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Abstract

Wildfires are increasing in intensity and
severity at an alarming rate. Recent ad-
vances in Al and publicly available satel-
lite data enable monitoring critical wild-
fire risk factors globally, at high resolu-
tion and low latency. Live Fuel Moisture
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rapid generation of these LFMC maps
across the United States, and demon-
strate its effectiveness in two regions re-
cently impacted by wildfire (Eaton and
Palisades).

1. Introduction

Content (LFMC) is a critical wildfire risk Live Fuel Moisture Content (LFMC) is a mea-
factor and is valuable for both wildfire surement of the amount of water in live veg-

research and operational response. How-
ever, ground-based LEFMC samples are
both labor intensive and costly to ac-
quire resulting in sparse and infrequent

etation. It is a critical parameter for both
wildfire research and operations. LFMC has
been shown to have a strong influence on

updates. In this work, we explore the use wildfire ignition (Chuvieco et al., 2004), fuel
of a pretrained, highly-multimodal earth- availability (Kelley et al., 2019), and wild-
observation model for generating large- fire spread (Rossa, 2017). Live Fuel Moisture
scale spatially complete (wall-to-wall) Content is calculated using the following for-
LFMC maps. Our approach achieves mula:

significant improvements over previous

methods using randomly initialized mod-

els (> 20% reduction in RMSE). We pro- W, — W,

Vide(z an automated pipeline ths)ut enables LEMC [%] = % x 100 (1)

© P.A. Johnson, G. Tseng, Y. Zhang, H. Heward, V. Sjahli, F.

Bastani, J. Redmon & P. Beukema.
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Where Wy is the weight of fresh plant ma-
terial and Wy is the weight of the material
after drying (often in an oven). Lower LFMC
values indicate higher wildfire risk Rao et al.
(2023).

LFMC sampling in the field is a time-
consuming and labor-intensive process. Vari-
ations in land cover, plant species, and to-
pography can all significantly impact LEMC.
Effective and accurate sampling requires ex-
pert judgment. Plant material is collected,
weighed, dried for one to two days in an oven,
and weighed again to calculate LEMC as the
percentage change in weight. Depending on
site access, equipment, and fuel type, sam-
pling just a single site takes 12 hours — 4 days.
Due to these constraints, only a few samples
can be gathered at a time, limiting spatial
coverage.

Accurate, spatially complete, assessments
of LFMC have broad applications, includ-
ing historical analysis of wildfires, planning
prescribed burns, and supporting decision-
making during active wildfires. Recent work
has investigated a combination of machine
learning and remote sensing-based techniques
to provide wall-to-wall LFMC maps Miller
et al. (2023); Rao et al. (2020); Marino et al.
(2020). In tandem, the machine learning com-
munity has been investigating self-supervised
models, with the stated intent of improving
the spatial and temporal generalization of
machine learning models applied to remote
sensing Astruc et al. (2024); Szwarcman et al.
(2024); Tseng et al. (2023). These models can
be critical tools for LEMC predictions, which
often suffer from imbalanced and heteroge-
neous labels.

In this work, we develop a pipeline which
leverages Galileo Tseng et al. (2025) — a pre-
trained remote sensing model — to generate
on-demand LFMC maps. We validate the
effectiveness of using a pretrained model, and
demonstrate the effectiveness of our pipeline
in two study areas.

The contributions of this paper are three-
fold:

e We develop a pipeline to generate LEMC
maps for spatiotemporal areas of inter-
est, allowing users to generate LEFMC
maps for future treatment planning and
in response to historical wildfire events.

e We demonstrate the utility of a highly
multimodal pretrained geospatial model
to make accurate LEMC predictions.

e We apply our pipeline to two real-world
case studies without available labels,
showing that the model’s predictions of
LFMC are consistent with expert field
observations.

The code is available on GitHub 1.

