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ABSTRACT

Despite MoE models leading in benchmarks, supervised fine-tuning (SFT) for the
MOoE architecture remains difficult because its router layers are fragile. Methods
such as DenseMixer and ESFT mitigate collapse with dense mixing or auxiliary
load-balancing losses, but these introduce noisy gradients that often degrade per-
formance. In preliminary experiments, we systematically removed experts and
observed that while certain “super experts” are activated far more frequently, dis-
carding less used experts still leads to notable performance degradation. This
suggests that even rarely activated experts encode non-trivial knowledge useful for
downstream tasks. Motivated by this, we propose a new auxiliary loss free MoE
SFT framework that combines router biases with shared condenser experts. Instead
of enforcing balanced activation across all experts, our method leverages bias
updates to encourage imbalanced and sparse routing, allowing rarely used experts
to become inactive while designating two existing experts as shared condensers
that aggregate knowledge from the inactive set without increasing the per-token
compute budget. Router stability is maintained entirely through bias updates that
regulate token-level and expert-level activation, eliminating the need for auxiliary
losses. Experiments on large-scale MoE models demonstrate that our approach
outperforms state-of-the-art SFT baselines such as DenseMixer and ESFT, achiev-
ing 4%+ gain on both mathematical reasoning and commonsenseQA benchmarks.
Pruning and inter-expert correlation analyses confirm that our condenser experts
aggregate knowledge from the long-tail experts, preserving performance under
sparse routing.

1 INTRODUCTION

Mixture-of-Experts (MoE) models scale language models efficiently by activating only a small subset
of experts per token, enabling massive capacity without increasing per-token compute. Yet the same
sparse routing that drives their success also makes them fragile: MoE relies on a non-differentiable
Top-K router, which blocks straightforward gradient flow and makes post-training, such as supervised
fine-tuning (SFT), far more difficult than for dense LLMs.

Over the years, researchers have sought to stabilize MoE training through progressively refined routing
strategies. GShard (Lepikhin et al., [2020) introduced top-2 gating with heavy auxiliary balancing
losses, while Switch Transformers (Fedus et al., [2022) simplified this to a single expert per token.
More recent work, such as DeepSeek-MoE (Wang et al.| 2024a) and DeepSeek-V3 (Liu et al., [2024a)),
explored bias-based routers and minimized auxiliary losses to reduce gradient noise and improve
efficiency. However, these advances primarily address pre-training. In the post-training setting, SFT
remains underexplored: ESFT (Wang et al., 2024b)) routes all gradients to the most-activated expert,
while DenseMixer (Yao et al., [2025)) improves slightly by applying a Straight-Through Estimator
(STE) (Bengio et al.,2013) to approximate updates for inactive experts, yet STE introduces biased
gradients.

In parallel, recent studies have identified the existence of “super experts’iSu et al.|(2025) or “super
weights’[Yu et al.| (2025]), whose activations dominate the routing and whose removal leads to sharp
performance degradation. These findings suggest that a small subset of experts carries dispropor-
tionate importance. However, our observations reveal a complementary phenomenon: even the
rarely activated experts encode indispensable information, and pruning them also causes substantial
performance decline. This highlights the need for fine-tuning strategies that not only preserve the
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capacity of frequently activated super experts, but also retain knowledge embedded in the long tail of
rarely used experts.

Motivated by these observations, we adapt the bias-updating principle of DeepSeek’s Loss-Free
Balancing to the post-training setting. Instead of aiming for balanced activation across all experts,
we propose an auxiliary-free fine-tuning framework that enforces sparse routing through globally
negative biases. This drives rarely used experts toward inactivity, while two designated Condenser
Experts stay active and collect gradients from the other experts, effectively consolidating their
knowledge. In doing so, our method closes the train—inference routing gap and preserves information
from both dominant and rarely activated experts, achieving significant improvements in fine-tuning
performance on reasoning and coding benchmarks. Experimental results show that our method
consistently outperforms SoOTA MoE SFT methods by 4+ points when post-training popular MoE
LLMs on commonsense reasoning (PIQA, ARC, SIQA) and math reasoning benchmarks (MATH-500,
AIME-25, GPQA, GSMSK, etc). Our implementation is open-source Anonymouslyﬂ

1.1 CONTRIBUTIONS

* Through systematic pruning and scaling-law analysis, we show that even rarely activated
experts encode indispensable knowledge. Removing them leads to substantial performance
degradation, highlighting the need to preserve contributions beyond the most frequently
activated “super experts.”

* We extend scaling-law analysis to MoE compression by relating performance to the number
of expert parameters retained. Our study compares dense merging, expert pruning, and
reduced activation budgets, offering new insights into the trade-offs between model size,
sparsity, and accuracy.

* We propose Expert Condenser, an auxiliary-free fine-tuning framework that enforces
sparsity via bias-driven routing while introducing shared Condenser Experts to preserve
knowledge from inactive experts. This design narrows the train—inference routing gap and
enables stable MoE post-training.

2 DOES SAVING "SUPER EXPERTS" MEAN SAVING MODEL PERFORMANCE?
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Previous work (Lu et al} 2024} [Su et al.| 2025) has shown that pruning away frequently activated
“super experts” causes large performance degradation, underscoring their importance. However,
these studies stop short of asking the complementary question: is retaining only the super experts
sufficient to preserve model quality?

Whereas

12025} INakamura et al., [2025) focus on how the activation ratio (the

S
number of experts active per token) affects accuracy, we instead examine how performance scales
with the total number of expert parameters retained. The Top-£ selection for token ¢ is defined as

St - TOPK({s]t}j 1 )7 git = l[lest]y
where n is the total number of experts, £ is the number of experts activated per token, s; ; is the
gating score of expert j for token ¢, and g, ; indicates whether expert ¢ is selecte(ﬂ We investigate
three strategies as is illustrated in Fig. [T]to study the scaling law by varying n (the size of the expert
pool) and & (the activation budget):
(i) Dense conversion via expert pruning. We reduce the expert pool from n to n’ and activate all
surviving experts:

n — n, k=n'.
Sy ={1,...,n'} for all tokens, and the model effectively becomes a smaller dense model.

(ii) Smaller MoE conversion via expert pruning. We prune experts from n to n’ but keep the
activation budget strictly smaller than the remaining pool:

n — n, k<n.

The model remains an MoE, since only the top-k experts are selected from the n’ survivors.
(iii) Reducing the activation budget while keeping full model size. We keep the total number of
experts fixed but reduce the activation budget from % to &':

n fixed, E— K<k
St becomes smaller (]S¢| = k'), increasing sparsity while leaving the expert pool unchanged.

To select important experts prior to pruning, we adopt two metrics following ESFT (Wang et al.}
: ES-Act (activation ratio) and ES-Mag (weight magnitude). Full definitions are given in
Appendlxl Unless otherwise specified, all experiments use ES-Act as the default selection crlterlonEl

To conduct a scaling-law analysis of experts, we design experiments using GPT-OSS [OpenAl| (2025))
and DeepSeek-Coder-V2-Lite 2024a). In figure [T, we summarize the results across
the three strategies. More details of the results are shown in Table [/| and Table [6]in Appendix

Although scaling-law trends are evident after pruning, a substantial performance gap remains between
the base model and pruned variants. For example, retaining the top 75% of experts still results in more
than a 10% drop. Appendix [[] (Fig. [5) further shows that expert activation is highly skewed: a few
“super experts” dominate routing, while a long tail of rarely activated experts—together accounting
for only about 10% of activations—still represents a substantial portion of the model’s parameter
capacity.

3  PROPOSED METHODS: EXPERT CONDENSER

Our post-training framework addresses a core challenge in MoE: preserving the knowledge distributed
across all experts—both dominant and rarely activated—while adapting the model to a new task.

*Detailed clarifications for all notation are in Appendix@
ES-Mag yields comparable results; see Appendix@for a detailed comparison.
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Figure 2: Representation of our Experts Condenser framework. (Left) An auxiliary-free router adds
trainable biases b; to logits s; ;. Less relevant experts accumulate negative biases, and the two
lowest-bias experts m, n are designated as Condenser Experts.(Right) These Condenser Experts are
always selected during training, ensuring they receive gradients and act as repositories that condense
knowledge from inactive experts—preserving information while enforcing sparsity.

Rather than enforcing balanced expert usage, our method explicitly encourages sparsity by down-
biasing less relevant experts and systematically transferring their knowledge into two designated
Condenser Experts.

Our approach has two key components: (i) an auxiliary-free routing mechanism that enforces sparsity
through dynamic bias adjustments, and (ii) two always-active Condenser Experts that serve as
repositories for aggregated knowledge from inactive experts.

3.1 AUXILIARY FREE SPARSITY ENFORCEMENT

A critical challenge in MoE post training is the noise introduced by auxiliary balancing losses. While
such losses encourage expert diversity during pre-training, they also inject competing gradient signals
that can hinder convergence on specialized downstream tasks

We eliminate this issue by adopting an auxiliary-loss-free routing strategy for fine-tuning, where
the routing logits are directly modified with trainable bias parameters b;;._,, one per expert. The
router’s Top-k selection, S, is performed on these biased logits: S = TopK({si + blv}?zl) where s;
is the original raw logit for expert ¢. The crucial distinction is that the final gating weights, p;, are
still computed from the original unbiased logits s;, isolating the routing decision from the output
computation.

