

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

FINETUNING MOE LLMS WITH CONDENSER EXPERTS

Anonymous authors

Paper under double-blind review

ABSTRACT

Despite MoE models leading in benchmarks, supervised fine-tuning (SFT) for the MoE architecture remains difficult because its router layers are fragile. Methods such as DenseMixer and ESFT mitigate collapse with dense mixing or auxiliary load-balancing losses, but these introduce noisy gradients that often degrade performance. In preliminary experiments, we systematically removed experts and observed that while certain “super experts” are activated far more frequently, discarding less used experts still leads to notable performance degradation. This suggests that even rarely activated experts encode non-trivial knowledge useful for downstream tasks. Motivated by this, we propose a new auxiliary loss free MoE SFT framework that combines router biases with shared condenser experts. Instead of enforcing balanced activation across all experts, our method leverages bias updates to encourage imbalanced and sparse routing, allowing rarely used experts to become inactive while designating two existing experts as shared condensers that aggregate knowledge from the inactive set without increasing the per-token compute budget. Router stability is maintained entirely through bias updates that regulate token-level and expert-level activation, eliminating the need for auxiliary losses. Experiments on large-scale MoE models demonstrate that our approach outperforms state-of-the-art SFT baselines such as DenseMixer and ESFT, achieving 4%+ gain on both mathematical reasoning and commonsenseQA benchmarks. Pruning and inter-expert correlation analyses confirm that our condenser experts aggregate knowledge from the long-tail experts, preserving performance under sparse routing.

1 INTRODUCTION

Mixture-of-Experts (MoE) models scale language models efficiently by activating only a small subset of experts per token, enabling massive capacity without increasing per-token compute. Yet the same sparse routing that drives their success also makes them fragile: MoE relies on a non-differentiable Top-K router, which blocks straightforward gradient flow and makes post-training, such as supervised fine-tuning (SFT), far more difficult than for dense LLMs.

Over the years, researchers have sought to stabilize MoE training through progressively refined routing strategies. GShard (Lepikhin et al., 2020) introduced top-2 gating with heavy auxiliary balancing losses, while Switch Transformers (Fedus et al., 2022) simplified this to a single expert per token. More recent work, such as DeepSeek-MoE (Wang et al., 2024a) and DeepSeek-V3 (Liu et al., 2024a), explored bias-based routers and minimized auxiliary losses to reduce gradient noise and improve efficiency. However, these advances primarily address pre-training. In the post-training setting, SFT remains underexplored: ESFT (Wang et al., 2024b) routes all gradients to the most-activated expert, while DenseMixer (Yao et al., 2025) improves slightly by applying a Straight-Through Estimator (STE) (Bengio et al., 2013) to approximate updates for inactive experts, yet STE introduces biased gradients.

In parallel, recent studies have identified the existence of “super experts” Su et al. (2025) or “super weights” Yu et al. (2025), whose activations dominate the routing and whose removal leads to sharp performance degradation. These findings suggest that a small subset of experts carries disproportionate importance. However, our observations reveal a complementary phenomenon: even the rarely activated experts encode indispensable information, and pruning them also causes substantial performance decline. This highlights the need for fine-tuning strategies that not only preserve the

capacity of frequently activated super experts, but also retain knowledge embedded in the long tail of rarely used experts.

Motivated by these observations, we adapt the bias-updating principle of DeepSeek’s Loss-Free Balancing to the post-training setting. Instead of aiming for balanced activation across all experts, we propose an auxiliary-free fine-tuning framework that enforces sparse routing through globally negative biases. This drives rarely used experts toward inactivity, while two designated Condenser Experts stay active and collect gradients from the other experts, effectively consolidating their knowledge. In doing so, our method closes the train–inference routing gap and preserves information from both dominant and rarely activated experts, achieving significant improvements in fine-tuning performance on reasoning and coding benchmarks. Experimental results show that our method consistently outperforms SoTA MoE SFT methods by 4+ points when post-training popular MoE LLMs on commonsense reasoning (PIQA, ARC, SIQA) and math reasoning benchmarks (MATH-500, AIME-25, GPQA, GSM8K, etc). Our implementation is open-source Anonymously ¹.

1.1 CONTRIBUTIONS

- Through systematic pruning and scaling-law analysis, we show that even rarely activated experts encode indispensable knowledge. Removing them leads to substantial performance degradation, highlighting the need to preserve contributions beyond the most frequently activated “super experts.”
- We extend scaling-law analysis to MoE compression by relating performance to the number of expert parameters retained. Our study compares dense merging, expert pruning, and reduced activation budgets, offering new insights into the trade-offs between model size, sparsity, and accuracy.
- We propose **Expert Condenser**, an auxiliary-free fine-tuning framework that enforces sparsity via bias-driven routing while introducing shared Condenser Experts to preserve knowledge from inactive experts. This design narrows the train–inference routing gap and enables stable MoE post-training.

2 DOES SAVING "SUPER EXPERTS" MEAN SAVING MODEL PERFORMANCE?

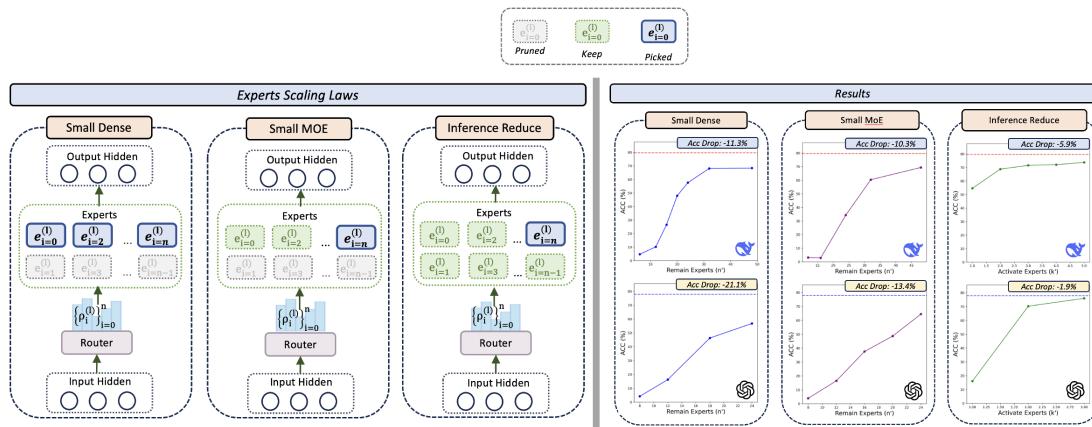


Figure 1: Illustration of the three expert scaling strategies. (*Small-Dense*) Experts are pruned, and all surviving experts are always activated, yielding a smaller dense model. (*Small MoE*) Experts are pruned and only a subset of them are activated per token, resulting in a smaller but still sparse MoE. (*Inference Reduce*) Fewer experts are selected per token while the expert pool is unchanged. Pruned experts are shown in gray, kept experts in light green, and selected experts for a given token in dark blue. A substantial performance gap remains between the base model and pruned variants under **Small Dense** and **small MoE** categories.

¹<https://anonymous.4open.science/r/Finetuning-MOE-F652>

108 Previous work (Lu et al., 2024; Su et al., 2025) has shown that pruning away frequently activated
 109 “super experts” causes large performance degradation, underscoring their importance. However,
 110 these studies stop short of asking the complementary question: **is retaining only the super experts**
 111 **sufficient to preserve model quality?**

112 To answer this, we conduct a systematic scaling-law analysis of experts. Our study takes a more com-
 113 prehensive view across multiple compression axes blow: (i) Dense Conversion via expert pruning (ii)
 114 Smaller MoE conversion via expert pruning, and (iii) reducing activation budget per token comparing
 115 to (Jaiswal et al., 2025) focuses specifically on expert pruning within sparse MoE models. Whereas
 116 concurrent works (Tian et al., 2025; Nakamura et al., 2025) focus on how the activation ratio (the
 117 number of experts active per token) affects accuracy, we instead examine how performance scales
 118 with the total number of expert parameters retained. The Top- k selection for token t is defined as

$$119 \quad S_t = \text{TopK}(\{s_{j,t}\}_{j=1}^n, k), \quad g_{i,t} = \mathbf{1}[i \in S_t],$$

120 where n is the total number of experts, k is the number of experts activated per token, $s_{j,t}$ is the
 121 gating score of expert j for token t , and $g_{i,t}$ indicates whether expert i is selected². We investigate
 122 three strategies as is illustrated in Fig. 1 to study the scaling law by varying n (the size of the expert
 123 pool) and k (the activation budget):

124 (i) **Dense conversion via expert pruning.** We reduce the expert pool from n to n' and activate all
 125 surviving experts:

$$126 \quad n \rightarrow n', \quad k = n'.$$

127 $S_t = \{1, \dots, n'\}$ for all tokens, and the model effectively becomes a smaller dense model.

128 (ii) **Smaller MoE conversion via expert pruning.** We prune experts from n to n' but keep the
 129 activation budget strictly smaller than the remaining pool:

$$130 \quad n \rightarrow n', \quad k < n'.$$

132 The model remains an MoE, since only the top- k experts are selected from the n' survivors.

133 (iii) **Reducing the activation budget while keeping full model size.** We keep the total number of
 134 experts fixed but reduce the activation budget from k to k' :

$$135 \quad n \text{ fixed}, \quad k \rightarrow k' < k.$$

137 S_t becomes smaller ($|S_t| = k'$), increasing sparsity while leaving the expert pool unchanged.

138 To select important experts prior to pruning, we adopt two metrics following ESFT (Wang et al.,
 139 2024b): ES-Act (activation ratio) and ES-Mag (weight magnitude). Full definitions are given in
 140 Appendix D. Unless otherwise specified, all experiments use ES-Act as the default selection criterion.³

141 To conduct a scaling-law analysis of experts, we design experiments using GPT-OSS OpenAI (2025)
 142 and DeepSeek-Coder-V2-Lite (Liu et al., 2024a). In figure 1, we summarize the results across
 143 the three strategies. More details of the results are shown in Table 7 and Table 6 in Appendix C.

144 **These results show that saving “Super Experts” is not equivalent to saving model performance.**
 145 Although scaling-law trends are evident after pruning, a substantial performance gap remains between
 146 the base model and pruned variants. For example, retaining the top 75% of experts still results in more
 147 than a 10% drop. Appendix L (Fig. 5) further shows that expert activation is highly skewed: a few
 148 “super experts” dominate routing, while a long tail of rarely activated experts—together accounting
 149 for only about 10% of activations—still represents a substantial portion of the model’s parameter
 150 capacity.

151 Crucially, our experiments reveal that even though a few “super experts” dominate routing, rarely
 152 activated experts nonetheless encode indispensable knowledge, and pruning them leads to substantial
 153 degradation. This observation motivates our approach: rather than discarding inactive experts, we
 154 introduce a condenser-sharing mechanism that aggregates domain knowledge from all the experts.

156 3 PROPOSED METHODS: EXPERT CONDENSER

158 Our post-training framework addresses a core challenge in MoE: preserving the knowledge distributed
 159 across all experts—both dominant and rarely activated—while adapting the model to a new task.

161 ²Detailed clarifications for all notation are in Appendix A

³ES-Mag yields comparable results; see Appendix K for a detailed comparison.

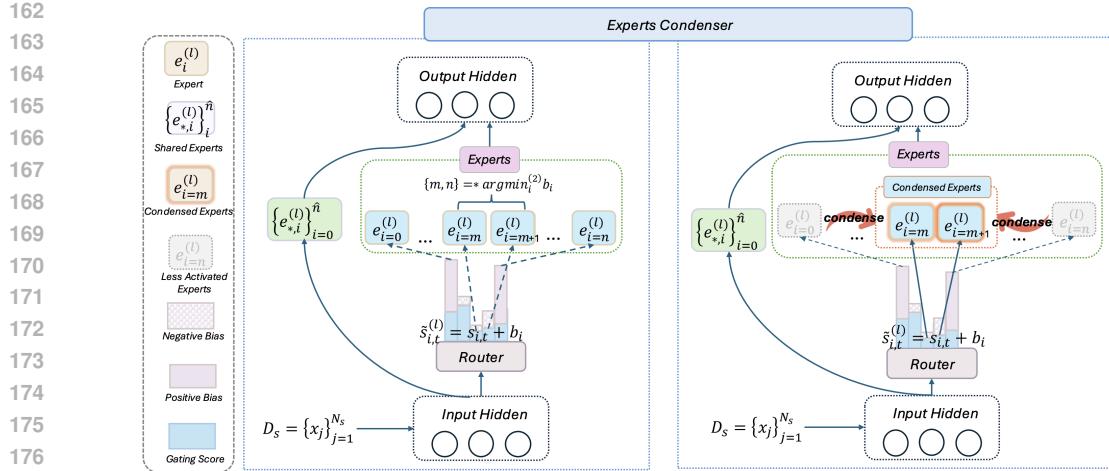


Figure 2: Representation of our Experts Condenser framework. (Left) An auxiliary-free router adds trainable biases b_i to logits $s_{i,t}$. Less relevant experts accumulate negative biases, and the two lowest-bias experts m, n are designated as Condenser Experts. (Right) These Condenser Experts are always selected during training, ensuring they receive gradients and act as repositories that condense knowledge from inactive experts—preserving information while enforcing sparsity.