2. Related Works

Previous work on estimating LFMC with
machine learning has primarily focused on
leveraging multimodal remote sensing data
and fully supervised approaches to generate
coarse resolution maps. For example, Rao
et al. (2020) developed a physics-assisted, re-
current neural network (RNN) model to map
the LFMC for the western United States at
a 250-meter spatial resolution, mainly lever-
aging Sentinel-1 backscatter and Landsat-8
optical imagery. Miller et al. (2023) pro-
posed a temporal convolutional neural net-
work (tempCNN) model to forecast LFMC
at a b00-meter resolution with a three-month
lead time, mainly using ground observations,
MODIS images, meteorological variables, cli-
mate zone classifications, and elevation data.
In this study, we investigate a model pre-
trained on multimodal remote sensing data,
and produce maps at a far higher spatial res-
olution (10-meter).

As part of efforts to modernize the U.S.
National Fire Danger Rating System, Jolly

1. https://github.com/allenai/lfmc
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et al. (2024) introduced a physiologically
based LFMC model grounded in plant re-
sponse mechanisms. Their approach uses a
Growing Season Index (GSI) model primar-
ily driven by daily surface weather variables,
including minimum temperature, vapor pres-
sure deficit, photoperiod, and rainfall derived
from both point-source and gridded weather
observations and forecasts. In contrast, we
investigate an empirical model that relies on
observation data, without explicitly modeling
plant physiological processes.

3. Materials and methods

3.1. The Globe-LFMC 2.0 dataset

In 2024, the second iteration of the global
LFMC dataset was published, Globe-LFMC
2.0 (Yebra et al., 2024). This dataset com-
prises over 280,000 LFMC values derived from
samples gathered at more than 2,000 loca-
tions across 15 countries collected between
1977 and 2023. It includes data from more
than 500 different species or combinations of
species.

Filtering and aggregating the Globe-LFMC
2.0 dataset resulted in 41,214 samples across
1,031 sites (described in Section 3.3.1). The
median LFMC value was 102.0%, the 1%
LFMC value was 51%, and the 99.9% LFMC
value was 301.67%. To prevent outliers from
having an outsized impact on predictions, all
samples were capped and normalized with an
LEMC value of 302%, rounded up from the
99.9 percentile.

As shown in Figure 1, when grouped by me-
teorological season, most samples were taken
during summer and the fewest were taken
during winter. Spring and autumn had a sim-
ilar number of samples. This aligns with the
typical annual wildfire risk during a calendar
year in the United States. Additionally, the
spring and autumn months are often used
for forest treatments such as prescribed burn-

ing due to more favorable weather conditions
(Hosten and Stringham, 2020).

Meteorological Season of Globe-LFMC 2.0 (CONUS, 2017-2023)

Meteorological Season

Figure 1: Meteorological season breakdown
of the Globe-LFMC 2.0 dataset for CONUS
samples 2017-2023.

Also noticeably, as shown in Figure 2, most
winter samples were taken in warmer climates
such as Southern California, Arizona, and
Texas.

3.2. The Galileo Pretrained Remote
Sensing Model

Recent advancements have created new op-
portunities for applications that combine
remote sensing with deep learning (Vat-
savai, 2024). Notably, by pretraining on a
large volume of modalities across time and
space, geospatial foundation models enable
fine-tuned models to be produced efficiently
and with lower data labeling requirements
than traditional machine learning techniques
(Jakubik et al., 2023). A well trained foun-
dation model can be adapted to a diverse
set of remote sensing applications, from crop
mapping to land cover classification to flood
detection (Dionelis et al., 2024).

LFMC estimation is a highly multimodal
task; Rao et al. (2020) report the beneficial
impact of including a diversity of remote sens-
ing modalities, ranging from directly sensed
products such as optical and SAR data to
derived products including topography and
land cover. We therefore require a highly mul-
timodal foundation model, which can process
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Figure 2: Location breakdown of Globe-LFMC 2.0 dataset for CONUS
samples 2017-2023 by meteorological season.

this diversity of inputs. We select the Galileo
model Tseng et al. (2025), a model which
can ingest 10 directly-sensed and derived re-
mote sensing products across both the spatial
and temporal dimensions. We document the
inputs we used in more detail below.