Unlike pre-training methods that adjust biases to prevent routing collapseﬂ our objective in fine-
tuning is to induce a controlled collapse. Biases for experts that are rarely useful for the target task
are progressively decreased, making them unlikely to be selected. This naturally separates experts
into two groups: a small set of task-relevant “active” experts and a long tail of “inactive” experts. By
explicitly enforcing sparsity, this mechanism narrows the train—inference routing gap and lays the
foundation for our condenser strategy.

3.2 HYBRID SHARED EXPERTS WITH GUARANTEED GATING
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Traditional type-G (Ungated) Shared Experts. The traditional (ungated) shared experts. shown as

77 n

green boxes ({(,i]),} ), is a set of “Type-G” Shared Experts. These behave as standard feed-forward
) i=0

layers that are applied to every input token x;. Unlike routed experts, they do not receive gating

. . . . . . ) Z (@)
weights; instead, their outputs are summed directly into the representation: 1) = 3"  FFN;"(z;)

Proposed type-B (Guaranteed Gated) Shared Expert. We propose Type-B condenser Shared

Experts, shown as blue boxes drawn from the routed expert pool ({e(l)} ). Let us denote this
i=0

i
expert as FFN§B). This expert is "shared" in the sense that it is guaranteed to be selected for every

token. This sclection is performed just once at the start of the finc-tuning process, by identifying

Throughout the entire post training procedure, these
two experts are then statically enforced into the active set for every token, supplementing the k-2
specialists dynamically chosen by the router.

The routing process is therefore modified: the router selects the Top-(k — 2) experts from the
remaining n — 2 blue experts, and these two special experts {j} are always added to the active set S.
Thus, S = TopK, (1 np\ g3 ({8i + i}, k —2) U {j}, ensuring [S| = k.
The key distinction—why these condenser experts are "different from the green ones"—is that it is
both shared (always selected) and gated. Like all other & — 2 selected experts in S, it receives a
computed gate weight g; ; from the router. h(") =Y. ¢ gi,jFFNEB) (x5)

The final layer output h} combines the residual, Type-G shared path, and Type-B gated path: h} =
ug + h'9) 4 () This method ensures a baseline of common knowledge (from Type-G) while also
forcing the model to always utilize and weigh the contribution of a specific, powerful "capillary”
expert (Type-B), supplemented by k — 2 other dynamically chosen specialists.

4 BACKGROUND AND RELATED WORKS

Post-training for Mixture-of-Experts (MoE) large language models remains relatively underexplored.
Recent efforts have primarily focused on how to adapt experts so that they better align with down-
stream domains. Two representative approaches are Expert Supervised Fine-Tuning (ESFT)
and DenseMixer 2025), which propose different strategies for handling

gradient propagation through the non-differentiable Top-k routing mechanism.

ESFTDESFT strengthens the role of the most frequently activated experts by routing gradients only
through the Top-k set S;. Formally, if w; ; denotes the routing weight of expert ¢ for token ¢, then
aL ) Ow; 4

Oy 00
Here S; = TopK({w;,¢}_1, k) is the set of selected experts, and v; is the output of expert i. While
this approach explicitly reinforces the “super experts” that dominate activation, the less activated
experts are frozen and treated as trivial experts.

DenseMixer. * DenseMixer instead addresses the non-differentiability of Top-k routing by adopting a
straight-through estimator (STE). In this view, the backward pass ignores the hard selection and treats

TopK as the identity map: aTOPK(Z;;‘_’t'"’w"’t)"
Js

the gradient with respect to router parameters 6 is approximated as VoL ~ ) s, (

~ 0. As aresult, gradients flow to all experts’

o0

2024b) and DenseMixer [2025) still suffer from the additional noise introduced by

auxiliary balancing losses. Moreover, they overlook the fact that less frequently activated experts also
encode indispensable knowledge and contribute significantly to overall model performance.

routing weights, not just those in Sy: VoL =~ Y1 (ngt . Ui) Owip However, both ESFT (Wang

5 EXPERIMENTAL RESULTS

Model Architecture and Dataset: In our experimental setup, we use open-weight GPT-OSS-

20B 2025), Deepseek-V2-Lite (Liu et al., ), Deepseek-Coder-V2-Lite-Instruct
et al.| [2024a), OLMoE-7B-01-25 (Muennighoff et al,[2024), Qwen1.5-MoE-A2.7B (Yang et al.|
2024), and Qwen3-30B-A3B (Yang et al.,[2025) to conduct experiments.

"More details about ESFT and DenseMixer are in Appendix@
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In Section§ [2] We study the MoE expert scaling law using Deepseek-Coder-V2-Lite-Instruct base
model and GPT-OSS-20B base model, and test the evaluation performance on MultiArith,
GsM_8K (Cobbe et al.l 2021)), AddSub, AQuA, SingleEqg, SVAMP, and mawps.

In Subsection § 5.1} we evaluate MoE post-training algorithms on math reasoning domains. We
fine-tune on the Math7K and Math14K dataset using the DeepSeek-V2-Lite, Qwen1.5-MoE-A2.7B,
OLMOoE-7B-01-25 and test the evaluation performance on downstream testsets MultiArith,
GsM_8K (Cobbe et al. 2021), AddSub, AQuA, SingleEq, SVAMP, and mawps. Then, we
post-train Qwenl.5-MoE-A2.7B, DeepSeek-Coder-V2-Lite-Instruct, and Qwen3-30B-A3B on
Stanford-S1 dataset (Muennighoff et al [2025)) and test the evaluation performance on down-
stream SOTA math reasoning benchmarks AIME2025, AIME2024, GPQA-Diamond

2024)), and MATH-500.

In Subsection §[5.2] we turn to commonsense reasoning. Following (Hu et all 2023; [He et al, 2024}
2024b), we merge the training sets of eight tasks into commonsense_15k and evaluate on
their individual test sets: Bool1Q, PIQA, SIQA, HellaSwag, ARC—e, ARC—c, and OBQA. Results
are reported as accuracy, with an averaged score summarizing overall effectiveness. Across all
datasets—Stanford-S1K, Commonsense, Math7K, and Mathl4K—our setup emphasizes the

Training Framework and Hyper-parameters: We used the huggingface-trl (von Werra et al.}

2020) library with zero-2 or zero-3 (Ren et al.,[2021) for fine-tuning and v11m (Kwon et al., [2023),
lighteval (Habib et all,[2023), and accelerate (Gugger et all,[2022) library for inference

evaluation. Both training and evaluation are using dtype BF16.

MOoE Post-train Baselines: For state-of-the-art (SOTA) MoE post-training baselines, we choose to

include ESFT [2021)) and DenseMixer [2025).

Computational Resources: We conduct our experiments and implement SOTA baselines of ESFT
and DenseMixer Yao et al|(2025) to post-train with 8 NVIDIA H100_80GB GPUs. Communication
between the CPU and GPU is facilitated via PCle-G4 and communication between GPUs is facilitated
via Nvlink-3.

5.1 MATH REASONING

We evaluate ExpertCondenser, our proposed method, against two state-of-the-art MoE post-training
approaches: ESFT (Wang et all 2024b) and DenseMixer (Yao et al. [2025). To ensure a fair
comparison, we adopt the same training configurations as prior work, including batch size, data type,
learning rate, and sequence length. We re-implemented ESFT and DenseMixer following the reported

setups in 2025).

Table [T]demonstrates that on most SoTA math reasoning benchmarks, ExpertCondenser outperforms
baseline methods across Qwen3, DeepSeek-Coder-V2-Lite, and Qwen2. ExpertCondenser enhances
accuracy of DenseMixer by 5.9%, 5.3%, and 7.1% on Qwen3, DeepSeek-Coder-V2-Lite, and Qwen2
respectively.

We further reports zero-shot performance after two epochs of fine-tuning on two math reasoning
datasets (Math-7K El and Math-14K) in Table Across all benchmarks (GSM8K, SingleEq, SVAMP,
MultiArith, AddSub, AQuA, and MAWPS), ExpertCondenser consistently outperforms both ESFT
and DenseMixer on DeepSeek-V2-Lite, Qwen2-MoE, and OLMOoE. Notably, by more effectively
consolidating expert knowledge, ExpertCondenser achieves substantial gains over prior approaches.
On Math-7K, it improves the average accuracy of Qwen2-MoE from 57.9 (DenseMixer) to 63.4
(+5.5%), DeepSeek-V2-Lite from 66.8 to 73.1 (+6.3% ), and OLMOoE from 64.8 to 70.2 (+5.4%).
On Math-14K, ExpertCondenser further boosts performance: Qwen2-MOoE rises from 62.9 to 67.9
(+5.0%), DeepSeek-V2-Lite from 64.9 to 69.4 (+4.5%), and OLMOoE from 65.7 to 70.0 (+4.3%).