Rather than enforcing balanced expert usage, our method explicitly encourages sparsity by down-biasing less relevant experts and systematically transferring their knowledge into two designated **Condenser Experts**.

Our approach has two key components: (i) an auxiliary-free routing mechanism that enforces sparsity through dynamic bias adjustments, and (ii) two always-active Condenser Experts that serve as repositories for aggregated knowledge from inactive experts.

3.1 AUXILIARY FREE SPARSITY ENFORCEMENT

A critical challenge in MoE post training is the noise introduced by auxiliary balancing losses. While such losses encourage expert diversity during pre-training, they also inject competing gradient signals that can hinder convergence on specialized downstream tasks⁴.

We eliminate this issue by adopting an **auxiliary-loss-free** routing strategy for fine-tuning, where the routing logits are directly modified with trainable bias parameters $b_{i=1}^n$, one per expert. The router’s Top- k selection, S , is performed on these biased logits: $S = \text{TopK}(\{s_i + b_i\}_{i=1}^n)$ where s_i is the original raw logit for expert i . The crucial distinction is that the final gating weights, ρ_i , are still computed from the original unbiased logits s_i , isolating the routing decision from the output computation.

Unlike pre-training methods that adjust biases to *prevent* routing collapse⁵, our objective in fine-tuning is to *induce* a controlled collapse. Biases for experts that are rarely useful for the target task are progressively decreased, making them unlikely to be selected. This naturally separates experts into two groups: a small set of task-relevant “active” experts and a long tail of “inactive” experts. By explicitly enforcing sparsity, this mechanism narrows the train–inference routing gap and lays the foundation for our condenser strategy.

3.2 HYBRID SHARED EXPERTS WITH GUARANTEED GATING

Our architecture employs a new “shared” computation, which introduces a distinct type of condenser experts in addition to traditional ungated shared experts⁶, as visually referenced in Fig. 2.

⁴More explanation about auxiliary losses can be found in Appendix E

⁵More details about utilizing auxiliary-loss-free biases to prevent loading unbalance are in Appendix F

⁶The theoretical rationale behind the design of the condenser experts is provided in Appendix O.

216 **Traditional type-G (Ungated) Shared Experts.** The traditional (ungated) shared experts, shown as
 217 *green boxes* ($\{e_{*,i}^{(l)}\}_{i=0}^{\hat{n}}$), is a set of “Type-G” Shared Experts. These behave as standard feed-forward
 218 layers that are applied to every input token x_j . Unlike routed experts, they do not receive gating
 219 weights; instead, their outputs are summed directly into the representation: $h^{(g)} = \sum_{i=1}^{\hat{n}} \text{FFN}_i^{(G)}(x_j)$

220 **Proposed type-B (Guaranteed Gated) Shared Expert.** We propose *Type-B* condenser Shared
 221 Experts, shown as *blue boxes* drawn from the routed expert pool ($\{e_i^{(l)}\}_{i=0}^n$). Let us denote this
 222 expert as $\text{FFN}_j^{(B)}$. This expert is “shared” in the sense that it is **guaranteed to be selected** for every
 223 token. **This selection is performed just once at the start of the fine-tuning process, by identifying**
 224 **the two activated experts with the lowest-bias.** Throughout the entire post training procedure, these
 225 two experts are then statically enforced into the active set for every token, supplementing the $k-2$
 226 specialists dynamically chosen by the router.
 227

228 The routing process is therefore modified: the router selects the Top- $(k-2)$ experts from the
 229 remaining $n-2$ blue experts, and these two special experts $\{j\}$ are *always* added to the active set S .
 230 Thus, $S = \text{TopK}_{i \in \{1..n\} \setminus \{j\}}(\{s_i + b_i\}, k-2) \cup \{j\}$, ensuring $|S| = k$.

231 The key distinction—why these condenser experts are “different from the green ones”—is that it is
 232 **both shared (always selected) and gated.** Like all other $k-2$ selected experts in S , it receives a
 233 computed gate weight $g_{i,j}$ from the router. $h^{(b)} = \sum_{i \in S} g_{i,j} \text{FFN}_i^{(B)}(x_j)$

234 The final layer output h'_t combines the residual, Type-G shared path, and Type-B gated path: $h'_t =$
 235 $u_t + h^{(g)} + h^{(b)}$. This method ensures a baseline of common knowledge (from Type-G) while also
 236 forcing the model to always utilize and weigh the contribution of a specific, powerful “capillary”
 237 expert (Type-B), supplemented by $k-2$ other dynamically chosen specialists.

238

239 4 BACKGROUND AND RELATED WORKS

240

241 Post-training for Mixture-of-Experts (MoE) large language models remains relatively underexplored.
 242 Recent efforts have primarily focused on how to adapt experts so that they better align with down-
 243 stream domains. Two representative approaches are Expert Supervised Fine-Tuning (ESFT) (Wang
 244 et al., 2024b) and DenseMixer (Yao et al., 2025), which propose different strategies for handling
 245 gradient propagation through the non-differentiable Top- k routing mechanism.

246 **ESFT**⁷ ESFT strengthens the role of the most frequently activated experts by routing gradients only
 247 through the Top- k set S_t . Formally, if $w_{i,t}$ denotes the routing weight of expert i for token t , then
 248 the gradient with respect to router parameters θ is approximated as $\nabla_{\theta} \mathcal{L} \approx \sum_{i \in S_t} \left(\frac{\partial \mathcal{L}}{\partial y_t} \cdot v_i \right) \frac{\partial w_{i,t}}{\partial \theta}$.
 249 Here $S_t = \text{TopK}(\{w_{j,t}\}_{j=1}^n, k)$ is the set of selected experts, and v_i is the output of expert i . While
 250 this approach explicitly reinforces the “super experts” that dominate activation, the less activated
 251 experts are frozen and treated as trivial experts.

252 **DenseMixer.**³ DenseMixer instead addresses the non-differentiability of Top- k routing by adopting a
 253 straight-through estimator (STE). In this view, the backward pass ignores the hard selection and treats
 254 TopK as the identity map: $\frac{\partial \text{TopK}(w_{1,t}, \dots, w_{n,t})_i}{\partial w_{j,t}} \approx \delta_{i,j}$. As a result, gradients flow to *all* experts’
 255 routing weights, not just those in S_t : $\nabla_{\theta} \mathcal{L} \approx \sum_{i=1}^n \left(\frac{\partial \mathcal{L}}{\partial y_t} \cdot v_i \right) \frac{\partial w_{i,t}}{\partial \theta}$. However, both ESFT (Wang
 256 et al., 2024b) and DenseMixer (Yao et al., 2025) still suffer from the additional noise introduced by
 257 auxiliary balancing losses. Moreover, they overlook the fact that less frequently activated experts also
 258 encode indispensable knowledge and contribute significantly to overall model performance.

259

260

261 5 EXPERIMENTAL RESULTS

262

263 **Model Architecture and Dataset:** In our experimental setup, we use open-weight GPT-OSS-
 264 20B (OpenAI, 2025), Deepseek-V2-Lite (Liu et al., 2024a), Deepseek-Coder-V2-Lite-Instruct (Liu
 265 et al., 2024a), OLMoE-7B-01-25 (Muennighoff et al., 2024), Qwen1.5-MoE-A2.7B (Yang et al.,
 266 2024), and Qwen3-30B-A3B (Yang et al., 2025) to conduct experiments.

267

268

269

⁷More details about ESFT and DenseMixer are in Appendix G

270 In Section § 2, We study the MoE expert scaling law using Deepseek-Coder-V2-Lite-Instruct base
 271 model and GPT-OSS-20B base model, and test the evaluation performance on MultiArith,
 272 GSM_8K (Cobbe et al., 2021), AddSub, AQuA, SingleEq, SVAMP, and mawps.
 273

274 In Subsection § 5.1, we evaluate MoE post-training algorithms on math reasoning domains. We
 275 fine-tune on the Math7K and Math14K dataset using the DeepSeek-V2-Lite, Qwen1.5-MoE-A2.7B,
 276 OLMoE-7B-01-25 and test the evaluation performance on downstream testsets MultiArith,
 277 GSM_8K (Cobbe et al., 2021), AddSub, AQuA, SingleEq, SVAMP, and mawps. Then, we
 278 post-train Qwen1.5-MoE-A2.7B, DeepSeek-Coder-V2-Lite-Instruct, and Qwen3-30B-A3B on
 279 Stanford-S1 dataset (Muennighoff et al., 2025) and test the evaluation performance on down-
 280 stream SOTA math reasoning benchmarks AIME2025, AIME2024, GPQA-Diamond (Rein et al.,
 281 2024), and MATH-500.

282 In Subsection § 5.2, we turn to commonsense reasoning. Following (Hu et al., 2023; He et al., 2024;
 283 Liu et al., 2024b), we merge the training sets of eight tasks into commonsense_15k and evaluate on
 284 their individual test sets: BoolQ, PIQA, SIQA, HellaSwag, ARC-e, ARC-c, and OBQA. Results
 285 are reported as accuracy, with an averaged score summarizing overall effectiveness. Across all
 286 datasets—Stanford-S1K, Commonsense, Math7K, and Math14K—our setup emphasizes the
 287 generalization ability of LLMs across diverse sub-tasks. In Appendix M, we present ablation studies
 288 demonstrating that both components of our approach, the auxiliary-free routing mechanism 3.1 and
 Condenser Experts 3.2, contribute significantly to the overall performance improvement.

289 **Training Framework and Hyper-parameters:** We used the `huggingface-trl` (von Werra et al.,
 290 2020) library with zero-2 or zero-3 (Ren et al., 2021) for fine-tuning and `vllm` (Kwon et al., 2023),
 291 `lighteval` (Habib et al., 2023), and `accelerate` (Gugger et al., 2022) library for inference
 292 evaluation. Both training and evaluation are using dtype BF16.

293 **MoE Post-train Baselines:** For state-of-the-art (SOTA) MoE post-training baselines, we choose to
 294 include ESFT (Hu et al., 2021) and DenseMixer (Yao et al., 2025).

295 **Computational Resources:** We conduct our experiments and implement SOTA baselines of ESFT
 296 and DenseMixer Yao et al. (2025) to post-train with 8 NVIDIA H100_80GB GPUs. Communication
 297 between the CPU and GPU is facilitated via PCIe-G4 and communication between GPUs is facilitated
 298 via Nvlink-3.

300 301 5.1 MATH REASONING

302 We evaluate **ExpertCondenser**, our proposed method, against two state-of-the-art MoE post-training
 303 approaches: ESFT (Wang et al., 2024b) and DenseMixer (Yao et al., 2025). To ensure a fair
 304 comparison, we adopt the same training configurations as prior work, including batch size, data type,
 305 learning rate, and sequence length. We re-implemented ESFT and DenseMixer following the reported
 306 setups in (Yao et al., 2025).

307 Table 1 demonstrates that on most SoTA math reasoning benchmarks, ExpertCondenser outperforms
 308 baseline methods across Qwen3, DeepSeek-Coder-V2-Lite, and Qwen2. ExpertCondenser enhances
 309 accuracy of DenseMixer by 5.9%, 5.3%, and 7.1% on Qwen3, DeepSeek-Coder-V2-Lite, and Qwen2
 310 respectively.