Galileo is a vision transformer based model
Dosovitskiy et al. (2020) — we use a Galileo-
Tiny model, which contains 5.3M parameters.
The Galileo-Tiny model is chosen for its bal-
ance between a lightweight architecture and
strong performance.

3.2.1. GALILEO’S REMOTE SENSING INPUTS

We use a subset of Galileo’s remote sensing
inputs when producing our LFMC maps. All
remote sensing data was collected from the
Google Earth Engine Data Catalog (Gorelick
et al., 2017).

e Multispectral Optical Data: We use
optical imagery from the Sentinel-2 satel-
lite, which include the visible, near-
infrared and shortwave infrared bands.
In addition, we compute NDVI Tucker
(1979) from the near-infrared and red
bands. Following Galileo’s pretraining,

we use the L1C Top of Atmosphere
(TOA) product.

Synthetic Aperture Radar Data:
We include the dual VV and VH bands
from the Sentinel-1 satellite, which can
be useful for distinguishing between wa-
ter, land and vegetation.

Night Lights: We use the night lights
from the Visible Infrared Imaging Ra-
diometer Suite (VIIRS) missions, includ-
ing the average (Day/Night Band) DNB
radiance values.

Weather Data: We include precip-
itation and temperature data from
the ERA-5 Land reanalysis product
Muiloz Sabater (2019).

Climate and Water Balance Data:
We include climate water deficit, soil
moisture, and actual evapotranspiration
from the TerraClimate dataset Abat-
zoglou et al. (2018).

Topography Data: We include eleva-
tion and slope computed from the SRTM
Digital Elevation Model Farr and Ko-
brick (2000).
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e Location Data We provide location
awareness to the model via latitude and
longitude coordinates.

The input datasets used in this analysis
span a wide range of spatial and temporal
resolutions—for example, spatial resolution
ranges from approximately 10 meters per
pixel for certain Sentinel-2 bands to tens of
kilometers per pixel for ERA5 weather data.
Temporal resolution also varies considerably,
from a 5-day revisit period for Sentinel-2 to
monthly intervals for datasets such as ERAB5,
TerraClimate, and VIIRS. Some inputs, such
as SRTM, are static and do not vary over time.
To accommodate these differences, Galileo
categorizes inputs based on whether they
vary spatially, temporally, or both. Inputs
with coarse spatial resolution, such as weather
data, are treated as spatially static within the
context of a single prediction instance. All
temporally varying inputs are aggregated or
resampled to a consistent monthly time scale
to ensure comparability across datasets.

3.3. Full coverage LFMC mapping
pipeline

We combine the Globe-LFMC dataset and the
pretrained Galileo model to generate a fine-
tuned LFMC model. We then apply this fine-
tuned model to generate wall-to-wall LFEMC
maps. We outline this pipeline in Figure 5.

3.3.1. GENERATING A TRAINING DATASET
FROM GLOBE LFMC-2.0

The Globe-LFMC dataset includes samples
from around the globe, though the vast ma-
jority originate from the continental United
States (CONUS). Accordingly, this study fo-
cuses solely on samples within CONUS. To
ensure satellite data availability for all data
sources, only samples from 2017 to 2023 were
included.

In the Globe-LFMC 2.0 dataset, it is com-
mon to find multiple samples collected at the

same location on the same day. Following the
guidance of the Globe-LFMC 2.0 paper, such
samples were averaged into a single observa-
tion.

For each sample in the Globe-LFMC 2.0
dataset, a 1 km x 1 km bounding box was
created around its latitude—longitude coordi-
nates. Data within this bounding box was
exported from Google Earth Engine for the
following products: Sentinel-1, Sentinel-2, VI-
IRS, SRTM, ERA5-Land, and TerraClimate,
and elevation data from the SRTM product.

In total, the dataset included 41,214
ground-based LEFMC samples, randomly split
into training (= 70%), validation (=~ 15%),
and test (= 15%) sets. Sample elevations
ranged from 15 to 3,187 meters and were
grouped into 500-meter ranges for analysis,
as detailed in Figure 3. The breakdown of
all land cover classifications (defined by the
ESA WorldCover 2021 product) is shown in
Figure 4.