“More details about Commonsense dataset can be found in Appendix
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Table 1: Evaluation of post-trained models Zero-Shot P@ss1:4 samples Results on downstream math
reasoning benchmarks after fine-tuning with Stanford-S1, including GPQA Diamond, AIME 2024,
AIME 2025, and MATH-500

Model Model Size Activate #Param Distill Type GPQA Diamond AIME 2024 AIME 2025 MATH-500 AVG
ExpertCondenser(Ours) 68.8 68.3(82/120) 51.7(62/120) 96.8 714

DenseMixer 61.0 65.8(79/120)  46.7(56/120) 95.8 67.3

Qwen3 308 3B ESFT 527 61.7(74/120)  44.2(53/120) 92.0 62.7
SFT 58.6 63.3(76/120)  48.3(58/120) 94.8 66.3

Base Model 389 20.8(25/120)  7.5(9/120) 726 35.0

ExpertCondenser(Ours) 40.6 9.2(11/120) 6.7(8/120) 68.9 314

. DenseMixer 34.8 2.5(3/120) 2.5(3/120) 64.8 26.1
DeepSeek-Coder-V2-Lite 16B 24B ESFT 322 2.5(3/120) 2.5(3/120) 630 250
SFT 342 2.5(3/120) 2.5(3/120) 64.6 26.0

Base Model 31.9 0.8(1/120) 1.7(2/120) 62.0 24.1

ExpertCondenser(Ours) 34.6 6.7(8/120) 6.7(8/120) 28.6 19.5

DenseMixer 26.8 1.7(2/120) 0.8(1/120) 204 124

Qwen2 148 2.78 ESFT 26.4 0.8(1/120) 0.8(1/120) 18.1 115
SFT 27.8 0.8(1/120) 0.0(0/120) 20.1 122

Base Model 259 0.0 0.0 8.4 8.6

Table 2: Evaluation of post-trained models (Zero-Shot results) on downstream Math Reasoning
datasets, including SingleEQ, MultiArith, AddSub, GSM8K, SVAMP, and AQuA.

Dataset Model Model Size Activate #Param Post-train Type GSMS8k SingleEq SVAMP MultiArith AddSub AQuA mawps AVG
ExpertCondenser (Ours) 59.4 92,5 69.1 91.5 79.5 36.1 83.6 73.1

. DenseMixer 57.8 81.2 67.2 89.6 64.6 28.8 788  66.8

DeepSeck-V2-Lite 168 248 ESFT 58.6 80.9 65.8 90.7 623 276 761 66.0

SFT 584 80.6 66.2 90.2 61.0 248 758 653

Base Model 8.0 20.0 26.6 24.0 354 214 336 242

ExpertCondenser (Ours) 57.2 74.6 55.7 86.0 61.8 33.1 75.6 63.4

ath7k DenseMixer 482 71.3 53.8 78.6 54.8 28.6 702 579
ma QWen2-MoE 14B 2.7B ESFT 46.9 69.3 54.1 75.7 522 276 681 562
SFT 45.8 70.2 53.6 76.2 533 27.6 678 564

Base Model 25.6 313 274 335 46.8 254 282 312

ExpertCondenser (Ours) 68.4 79.8 71.2 93.8 63.4 36.3 78.8 70.2

DenseMixer 64.8 782 92.0 56.4 58.6 30.2 735 648

OLMoE 7B 1B ESFT 62.2 75.2 68.0 933 582 28.7 73.1 655

SFT 63.6 74.8 67.7 923 57.8 276 724 652

Base Model 16.1 23.6 17.7 9.2 213 228 139 178

CondenserExperts 81.7 93.2 82.5 98.5 85.6 38.6 91.6 817

DenseMixer 80.1 923 832 98.7 82.5 374 90.8  80.7

GPT-08S 208 3.68 ESFT 76.6 929 80.2 98.2 82.0 354 903 794

Base Model 774 82.9 84.0 91.8 79.7 315 920 770

ExpertCondenser (Ours) 63.6 81.2 71.8 93.8 60.8 33.2 81.4 69.4

. DenseMixer 59.4 78.6 67.4 89.4 57.8 28.6 73.6 649

DeepSeck-V2-Lite 168 2.48 ESFT 58.2 75.8 65.2 89.0 565 295 735 640

SFT 57.6 76.4 67.6 90.1 59.7 306 743 652

Base Model 8.0 20.0 26.6 24.0 354 21.4 336 242

ExpertCondenser (Ours) 58.8 81.2 59.2 91.6 72.8 33.2 78.4 67.9

DenseMixer 52.6 752 56.8 87.8 65.4 28.6 73.6 629

mathidk  QWen2-MoE 148 2.78 ESFT 525 760 541 86.2 623 295 714 617
SFT 51.8 74.8 55.4 872 66.7 276 748 626

Base Model 25.6 313 274 335 46.8 254 282 312

ExpertCondenser (Ours) 67.8 81.6 72.4 86.8 68.8 32.8 79.6 70.0

DenseMixer 65.8 76.8 68.2 80.6 62.4 30.7 753 657

OLMoE B 1B ESFT 64.4 77.0 68.9 81.8 64.1 30.7 748 659

SFT 65.3 784 69.8 82.8 68.5 314 758 674

Base Model 16.1 23.6 17.7 9.2 213 228 139 178

5.2 OTHER DATASETS

To ensure that our findings above are generalizable, we further examine the performance of ExpertCon-
denser under the common sense reasoning dataset CommonSense—15K, including six downstream
test datasets, Boo1Q, PIQA, SIQA, HellaSwag, ARC—e, ARC—c, and OBQA.

Table [3|reports the performance of DenseMixer, ESFT, and ExpertCondenser on the CommenSense
datase’”| We can observe that ExpertCondenser surpasses the DenseMixer by 5.3% on post-
trained OLMoE. On post-trained Qwen-2-MoE, ExpertCondenser surpasses the best performance of
DenseMixer and ESFT by 3.0% and 3.9%, respectively.

5.3 SYSTEM EFFICIENCY UNDER PARAMETER OFFLOADING

Training large-scale MoE models often depends on parameter offloading (e.g., ZeRO-2 and ZeRO-
3 (Ren et al.| 2021))), where expert weights are dynamically swapped between GPU and CPU to meet
memory limits. The efficiency of this process is highly sensitive to activation patterns, as frequent
transfers of large expert weights over PCle or NVLink can dominate runtime.

1%PJease note that we are using CommonSense—15K, the smaller version of CommenSense—170K.
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Table 3: Accuracy comparison of OLMoE and Qwen2-MoE with various post-training methods
on commonsense reasoning datasets. Results of all ExpertCondenser are obtained using the hyper-
parameters described in (Liu et al.l[2024b)) under the same settings.

Model Model Size Post-train method BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA AVG
ExpertCondenser 66.8 79.9 72.1 80.3 78.6 86.6 70.9 75.0 763

OLMOoE 7B DenseMixer 628 687 653 71.6 73.5 81.3 63.5 713 69.8
ESFT 635 63.0 589 64.7 62.8 74.8 63.8 634 644

SFT 625 658 62.8 70.7 71.4 78.4 63.7 70.6  68.2

Base Model 489 483 109 32.6 28.7 329 314 248 323

ExpertCondenser  72.1 849 756 81.6 79.8 88.5 78.1 84.4  80.6

Qwen-2-MoE 14B DenseMixer 708 857 746 75.8 78.9 82.6 74.8 7718 776
ESFT 69.7 853 754 78.2 74.2 84.0 71.8 75.0 76.7

SFT 68.8 847 745 76.8 75.6 84.6 72.8 764 76.8

Base Model 51.0  68.1 56.2 31.0 48.3 64.8 52.3 492 526

Our Expert Condenser provides a systems advantage by designating two always-active Condenser
Experts. Because these experts consistently handle the majority of activations, their parameters can
remain resident in GPU memory, avoiding repeated CPU-GPU transfers and reducing offloading
overhead. Figure [3[a) shows expert activation counts for DeepSeek-V2-Lite after post-training, where
the two Condenser Experts dominate activations and therefore never need to be swapped out of GPU
memory.

Table 4: The experiments involved

Post-training, ESFT, DenseMixer, and
ExpertCondenser on 8 x H100 80GB

mm. AT
S ‘L e o GPUs using parameter offloading,

oo - with a batch size of 32. Communi-
cation between the GPU and CPU was
facilitated via PCle-G4.

DeepSeek-V2-Lite
Post-Train Activate #Params% Time/s Speedup

Layer 25 Low
0

60 DenseMixer 16B 362.83 Ix
SFT 2.4B 152.78  2.37x
ExpertCondenser 24B 126.24 2.87x

Figure 3: Expert activation counts for all experts across each
layer for three methods:(a) Expert Condenser, (b) SFT, and
(c) DenseMixer.