311 We further reports zero-shot performance after two epochs of fine-tuning on two math reasoning
 312 datasets (*Math-7K*⁹ and *Math-14K*) in Table 2. Across all benchmarks (GSM8K, SingleEq, SVAMP,
 313 MultiArith, AddSub, AQuA, and MAWPS), ExpertCondenser consistently outperforms both ESFT
 314 and DenseMixer on DeepSeek-V2-Lite, Qwen2-MoE, and OLMoE. Notably, by more effectively
 315 consolidating expert knowledge, ExpertCondenser achieves substantial gains over prior approaches.
 316 On *Math-7K*, it improves the average accuracy of Qwen2-MoE from 57.9 (DenseMixer) to 63.4
 317 (+5.5%), DeepSeek-V2-Lite from 66.8 to 73.1 (+6.3%), and OLMoE from 64.8 to 70.2 (+5.4%).
 318 On *Math-14K*, ExpertCondenser further boosts performance: Qwen2-MoE rises from 62.9 to 67.9
 319 (+5.0%), DeepSeek-V2-Lite from 64.9 to 69.4 (+4.5%), and OLMoE from 65.7 to 70.0 (+4.3%).
 320

321
322
323 ⁹More details about Commonsense dataset can be found in Appendix J.

324 Table 1: Evaluation of post-trained models *Zero-Shot $P@ss1.4$ samples* Results on downstream math
325 reasoning benchmarks after fine-tuning with *Stanford-S1*, including GPQA Diamond, AIME 2024,
326 AIME 2025, and MATH-500.⁸

Model	Model Size	Activate #Param	Distill Type	GPQA Diamond	AIME 2024	AIME 2025	MATH-500	AVG
Qwen3	30B	3B	ExpertCondenser(Ours)	68.8	68.3(82/120)	51.7(62/120)	96.8	71.4
			DenseMixer	61.0	65.8(79/120)	46.7(56/120)	95.8	67.3
			ESFT	52.7	61.7(74/120)	44.2(53/120)	92.0	62.7
			SFT	58.6	63.3(76/120)	48.3(58/120)	94.8	66.3
			Base Model	38.9	20.8(25/120)	7.5(9/120)	72.6	35.0
DeepSeek-Coder-V2-Lite	16B	2.4B	ExpertCondenser(Ours)	40.6	9.2(11/120)	6.7(8/120)	68.9	31.4
			DenseMixer	34.8	2.5(3/120)	2.5(3/120)	64.8	26.1
			ESFT	32.2	2.5(3/120)	2.5(3/120)	63.0	25.0
			SFT	34.2	2.5(3/120)	2.5(3/120)	64.6	26.0
			Base Model	31.9	0.8(1/120)	1.7(2/120)	62.0	24.1
Qwen2	14B	2.7B	ExpertCondenser(Ours)	34.6	6.7(8/120)	6.7(8/120)	28.6	19.5
			DenseMixer	26.8	1.7(2/120)	0.8(1/120)	20.4	12.4
			ESFT	26.4	0.8(1/120)	0.8(1/120)	18.1	11.5
			SFT	27.8	0.8(1/120)	0.0(0/120)	20.1	12.2
			Base Model	25.9	0.0	0.0	8.4	8.6

337 Table 2: Evaluation of post-trained models (Zero-Shot results) on downstream Math Reasoning
338 datasets, including SingleEQ, MultiArith, AddSub, GSM8K, SVAMP, and AQuA.

Dataset	Model	Model Size	Activate #Param	Post-train Type	GSM8k	SingleEq	SVAMP	MultiArith	AddSub	AQuA	mawps	AVG
DeepSeek-V2-Lite	16B	2.4B	ExpertCondenser (Ours)	59.4	92.5	69.1	91.5	79.5	36.1	83.6	73.1	
			DenseMixer	57.8	81.2	67.2	89.6	64.6	28.8	78.8	66.8	
			ESFT	58.6	80.9	65.8	90.7	62.3	27.6	76.1	66.0	
			SFT	58.4	80.6	66.2	90.2	61.0	24.8	75.8	65.3	
			Base Model	8.0	20.0	26.6	24.0	35.4	21.4	33.6	24.2	
math7k	QWen2-MoE	14B	2.7B	ExpertCondenser (Ours)	57.2	74.6	55.7	86.0	61.8	33.1	75.6	63.4
				DenseMixer	48.2	71.3	53.8	78.6	54.8	28.6	70.2	57.9
				ESFT	46.9	69.3	54.1	75.7	52.2	27.6	68.1	56.2
				SFT	45.8	70.2	53.6	76.2	53.3	27.6	67.8	56.4
				Base Model	25.6	31.3	27.4	33.5	46.8	25.4	28.2	31.2
OLMoE	7B	1B	ExpertCondenser (Ours)	68.4	79.8	71.2	93.8	63.4	36.3	78.8	70.2	
			DenseMixer	64.8	78.2	92.0	56.4	58.6	30.2	73.5	64.8	
			ESFT	62.2	75.2	68.0	93.3	58.2	28.7	73.1	65.5	
			SFT	63.6	74.8	67.7	92.3	57.8	27.6	72.4	65.2	
			Base Model	16.1	23.6	17.7	9.2	21.3	22.8	13.9	17.8	
GPT-OSS	20B	3.6B	CondenserExperts	81.7	93.2	82.5	98.5	85.6	38.6	91.6	81.7	
			DenseMixer	80.1	92.3	83.2	98.7	82.5	37.4	90.8	80.7	
			ESFT	76.6	92.9	80.2	98.2	82.0	35.4	90.3	79.4	
			Base Model	77.4	82.9	84.0	91.8	79.7	31.5	92.0	77.0	
			ExpertCondenser (Ours)	63.6	81.2	71.8	93.8	60.8	33.2	81.4	69.4	
DeepSeek-V2-Lite	16B	2.4B	DenseMixer	59.4	78.6	67.4	89.4	57.8	28.6	73.6	64.9	
			ESFT	58.2	75.8	65.2	89.0	56.5	29.5	73.5	64.0	
			SFT	57.6	76.4	67.6	90.1	59.7	30.6	74.3	65.2	
			Base Model	8.0	20.0	26.6	24.0	35.4	21.4	33.6	24.2	
			ExpertCondenser (Ours)	58.8	81.2	59.2	91.6	72.8	33.2	78.4	67.9	
math14k	QWen2-MoE	14B	DenseMixer	52.6	75.2	56.8	87.8	65.4	28.6	73.6	62.9	
			ESFT	52.5	76.0	54.1	86.2	62.3	29.5	71.4	61.7	
			SFT	51.8	74.8	55.4	87.2	66.7	27.6	74.8	62.6	
			Base Model	25.6	31.3	27.4	33.5	46.8	25.4	28.2	31.2	
			ExpertCondenser (Ours)	67.8	81.6	72.4	86.8	68.8	32.8	79.6	70.0	
OLMoE	7B	1B	DenseMixer	65.8	76.8	68.2	80.6	62.4	30.7	75.3	65.7	
			ESFT	64.4	77.0	68.9	81.8	64.1	30.7	74.8	65.9	
			SFT	65.3	78.4	69.8	82.8	68.5	31.4	75.8	67.4	
			Base Model	16.1	23.6	17.7	9.2	21.3	22.8	13.9	17.8	

5.2 OTHER DATASETS

To ensure that our findings above are generalizable, we further examine the performance of ExpertCondenser under the common sense reasoning dataset CommonSense-15K, including six downstream test datasets, BoolQ, PIQA, SIQA, HellaSwag, ARC-e, ARC-c, and OBQA.

Table 3 reports the performance of DenseMixer, ESFT, and ExpertCondenser on the CommonSense dataset¹⁰. We can observe that ExpertCondenser surpasses the DenseMixer by 5.3% on post-trained OLMoE. On post-trained Qwen-2-MoE, ExpertCondenser surpasses the best performance of DenseMixer and ESFT by 3.0% and 3.9%, respectively.

5.3 SYSTEM EFFICIENCY UNDER PARAMETER OFFLOADING

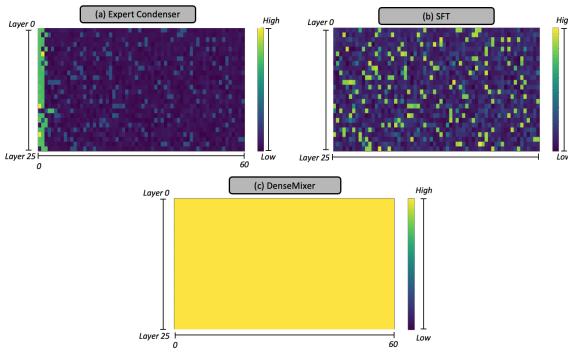
Training large-scale MoE models often depends on parameter offloading (e.g., ZeRO-2 and ZeRO-3 (Ren et al., 2021)), where expert weights are dynamically swapped between GPU and CPU to meet memory limits. The efficiency of this process is highly sensitive to activation patterns, as frequent transfers of large expert weights over PCIe or NVLink can dominate runtime.

¹⁰Please note that we are using CommonSense-15K, the smaller version of CommonSense-170K.

378
 379
 380
 381
 382 Table 3: Accuracy comparison of OLMoE and Qwen2-MoE with various post-training methods
 383 on commonsense reasoning datasets. Results of all ExpertCondenser are obtained using the hyper-
 384 parameters described in (Liu et al., 2024b) under the same settings.
 385
 386
 387
 388
 389

Model	Model Size	Post-train method	BoolQ	PIQA	SIQA	HellaSwag	Winogrande	ARC-e	ARC-c	OBQA	Avg
OLMoE	7B	ExpertCondenser	66.8	79.9	72.1	80.3	78.6	86.6	70.9	75.0	76.3
		DenseMixer	62.8	68.7	65.3	71.6	73.5	81.3	63.5	71.3	69.8
		ESFT	63.5	63.0	58.9	64.7	62.8	74.8	63.8	63.4	64.4
		SFT	62.5	65.8	62.8	70.7	71.4	78.4	63.7	70.6	68.2
		Base Model	48.9	48.3	10.9	32.6	28.7	32.9	31.4	24.8	32.3
Qwen-2-MoE	14B	ExpertCondenser	72.1	84.9	75.6	81.6	79.8	88.5	78.1	84.4	80.6
		DenseMixer	70.8	85.7	74.6	75.8	78.9	82.6	74.8	77.8	77.6
		ESFT	69.7	85.3	75.4	78.2	74.2	84.0	71.8	75.0	76.7
		SFT	68.8	84.7	74.5	76.8	75.6	84.6	72.8	76.4	76.8
		Base Model	51.0	68.1	56.2	31.0	48.3	64.8	52.3	49.2	52.6

390
 391 Our Expert Condenser provides a systems advantage by designating two always-active Condenser
 392 Experts. Because these experts consistently handle the majority of activations, their parameters can
 393 remain resident in GPU memory, avoiding repeated CPU–GPU transfers and reducing offloading
 394 overhead. Figure 3(a) shows expert activation counts for DeepSeek-V2-Lite after post-training, where
 395 the two Condenser Experts dominate activations and therefore never need to be swapped out of GPU
 396 memory.



409 Figure 3: Expert activation counts for all experts across each
 410 layer for three methods:(a) Expert Condenser, (b) SFT, and
 411 (c) DenseMixer.

412 By contrast, DenseMixer activates *all* experts in each forward pass. This not only introduces extra
 413 forward computation but also incurs high cost: every expert’s parameters must be loaded into
 414 GPU, eliminating sparsity benefits and drastically increasing offloading traffic. This eliminates the
 415 computational savings of MoE and dramatically increases offloading traffic, as the system can no
 416 longer exploit sparsity to minimize parameter swaps. As shown in Figure 3(c), all experts exhibit
 417 uniformly high activation counts, reflecting the full activation pattern. SFT activates only the Top- k
 418 experts, saving computation, but the selected set S_t varies across tokens. Figure 3(b) illustrates this
 419 behavior: activations are more evenly distributed across experts, but without fixed shared experts,
 420 GPU residency is volatile and offloading overhead remains high.

421 In Table 4, we provide the post-training time costs for DenseMixer, SFT, and ExpertCondenser.
 422 ExpertCondenser achieves an 2.87 \times speedup compared to DenseMixer and outperforms SFT. We
 423 conducted time profiling by averaging the post-training time every 10 iterations over 300 iterations,
 424 following a 50-iteration warm-up period. Post-training utilized MoE parameter offloading settings to
 425 simulate GPU memory limited scenarios. ExpertCondenser offers greater computational efficiency,
 426 though these are secondary benefits compared to its primary focus.