Elevation Range Breakdown of Globe-LFMC 2.0 (CONUS, 2017-2023)
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Figure 3: Elevation range breakdown of the
Globe-LFMC 2.0 dataset for CONUS samples
(2017-2023) in 500 m increments.

3.3.2. FINE-TUNING AN LFMC MODEL

We fine-tuned the Galileo-Tiny pretrained on
the Globe LFMC-2.0 dataset (combined with
the exported remote sensing data, described
above in Section 3.3.1) under mean squared
error (MSE) loss.

During fine-tuning, we used the ~70%
training set and used the ~15% validation
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Land Cover Class Breakdown of Globe-LFMC 2.0 (CONUS, 2017-2023)
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Figure 4: Coverage of the Globe-LFMC 2.0
dataset for CONUS samples 2017-2023 in
terms of land cover classes covered by the
labels. We use WorldCover Zanaga et al.
(2021) to obtain the land cover labels.

set as an early stopping mechanism. Training
was conducted for up to 100 epochs, with
early stopping applied if no improvement was
observed against the validation set for 5 con-
secutive epochs. This yielded a fine-tuned
Galileor, ppse model, which could then be de-
ployed to generate LEMC maps.

Generate LFMC maps

/
’

Bounding Box of
the Area of
Interest

Sentinel-1& -2
VIRS

Globe-LFMC
Samples

SRTM
ERA5-Land
TerraClimate

Training, validation
and test sets

Wall to wall
inference data

Galileo
Pretrained
Model

Figure 5: A pipeline to produce LFMC map
for a given spatiotemporal window. By lever-
aging a pretrained remote sensing model and
the Globe-LFMC 2.0 dataset, we can effi-
ciently generate maps for new areas and
timesteps.

3.3.3. GENERATING LFMC MAPS

Generating LFMC maps requires a fine-tuned
Galileor, rprc model, and a bounding box de-
scribing the desired mapping area. We export
the relevant remote sensing products using
Google Earth Engine, and run inference over
the exported area using Galileorrasc.

3.3.4. INFRASTRUCTURE

The model was fine-tuned on a single NVIDIA
H100 GPU. Fine-tuning took approximately
30-60 minutes depending on the number of
epochs it took for the model to reach a steady
validation loss.

4. Experiments and Results

We report results on the (unseen) ~ 15%
test set, using the random split described in
Section 3.3.1. We report root mean squared
error (RMSE), mean absolute error (MAE)
and the R? score (coefficient of determination)
of our predictions against the test set.

We compare the performance of
Galileorparc against two baselines: (1)
a fine-tuned model initialized with random
weights and (2) a model that predicts values
using the monthly average of all training
samples corresponding to the sample’s month.
Previous works applying deep learning to
LFMC estimation have adopted a fully
supervised approach Rao et al. (2020); Miller
et al. (2023); Zhu et al. (2021) - our “random
weights”
approach.

baseline reflects this previous

4.1. Results

4.1.1. PRETRAINED WEIGHTS ACHIEVE THE
BEST RESULTS

Galileor, Fprc achieved an overall MAE of
12.58 and an RMSE of 18.91, with an R?
score of 0.72 (Table 1). This is a significant
improvement over the randomly initialized
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Table 1: Using a pretrained model signifi-
cantly improves performance compared to a
randomly initialized model. In this table,
we compare a pretrained Galileo architecture
to two baselines: (1) a randomly initialized
model and (2) a monthly average, and find
a significant reduction in RMSE and an in-
crease in R? score.

Category RMSE MAE R?

Pretrained 18.91 12.58 0.72
Random initialized 23.61 16.33 0.57
Monthly predictions 33.66 25.38 0.11

Table 2: Fine-tuned model evaluation across
meteorological seasons. Galileorryrc per-
forms well across all seasons - including the
winter season, where it sees fewer training
data points.