By contrast, DenseMixer activates all experts in each forward pass. This not only introduces extra
forward computation but also incurs high cost: every expert’s parameters must be loaded into
GPU, eliminating sparsity benefits and drastically increasing offloading traffic. This eliminates the
computational savings of MoE and dramatically increases offloading traffic, as the system can no
longer exploit sparsity to minimize parameter swaps. As shown in Figure [3(c), all experts exhibit
uniformly high activation counts, reflecting the full activation pattern. SFT activates only the Top-k
experts, saving computation, but the selected set S; varies across tokens. Figure[3(b) illustrates this
behavior: activations are more evenly distributed across experts, but without fixed shared experts,
GPU residency is volatile and offloading overhead remains high.

In Table 4] we provide the post-training time costs for DenseMixer, SFT, and ExpertCondenser.
ExpertCondenser achieves an 2.87x speedup compared to DenseMixer and outperforms SFT. We
conducted time profiling by averaging the post-training time every 10 iterations over 300 iterations,
following a 50-iteration warm-up period. Post-training utilized MoE parameter offloading settings to
simulate GPU memory limited scenarios. ExpertCondenser offers greater computational efficiency,
though these are secondary benefits compared to its primary focus.

6 FURTHER ANALYSIS

Pruning after condensing: A key question for our framework is whether the two Condenser Experts
truly aggregate knowledge from other experts. To evaluate this, we repeat the dense conversion via ex-
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pert pruning experimentﬂ We then compare the performance degradation between ExpertCondenser
and ESFT. Table 5] shows the results of pruning while keeping the remaining experts activated. Our
method outperforms ESFT by more than 25% across all benchmarks. This confirms the robustness of
the always-active Condenser Experts and provides strong empirical evidence that they retain their
knowledge during post-training.

Table 5: Evaluation of DeepSeek-V2-Lite models after post-training with ESFT and ExpertCondenser,
followed by expert pruning.

Method Strategies Remain Experts (n') Activate Experts (') GSM8k SingleEq SVAMP MultiArith AddSub AQuA mawps AVG
ExpertCondenser Small Dense 24 24 38.6 653 493 78.7 47.6 18.1 624 514
pertCondense Small Dense 32 32 493 738 564 81.3 538 234 683 580
ESFT Small Dense 24 24 224 312 28.3 33.1 21.4 20.1 275 263
Small Dense 32 32 274 37.6 314 37.2 28.8 224 325 316

Expert correlation Analysis: To assess how fine-tuning alters dependencies between experts, we
examine the similarity of their parameter updates. Specifically, we compute the Pearson correlation
between the parameters of the condensed experts and those of other experts, comparing the fine-tuned
model to the base model. This measure captures linear relationships in parameter changes, allowing
us to track how knowledge is redistributed across experts. A formal definition of Pearson correlation
is provided in Appendix [I}

Layer 1 - Shared Expert 1 Correlation Changes. Layer 1 - Shared Expert 0 Correlation Changes

Lh.a ll,_.llll 1L IL"‘._.

Loom Iir rw 4 -

(a) Shared Expert O correlation changes. (b) Shared Expert 1 correlation changes.

Figure 4: Correlation changes between the shared expert and regular experts at Layer 1. Each bar
shows how the correlation between a regular expert and the shared expert changes after fine-tuning,
compared to the base model. Expert Condenser (red) causes concentrated shifts, markedly strength-
ening positive correlations while suppressing negative ones. In contrast, ESFT (green) produces
smaller, more diffuse adjustments across experts. These results illustrate that Expert Condenser more
aggressively reshapes inter-expert relationships, while ESFT exerts a milder influence.

Observation. Expert Condenser explicitly targets shared experts and consolidates the capacity
of regular experts into the shared expert, resulting in pronounced, concentrated shifts. Regularly
routed experts are compared against these shared experts by computing Pearson correlations be-
tween their down-projection weight matrices before and after fine-tuning. Relative changes in these
correlations—normalized by the base model—reflect how each method reshapes inter-expert de-
pendencies. As shown in Fig. ] both Expert Condenser and ESFT increase correlations relative
to the baseline, with Expert Condenser driving a stronger global increase in correlations. Relative
correlation increases average 0.005 more across all layers compared to ESFT. The earliest layer shows
the most significant shifts, highlighting Expert Condenser’s central role in shaping foundational
representations.

7 CONCLUSION

Our empirical findings reveal that even rarely activated experts encode indispensable knowledge, and
pruning them directly leads to substantial performance degradation. Motivated by this observation,
we proposed ExpertCondenser, a post-training framework that leverages bias updates to enforce
sparse and imbalanced routing. This design allows rarely used experts to gradually become inactive,

"Detailed definitions can be found in Section For pruning, we use the ES-ACT metric (see Appendix@)
to select the experts to keep, ensuring that the two Condenser Experts are always preserved.
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while two designated experts are consistently activated and serve as Condenser Experts that aggre-
gate knowledge from the inactive set through backward propagation. By combining sparsity with
knowledge preservation, ExpertCondenser significantly outperforms existing post-training methods
such as ESFT and DenseMixer across math and commonsense reasoning benchmarks.

10
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ETHICS STATEMENT

This research focuses on the post-training of Mixture-of-Experts (MoE) Large Language Models
(LLMs). All datasets used in this work are publicly available and widely adopted in prior research,
and all models are open-weighted releases. Our study does not involve human subjects, interventions
in live systems, or the use of private or sensitive data. No personally identifiable information (PII)
or demographic attributes are included in either the training or evaluation process. As such, we do
not identify direct ethical concerns or risks associated with the methodology or findings presented
here. Nevertheless, we acknowledge that any advancement in LLM efficiency and performance can
indirectly influence downstream applications, and we encourage practitioners to consider the broader
societal implications of deploying MoE-based LLMs at scale.

REPRODUCIBILITY STATEMENT

We place strong emphasis on reproducibility and transparency in this work. To enable independent
verification, we adopt standardized datasets, provide detailed experimental configurations, and commit
to releasing all necessary code and artifacts.

* Datasets: All experiments are conducted using open-source and publicly available datasets,
ensuring unrestricted access for replication.

* Algorithms and Models: We will release the full implementation of our methods, including
training and inference scripts, hyperparameter settings, and evaluation protocols.

* Artifacts: Preprocessing scripts, simulator code, and pipeline configurations will be made
available for end-to-end reproduction of experiments.

Upon camera-ready submission, we will provide a public GitHub repository containing all code and
documentation. This repository will enable researchers to reproduce all results, figures, and tables
presented in the paper, and to extend our work for future research on MoE post-training.

USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this project, large language models (OpenAI’s GPT-5, Anthropic’s Claude) were used
for:

» Editing support: Suggestions for improving clarity, flow, and conciseness in written
sections.

* Code prototyping: Assisting with drafting and refining code snippets to test methods and
workflows.

All outputs from the model were reviewed, tested, and revised by the author to ensure accuracy and
appropriateness for the final submission.
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A NOTATION

For clarity, we summarize the main notations used throughout the theoretical sections.

h; Raw output vector of expert ¢.

v; Decomposed expert output: v; = p;e;.

p; Magnitude (norm) of expert ¢’s output.

e; Normalized direction vector of expert 4, |le;|| = 1.
y Dense output: y = >, v;.

4 Sparse approximation using only k experts.

S Index set of selected experts, |S| = k.

A; Binary indicator of expert selection.

n, k Total number of experts, and number of selected experts.

Output of expert 7 at layer [ for token k in ;.

9i ik Gate score assigned to expert ¢ at layer [ for token k.
gi,+ Indicator if expert ¢ is selected for token ¢ (shorthand).
s;+ Gating score (logit) of expert % for token ¢ before normalization.

w; ¢ Softmax-normalized routing weight assigned to expert % for token ¢, and softmax-normalized
routing weight from the unbiased scores s; 4.

L; Length (number of tokens) of sample ;.
Dy, Ny Subset of training data and its size.

x; jth token for training

s, Magnitude-based expert score (ES-Mag) at layer [.
rl@ Activation-ratio expert score (ES-Act) at layer [.
K Number of experts selected per token.
S Set of selected experts at layer [.
Lpaance Auxiliary loss for balancing expert utilization.
fi Normalized fraction of tokens routed to expert i.
P; Average routing weight assigned to expert ¢ across tokens.
« Hyperparameter controlling auxiliary loss strength.
T Sequence length (number of tokens).
0 Router parameters used to compute gating scores.
L Generic training loss depending on model output y.
b; Expert-wise bias used only for selection to improve load balance.
5;,+ Biased gating score for expert ¢ on token ¢: 5; ; = s+ + b;.
Sy Top-K selection set for token ¢ obtained from {5 ;}_;.
~ Bias update speed.
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B EXPERIMENTAL SETTINGS

Training Framework and Hyper-parameters: We used the huggingface-trl (von Werraetal.,
2020) library with zero-2 or zero-3 (Ren et al.,[2021) for fine-tuning and v11m (Kwon et al.,[2023)),
lighteval (Habib et al| |[2023), and accelerate (Gugger et al., 2022) library for inference
evaluation. Both training and evaluation are using dtype BF16.

MOoE Post-train Baselines: For state-of-the-art (SOTA) MoE post-training baselines, we choose to
include ESFT (Hu et al.} 2021} and DenseMixer (Yao et al., [2025)). The number of epochs, learning
rate, and batch size will be the same when conducting experiemnt on the same model to ensure a fair
comparison across different methods.