6 FURTHER ANALYSIS

427
 428 **Pruning after condensing:** A key question for our framework is whether the two Condenser Experts
 429 truly aggregate knowledge from other experts. To evaluate this, we repeat the *dense conversion via ex-*

430
 431 Table 4: The experiments involved
 432 Post-training, ESFT, DenseMixer, and
 433 ExpertCondenser on 8 \times H100 80GB
 434 GPUs using parameter offloading,
 435 with a batch size of 32. Communi-
 436 cation between the GPU and CPU was
 437 facilitated via PCIe-G4.

DeepSeek-V2-Lite			
Post-Train	Activate #Params %	Time/s	Speedup
DenseMixer	16B	362.83	1 \times
SFT	2.4B	152.78	2.37 \times
ExpertCondenser	2.4B	126.24	2.87 \times

432 *pert pruning* experiment¹¹. We then compare the performance degradation between ExpertCondenser
 433 and ESFT. Table 5 shows the results of pruning while keeping the remaining experts activated. Our
 434 method outperforms ESFT by more than 25% across all benchmarks. This confirms the robustness of
 435 the always-active Condenser Experts and provides strong empirical evidence that they retain their
 436 knowledge during post-training.

437
 438 Table 5: Evaluation of **DeepSeek-V2-Lite** models after post-training with ESFT and ExpertCondenser,
 439 followed by expert pruning.

Method	Strategies	Remain Experts (n')	Activate Experts (k')	GSM8k	SingleEq	SVAMP	MultiArith	AddSub	AQuA	mawps	AVG
ExpertCondenser	Small Dense	24	24	38.6	65.3	49.3	78.7	47.6	18.1	62.4	51.4
	Small Dense	32	32	49.3	73.8	56.4	81.3	53.8	23.4	68.3	58.0
ESFT	Small Dense	24	24	22.4	31.2	28.3	33.1	21.4	20.1	27.5	26.3
	Small Dense	32	32	27.4	37.6	31.4	37.2	28.8	22.4	32.5	31.6

444 **Expert correlation Analysis:** To assess how fine-tuning alters dependencies between experts, we
 445 examine the similarity of their parameter updates. Specifically, we compute the Pearson correlation
 446 between the parameters of the condensed experts and those of other experts, comparing the fine-tuned
 447 model to the base model. This measure captures linear relationships in parameter changes, allowing
 448 us to track how knowledge is redistributed across experts. A formal definition of Pearson correlation
 449 is provided in Appendix I.



450
 451 (a) Shared Expert 0 correlation changes.

452 Layer 1 - Shared Expert 0 Correlation Changes
 453
 454
 455
 456
 457
 458 (b) Shared Expert 1 correlation changes.

459 Figure 4: Correlation changes between the shared expert and regular experts at Layer 1. Each bar
 460 shows how the correlation between a regular expert and the shared expert changes after fine-tuning,
 461 compared to the base model. Expert Condenser (red) causes concentrated shifts, markedly strength-
 462 ening positive correlations while suppressing negative ones. In contrast, ESFT (green) produces
 463 smaller, more diffuse adjustments across experts. These results illustrate that Expert Condenser more
 464 aggressively reshapes inter-expert relationships, while ESFT exerts a milder influence.

465 **Observation.** Expert Condenser explicitly targets shared experts and consolidates the capacity
 466 of regular experts into the shared expert, resulting in pronounced, concentrated shifts. Regularly
 467 routed experts are compared against these shared experts by computing Pearson correlations be-
 468 tween their down-projection weight matrices before and after fine-tuning. Relative changes in these
 469 correlations—normalized by the base model—reflect how each method reshapes inter-expert de-
 470 pendencies. As shown in Fig. 4, both Expert Condenser and ESFT increase correlations relative
 471 to the baseline, with Expert Condenser driving a stronger global increase in correlations. Relative
 472 correlation increases average 0.005 more across all layers compared to ESFT. The earliest layer shows
 473 the most significant shifts, highlighting Expert Condenser’s central role in shaping foundational
 474 representations.

475 7 CONCLUSION

476 Our empirical findings reveal that even rarely activated experts encode indispensable knowledge, and
 477 pruning them directly leads to substantial performance degradation. Motivated by this observation,
 478 we proposed ExpertCondenser, a post-training framework that leverages bias updates to enforce
 479 sparse and imbalanced routing. This design allows rarely used experts to gradually become inactive,

480
 481
 482
 483
 484
 485 ¹¹Detailed definitions can be found in Section §2. For pruning, we use the ES-ACT metric (see Appendix K)
 486 to select the experts to keep, ensuring that the two Condenser Experts are always preserved.

486 while two designated experts are consistently activated and serve as *Condenser Experts* that aggre-
487 gate knowledge from the inactive set through backward propagation. By combining sparsity with
488 knowledge preservation, ExpertCondenser significantly outperforms existing post-training methods
489 such as ESFT and DenseMixer across math and commonsense reasoning benchmarks.
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540
541
ETHICS STATEMENT

542 This research focuses on the post-training of Mixture-of-Experts (MoE) Large Language Models
 543 (LLMs). All datasets used in this work are publicly available and widely adopted in prior research,
 544 and all models are open-weighted releases. Our study does not involve human subjects, interventions
 545 in live systems, or the use of private or sensitive data. No personally identifiable information (PII)
 546 or demographic attributes are included in either the training or evaluation process. As such, we do
 547 not identify direct ethical concerns or risks associated with the methodology or findings presented
 548 here. Nevertheless, we acknowledge that any advancement in LLM efficiency and performance can
 549 indirectly influence downstream applications, and we encourage practitioners to consider the broader
 550 societal implications of deploying MoE-based LLMs at scale.

551
552
REPRODUCIBILITY STATEMENT
553

554 We place strong emphasis on reproducibility and transparency in this work. To enable independent
 555 verification, we adopt standardized datasets, provide detailed experimental configurations, and commit
 556 to releasing all necessary code and artifacts.

- 558 • **Datasets:** All experiments are conducted using open-source and publicly available datasets,
 559 ensuring unrestricted access for replication.
- 560 • **Algorithms and Models:** We will release the full implementation of our methods, including
 561 training and inference scripts, hyperparameter settings, and evaluation protocols.
- 562 • **Artifacts:** Preprocessing scripts, simulator code, and pipeline configurations will be made
 563 available for end-to-end reproduction of experiments.

564 Upon camera-ready submission, we will provide a public GitHub repository containing all code and
 565 documentation. This repository will enable researchers to reproduce all results, figures, and tables
 566 presented in the paper, and to extend our work for future research on MoE post-training.

567
568
USE OF LARGE LANGUAGE MODELS (LLMs)
569

570 In preparing this project, large language models (OpenAI’s GPT-5, Anthropic’s Claude) were used
 571 for:

- 572 • **Editing support:** Suggestions for improving clarity, flow, and conciseness in written
 573 sections.
- 574 • **Code prototyping:** Assisting with drafting and refining code snippets to test methods and
 575 workflows.

576 All outputs from the model were reviewed, tested, and revised by the author to ensure accuracy and
 577 appropriateness for the final submission.

578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

594 REFERENCES
595

596 Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through
597 stochastic neurons for conditional computation, 2013. URL <https://arxiv.org/abs/1308.3432>.
598

600 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
601 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
602 Schulman. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*,
603 2021.

604 William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
605 models with simple and efficient sparsity. *Journal of Machine Learning Research*, 23(120):1–39,
606 2022.

607 Sylvain Gugger, Lysandre Debut, Thomas Wolf, Philipp Schmid, Zachary Mueller, Sourab Man-
608 grulkar, Marc Sun, and Benjamin Bossan. Accelerate: Training and inference at scale made simple,
609 efficient and adaptable. <https://github.com/huggingface/accelerate>, 2022.

610 Nathan Habib, Clémentine Fourrier, Hynek Kydlíček, Thomas Wolf, and Lewis Tunstall. Light-
611 eval: A lightweight framework for llm evaluation, 2023. URL <https://github.com/huggingface/lighteval>.
612

613 Haoze He, Juncheng Billy Li, Xuan Jiang, and Heather Miller. Sparse matrix in large language model
614 fine-tuning. *arXiv preprint arXiv:2405.15525*, 2024.

615

616 Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren Etzioni, and Nate Kushman. Learning to
617 solve arithmetic word problems with verb categorization. In *Proceedings of the 2014 Conference
618 on Empirical Methods in Natural Language Processing (EMNLP)*, pp. 523–533, 2014.

619 Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
620 and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL <https://arxiv.org/abs/2106.09685>.
621

622 Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
623 Poria, and Roy Ka-Wei Lee. Llm-adapters: An adapter family for parameter-efficient fine-tuning
624 of large language models. *arXiv preprint arXiv:2304.01933*, 2023.
625

626 Ajay Jaiswal, Jianyu Wang, Yixiao Li, Pingzhi Li, Tianlong Chen, Zhangyang Wang, Chong Wang,
627 Ruoming Pang, and Xianzhi Du. Finding fantastic experts in moes: A unified study for expert
628 dropping strategies and observations. *arXiv preprint arXiv:2504.05586*, 2025.

629 Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish Sabharwal, Oren Etzioni, and Siena Dumas Ang.
630 Parsing algebraic word problems into equations. *Transactions of the Association for Computational
631 Linguistics*, 3:585–597, 2015.

632 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
633 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
634 serving with pagedattention. In *Proceedings of the ACM SIGOPS 29th Symposium on Operating
635 Systems Principles*, 2023.

637 Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
638 Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
639 computation and automatic sharding. *arXiv preprint arXiv:2006.16668*, 2020.

640 Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale genera-
641 tion: Learning to solve and explain algebraic word problems. *arXiv preprint arXiv:1705.04146*,
642 2017.

643 An Liu, Bing Feng, Bo Wang, and Bo Wang. Deepseek-v2: A strong, economical, and efficient
644 mixture-of-experts language model. *arXiv preprint arXiv:2406.01952*, 2024a.
645

646 Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
647 Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation, 2024b. URL
<https://arxiv.org/abs/2402.09353>.

648 Xudong Lu, Qi Liu, Yuhui Xu, Aojun Zhou, Siyuan Huang, Bo Zhang, Junchi Yan, and Hongsheng
 649 Li. Not all experts are equal: Efficient expert pruning and skipping for mixture-of-experts large
 650 language models. *arXiv preprint arXiv:2402.14800*, 2024.

651

652 Niklas Muennighoff, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Jacob Morrison, Sewon Min, Weijia
 653 Shi, Pete Walsh, Oyvind Tafjord, Nathan Lambert, Yuling Gu, Shane Arora, Akshita Bhagia,
 654 Dustin Schwenk, David Wadden, Alexander Wettig, Binyuan Hui, Tim Dettmers, Douwe Kiela, Ali
 655 Farhadi, Noah A. Smith, Pang Wei Koh, Amanpreet Singh, and Hannaneh Hajishirzi. Olmoe: Open
 656 mixture-of-experts language models, 2024. URL <https://arxiv.org/abs/2409.02060>.

657

658 Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
 659 Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
 660 scaling, 2025. URL <https://arxiv.org/abs/2501.19393>.

661

662 Taishi Nakamura, Satoki Ishikawa, Masaki Kawamura, Takumi Okamoto, Daisuke Nohara, Jun
 663 Suzuki, and Rio Yokota. Optimal sparsity of mixture-of-experts language models for reasoning
 664 tasks. *arXiv preprint arXiv:2508.18672*, 2025.

665

666 OpenAI. gpt-oss-120b & gpt-oss-20b model card, 2025. URL <https://arxiv.org/abs/2508.10925>.

667

668 Arkil Patel, Satwik Bhattacharya, and Navin Goyal. Are NLP models really able to solve sim-
 669 ple math word problems? In Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek
 670 Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao Zhou
 671 (eds.), *Proceedings of the 2021 Conference of the North American Chapter of the Association
 672 for Computational Linguistics: Human Language Technologies*, pp. 2080–2094, Online, June
 673 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.168. URL
 674 <https://aclanthology.org/2021.naacl-main.168>.

675

676 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
 677 Dirani, Julian Michael, and Samuel R. Bowman. GPQA: A graduate-level google-proof q&a
 678 benchmark. In *First Conference on Language Modeling*, 2024. URL <https://openreview.net/forum?id=Ti67584b98>.