Season RMSE MAE R2
Overall 18.91 12.58 0.72
Winter season 15.31 10.74  0.77
Spring season 22.85 15.35 0.69
Summer season 19.70 13.05 0.67
Autumn season 12.70 9.27 0.75

model (= 20% reduction in RMSE), high-
lighting the effectiveness of pretrained mod-
els for LFMC predictions. Our results are
comparable to, and in some cases exceed, the
performance of existing LFMC models devel-
oped without the use of pretrained weights
Miller et al. (2023); Rao et al. (2020); Marino
et al. (2020).

In addition to the results in Table 1, we
plot model performance spatially in Figure
6. To assess the spatial autocorrelation of
the residuals, we compute a Moran’s I Moran
(1950) using K-Nearest Neighbors based spa-
tial weights matrix. The results yielded a
Moran's I of 0.057 with a p-value of 0.001, sug-
gesting a statistically significant weak positive
spatial autocorrelation in the model errors.

Table 3: Fine-tuned model evaluation across
land cover classes. Galileoyppc performs
well across all land cover types.

Land Cover Class RMSE MAE R2
Overall 18.91 12.58 0.72
Trees 18.00 11.97 0.68
Grass 20.09 13.62 0.73
Shrub 19.53 12.28 0.74
Built-up 16.79 11.78  0.77
Bare / Sparse 20.52 15.67  0.79

Table 4: Fine-tuned model evaluation across
elevation bands. R? values drop at higher
elevations, likely due to a sparsity of training
labels above 3,000m.

Category RMSE MAE R2
Overall 18.91 12.58 0.72
Elevation: 0-500m 18.34 11.59 0.73
Elevation: 500-1000m 17.93 11.98 0.77
Elevation: 1000-1500m 21.65 14.54 0.73
Elevation: 1500-2000m 18.91 13.56 0.75
Elevation: 2000-2500m 19.35 12.44 0.61
Elevation: 2500-3000m 15.25 10.00 0.54
Elevation: 3000-3500m 14.54 10.41 0.32

A weak but statistically significant spatial au-
tocorrelation suggests potential information
leakage from the random split, as geographi-
cally proximate samples may appear across
training, validation, and test sets. Future
work could adopt spatial partitioning meth-
ods to better assess model generalization.

When analyzed across meteorological sea-
sons (Table 2), the model's lowest RMSE was
for autumn (12.70) and its highest RMSE
was for spring (22.85). It did not demon-
strate lower performance nor explainability
(R2 score) in the winter, despite lower repre-
sentation in the dataset. This suggests that
Galileo’s pretraining—which exposes it to
data from many different timesteps—is help-
ful in ensuring Galileor, o can generalize
temporally.
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Figure 6: Percentage error for the test dataset. Galileor pyrc performs
well across the entire spatial distribution of the test set. Moran’s I
is 0.057 with a p-value of 0.001, indicating a statistically significant
weak positive autocorrelation in model errors.

The model’s performance across the var-
ious land cover classes was consistent with
its overall accuracy (Table 3). RMSE values
ranged from 16.79 for built-up areas to 20.52
for sparse vegetation, with a median value
of 18.00. Notably, despite their lower repre-
sentation, built-up and sparse areas did not
exhibit significantly different errors compared
to more prevalent classes such as tree-covered
areas, grasslands, and shrublands. Land cover
types with very limited representation in the
filtered Globe-LFMC 2.0 dataset—specifically
moss/lichen and cropland—were not covered
by the test set.

The model maintained an R? score above
0.7 for elevation ranges below 2,000 meters
(Table 4). However, performance declined
substantially at higher elevations, with R?
values dropping to 0.54 for the 2,500-3,000
meter range and 0.32 for the 3,000-3,500 me-
ter range. This decrease is likely due to the
limited representation of high-elevation areas
in the Globe-LFMC 2.0 dataset—in particu-
lar, there were only 444 samples above 3,000
meters. RMSE values across elevation bands
ranged from 14.54 (3000-3500 meters) to

21.65 (1000-1500 meters). Among the bands
with R? > 0.7—those under 2,000 meters—
the lowest RMSE was 17.93. The overall
median RMSE was 18.34.