Computational Resources: We conduct our experiments and implement SOTA baselines of ESFT
and DenseMixer | Yao et al.| (2025)) to post-train with 8§ NVIDIA H100_80GB GPUs. Communication
between the CPU and GPU is facilitated via PCle-G4 and communication between GPUs is facilitated
via Nvlink-3.

C TABLE RESULTS FOR EXPERTS SCALING LAWS

Tables [6] and [7] report detailed results of our scaling law experiments on two representative MoE
models: GPT-OSS-20B and DeepSeek-Coder-V2-Lite. We evaluate performance under three pruning
strategies introduced in Section §2}

(1) Small Dense Conversion, where the number of experts is reduced from n to n’ and all surviving
experts are activated (k = n’);

(2) Inference Reduction, where the total number of experts is fixed (n’ = n) but the activation budget
is reduced from k to k' < k; and

(3) Small MoE Conversion, where both the total number of experts is reduced (n’ < n) and the
activation budget is kept sparse (k < n').

Table 6: Evaluating base GPT-OSS-20B model Zero-Shot Results on downstream Math Reasoning
dataset, includes SingleEQ, MultiArith, AddSub, GSM8K, SVAMP, and AQuA.

Model Strategies Remain Experts (n') Activate Experts (v') GSM8k SingleEq SVAMP MultiArith AddSub AQuA mawps AVG
Base Model 32 4 78.0 84.6 84.1 92.0 81.0 339 920 779

8 8 23 1.7 1.8 2.7 1.8 16.7 2.3 42

12 12 4.8 17.8 14.6 18.4 18.6 22.8 173 163

Small Dense 18 18 48.6 39.6 47.8 526 63.7 238 478 463

24 24 56.9 58.2 63.5 68.5 67.5 246 587 568

32 1 55 19.7 13.6 12.8 19.5 232 18.1 16.1

Inference Reduce 32 2 70.8 74.6 76.4 88.2 754 299 769 703

GPT-0SS-20B 32 3 75.1 839 84.3 933 81.3 33.1 80.7 76.0
8 4 1.6 2.2 32 32 2.0 12.6 2.5 39

12 4 6.4 18.7 21.8 13.0 18.2 21.7 160 165

Small MoE 16 4 20.2 43.7 48.1 43.7 41.0 240 424 376

20 4 32.8 56.1 59.9 582 529 256 555 487

24 4 49.6 724 74.5 83.3 724 29.1 702 645

Table 7: Evaluating base DeepSeek-Coder-V2-Lite-Instruct model Zero-Shot Results on downstream
Math Reasoning dataset, includes SingleEQ, MultiArith, AddSub, GSM8K, SVAMP, and AQuA.

Model Strategies Remain Experts (n') Activate Experts (') GSM8k SingleEq SVAMP MultiArith AddSub AQuA mawps AVG
Base Model 64 6 82.6 95.1 83.6 94.3 89.6 264 866 79.7

6 6 1.4 1.0 1.7 2.8 1.8 220 2.1 4.7

12 12 1.7 11.0 45 72 13.2 24.0 9.7 102

Small Dense 16 16 11.8 38.2 22.6 320 31.1 177 319 265

s 20 20 26.0 63.2 46.0 67.7 56.5 177 584 479

24 24 36.9 752 58.4 76.0 70.1 20.1 664 576

32 32 47.8 83.5 71.4 88.2 81.8 24.4 79.6  68.1

DeepSeek-Coder-V2-Lite 48 48 48.6 82.7 72.4 87.6 82.6 247 804 684
64 1 28.5 68.7 50.7 73.0 64.6 240 726 546

64 2 492 86.6 70.5 92.8 792 248 782 688

Inference Reduce 64 3 543 872 76.6 923 80.3 25.6 849 71.6

64 4 537 87.0 76.1 94.7 83.5 264 832 721

64 5 579 89.0 79.8 95.7 84.6 252 845 738

12 6 0.7 0.4 1.5 0.8 0.0 16.9 1.3 3.1

16 6 0.8 0.2 1.4 12 13 13.4 13 2.8

Small MoE 24 6 11.3 459 335 41.8 46.6 17.7 433 343

32 6 35.6 76.4 63.4 80.7 69.7 220 748 604

48 6 49.0 85.4 75.2 932 80.8 217 807 694
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D SELECTING TOP-k EXPERTS

We define two top-k selection rules, selecting by magnitude score and selecting by activation ratio.
Let v( ) i be the output of expert 4 at layer [ for token k in sample x;, with gate score g( ) . Bach

sample has length L;, and we draw a subset D, = {z; } j=1 from the training set. We compute a
per-expert relevance score and pick Top-k experts for routing or distillation.

Magnitude Score (ES-Mag). Estimate expert importance by average output magnitude:

0)
Yigkl| -

When only a scalar amplitude p( ) i is available, we approximate Hv( ) el &
favors experts with larger norm contrlbutlons (see Appendix [Hfor Justlﬁcatlon)

pZ Jj x> this criterion

Activation Ratio (ES-Act). Estimate importance by how often the expert is selected:

1 L, |:gl(l]) k > 0:|

- 1
LNy~ L ’
7j=1 k=1

N

where K is the number of experts selected per token. This captures routing preference and data
alignment.

Selection. For layer [, choose
S — TopK({sZ(-l)}i) or SU = TopK({rgl)}i),

and select the variant by validation performance: ES-Mag emphasizes magnitude-dominant contribu-
tion, while ES-Act reflects gate-driven frequency.
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E AUXILIARY LOSS FOR LOAD BALANCING

Uncontrolled routing strategies in Mixture-of-Experts (MoE) models often suffer from load imbalance.
This manifests in two ways: (i) routing collapse, where only a small subset of experts are consistently
selected, leading to undertraining of the remaining experts; and (ii) computational imbalance, where
uneven routing across devices increases latency and reduces efficiency. To mitigate these issues, an
auxiliary loss is commonly introduced in SOTA MoE models (Liu et al.,|2024aj; Wang et al., 2024b)).

For a sequence of length T, the auxiliary loss is defined as
n
ﬁBalance = Z fiPia
i=1

where « is a hyperparameter controlling the strength of the regularization. Here,
n — 1 —
i = 7 2 gie > 0], P == it
e PP

The term f; measures the fraction of tokens routed to expert ¢, normalized by the total number of
tokens 7T, experts n, and the per-token selection budget K. The term P; is the average routing
probability assigned to expert ¢, where s; ; denotes the gating score of expert ¢ for token ¢. The loss
encourages alignment between routing frequency (f;) and gating probability (F;), thereby preventing
collapse and promoting balanced utilization of experts.
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F AUXILIARY-LOSS-FREE LOAD BALANCING STRATEGY

To improve load balance without introducing an additional loss term, Deepseek-V3 (Liu et al.,
20244) adjust the selection rule by adding an expert-wise bias to the gating scores. Let s; ; be the
(un-normalized, before Softmax) gating score for expert ¢ on token ¢t. We define a biased score

Si¢ = Si+ by,
where b; is an expert-specific bias that is updated by a balancing controller (e.g., based on utilization

statistics; see remark below). The Top-k selection set for token ¢ is then

St = TOpK({Ej,t}?:l, K), git = 1[2 ESt].

Important distinction (selection vs. weighting). The bias b; is only used to influence which
experts enter S;. It does not modify the routing weights used to combine expert outputs. Weights are
obtained from the unbiased scores via softmax:

w . exp(si,)
it — ) )
' Z?:1 exp(s;,t)

and the token-level MoE output is

n
Yr = E Git Wi V; = E w;i v,  With v, = pie;.
=1 1€ S}

Thus b; affects who is selected but never changes the weights w; ; applied to the selected experts in
the forward pass.

Algorithm (per token t).

1. Compute unbiased scores {s; ¢} ; and weights w; ; = softmax(s; ;).
2. Form biased scores §; ; = s; ¢ + b; and select S; = TopK({§j7t};‘:1, K).

3. Set indicators g; ; = 1[i € S| and compute y; = Ziest Wi £V;.

Bias updating b;. Any load-balancing controller can be used to update the biases; for example,
one may adjust b; as a function of the observed utilization f; and target utilization K /n (e.g., with a
moving-average estimator). In DeepSeek-V3, during training, they monitoring the expert load on the
whole batch of each training step. At the end of each step, we will decrease the bias term by ~ if its
corresponding expert is overloaded, and increase it by + if its corresponding expert is underloaded,
where v is a hyper-parameter called bias update speed. Through the dynamic adjustment, DeepSeek-
V3 keeps balanced expert load during training, and achieves better performance than models that
encourage load balance through pure auxiliary losses.
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G GRADIENT PROPAGATION THROUGH TOP-k ROUTING

Consider a Mixture-of-Experts layer where the router produces gating scores {s;;}7_; for token ¢.
These scores are normalized via a softmax to obtain the routing weights

Wiy = G i=1,...,n.

