3,000 meter range and 0.32
for the 3,000–3,500 meter range. This decrease is likely
due to the limited representation of high-elevation areas in
the Globe-LFMC 2.0 dataset—in particular, there were only
444 samples above 3,000 meters. RMSE values across eleva-
tion bands ranged from 14.54 (3000–3500 meters) to 21.65

Table 5: We fine-tune the pretrained Galileo model with a
variety of input shapes (i.e. varying [height× width] and
number of input timesteps). While more spatial and tempo-
ral context is beneficial, the fine-tuned model’s performance
stays relatively stable as these parameters are changed.

H, W T RMSE MAE R2

32 12 18.91 12.58 0.72
32 6 18.93 12.68 0.72
32 3 19.45 13.10 0.70
16 12 19.36 12.67 0.71
8 12 19.71 13.20 0.70
1 12 20.25 13.46 0.68

(1000–1500 meters). Among the bands with R2 > 0.7—
those under 2,000 meters—the lowest RMSE was 17.93.
The overall median RMSE was 18.34.

4.1.2. MODEL PERFORMANCE IS NOT SENSITIVE TO
INPUT SHAPE

In addition to being highly multimodal, Galileo can ingest a
variety of input shapes (i.e. varying spatial areas and tem-
poral ranges). We investigate the effect of passing different
input shapes as inputs (compared to our default spatial area
of [32×32] pixels and 12 timesteps) in Table 5. While more
spatial and temporal context helps, we find that the model
remains relatively stable as the spatial area and temporal
range are reduced.
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Table 6: We fine-tune the pretrained and randomly initial-
ized Galileo models while removing one of the at fine-tuning
time. Pretraining makes the model more robust to missing
inputs; the randomly initialized model experiences signif-
icantly larger changes in performance depending on the
removed inputs (e.g. a 14 % degradation in R2 score when
the TerraClimate input is removed).

PRETRAINED RANDOM

W/O IN RMSE MAE R2 RMSE MAE R2

NONE 18.91 12.58 0.72 23.61 16.33 0.57
S2 19.51 13.10 0.70 23.46 16.45 0.57
S1 18.82 13.10 0.72 23.84 16.57 0.56
ERA5 19.27 13.09 0.71 22.42 15.90 0.61
TC 19.51 13.02 0.70 25.57 17.59 0.49
SRTM 19.61 13.34 0.70 22.02 15.34 0.62
LOC. 20.08 13.91 0.69 23.80 16.54 0.56

4.1.3. PRETRAINING MAKES THE MODEL MORE ROBUST
TO MISSING INPUTS

We use highly multimodal remote sensing inputs when fine-
tuning the Galileo model and making LFMC maps (de-
scribed in Section 3.2.1). To understand the contribution
of each of these modalities, we fine-tune the pretrained
and randomly initialized models with one input removed in
Table 6. We find that for the randomly initialized model,
removing TerraClimate yields a significant degradation in
performance (8% reduction in RMSE). On the other hand,
the pretrained model’s performance remains relatively stable
even as inputs are removed, which suggests Galileo’s self-
supervised pretraining increases its robustness to missing
inputs at fine-tuning time. This allows the pretrained model
to be leveraged even if certain remote sensing products are
missing (e.g. due to clouds).

4.2. Case study: 2025 Palisades and Eaton Wildfires

In January 2025, a series of devastating wildfires burned
across the Los Angeles metropolitan area. These fires were
exacerbated by prolonged drought, low humidity, unusu-
ally strong northeasterly (Santa Ana) winds, and a buildup
of vegetation following two consecutive springs of above-
average rainfall (Giuseppe et al., 2025).

The two largest and most destructive fires—by both area
burned and structures lost—were the Palisades and Eaton
wildfires, both located in Los Angeles County. The Pal-
isades Fire originated in the Santa Monica Mountains and
severely impacted Pacific Palisades, Topanga, and Malibu.
The Eaton Fire started in the San Gabriel Mountains and
destroyed foothill communities, particularly Altadena. Both
fires caused unprecedented levels of damage.