4.1.2. MODEL PERFORMANCE IS NOT
SENSITIVE TO INPUT SHAPE

In addition to being highly multimodal,
Galileo can ingest a variety of input shapes
(i.e. varying spatial areas and temporal
ranges). We investigate the effect of passing
different input shapes as inputs (compared to
our default spatial area of [32 x 32] pixels and
12 timesteps) in Table 5. While more spatial
and temporal context helps, we find that the
model remains relatively stable as the spatial
area and temporal range are reduced.

4.1.3. PRETRAINING MAKES THE MODEL
MORE ROBUST TO MISSING INPUTS

We use highly multimodal remote sensing in-
puts when fine-tuning the Galileo model and
making LFMC maps (described in Section
3.2.1). To understand the contribution of
each of these modalities, we fine-tune the pre-
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Table 5: We fine-tune the pretrained Galileo
model with a variety of input shapes (i.e.
varying [height x width] and number of input
timesteps). While more spatial and temporal
context is beneficial, the fine-tuned model’s
performance stays relatively stable as these
parameters are changed.

HW T RMSE MAE R?
32 12 1891 1258 0.72
32 6 18.93  12.68 0.72
32 3 19.45 13.10 0.70
16 12 1936  12.67 0.71
8 12 1971 1320 0.70
1 12 2025 13.46 0.68

trained and randomly initialized models with
one input removed in Table 6. We find that
for the randomly initialized model, removing
TerraClimate yields a significant degradation
in performance (8% reduction in RMSE). On
the other hand, the pretrained model’s per-
formance remains relatively stable even as
inputs are removed, which suggests Galileo’s
self-supervised pretraining increases its ro-
bustness to missing inputs at fine-tuning time.
This allows the pretrained model to be lever-
aged even if certain remote sensing products
are missing (e.g. due to clouds).

4.2. Case study: 2025 Palisades and
Eaton Wildfires

In January 2025, a series of devastating wild-
fires burned across the Los Angeles metropoli-
tan area. These fires were exacerbated by
prolonged drought, low humidity, unusually
strong northeasterly (Santa Ana) winds, and
a buildup of vegetation following two con-
secutive springs of above-average rainfall
(Giuseppe et al., 2025).

The two largest and most destructive fires—
by both area burned and structures lost—
were the Palisades and Eaton wildfires, both
located in Los Angeles County. The Palisades

Table 6: We fine-tune the pretrained and ran-
domly initialized Galileo models while remov-
ing one of the at fine-tuning time. Pretrain-
ing makes the model more robust to missing
inputs; the randomly initialized model expe-
riences significantly larger changes in perfor-
mance depending on the removed inputs (e.g.
a 14 % degradation in R? score when the
TerraClimate input is removed).

Pretrained Random
W/OIN | RMSE MAE R2? | RMSE MAE R?
None 18.91 1258 0.72 | 23.61 16.33  0.57
S2 19.51  13.10 0.70 | 2346 1645 0.57
S1 18.82 13.10 0.72 | 23.84 16.57 0.56
ERA5 19.27  13.09 0.71 | 22.42 1590 0.61
TC 1951  13.02 0.70 | 25.57 17.59  0.49
SRTM 19.61  13.34 0.70 | 22.02 1534 0.62
loc. 20.08 13.91 0.69 | 23.80 16.54 0.56

Fire originated in the Santa Monica Moun-
tains and severely impacted Pacific Palisades,
Topanga, and Malibu. The Eaton Fire started
in the San Gabriel Mountains and destroyed
foothill communities, particularly Altadena.
Both fires caused unprecedented levels of dam-
age.

Perimeter data for both fires was retrieved
on January 13, 2025, from the WFIGS Cur-
rent Interagency Fire Perimeters database
(National Interagency Fire Center, 2025). At
the time, both fires were active and largely un-
contained. Bounding boxes were constructed
for each fire, and data was exported from
Google Earth Engine covering the period from
January 1, 2020, to December 31, 2024.