679

680 Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase, Shuangyang Yang, Minjia
 681 Zhang, Dong Li, and Yuxiong He. Zero-offload: Democratizing billion-scale model training. *ArXiv*,
 682 [abs/2101.06840](https://arxiv.org/abs/2101.06840), 2021. URL <https://arxiv.org/abs/2101.06840>.

683

684 Subhro Roy and Dan Roth. Solving general arithmetic word problems. *arXiv preprint
 685 arXiv:1608.01413*, 2016.

686

687 Zunhai Su, Qingyuan Li, Hao Zhang, YuLei Qian, Yuchen Xie, and Kehong Yuan. Unveiling super
 688 experts in mixture-of-experts large language models. *arXiv preprint arXiv:2507.23279*, 2025.

689

690 Changxin Tian, Kunlong Chen, Jia Liu, Ziqi Liu, Zhiqiang Zhang, and Jun Zhou. Towards
 691 greater leverage: Scaling laws for efficient mixture-of-experts language models. *arXiv preprint
 692 arXiv:2507.17702*, 2025.

693

694 Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush, Nathan
 695 Lambert, Shengyi Huang, Kashif Rasul, and Quentin Gallouédec. Trl: Transformer reinforcement
 696 learning. <https://github.com/huggingface/trl>, 2020.

697

698 Lean Wang, Huazuo Gao, Chenggang Zhao, Xu Sun, and Damai Dai. Auxiliary-loss-free load
 699 balancing strategy for mixture-of-experts. *arXiv preprint arXiv:2408.15664*, 2024a.

700

701 Zihan Wang, Deli Chen, Damai Dai, Runxin Xu, Zhuoshu Li, and Yu Wu. Let the expert stick to his
 702 last: Expert-specialized fine-tuning for sparse architectural large language models. *arXiv preprint
 703 arXiv:2407.01906*, 2024b.

704

705 An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
 706 Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
 707 Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai,
 708 Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng

702 Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai
 703 Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan
 704 Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
 705 Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zhihao Fan. Qwen2
 706 technical report. *arXiv preprint arXiv:2407.10671*, 2024.

707 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 708 Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
 709 Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 710 Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
 711 Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
 712 Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
 713 Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
 714 Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
 715 Qiu. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*, 2025.

716 Feng Yao, Junxia Cui, Ruohan Zhang, Liyuan Liu, Shibo Hao, Li Zhang, Chengyu Dong, Shuo-
 717 hang Wang, Yelong Shen, Jianfeng Gao, and Jingbo Shang. Densemixer: Improving moe post-
 718 training with precise router gradient, June 2025. URL <https://fengyao.notion.site/moe-posttraining>.

719

720 Mengxia Yu, De Wang, Qi Shan, Colorado Reed, and Alvin Wan. The super weight in large language
 721 models, 2025. URL <https://arxiv.org/abs/2411.07191>.

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A NOTATION**
757758 For clarity, we summarize the main notations used throughout the theoretical sections.
759

760 h_i Raw output vector of expert i .
 761 v_i Decomposed expert output: $v_i = \rho_i e_i$.
 762 ρ_i Magnitude (norm) of expert i 's output.
 763 e_i Normalized direction vector of expert i , $\|e_i\| = 1$.
 764 y Dense output: $y = \sum_{i=1}^n v_i$.
 765 \hat{y} Sparse approximation using only k experts.
 766 S Index set of selected experts, $|S| = k$.
 767 λ_i Binary indicator of expert selection.
 768 n, k Total number of experts, and number of selected experts.
 769 $v_{i,j,k}^{(l)}$ Output of expert i at layer l for token k in x_j .
 770 $g_{i,j,k}^{(l)}$ Gate score assigned to expert i at layer l for token k .
 771 $g_{i,t}$ Indicator if expert i is selected for token t (shorthand).
 772 $s_{i,t}$ Gating score (logit) of expert i for token t before normalization.
 773 $w_{i,t}$ Softmax-normalized routing weight assigned to expert i for token t , and softmax-normalized
 774 routing weight from the *unbiased* scores $s_{i,t}$.
 775 L_j Length (number of tokens) of sample x_j .
 776 \mathcal{D}_s, N_s Subset of training data and its size.
 777 x_j j th token for training
 778 $s_i^{(l)}$ Magnitude-based expert score (ES-Mag) at layer l .
 779 $r_i^{(l)}$ Activation-ratio expert score (ES-Act) at layer l .
 780 K Number of experts selected per token.
 781 $S^{(l)}$ Set of selected experts at layer l .
 782 $\mathcal{L}_{\text{Balance}}$ Auxiliary loss for balancing expert utilization.
 783 f_i Normalized fraction of tokens routed to expert i .
 784 P_i Average routing weight assigned to expert i across tokens.
 785 α Hyperparameter controlling auxiliary loss strength.
 786 T Sequence length (number of tokens).
 787 θ Router parameters used to compute gating scores.
 788 \mathcal{L} Generic training loss depending on model output y .
 789 b_i Expert-wise bias used only for selection to improve load balance.
 790 $\tilde{s}_{i,t}$ Biased gating score for expert i on token t : $\tilde{s}_{i,t} = s_{i,t} + b_i$.
 791 S_t Top- K selection set for token t obtained from $\{\tilde{s}_{j,t}\}_{j=1}^n$.
 792 γ Bias update speed.
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809

810 B EXPERIMENTAL SETTINGS 811

812 **Training Framework and Hyper-parameters:** We used the `huggingface-trl` (von Werra et al.,
813 2020) library with zero-2 or zero-3 (Ren et al., 2021) for fine-tuning and `vlm` (Kwon et al., 2023),
814 `lighteval` (Habib et al., 2023), and `accelerate` (Gugger et al., 2022) library for inference
815 evaluation. Both training and evaluation are using `dtype` `BF16`.

816 **MoE Post-train Baselines:** For state-of-the-art (SOTA) MoE post-training baselines, we choose to
817 include ESFT (Hu et al., 2021) and DenseMixer (Yao et al., 2025). The number of epochs, learning
818 rate, and batch size will be the same when conducting experiemnt on the same model to ensure a fair
819 comparison across different methods.

820 **Computational Resources:** We conduct our experiments and implement SOTA baselines of ESFT
821 and DenseMixer Yao et al. (2025) to post-train with 8 NVIDIA H100_80GB GPUs. Communication
822 between the CPU and GPU is facilitated via PCIe-G4 and communication between GPUs is facilitated
823 via Nvlink-3.

825 C TABLE RESULTS FOR EXPERTS SCALING LAWS 826

827 Tables 6 and 7 report detailed results of our scaling law experiments on two representative MoE
828 models: GPT-OSS-20B and DeepSeek-Coder-V2-Lite. We evaluate performance under three pruning
829 strategies introduced in Section §2:

830 (1) *Small Dense Conversion*, where the number of experts is reduced from n to n' and all surviving
831 experts are activated ($k = n'$);
832
833 (2) *Inference Reduction*, where the total number of experts is fixed ($n' = n$) but the activation budget
834 is reduced from k to $k' < k$; and
835
836 (3) *Small MoE Conversion*, where both the total number of experts is reduced ($n' < n$) and the
837 activation budget is kept sparse ($k < n'$).

838 Table 6: Evaluating base GPT-OSS-20B model Zero-Shot Results on downstream Math Reasoning
839 dataset, includes SingleEQ, MultiArith, AddSub, GSM8K, SVAMP, and AQuA.

Model	Strategies	Remain Experts (n')	Activate Experts (k')	GSM8k	SingleEq	SVAMP	MultiArith	AddSub	AQuA	mawps	AVG
GPT-OSS-20B	Base Model	32	4	78.0	84.6	84.1	92.0	81.0	33.9	92.0	77.9
		8	8	2.3	1.7	1.8	2.7	1.8	16.7	2.3	4.2
		12	12	4.8	17.8	14.6	18.4	18.6	22.8	17.3	16.3
		18	18	48.6	39.6	47.8	52.6	63.7	23.8	47.8	46.3
	Inference Reduce	24	24	56.9	58.2	63.5	68.5	67.5	24.6	58.7	56.8
		32	1	5.5	19.7	13.6	12.8	19.5	23.2	18.1	16.1
		32	2	70.8	74.6	76.4	88.2	75.4	29.9	76.9	70.3
	Small MoE	32	3	75.1	83.9	84.3	93.3	81.3	33.1	80.7	76.0
		8	4	1.6	2.2	3.2	3.2	2.0	12.6	2.5	3.9
		12	4	6.4	18.7	21.8	13.0	18.2	21.7	16.0	16.5

849 Table 7: Evaluating base DeepSeek-Coder-V2-Lite-Instruct model Zero-Shot Results on downstream Math Reasoning
850 dataset, includes SingleEQ, MultiArith, AddSub, GSM8K, SVAMP, and AQuA.

Model	Strategies	Remain Experts (n')	Activate Experts (k')	GSM8k	SingleEq	SVAMP	MultiArith	AddSub	AQuA	mawps	AVG
DeepSeek-Coder-V2-Lite	Base Model	64	6	82.6	95.1	83.6	94.3	89.6	26.4	86.6	79.7
		6	6	1.4	1.0	1.7	2.8	1.8	22.0	2.1	4.7
		12	12	1.7	11.0	4.5	7.2	13.2	24.0	9.7	10.2
		16	16	11.8	38.2	22.6	32.0	31.1	17.7	31.9	26.5
	Inference Reduce	20	20	26.0	63.2	46.0	67.7	56.5	17.7	58.4	47.9
		24	24	36.9	75.2	58.4	76.0	70.1	20.1	66.4	57.6
		32	32	47.8	83.5	71.4	88.2	81.8	24.4	79.6	68.1
	Small MoE	48	48	48.6	82.7	72.4	87.6	82.6	24.7	80.4	68.4
		64	1	28.5	68.7	50.7	73.0	64.6	24.0	72.6	54.6
		64	2	49.2	86.6	70.5	92.8	79.2	24.8	78.2	68.8

864 D SELECTING TOP- k EXPERTS
865866 We define two top- k selection rules, selecting by magnitude score and selecting by activation ratio.
867 Let $v_{i,j,k}^{(l)}$ be the output of expert i at layer l for token k in sample x_j , with gate score $g_{i,j,k}^{(l)}$. Each
868 sample has length L_j , and we draw a subset $\mathcal{D}_s = \{x_j\}_{j=1}^{N_s}$ from the training set. We compute a
869 per-expert relevance score and pick Top- k experts for routing or distillation.
870871 **Magnitude Score (ES-Mag).** Estimate expert importance by average output magnitude:
872

873
$$s_i^{(l)} = \frac{1}{N_s} \sum_{j=1}^{N_s} \frac{1}{L_j} \sum_{k=1}^{L_j} \|v_{i,j,k}^{(l)}\|.$$

874
875

876 When only a scalar amplitude $\rho_{i,j,k}^{(l)}$ is available, we approximate $\|v_{i,j,k}^{(l)}\| \approx \rho_{i,j,k}^{(l)}$; this criterion
877 favors experts with larger norm contributions (see Appendix H for justification).
878879 **Activation Ratio (ES-Act).** Estimate importance by how often the expert is selected:
880

881
$$r_i^{(l)} = \frac{1}{N_s} \sum_{j=1}^{N_s} \frac{1}{L_j} \sum_{k=1}^{L_j} \frac{\mathbf{1}[g_{i,j,k}^{(l)} > 0]}{K},$$

882
883

884 where K is the number of experts selected per token. This captures routing preference and data
885 alignment.
886887 **Selection.** For layer l , choose
888

889
$$S^{(l)} = \text{TopK}(\{s_i^{(l)}\}_i) \quad \text{or} \quad S^{(l)} = \text{TopK}(\{r_i^{(l)}\}_i),$$

890

891 and select the variant by validation performance: *ES-Mag* emphasizes magnitude-dominant contribu-
892 tion, while *ES-Act* reflects gate-driven frequency.
893894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

918 E AUXILIARY LOSS FOR LOAD BALANCING
919

920 Uncontrolled routing strategies in Mixture-of-Experts (MoE) models often suffer from load imbalance.
921 This manifests in two ways: (i) *routing collapse*, where only a small subset of experts are consistently
922 selected, leading to undertraining of the remaining experts; and (ii) *computational imbalance*, where
923 uneven routing across devices increases latency and reduces efficiency. To mitigate these issues, an
924 auxiliary loss is commonly introduced in SOTA MoE models (Liu et al., 2024a; Wang et al., 2024b).