) n 9
Zj:l exp(s;,t)
We then select the top-k experts according to these weights and form the token-level output
Yt = Z Wit Vi
1€ESY

where S; = TopK ({w;}}_,) is the index set of the k largest weights, and v; = p;e; is the
contribution of expert ¢ (with p; the magnitude of /; and e; its normalized direction). The final loss
for this token is £ = L(yy).

Gradient with respect to router parameters. Back-propagation through this layer requires differ-
entiating the loss with respect to the router parameters 6:

B . /oL _ O TopK(wy ¢, ..., wnt)i Owiy
Vol = 3 (6yt ”l) Dwis 90

i=1

The Jacobian term Ow; ¢ /06 is determined by the softmax of the gating scores s; ;, while the middle
factor contains the (non-differentiable) Top-k selection.

Conventional approximation: SFT and ESFT A common approximation in MoE training treats
the Top-k operation as if it were differentiable by passing gradients only through the selected experts.
Formally, one replaces
3TOpK(w17t, e ,wmt)i
awj,t

~ 51'73‘ 1[i S St],

where 0; ; is the Kronecker delta. Under this approximation, the router gradient reduces to

oL w4
CEPICADE 5

1€ES}

Thus only the experts chosen in S; receive gradient updates through the gating mechanism.

Straight-through (STE) approximation: DenseMixer An alternative, more precise approxi-
mation—used in methods like DenseMixer—employs a straight-through estimator (STE). In the
backward pass, the Top-k operation is treated as the identity map:

OTopK(wi 4., Wnt)i 5
X 04,5-

Qi1
This allows gradients to flow to all experts’ routing weights, yielding

- oL 8w7;,t
voe ~ 3 (55 v) G

=1

In this view, the forward pass still uses a hard Top-k selection, but the backward pass distributes
gradients as though the selection were an identity operator.

Summary. The conventional method restricts gradient updates to the selected experts .S;, while the

straight-through method propagates gradients to all experts by overriding the Top-k operation in the
backward pass.
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H THEORETICAL SUPPORTS FOR TOP-K SELECTION.

In a Mixture-of-Experts (MoE) architecture, each expert contributes to the overall output as
Vi = Pi€i,

where p; is the gating weight corresponds to the i-th expert, e; is the expert output, and v; is the
output vector of the ¢-th expert. In a dense model, the final output is given by

n n
Yy = Zvi = Zpiei-
i=1 i=1

In a sparse Mixture-of-Experts (MoE) model, we aim to reduce computation by selecting only a
subset of experts. Thus, we wish to approximate y using

y= Z Vi,
€S
where S is a subset of indices with |.S| = k < n. This objective can be formulated as the minimization
problem

min
>\17~--7A716{011}

n n 2 n
> v =) Niv; subjectto > ;= k,
i=1 i=1 i=1

where \; = 1 indicates that expert i is selected, and \; = 0 indicates it is omitted. In many practical
scenarios, especially when the normalized directions e; are not strongly correlated, this minimization
is well approximated by selecting the experts with the largest values of p;. Intuitively, experts with
large p; contribute most significantly to the norm of y, so preserving these in the approximation
yields a smaller error. We analyze why selecting experts with large p; is a reasonable approximation
in the following.

In a Mixture-of-Experts (MoE) architecture, each expert contributes to the overall output as
Vi = Pi€4,
where p; is the gating weight and e; is the expert output. When analyzing why the top-k selection

rule arises, it is instructive to consider two scenarios: one in which the vectors v; are orthonormal (or
nearly so) and another in which they have general correlations.

In this appendix, we show that in the non-orthonormal case, selecting the top-k experts with the
largest p; provides a close approximation to the full model output while substantially reducing
computational cost. In the orthonormal case, this selection is provably optimal; in the general case, it
serves as a widely used and effective heuristic.

THE ORTHONORMAL (OR WEAKLY-CORRELATED) CASE

Assume that the vectors vq, vs, . .., v, are strictly orthonormal, i.e.,

0 ifi #j
T ) )
v, Vj = P .
B {Ilvillz, ifi=j.
Then, the squared norm of the omitted portion,

n 2

Z(]. — )\z)vz

=1

)

expands as
2 n

=D (=)l
i=1
and since \; € {0,1}, we have (1 — \;)? = (1 — \;). Therefore, the objective becomes

n

Z(l — /\i)vi

i=1

n

S0 - A il

i=1
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subject to Y " | A; = k. To minimize this quantity, it is optimal to set \; = 1 for the k vectors with
the largest norms ||v;|? and \; = 0 for the others. In the orthonormal case, this strategy is provably
optimal.

Even if the vectors are only weakly correlated, the same principle generally holds: larger magnitudes
imply a larger contribution to the overall sum, so omitting vectors with small ||v;|| results in a minor
error, making the top-k selection by magnitude a robust heuristic.

THE GENERAL (NON-ORTHONORMAL) CASE

When the vectors v; have significant correlations, the cross terms do not vanish. In this case, the error
term becomes

n 2 n

D=2l =d =M)llwilP+2 D A= x) (1 =)0 v

i=1 i=1 1<i<j<n

Here, the cross terms v; v; can affect the error significantly. In principle, finding the subset .S that
minimizes this expression exactly is an NP-hard combinatorial problem. However, in practice, one
commonly uses the heuristic of selecting the top k experts based on the individual magnitudes ||v; ||
(or a predicted magnitude p;). This approach is effective because, in many settings, the largest
magnitude vectors still dominate the overall contribution even when correlations are present. In
scenarios where two high-magnitude vectors are strongly correlated, more sophisticated selection
methods might improve the approximation, but the top-k rule remains a strong and computationally

efficient baseline.

Conclusion: Whether the expert output vectors are orthonormal or generally correlated, the top-%
selection rule emerges from the objective of preserving the dominant contributions to the sum while
minimizing approximation error. In an MoE architecture, each expert’s output v; = p;e; contributes to
the overall sum. By selecting the k experts with the largest p;, one can achieve a good approximation
of the full model output with significantly reduced computational cost. In the orthonormal case, this
method is exactly optimal, while in the general case it remains a widely-used and effective heuristic.
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I DEFINITION OF CORRELATION

Correlation on down_proj Weights. Consider an MoE layer with a set of experts

£=1{1,...,E},

partitioned into a shared expert set £, and a regular expert set E,eq, With Egh N Ereg = 0, E U Ereg =
E.

For expert e € £ under setting s, let
wél)s = vec (W(l <) ) e R4,

and denote its sample mean by wgll =1 ZZ 1 (ng)g) Define the centered weight vector

2

We study three settings:
s =1 : Base, s = 2 : ESFT, s = 3 : ExpertCondenser.

Percent Correlation Gain. For each shared expert i € &y, and each regular expert j € &g, the
percent change in correlation relative to Base is defined as

C(l) _c@)
AY (%) =100 JT“ s € {2,3}

15,1

This “relative effect size” formulation stabilizes interpretation when the Base correlation is negative
Oor near zero.

Layer-Level Aggregation. The average correlation gain for setting s in layer [ is

(l)
€l |5reg| 2 D Ay

1€Esh JE€Ereg

AP (%) =

Model-Level Summary Across L Layers. Define the overall average and variability as

1 L
B) = 7D AO%), o= sm({w(%)}l 1) .

=1

These summarize how strongly fine-tuning reshapes global correlations between shared experts and
regular experts across the entire model.

23



Under review as a conference paper at ICLR 2026

J MATH7K DATASET

Math1OK dataset can evaluate the effectiveness of LLMs on the arithmetic reasoning task. Math10K
incorporate six subsets including GSM8k, SingleEqg, SVAMP, MultiArith, AddSub, and
AQuA.(1) the GSM8K (Cobbe et al.,2021)) dataset consists of high quality linguistically diverse grade
school math word problems created by human problem writers, (2) the SVAMP (Patel et al.,[2021)
benchmark consists of one-unknown arithmetic word problems for up-to-4 grade level students by
making simple changes to a set of problems from another existing dataset, (3) the MultiArith (Roy
& Roth, |2016)) dataset of math word problems requiring multiple reasoning steps and operations, (4)
the AddSub (Hosseini et al.,[2014)) dataset of addition and subtraction arithmetic word problems, (5)
the AQuA (Ling et al.,|2017) dataset of algebraic word problems with natural language rationales, and
(6) the SingleEq (Koncel-Kedziorski et al.,|2015) dataset of grade-school algebra word problems
that map to single equations with varying length;

K ES-ACT VERSUS ES-MAG

In this Appendix, we conduct ablation studies to investigate between Magnitude Score(ES-Mag)
and Activation Ratio(ES-Act), which one is the better metric to select preserving experts when we
converting the original Mixture of Expert model into smaller models (either smaller dense models or
smaller MoE models).

Table §: Evaluation of post-trained models (Zero-Shot results) on downstream Math Reasoning
datasets, including SingleEQ, MultiArith, AddSub, GSM8K, SVAMP, and AQuA.