The fine-tuned model was used to generate
monthly LEMC predictions for the affected
areas, producing outputs at a 10-meter spa-
tial resolution. We show a seasonal example
of these predictions for the Eaton Fire in
Figure 7.

The model revealed a consistent seasonal
pattern: average LFMC levels rose through
winter and peaked in late spring before de-
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Figure 7: LFMC predictions for the San
Gabriel Mountains, site of the Eaton Fire in
2025. These maps show 4 months in 2024 and
demonstrate our pipeline’s ability to make
spatially complete maps that capture seasonal
patterns and geographic variability in LEMC
values. LFMC values range from 0% (red) to
180% (green).

clining into late autumn. This is shown in the
average LEFMC prediction for all pixels in the
bounding boxes (see Figure 8). Additionally,
the model predicted higher LFMC values in
2023 and 2024 compared to 2021 and 2022
(Figure 9). While the link between LFMC
and fuel accumulation is not fully understood,
this pattern may reflect increased vegetation
growth following wetter years. Such growth
has been linked to greater fuel loads, a con-
tributing factor in wildfire severity (Giuseppe
et al., 2025).

5. Discussion

Live Fuel Moisture Content (LFMC) is a
key environmental variable for assessing wild-
fire risk, as it directly affects both the likeli-
hood of ignition and the potential for fire
spread. However, current live fuel mois-
ture sampling is restricted by field and pro-
cessing constraints, as samples must be col-
lected from easily accessible areas and quickly
transported to laboratory facilities for drying.
These limitations reduce the spatial and tem-
poral resolution of traditional measurements.

An accurate and reliable LFMC prediction
model may offer significant value to land man-

10

Eaton Fire LFMC Monthly Predictions
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Palisades Fire LFMC Monthly Predictions
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(b) Palisades Fire area

Figure 8: Monthly LFMC average predictions
for two wildfire areas from 2021-2024: (a)
Eaton and (b) Palisades. These averages are
computed over wall-to-wall maps like the ones
shown in Figure 7 and Figure 9.

agers, wildland firefighters, and the commu-
nities potentially threatened by wildfires. Im-
proved ability to analyze past wildfire events
enhances our understanding of the condi-
tions that contribute to large, destructive
fires. This enables more effective anticipa-
tion and mitigation strategies. Furthermore,
such insights support the evaluation of con-
ditions under which prescribed fire has been
successfully implemented, thereby promoting
its strategic use as a tool for reducing wildfire
risk.

This study demonstrates that a practical
LFMC model can be built using existing
state-of-the-art geospatial foundation mod-
els, achieving reasonably accurate predictions
in many cases. The model offers high spa-
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Figure 9: LFMC predictions for the Santa
Monica Mountains and nearby coastal com-
munities of Pacific Palisades, Topanga, and
Malibu, site of the Palisades fire in 2025.
These maps show the month of August for
2021, 2022, 2023, and 2024, demonstrating
our pipeline’s ability to produce spatially com-
plete maps that capture annual variability in
LFMC values driven by differences in seasonal
cycles. LFMC values range from 0% (red) to
180% (green).

tial resolution (10 meters), whereas previous
studies provided only 500-meter resolution
(Miller et al., 2023). A case study of 2025
wildfire events in Los Angeles supported the
model’s reliability, showing results consistent
with observed surface conditions.

Nonetheless, the model has several limita-
tions that warrant further research and de-
velopment. While the Galileo-Tiny founda-
tion model was trained on global data, the
LFMC model was fine-tuned exclusively on
data from the continental United States, pri-
marily in the western region. A more ex-
tensive global sample could be acquired and
used for training. Furthermore, the model
has only been applied retrospectively and has
not yet been tested for forecasting LFMC. Fi-
nally, it currently produces only monthly aver-
ages, whereas more frequent weekly and daily
predictions—including on-demand generation
for current conditions—would be highly valu-
able, especially for real-time wildfire manage-
ment.
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