925 For a sequence of length T , the auxiliary loss is defined as
926

$$927 \quad \mathcal{L}_{\text{Balance}} = \alpha \sum_{i=1}^n f_i P_i,$$

930 where α is a hyperparameter controlling the strength of the regularization. Here,
931

$$932 \quad f_i = \frac{n}{KT} \sum_{t=1}^T \mathbf{1}[g_{i,t} > 0], \quad P_i = \frac{1}{T} \sum_{t=1}^T s_{i,t}.$$

934 The term f_i measures the fraction of tokens routed to expert i , normalized by the total number of
935 tokens T , experts n , and the per-token selection budget K . The term P_i is the average routing
936 probability assigned to expert i , where $s_{i,t}$ denotes the gating score of expert i for token t . The loss
937 encourages alignment between routing frequency (f_i) and gating probability (P_i), thereby preventing
938 collapse and promoting balanced utilization of experts.
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

972 F AUXILIARY-LOSS-FREE LOAD BALANCING STRATEGY
973

974 To improve load balance without introducing an additional loss term, Deepseek-V3 (Liu et al.,
975 2024a) adjust the *selection* rule by adding an expert-wise bias to the gating scores. Let $s_{i,t}$ be the
976 (un-normalized, before Softmax) gating score for expert i on token t . We define a biased score
977

$$978 \tilde{s}_{i,t} = s_{i,t} + b_i,$$

979 where b_i is an expert-specific bias that is updated by a balancing controller (e.g., based on utilization
980 statistics; see remark below). The Top- k *selection set* for token t is then
981

$$982 S_t = \text{TopK}(\{\tilde{s}_{j,t}\}_{j=1}^n, K), \quad g_{i,t} = \mathbf{1}[i \in S_t].$$

983 **Important distinction (selection vs. weighting).** The bias b_i is *only* used to influence which
984 experts enter S_t . It does *not* modify the routing weights used to combine expert outputs. Weights are
985 obtained from the *unbiased* scores via softmax:
986

$$987 w_{i,t} = \frac{\exp(s_{i,t})}{\sum_{j=1}^n \exp(s_{j,t})},$$

988 and the token-level MoE output is
989

$$990 y_t = \sum_{i=1}^n g_{i,t} w_{i,t} v_i = \sum_{i \in S_t} w_{i,t} v_i, \quad \text{with } v_i = \rho_i e_i.$$

991 Thus b_i affects *who is selected* but never changes the weights $w_{i,t}$ applied to the selected experts in
992 the forward pass.
993

994 **Algorithm (per token t).**

- 995 1. Compute unbiased scores $\{s_{i,t}\}_{i=1}^n$ and weights $w_{i,t} = \text{softmax}(s_{i,t})$.
- 996 2. Form biased scores $\tilde{s}_{i,t} = s_{i,t} + b_i$ and select $S_t = \text{TopK}(\{\tilde{s}_{j,t}\}_{j=1}^n, K)$.
- 997 3. Set indicators $g_{i,t} = \mathbf{1}[i \in S_t]$ and compute $y_t = \sum_{i \in S_t} w_{i,t} v_i$.

1003 **Bias updating b_i .** Any load-balancing controller can be used to update the biases; for example,
1004 one may adjust b_i as a function of the observed utilization f_i and target utilization K/n (e.g., with a
1005 moving-average estimator). In DeepSeek-V3, during training, they monitoring the expert load on the
1006 whole batch of each training step. At the end of each step, we will decrease the bias term by γ if its
1007 corresponding expert is overloaded, and increase it by γ if its corresponding expert is underloaded,
1008 where γ is a hyper-parameter called bias update speed. Through the dynamic adjustment, DeepSeek-
1009 V3 keeps balanced expert load during training, and achieves better performance than models that
1010 encourage load balance through pure auxiliary losses.
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026 **G GRADIENT PROPAGATION THROUGH TOP- k ROUTING**
 1027

1028 Consider a Mixture-of-Experts layer where the router produces gating scores $\{s_{i,t}\}_{i=1}^n$ for token t .
 1029 These scores are normalized via a softmax to obtain the routing weights
 1030

$$1031 \quad w_{i,t} = \frac{\exp(s_{i,t})}{\sum_{j=1}^n \exp(s_{j,t})}, \quad i = 1, \dots, n.$$

1033 We then select the top- k experts according to these weights and form the token-level output
 1034

$$1035 \quad y_t = \sum_{i \in S_t} w_{i,t} v_i,$$

1038 where $S_t = \text{TopK}(\{w_{j,t}\}_{j=1}^n)$ is the index set of the k largest weights, and $v_i = \rho_i e_i$ is the
 1039 contribution of expert i (with ρ_i the magnitude of h_i and e_i its normalized direction). The final loss
 1040 for this token is $\mathcal{L} = \mathcal{L}(y_t)$.

1041 **Gradient with respect to router parameters.** Back-propagation through this layer requires differentiating
 1042 the loss with respect to the router parameters θ :
 1043

$$1044 \quad \nabla_{\theta} \mathcal{L} = \sum_{i=1}^n \left(\frac{\partial \mathcal{L}}{\partial y_t} \cdot v_i \right) \cdot \frac{\partial \text{TopK}(w_{1,t}, \dots, w_{n,t})_i}{\partial w_{i,t}} \cdot \frac{\partial w_{i,t}}{\partial \theta}.$$

1047 The Jacobian term $\partial w_{i,t} / \partial \theta$ is determined by the softmax of the gating scores $s_{i,t}$, while the middle
 1048 factor contains the (non-differentiable) Top- k selection.
 1049

1050 **Conventional approximation: SFT and ESFT** A common approximation in MoE training treats
 1051 the Top- k operation as if it were differentiable by passing gradients only through the selected experts.
 1052 Formally, one replaces

$$1053 \quad \frac{\partial \text{TopK}(w_{1,t}, \dots, w_{n,t})_i}{\partial w_{j,t}} \approx \delta_{i,j} \mathbf{1}[i \in S_t],$$

1056 where $\delta_{i,j}$ is the Kronecker delta. Under this approximation, the router gradient reduces to
 1057

$$1058 \quad \nabla_{\theta} \mathcal{L} \approx \sum_{i \in S_t} \left(\frac{\partial \mathcal{L}}{\partial y_t} \cdot v_i \right) \frac{\partial w_{i,t}}{\partial \theta}.$$

1060 Thus only the experts chosen in S_t receive gradient updates through the gating mechanism.
 1061

1062 **Straight-through (STE) approximation: DenseMixer** An alternative, more precise approxi-
 1063 mation—used in methods like DenseMixer—employs a straight-through estimator (STE). In the
 1064 backward pass, the Top- k operation is treated as the identity map:
 1065

$$1066 \quad \frac{\partial \text{TopK}(w_{1,t}, \dots, w_{n,t})_i}{\partial w_{j,t}} \approx \delta_{i,j}.$$

1068 This allows gradients to flow to all experts' routing weights, yielding
 1069

$$1070 \quad \nabla_{\theta} \mathcal{L} \approx \sum_{i=1}^n \left(\frac{\partial \mathcal{L}}{\partial y_t} \cdot v_i \right) \frac{\partial w_{i,t}}{\partial \theta}.$$

1073 In this view, the forward pass still uses a hard Top- k selection, but the backward pass distributes
 1074 gradients as though the selection were an identity operator.
 1075

1076 **Summary.** The conventional method restricts gradient updates to the selected experts S_t , while the
 1077 straight-through method propagates gradients to all experts by overriding the Top- k operation in the
 1078 backward pass.
 1079

1080 **H THEORETICAL SUPPORTS FOR TOP-K SELECTION.**
 1081

1082 In a Mixture-of-Experts (MoE) architecture, each expert contributes to the overall output as
 1083

$$1084 v_i = \rho_i e_i,$$

1085 where ρ_i is the gating weight corresponds to the i -th expert, e_i is the expert output, and v_i is the
 1086 output vector of the i -th expert. In a dense model, the final output is given by
 1087

$$1088 y = \sum_{i=1}^n v_i = \sum_{i=1}^n \rho_i e_i.$$

1089 In a sparse Mixture-of-Experts (MoE) model, we aim to reduce computation by selecting only a
 1090 subset of experts. Thus, we wish to approximate y using
 1091

$$1093 \hat{y} = \sum_{i \in S} v_i,$$

1094 where S is a subset of indices with $|S| = k \ll n$. This objective can be formulated as the minimization
 1095 problem
 1096

$$1097 \min_{\lambda_1, \dots, \lambda_n \in \{0, 1\}} \left\| \sum_{i=1}^n v_i - \sum_{i=1}^n \lambda_i v_i \right\|^2 \quad \text{subject to} \quad \sum_{i=1}^n \lambda_i = k,$$

1098 where $\lambda_i = 1$ indicates that expert i is selected, and $\lambda_i = 0$ indicates it is omitted. In many practical
 1099 scenarios, especially when the normalized directions e_i are not strongly correlated, this minimization
 1100 is well approximated by selecting the experts with the largest values of ρ_i . Intuitively, experts with
 1101 large ρ_i contribute most significantly to the norm of y , so preserving these in the approximation
 1102 yields a smaller error. We analyze why selecting experts with large ρ_i is a reasonable approximation
 1103 in the following.

1104 In a Mixture-of-Experts (MoE) architecture, each expert contributes to the overall output as
 1105

$$1106 v_i = \rho_i e_i,$$

1107 where ρ_i is the gating weight and e_i is the expert output. When analyzing why the top- k selection
 1108 rule arises, it is instructive to consider two scenarios: one in which the vectors v_i are orthonormal (or
 1109 nearly so) and another in which they have general correlations.

1110 In this appendix, we show that in the non-orthonormal case, selecting the top- k experts with the
 1111 largest ρ_i provides a close approximation to the full model output while substantially reducing
 1112 computational cost. In the orthonormal case, this selection is provably optimal; in the general case, it
 1113 serves as a widely used and effective heuristic.

1114 **THE ORTHONORMAL (OR WEAKLY-CORRELATED) CASE**

1115 Assume that the vectors v_1, v_2, \dots, v_n are strictly orthonormal, i.e.,
 1116

$$1117 v_i^\top v_j = \begin{cases} 0, & \text{if } i \neq j, \\ \|v_i\|^2, & \text{if } i = j. \end{cases}$$

1118 Then, the squared norm of the omitted portion,
 1119

$$1120 \left\| \sum_{i=1}^n (1 - \lambda_i) v_i \right\|^2,$$

1121 expands as
 1122

$$1123 \left\| \sum_{i=1}^n (1 - \lambda_i) v_i \right\|^2 = \sum_{i=1}^n (1 - \lambda_i)^2 \|v_i\|^2,$$

1124 and since $\lambda_i \in \{0, 1\}$, we have $(1 - \lambda_i)^2 = (1 - \lambda_i)$. Therefore, the objective becomes
 1125

$$1126 \sum_{i=1}^n (1 - \lambda_i) \|v_i\|^2,$$

1134 subject to $\sum_{i=1}^n \lambda_i = k$. To minimize this quantity, it is optimal to set $\lambda_i = 1$ for the k vectors with
 1135 the largest norms $\|v_i\|^2$ and $\lambda_i = 0$ for the others. In the orthonormal case, this strategy is provably
 1136 optimal.
 1137

1138 Even if the vectors are only weakly correlated, the same principle generally holds: larger magnitudes
 1139 imply a larger contribution to the overall sum, so omitting vectors with small $\|v_i\|$ results in a minor
 1140 error, making the top- k selection by magnitude a robust heuristic.
 1141

1142 THE GENERAL (NON-ORTHONORMAL) CASE

1143
 1144 When the vectors v_i have significant correlations, the cross terms do not vanish. In this case, the error
 1145 term becomes

$$1146 \quad \left\| \sum_{i=1}^n (1 - \lambda_i) v_i \right\|^2 = \sum_{i=1}^n (1 - \lambda_i) \|v_i\|^2 + 2 \sum_{1 \leq i < j \leq n} (1 - \lambda_i)(1 - \lambda_j) v_i^\top v_j.$$