Metric Method Model Size #Param (Experts) Post-train Type GSMS8k SingleEq SVAMP MultiArith AddSub AQuA mawps AVG
-B(6) 1.4 1.0 1.7 2.8 1.8 220 2.1 4.7
-B(12) 1.7 11.0 4.5 72 132 24.0 9.7 10.2
Smaller-Dense -B(16) - Base Model 11.8 382 22.6 32.0 31.1 17.7 319 265
-B(20) 26.0 63.2 46.0 67.7 56.5 177 584 480
ES-Act -B(24) 36.9 752 58.4 76.0 70.1 20.1 664  57.6
8B(32) 47.8 835 714 88.2 81.8 244 79.6  68.1
-B(12) 0.7 0.4 L5 0.8 0.0 16.9 13 3.1
-B(16) 0.8 0.2 14 1.2 1.3 13.4 1.3 2.8
Smaller-MoE -B(24) 2.4B(6) Base Model 11.3 459 33.5 41.8 46.6 177 433 343
8B(32) 35.6 76.4 63.4 80.7 69.7 220 748 604
-B(48) 49.0 85.4 75.2 932 80.8 21.7 80.7 694
-B(6) 1.6 12 2.1 2.6 2.1 18.9 2.3 4.4
-B(12) 1.8 11.8 5.2 6.8 13.6 23.8 9.4 10.3
Smaller-Dense -B(16) - Base Model 12.6 38.8 23.8 33.8 326 224 319 280
-B(20) 254 64.8 45.6 68.8 56.3 182 59.8 484
ES-Mag -B(24) 374 76.8 60.2 754 70.8 18.8 652 578
8B(32) 482 82.8 722 87.8 822 242 832  68.6
-B(12) 0.7 0.4 1.7 0.6 0.0 18.6 1.6 34
-B(16) 13 0.4 2.6 1.8 1.6 13.6 10.4 4.5
Smaller-MoE -B(24) 2.4B(6) Base Model 10.8 447 32.8 423 44.8 21.3 448 345
8B(32) 34.7 759 64.9 81.3 68.4 23.8 756 60.6
-B(48) 47.6 86.7 758 927 81.7 239 813 70.0
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L. EXPERT ACTIVATION PROBABILITIES IN BASE DEEPSEEK-V2-LITE

Expert activation probabilities (non-uniform) Lorenz curve (Gini = 0.43)
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Figure 5: Expert activations rate in whole math7K dataset. Expert Activations are tested using the
Deepseek-V2-Lite base model.
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M ABLATION STUDIES

M.1 DISSECTING THE CONDENSER EXPERT ALGORITHM

In this appendix, we dissect the Condenser Expert algorithm and present empirical results demonstrat-
ing that each component of Condenser Experts contributes to the strong post-training performance.
Table [I8]reports ablation results on both DeepSeek-V2-Lite (16B) and QWen2-MoE (14B) under
the math7k benchmark. We evaluate three progressively simplified variants: (i) aux-free only, which
removes auxiliary losses; (ii) aux-free+bias, which additionally incorporates the bias mechanism;
and (iii) aux-free+bias+share, which further enables expert sharing across tokens.

The results clearly show a consistent trend: performance improves as more components of the
Condenser Expert are included. For example, in DeepSeek-V2-Lite, the average score increases from
70.4 (aux-free) to 71.2 (aux-free+bias) and further to 73.1 when expert sharing is enabled. A similar
pattern is observed in QWen2-MoE, where the average accuracy rises from 59.0 to 59.4 and finally to
63.4.

These findings highlight that:
- Removing auxiliary loss alone is not sufficient to stabilize MoE post-training.
- Incorporating bias correction helps mitigate imbalance introduced by sparse optimization.

- Crucially, enabling expert sharing provides the largest improvement, indicating that shared experts
capture more generalizable knowledge and substantially enhance reasoning performance.

Overall, the ablation validates that each design choice in Condenser Experts is necessary, and that
combining all three components yields the best downstream performance.

Table 9: Evaluation of post-trained models (Zero-Shot results) on downstream Math Reasoning
datasets, including SingleEQ, MultiArith, AddSub, GSM8K, SVAMP, and AQuA.

Dataset Model Model Size #Param (Experts)  Post-train Type  GSM8k SingleEq SVAMP MultiArith AddSub AQuA mawps AVG
aux-free+bias+share  59.4 92.5 69.1 91.5 79.5 36.1 83.6 73.1
DeepSeek-V2-Lite  16B 24B aux-free+bias 58.8 90.7 69.3 88.7 74.2 36.1 80.3 712
aux-free 57.6 89.6 68.6 87.5 73.8 352 804 704
math7k
aux-free+bias+share ~ 57.2 74.6 55.7 86.0 61.8 33.1 756 634
QWen2-MoE 14B 2.7B aux-free+bias 48.2 76.6 527 80.3 59.2 26.8 71.8 594
aux-free 472 74.0 51.8 82.0 58.7 30.3 71.8  59.0

M.2 How TO CHOOSE SHARE EXPERTS

In this subsection, we conduct an ablation study to investigate how experts should be selected as
shared experts during post-training. Table[I§]reports the results of comparing two selection strategies:
(i) choosing high-bias experts and (ii) choosing low-bias experts. Across both DeepSeek-V2-Lite
(16B) and QWen2-MoE (14B), we observe that selecting low-bias experts consistently leads to
stronger downstream performance on math reasoning benchmarks. For example, in the math7k
setting, low-bias experts achieve higher average accuracy (73.1 vs. 72.4 for DeepSeek-V2-Lite and
63.4 vs. 61.8 for QWen2-MoE). These results suggest that low-bias experts encode more generalizable
knowledge, making them more effective as shared experts in MoE post-training.

Table 10: Evaluation of post-trained models (Zero-Shot results) on downstream Math Reasoning
datasets to conduct ablation study on expert selection based on bias, including SingleEQ, MultiArith,
AddSub, GSM8K, SVAMP, and AQuA.

Dataset Model Model Size #Param (Experts) Post-train Type GSM8k SingleEq SVAMP MultiArith AddSub AQuA mawps AVG
. high bias experts 60.1 90.2 70.4 90.2 742 37.0 845 724

e PoeekeV2-Lite 168 248 low bias experts 594 925 69.1 915 795 361 836 731
high-bias experts ~ 54.7 71.0 53.8 84.6 58.8 32.8 768 618

QWen2-MoE 14B 278 low-bias experts 572 746 557 86.0 618 331 756 634
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N TRAINING STABILITY ANALYSIS OF EXPERTCONDENSER

Figure

|

train/loss train/grad_norm
CondenserExpert == ESFT == Densemixer CondenserExpert = ESFT = Densemixer
25 100
2 80
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40
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20
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( @Tainloss ) (" ®cradNorm )

Figure 6: Training stability comparison among EXPERTCONDENSER, ESFT, and DenseMixer. (a)
Training loss curves, where EXPERTCONDENSER converges more quickly and reaches a lower final
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O FORMALIZING THE MOTIVATION BEHIND CONDENSER EXPERTS
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min ngp(zld) [£($§ 0B, Hd)] s

]
By

0.3 ROUTER STABILITY AND ANTI-COLLAPSE BEHAVIOR

Vol(x) = Y Veg;(a) fi(@),

JES()

0.4 CAPACITY CONSTRAINTS AND VARIANCE REDUCTION

minE[L(z;0)] st Jg C S(x), |S(z)| =k,

|

Var[h(z)] = Var | > gi(x) filw) | + Var| > g;(x) f3() |,

1€S(z)\JB Jj€JB

0.5 EMPIRICAL EVIDENCE
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P HYPER-PARAMETERS

P.1 MATH7K DATASET AND MATH14K DATASET

In this subsection, we perform an ablation study to verify whether the number of fine-tuning epochs
is sufficient for convergence. Since training efficiency and stability are critical in post-training large
MoE models, it is important to ensure that extending training does not yield further improvements or
lead to overfitting. We therefore evaluate the performance of DeepSeek-V2-Lite (16B) and OLMoE
(7B) under the math7k and math1 4k benchmark with ESFT fine-tuning for 1, 2, and 3 epochs. The
results are reported in Table[12]and [TT]

Overall, these findings confirm that our main experiments are conducted with models that have
already converged, and that increasing the number of training epochs does not lead to meaningful
gains.

Table 11: Evaluation of SFT model Zero-Shot Results on downstream math reasoning tasks after
fine-tuning with Math-14K, including SingleEQ, MultiArith, AddSub, GSM8K, SVAMP, and AQuA.

Model Model Size #Param (Experts) Distill Type GSMS8k SingleEq SVAMP MultiArith AddSub AQuA mawps AVG
ESFT-lepoch ~ 55.7 76.2 58.8 71.2 62.8 28.3 643  59.6
OLMoE 7B 1B ESFT-2epoch ~ 52.8 78.3 59.1 71.8 63.3 29.1 68.9  60.5
ESFT-3epoch  52.6 77.2 57.8 72.7 64.6 319 70.1  60.9

Table 12: Evaluation of SFT model Zero-Shot Results on downstream math reasoning tasks after
fine-tuning with Math-7K, including SingleEQ, MultiArith, AddSub, GSM8K, SVAMP, and AQuA.