Perimeter data for both fires was retrieved on January 13,

Figure 7: LFMC predictions for the San Gabriel Moun-
tains, site of the Eaton Fire in 2025. These maps show 4
months in 2024 and demonstrate our pipeline’s ability to
make spatially complete maps that capture seasonal patterns
and geographic variability in LFMC values. LFMC values
range from 0% (red) to 180% (green).

2025, from the WFIGS Current Interagency Fire Perime-
ters database (National Interagency Fire Center, 2025). At
the time, both fires were active and largely uncontained.
Bounding boxes were constructed for each fire, and data
was exported from Google Earth Engine covering the period
from January 1, 2020, to December 31, 2024.

The fine-tuned model was used to generate monthly LFMC
predictions for the affected areas, producing outputs at a
10-meter spatial resolution. We show a seasonal example of
these predictions for the Eaton Fire in Figure 7.

The model revealed a consistent seasonal pattern: average
LFMC levels rose through winter and peaked in late spring
before declining into late autumn. This is shown in the
average LFMC prediction for all pixels in the bounding
boxes (see Figure 8). Additionally, the model predicted
higher LFMC values in 2023 and 2024 compared to 2021
and 2022 (Figure 9). While the link between LFMC and fuel
accumulation is not fully understood, this pattern may reflect
increased vegetation growth following wetter years. Such
growth has been linked to greater fuel loads, a contributing
factor in wildfire severity (Giuseppe et al., 2025).

5. Discussion
Live Fuel Moisture Content (LFMC) is a key environmental
variable for assessing wildfire risk, as it directly affects both
the likelihood of ignition and the potential for fire spread.
However, current live fuel moisture sampling is restricted
by field and processing constraints, as samples must be col-
lected from easily accessible areas and quickly transported
to laboratory facilities for drying. These limitations reduce
the spatial and temporal resolution of traditional measure-
ments.

An accurate and reliable LFMC prediction model may of-
fer significant value to land managers, wildland firefighters,
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(a) Eaton Fire area

(b) Palisades Fire area

Figure 8: Monthly LFMC average predictions for two wild-
fire areas from 2021–2024: (a) Eaton and (b) Palisades.
These averages are computed over wall-to-wall maps like
the ones shown in Figure 7 and Figure 9.

and the communities potentially threatened by wildfires.
Improved ability to analyze past wildfire events enhances
our understanding of the conditions that contribute to large,
destructive fires. This enables more effective anticipation
and mitigation strategies. Furthermore, such insights sup-
port the evaluation of conditions under which prescribed
fire has been successfully implemented, thereby promoting
its strategic use as a tool for reducing wildfire risk.

This study demonstrates that a practical LFMC model can
be built using existing state-of-the-art geospatial founda-
tion models, achieving reasonably accurate predictions in
many cases. The model offers high spatial resolution (10
meters), whereas previous studies provided only 500-meter
resolution (Miller et al., 2023). A case study of 2025 wild-
fire events in Los Angeles supported the model’s reliability,
showing results consistent with observed surface conditions.

Nonetheless, the model has several limitations that warrant
further research and development. While the Galileo-Tiny
foundation model was trained on global data, the LFMC
model was fine-tuned exclusively on data from the conti-
nental United States, primarily in the western region. A

Figure 9: LFMC predictions for the Santa Monica Moun-
tains and nearby coastal communities of Pacific Palisades,
Topanga, and Malibu, site of the Palisades fire in 2025.
These maps show the month of August for 2021, 2022,
2023, and 2024, demonstrating our pipeline’s ability to pro-
duce spatially complete maps that capture annual variability
in LFMC values driven by differences in seasonal cycles.
LFMC values range from 0% (red) to 180% (green).

more extensive global sample could be acquired and used
for training. Furthermore, the model has only been applied
retrospectively and has not yet been tested for forecasting
LFMC. Finally, it currently produces only monthly aver-
ages, whereas more frequent weekly and daily predictions—
including on-demand generation for current conditions—
would be highly valuable, especially for real-time wildfire
management.
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