1147 Here, the cross terms $v_i^\top v_j$ can affect the error significantly. In principle, finding the subset S that
 1148 minimizes this expression exactly is an NP-hard combinatorial problem. However, in practice, one
 1149 commonly uses the heuristic of selecting the top k experts based on the individual magnitudes $\|v_i\|$
 1150 (or a predicted magnitude ρ_i). This approach is effective because, in many settings, the largest
 1151 magnitude vectors still dominate the overall contribution even when correlations are present. In
 1152 scenarios where two high-magnitude vectors are strongly correlated, more sophisticated selection
 1153 methods might improve the approximation, but the top- k rule remains a strong and computationally
 1154 efficient baseline.
 1155

1156 **Conclusion:** Whether the expert output vectors are orthonormal or generally correlated, the top- k
 1157 selection rule emerges from the objective of preserving the dominant contributions to the sum while
 1158 minimizing approximation error. In an MoE architecture, each expert's output $v_i = \rho_i e_i$ contributes to
 1159 the overall sum. By selecting the k experts with the largest ρ_i , one can achieve a good approximation
 1160 of the full model output with significantly reduced computational cost. In the orthonormal case, this
 1161 method is exactly optimal, while in the general case it remains a widely-used and effective heuristic.
 1162

1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187

1188 **I DEFINITION OF CORRELATION**
1189

1190 **Correlation on `down_proj` Weights.** Consider an MoE layer with a set of experts
1191

1192
$$\mathcal{E} = \{1, \dots, E\},$$

1193

1194 partitioned into a *shared expert set* \mathcal{E}_{sh} and a *regular expert set* \mathcal{E}_{reg} , with $\mathcal{E}_{\text{sh}} \cap \mathcal{E}_{\text{reg}} = \emptyset$, $\mathcal{E}_{\text{sh}} \cup \mathcal{E}_{\text{reg}} = \mathcal{E}$.
1195

1196 For expert $e \in \mathcal{E}$ under setting s , let
1197

1198
$$\mathbf{w}_{e,s}^{(l)} = \text{vec}\left(W_{\text{down},s}^{(l,e)}\right) \in \mathbb{R}^d,$$

1199

1200 and denote its sample mean by $\bar{w}_{e,s}^{(l)} = \frac{1}{d} \sum_{k=1}^d (\mathbf{w}_{e,s}^{(l)})_k$. Define the centered weight vector
1201

1202
$$\tilde{\mathbf{w}}_{e,s}^{(l)} = \mathbf{w}_{e,s}^{(l)} - \bar{w}_{e,s}^{(l)} \mathbf{1}.$$

1203

1204 The Pearson correlation between experts i and j in layer l under setting s is then
1205

1206
$$\mathcal{C}_{ij,s}^{(l)} = \frac{\langle \tilde{\mathbf{w}}_{i,s}^{(l)}, \tilde{\mathbf{w}}_{j,s}^{(l)} \rangle}{\left\| \tilde{\mathbf{w}}_{i,s}^{(l)} \right\|_2 \left\| \tilde{\mathbf{w}}_{j,s}^{(l)} \right\|_2}.$$

1207

1208 We study three settings:
1209

1210
$$s = 1 : \text{Base}, \quad s = 2 : \text{ESFT}, \quad s = 3 : \text{ExpertCondenser}.$$

1211

1212 **Percent Correlation Gain.** For each shared expert $i \in \mathcal{E}_{\text{sh}}$ and each regular expert $j \in \mathcal{E}_{\text{reg}}$, the
1213 percent change in correlation relative to Base is defined as
1214

1215
$$\Delta_{ij,s}^{(l)} (\%) = 100 \frac{\mathcal{C}_{ij,s}^{(l)} - \mathcal{C}_{ij,1}^{(l)}}{\left| \mathcal{C}_{ij,1}^{(l)} \right|}, \quad s \in \{2, 3\}.$$

1216

1217 This ‘‘relative effect size’’ formulation stabilizes interpretation when the Base correlation is negative
1218 or near zero.
1219

1220 **Layer-Level Aggregation.** The average correlation gain for setting s in layer l is
1221

1222
$$\bar{\Delta}_s^{(l)} (\%) = \frac{1}{|\mathcal{E}_{\text{sh}}| \cdot |\mathcal{E}_{\text{reg}}|} \sum_{i \in \mathcal{E}_{\text{sh}}} \sum_{j \in \mathcal{E}_{\text{reg}}} \Delta_{ij,s}^{(l)} (\%).$$

1223

1224 **Model-Level Summary Across L Layers.** Define the overall average and variability as
1225

1226
$$\bar{\Delta}_s (\%) = \frac{1}{L} \sum_{l=1}^L \bar{\Delta}_s^{(l)} (\%), \quad \sigma_s = \text{Std}\left(\left\{ \bar{\Delta}_s^{(l)} (\%) \right\}_{l=1}^L\right).$$

1227

1228 These summarize how strongly fine-tuning reshapes global correlations between shared experts and
1229 regular experts across the entire model.
1230

1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

1242 **J MATH7K DATASET**

1243

1244 Math10K dataset can evaluate the effectiveness of LLMs on the arithmetic reasoning task. Math10K
 1245 incorporate six subsets including GSM8k, SingleEq, SVAMP, MultiArith, AddSub, and
 1246 AQuA.(1) the GSM8K (Cobbe et al., 2021) dataset consists of high quality linguistically diverse grade
 1247 school math word problems created by human problem writers, (2) the SVAMP (Patel et al., 2021)
 1248 benchmark consists of one-unknown arithmetic word problems for up-to-4 grade level students by
 1249 making simple changes to a set of problems from another existing dataset, (3) the MultiArith (Roy
 1250 & Roth, 2016) dataset of math word problems requiring multiple reasoning steps and operations, (4)
 1251 the AddSub (Hosseini et al., 2014) dataset of addition and subtraction arithmetic word problems, (5)
 1252 the AQuA (Ling et al., 2017) dataset of algebraic word problems with natural language rationales, and
 1253 (6) the SingleEq (Koncel-Kedziorski et al., 2015) dataset of grade-school algebra word problems
 1254 that map to single equations with varying length;

1255

1256 **K ES-ACT VERSUS ES-MAG**

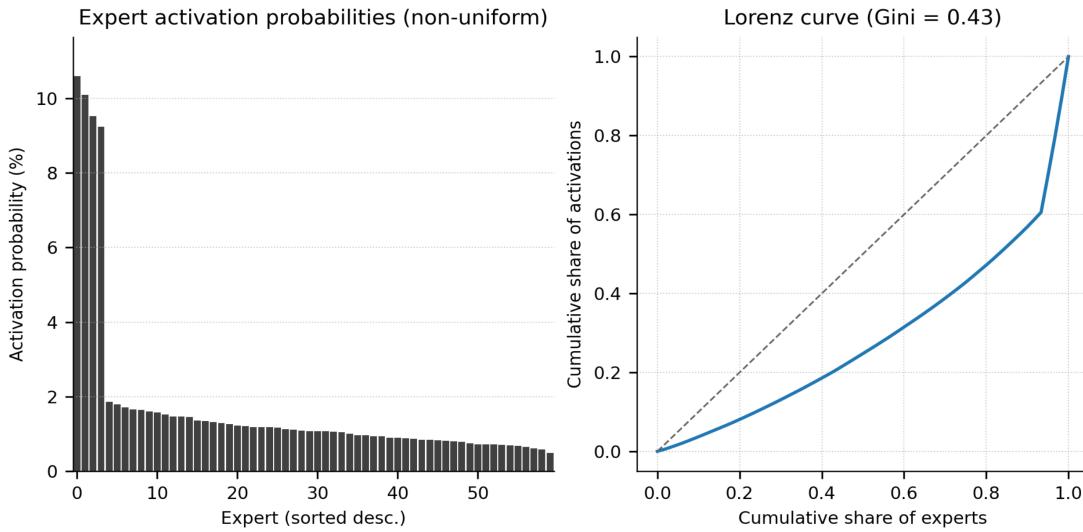
1257

1258 In this Appendix, we conduct ablation studies to investigate between Magnitude Score(ES-Mag)
 1259 and Activation Ratio(ES-Act), which one is the better metric to select preserving experts when we
 1260 converting the original Mixture of Expert model into smaller models (either smaller dense models or
 1261 smaller MoE models).

1262 Table 8: Evaluation of post-trained models (Zero-Shot results) on downstream Math Reasoning
 1263 datasets, including SingleEQ, MultiArith, AddSub, GSM8K, SVAMP, and AQuA.

Metric	Method	Model Size	#Param (Experts)	Post-train Type	GSM8k	SingleEq	SVAMP	MultiArith	AddSub	AQuA	mawps	AVG
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278	ES-Act	Smaller-Dense	-B(6)		1.4	1.0	1.7	2.8	1.8	22.0	2.1	4.7
			-B(12)		1.7	11.0	4.5	7.2	13.2	24.0	9.7	10.2
			-B(16)	-	11.8	38.2	22.6	32.0	31.1	17.7	31.9	26.5
			-B(20)		26.0	63.2	46.0	67.7	56.5	17.7	58.4	48.0
			-B(24)		36.9	75.2	58.4	76.0	70.1	20.1	66.4	57.6
			8B(32)		47.8	83.5	71.4	88.2	81.8	24.4	79.6	68.1
		Smaller-MoE	-B(12)		0.7	0.4	1.5	0.8	0.0	16.9	1.3	3.1
			-B(16)		0.8	0.2	1.4	1.2	1.3	13.4	1.3	2.8
			-B(24)	2.4B(6)	11.3	45.9	33.5	41.8	46.6	17.7	43.3	34.3
			8B(32)		35.6	76.4	63.4	80.7	69.7	22.0	74.8	60.4
			-B(48)		49.0	85.4	75.2	93.2	80.8	21.7	80.7	69.4
	ES-Mag	Smaller-Dense	-B(6)		1.6	1.2	2.1	2.6	2.1	18.9	2.3	4.4
			-B(12)		1.8	11.8	5.2	6.8	13.6	23.8	9.4	10.3
			-B(16)	-	12.6	38.8	23.8	33.8	32.6	22.4	31.9	28.0
			-B(20)		25.4	64.8	45.6	68.8	56.3	18.2	59.8	48.4
			-B(24)		37.4	76.8	60.2	75.4	70.8	18.8	65.2	57.8
		Smaller-MoE	8B(32)		48.2	82.8	72.2	87.8	82.2	24.2	83.2	68.6
			-B(12)		0.7	0.4	1.7	0.6	0.0	18.6	1.6	3.4
			-B(16)		1.3	0.4	2.6	1.8	1.6	13.6	10.4	4.5
			-B(24)	2.4B(6)	10.8	44.7	32.8	42.3	44.8	21.3	44.8	34.5
			8B(32)		34.7	75.9	64.9	81.3	68.4	23.8	75.6	60.6
			-B(48)		47.6	86.7	75.8	92.7	81.7	23.9	81.3	70.0

1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

1296 L EXPERT ACTIVATION PROBABILITIES IN BASE DEEPSEEK-V2-LITE
12971316 Figure 5: Expert activations rate in whole *math7K* dataset. Expert Activations are tested using the
1317 Deepseek-V2-Lite base model.

1319 Figure 5 presents the activation statistics of all experts in the DeepSeek-V2-Lite base model when
1320 evaluated on the full *math7K* dataset. The left panel illustrates the sorted activation probabilities
1321 and reveals a highly non-uniform routing pattern, where a small subset of experts is used dispro-
1322portionately often, with several exceeding a 10% activation rate. Beyond this small group, activation
1323 frequencies decrease sharply, forming a long tail of under-utilized experts with probabilities falling
1324 below 2% and eventually approaching zero. This distribution indicates that, although the MoE archi-
1325 tecture allocates equal computational capacity to every expert, the router naturally converges toward
1326 a skewed, winner-take-most configuration.

1327 The right panel shows the corresponding Lorenz curve, which characterizes the cumulative distribu-
1328 tion of activations across experts. The curve deviates substantially from the diagonal line represent-
1329 ing a perfectly uniform distribution, yielding a Gini coefficient of 0.43. This quantitatively confirms
1330 a notable degree of inequality in expert utilization, where a relatively small fraction of experts ac-
1331 counts for the majority of routing decisions.