Model Model Size #Param (Experts) Distill Type GSM8k SingleEq SVAMP MultiArith AddSub AQuA mawps AVG
ESFT-lepoch ~ 54.1 88.0 65.3 83.7 727 26.8 794 671
DeepSeek-V2-Lite 16B 2.4B ESFT-2epoch  58.6 80.9 65.8 90.7 62.3 27.6 761  66.0
ESFT-3epoch  58.2 75.8 65.2 89.0 56.5 29.5 735 64.0
ESFT-lepoch ~ 57.0 78.5 58.6 72.0 64.3 28.3 76.1 621
OLMoE 7B 1B ESFT-2epoch  53.8 70.9 55.7 65.0 61.5 31.5 69.7 583
ESFT-3epoch  50.3 69.3 49.5 54.5 59.2 27.6 592 5238
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P.2 GAMMA FOR BIAS UPDATE

Table 13: Evaluation of different post-trained Qwen-2 model Zero-Shot Results on downstream math
reasoning tasks with different gamma settings after fine-tuning with Math-7K, including SingleEQ,
MultiArith, AddSub, GSM8K, SVAMP, and AQuA.

Model Gamma Model Size Distill Type #Param (Experts) GSMS8k SingleEq SVAMP MultiArith AddSub AQuA mawps AVG
G-1e-6 14B aux-free-loss 2.7B 48.6 -76.8 50.0 81.8 59.6 29.6 70.6  59.6
G-le-5 14B aux-free+bias 2.7B 48.8 76.4 50.2 81.6 59.8 29.7 70.8  59.6
G-5e-5 14B aux-free+bias 2.7B 47.8 76.6 50.2 81.8 60.3 29.9 70.6  61.6
G-le-4 14B aux-free+bias 2.7B 482 76.6 527 80.3 59.2 26.8 718 594
G-le-3 14B aux-free+bias 2.7B 47.7 74.2 50.6 83.2 59.0 30.7 67.2 589
G-3e-3 14B aux-free+bias 2.7B 31.8 58.5 37.9 65.2 39.5 28.3 56.7 454
G-5e-3 14B aux-free+bias 2.7B 153 32.7 26.0 475 29.4 21.7 332 294
G-le-2 14B aux-free+bias 2.7B 7.2 17.3 14.7 28.2 15.7 17.7 18.5 17.0

Table 14: Evaluation of different post-trained Deepseek-v2-lite model Zero-Shot Results on down-
stream math reasoning tasks with different gamma settings after fine-tuning with Math-7K, including
SingleEQ, MultiArith, AddSub, GSM8K, SVAMP, and AQuA.

Model Gamma Model Size Distill Type #Param (Experts) GSM8k SingleEq SVAMP MultiArith AddSub AQuA mawps AVG
G-1e-6 14B aux-free-loss 2.7B 56.2 89.4 68.9 86.2 732 352 790 698
G-1e-5 14B aux-free-loss 2.7B 56.7 89.6 69.8 87.8 74.0 358 796 705
G-5e-5 14B aux-free-loss 2.7B 58.6 90.6 70.2 88.6 74.4 362 806 711
G-le-4 14B aux-free-loss 2.7B 58.8 90.7 69.3 88.7 74.2 36.1 803 712
G-1e-3 14B aux-free-loss 2.7B 434 78.7 62.8 80.5 60.5 252 710 603
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Q REORGANIZED TABLES FOR MODEL COMPARISONS

The following tables provide detailed comparisons of model performance across different fine-tuning
strategies and datasets. Table[T3]and Table [T6|report zero-shot results on a suite of math reasoning
benchmarks (SingleEQ, MultiArith, AddSub, GSM8K, SVAMP, and AQuA) after supervised fine-
tuning (SFT) with Math-14K and Math-7K, respectively. We include both ESFT-tuned variants and
their corresponding base models to highlight the effectiveness of expert tuning. Table [T7] presents
zero-shot pass@1 results (with 4 samples) on more challenging reasoning benchmarks (GPQA
Diamond, AIME 2024/2025, and MATH-500) using the Stanford-S1 dataset. Results are shown for
ESFT, DenseMixer, and our proposed ExpertCondenser method, alongside the corresponding base
models, enabling direct comparison of different post-training approaches for Mixture-of-Experts
LLMs.

Table 15: Evaluation of SFT model Zero-Shot Results on downstream math reasoning tasks after
fine-tuning with Math-14K, including SingleEQ, MultiArith, AddSub, GSM8K, SVAMP, and AQuA.

Model Model Size Distill Type #Param (Experts) GSM8k SingleEq SVAMP MultiArith AddSub AQuA mawps AVG
DeepSeek-V2-Lite 16B ESFT 24B 58.6 80.9 65.8 90.7 62.3 27.6 76.1  66.0
Qwen2 14B ESFT 2.7B 52.5 76.0 54.1 86.2 62.3 29.5 714 571
OLMOE 7B ESFT 1B 53.8 70.9 55.7 65.0 61.5 315 69.7 583
DeepSeek-V2-Lite 16B Base Model 24B 8.0 20.0 26.6 24.0 354 214 33.6 242
Qwen2 14B Base Model 2.7B 25.6 313 274 335 46.8 254 282 312
GPT-0SS 20B Base Model 3.6B 774 82.9 84.0 91.8 79.7 315 920 774
OLMOE 7B Base Model 1B 16.1 23.6 17.7 9.2 213 22.8 139 178

Table 16: Evaluation of SFT model Zero-Shot Results on downstream math reasoning tasks after
fine-tuning with Math-7K, including SingleEQ, MultiArith, AddSub, GSM8K, SVAMP, and AQuA.

Model Model Size Distill Type #Param (Experts) GSM8k SingleEq SVAMP MultiArith AddSub AQuA mawps AVG
DeepSeek-V2-Lite 16B ESFT 2.4B 54.7 87.2 67.3 86.8 68.1 28.7 763  67.0
Qwen2 14B ESFT 2.7B 46.9 69.3 54.1 75.7 522 27.6 68.1 562
OLMOE 7B ESFT 1B 52.8 78.3 59.1 71.8 63.3 29.1 689  60.5
DeepSeek-V2-Lite 16B Base Model 24B 8.0 20.0 26.6 24.0 354 214 336 242
Qwen2 14B Base Model 2.7B 25.6 31.3 274 335 46.8 254 282 312
GPT-0SS 20B Base Model 3.6B 774 82.9 84.0 91.8 79.7 315 920 77.0
OLMOE 7B Base Model 1B 16.1 23.6 17.7 9.2 21.3 22.8 139 178

Table 17: Evaluation of SFT model Zero-Shot P@ssl:4 samples Results on downstream math
reasoning benchmarks after fine-tuning with Stanford-S1, including GPQA Diamond, AIME 2024,
AIME 2025, and MATH-500.

Model Model Size Distill Type #Param (Experts) GPQA Diamond AIME 2024 AIME 2025 MATH-500 AVG
Qwen3 30B Base Model 3.3B 38.9 20.6 7.7 72.8 35.0
DeepSeek-V2-Lite 16B Base Model 2.4B 31.9 0.8(1/120) 1.7(2/120) 62.0 24.1
Qwen2 14B Base Model 2.7B 259 0.0 0.0 8.4 8.6

Qwen3 30B ESFT 3.3B 54.8 61.6 45.6 93.4 63.9
DeepSeek-V2-Lite 16B ESFT 2.4B 322 2.5(3/120) 2.5(3/120) 63.0 25.0
Qwen2 14B ESFT 2.7B 264 0.8(1/120) 0.8(1/120) 18.1 115
Qwen3 30B DenseMixer 2.4B 58.5 63.9 458 93.6 65.5
DeepSeek-V2-Lite 16B DenseMixer 24B 34.8 2.5(3/120) 2.5(3/120) 64.8 26.1

Qwen2 14B DenseMixer 2.4B 26.8 1.7(2/120) 0.8(1/120) 20.4 124
Qwen3 30B ExpertCondenser (Ours) 24B 68.8 68.3(82/120) 51.7(62/120) 96.8 71.4
DeepSeek-V2-Lite 16B ExpertCondenser (Ours) 2.4B 40.6 9.2(11/120)  6.7(8/120) 68.9 314
Qwen2 14B ExpertCondenser (Ours) 2.4B 34.6 6.7(8/120) 6.7(8/120) 28.6 19.5
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R GPT-OSS

Table 18: Evaluation of SFT model Results on downstream math reasoning tasks after fine-tuning
with Math-7K, including SingleEQ, MultiArith, AddSub, GSM8K, SVAMP, and AQuA.

Model Model Size Distill Type #Param (Experts) GSMS8k SingleEq SVAMP MultiArith AddSub AQuA mawps AVG
GPT-0OSS 20B CondenserExperts 3.6B 81.7 93.2 82.5 98.5 85.6 38.6 91.6 817
GPT-0OSS 20B DenseMixer 3.6B 80.1 923 83.2 98.7 82.5 374 90.8 80.7
GPT-0SS 20B ESFT 3.6B 76.6 929 80.2 98.2 82.0 354 90.3 794
GPT-0OSS 20B Base Model 3.6B 774 829 84.0 91.8 79.7 315 920 77.0
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