1333 Despite this concentration of activation mass, pruning experiments demonstrate that activation fre-
1334 quency alone is not a reliable indicator of expert importance. Removing the least-active experts leads
1335 to clear accuracy degradation, and even when retaining the top 75% of experts ranked by activation
1336 probability, the model still suffers a performance drop exceeding 10% on downstream math reasoning
1337 benchmarks. Details can be found in Appendix C. This observation suggests that low-activation
1338 experts encode specialized competencies that remain essential for certain categories of problems.
1339 Consequently, reducing experts solely based on activation sparsity risks eliminating critical functional
1340 diversity, thereby motivating the need for structured or distillation-based compression approaches—
1341 such as the ExpertCondenser method proposed in this work—to safely reduce mixture-of-experts
1342 models.

1343
1344
1345
1346
1347
1348
1349

1350 M ABLATION STUDIES

1352 M.1 DISSECTING THE CONDENSER EXPERT ALGORITHM

1354 In this appendix, we dissect the Condenser Expert algorithm and present empirical results demonstrating
 1355 that each component of Condenser Experts contributes to the strong post-training performance.
 1356 Table 18 reports ablation results on both **DeepSeek-V2-Lite (16B)** and **QWen2-MoE (14B)** under
 1357 the **math7k** benchmark. We evaluate three progressively simplified variants: (i) *aux-free* only, which
 1358 removes auxiliary losses; (ii) *aux-free+bias*, which additionally incorporates the bias mechanism;
 1359 and (iii) *aux-free+bias+share*, which further enables expert sharing across tokens.

1360 The results clearly show a consistent trend: performance improves as more components of the
 1361 Condenser Expert are included. For example, in DeepSeek-V2-Lite, the average score increases from
 1362 70.4 (*aux-free*) to 71.2 (*aux-free+bias*) and further to 73.1 when expert sharing is enabled. A similar
 1363 pattern is observed in QWen2-MoE, where the average accuracy rises from 59.0 to 59.4 and finally to
 1364 63.4.

1365 These findings highlight that:

- 1366 - Removing auxiliary loss alone is not sufficient to stabilize MoE post-training.
- 1367 - Incorporating bias correction helps mitigate imbalance introduced by sparse optimization.
- 1368 - Crucially, enabling **expert sharing** provides the largest improvement, indicating that shared experts
 1369 capture more generalizable knowledge and substantially enhance reasoning performance.

1370 Overall, the ablation validates that each design choice in Condenser Experts is necessary, and that
 1371 combining all three components yields the best downstream performance.

1372 Table 9: Evaluation of post-trained models (Zero-Shot results) on downstream Math Reasoning
 1373 datasets, including SingleEQ, MultiArith, AddSub, GSM8K, SVAMP, and AQuA.

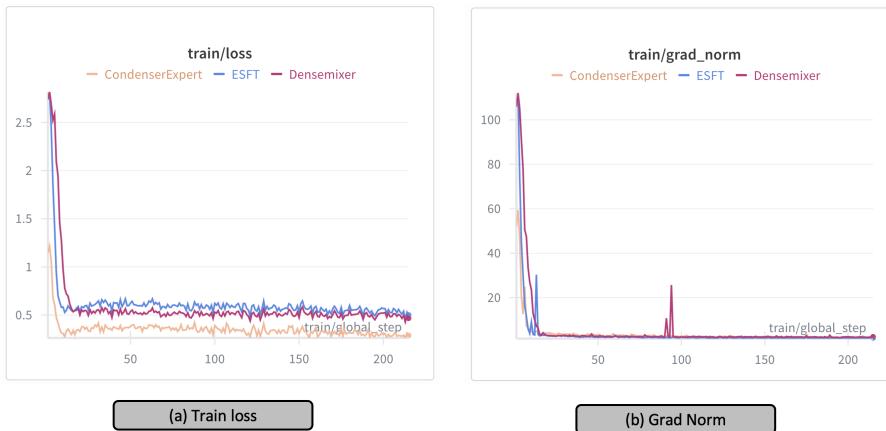
1377 Dataset	Model	Model Size	#Param (Experts)	Post-train Type	GSM8k	SingleEq	SVAMP	MultiArith	AddSub	AQuA	mawps	AVG
1378 math7k	DeepSeek-V2-Lite	16B	2.4B	aux-free+bias+share	59.4	92.5	69.1	91.5	79.5	36.1	83.6	73.1
				aux-free+bias	58.8	90.7	69.3	88.7	74.2	36.1	80.3	71.2
				aux-free	57.6	89.6	68.6	87.5	73.8	35.2	80.4	70.4
	QWen2-MoE	14B	2.7B	aux-free+bias+share	57.2	74.6	55.7	86.0	61.8	33.1	75.6	63.4
				aux-free+bias	48.2	76.6	52.7	80.3	59.2	26.8	71.8	59.4
				aux-free	47.2	74.0	51.8	82.0	58.7	30.3	71.8	59.0

1382 M.2 HOW TO CHOOSE SHARE EXPERTS

1384 In this subsection, we conduct an ablation study to investigate how experts should be selected as
 1385 shared experts during post-training. Table 18 reports the results of comparing two selection strategies:
 1386 (i) choosing high-bias experts and (ii) choosing low-bias experts. Across both **DeepSeek-V2-Lite**
 1387 and **QWen2-MoE (14B)**, we observe that selecting *low-bias experts* consistently leads to
 1388 stronger downstream performance on math reasoning benchmarks. For example, in the **math7k**
 1389 setting, low-bias experts achieve higher average accuracy (73.1 vs. 72.4 for DeepSeek-V2-Lite and
 1390 63.4 vs. 61.8 for QWen2-MoE). These results suggest that low-bias experts encode more generalizable
 1391 knowledge, making them more effective as shared experts in MoE post-training.

1392 Table 10: Evaluation of post-trained models (Zero-Shot results) on downstream Math Reasoning
 1393 datasets to conduct ablation study on expert selection based on bias, including SingleEQ, MultiArith,
 1394 AddSub, GSM8K, SVAMP, and AQuA.

1396 Dataset	Model	Model Size	#Param (Experts)	Post-train Type	GSM8k	SingleEq	SVAMP	MultiArith	AddSub	AQuA	mawps	AVG
1397 math7k	DeepSeek-V2-Lite	16B	2.4B	high bias experts	60.1	90.2	70.4	90.2	74.2	37.0	84.5	72.4
				low bias experts	59.4	92.5	69.1	91.5	79.5	36.1	83.6	73.1
1398 QWen2-MoE	14B	2.7B		high-bias experts	54.7	71.0	53.8	84.6	58.8	32.8	76.8	61.8
				low-bias experts	57.2	74.6	55.7	86.0	61.8	33.1	75.6	63.4

1404 N TRAINING STABILITY ANALYSIS OF EXPERTCONDENSER
14051406 Figure 6 presents the training dynamics of EXPERTCONDENSER compared with the ESFT and
1407 DenseMixer baselines when post-training the GPT-OSS model on the *math7K* dataset. The left
1408 panel plots the training-loss curves, while the right panel reports the corresponding gradient norms
1409 over the full optimization trajectory.
14101411 Across training, EXPERTCONDENSER displays markedly improved stability and convergence effi-
1412 ciency relative to the baselines. Its loss curve decreases rapidly during early optimization and con-
1413 sistently settles at a lower final value than both ESFT and DenseMixer. This indicates more effective
1414 optimization dynamics and better alignment with the target reasoning distribution. ESFT converges
1415 to a higher asymptotic loss, whereas DenseMixer converges slower.
14161417 The gradient-norm behavior further highlights this stability advantage. After the initial warm-up
1418 phase, EXPERTCONDENSER maintains smooth and well-bounded gradients, free of the high-mag-
1419 nitude spikes observed in DenseMixer and the early instability exhibited by ESFT. The absence of
1420 gradient bursts suggests that EXPERTCONDENSER operates over a more stable gradient landscape,
1421 which contributes to improved convergence and reduced optimization volatility.
14221423 Taken together, these results demonstrate that EXPERTCONDENSER not only delivers better down-
1424 stream accuracy but also enhances the stability and reliability of the training process compared to
1425 existing post-training approaches.
14261440 Figure 6: Training stability comparison among EXPERTCONDENSER, ESFT, and DenseMixer. (a)
1441 Training loss curves, where EXPERTCONDENSER converges more quickly and reaches a lower final
1442 loss. (b) Gradient-norm evolution, showing that EXPERTCONDENSER maintains smooth, stable
1443 gradients without the spikes observed in DenseMixer and ESFT.
1444

1458 O FORMALIZING THE MOTIVATION BEHIND CONDENSER EXPERTS
1459

1460 Mixture-of-Experts (MoE) architectures commonly rely on two forms of expert capacity: (1) *shared*,
1461 *always-active* experts that provide a global residual function, and (2) *routed, input-adaptive* experts
1462 selected by a top- k gating mechanism. In the original DeepSeek-MoE design, the shared experts—re-
1463 ferred to as **Type-G (Ungated) Shared Experts**—are applied unconditionally to every token. They
1464 contribute a fixed residual transformation,
1465

$$1466 \quad h^{(g)}(x) = \sum_{i=1}^{\hat{n}} \text{FFN}_i^{(G)}(x),$$

1469 independent of router scores or the routing distribution. While this provides constant shared capacity,
1470 Type-G experts do not interact with routing dynamics and therefore cannot preserve input-adaptive
1471 structure.

1472 To address these limitations, we introduce a new class of experts, called **Type-B (Guaranteed-Gated)**
1473 **Condenser Experts**, which are *always selected* but remain *gated per token*. Let $J_B = \{j_1, j_2\}$ denote
1474 the designated condenser experts. For every token x , the active set is modified to
1475

$$1476 \quad S(x) = J_B \cup \text{TopK}_{i \notin J_B}(s_i(x), k-2),$$

1477 ensuring that $J_B \subset S(x)$ deterministically. The MoE output becomes

$$1479 \quad h^{(b)}(x) = \sum_{i \in S(x)} g_i(x) \text{FFN}_i^{(B)}(x),$$

1482 and the condenser experts receive router weights $g_{j_b}(x)$ rather than acting as an unconditional residual.
1483 This fundamental change introduces a gated, input-dependent backbone that interacts with the routing
1484 mechanism while remaining universally present for every token.

1485 O.1 INTUITION BEHIND CONDENSER EXPERTS
1486

1487 At a high level, Type-G experts provide a domain-agnostic shared function, whereas our Type-B
1488 condenser experts supply a *gated, constrained capacity path* that remains sensitive to the input. The
1489 deterministic inclusion of J_B stabilizes router behavior, ensures consistent gradient flow, and prevents
1490 collapse in rarely selected experts. This produces a backbone that is simultaneously shared and input-
1491 adaptive, enabling the model to consolidate common knowledge while preserving specialization.
1492

1493 O.2 THEORETICAL PERSPECTIVE
1494

1495 We decompose the output of an MoE layer as

$$1497 \quad h(x) = h_{\text{static}}(x) + h_B(x) + h_{\text{dom}}(x),$$

1498 where $h_{\text{static}}(x) = h^{(g)}(x)$ arises from Type-G shared experts,

$$1500 \quad h_B(x) = \sum_{j \in J_B} g_j(x) f_j(x)$$

1502 is the contribution of condenser experts, and

$$1504 \quad h_{\text{dom}}(x) = \sum_{i \in S(x) \setminus J_B} g_i(x) f_i(x)$$

1507 captures input-specific domain specialists.

1508 Because J_B is always co-active with domain-routed experts, their gradients encode the joint structure
1509 between shared and domain-specific patterns. For tokens drawn from domain d , we have
1510

$$1511 \quad \mathbb{E}[\nabla_{\theta_B} \mathcal{L}(x) \mid d] = \mathbb{E}_{x \sim p(x|d)} \left[\frac{\partial \mathcal{L}}{\partial h(x)} \frac{\partial h_B(x)}{\partial \theta_B} \right],$$

1512 implying that condenser experts accumulate gradients that consistently reflect features useful across
 1513 multiple routed experts. Optimizing over all domains yields
 1514

$$1515 \min_{\theta_B} \sum_d \mathbb{E}_{x \sim p(x|d)} [\mathcal{L}(x; \theta_B, \theta_d)],$$

1517 which drives θ_B toward factors that are broadly beneficial across domains. Thus, Type-B experts
 1518 naturally consolidate domain knowledge without collapsing into a uniform residual, as they are both
 1519 always present and input-gated.
 1520

1521 O.3 ROUTER STABILITY AND ANTI-COLLAPSE BEHAVIOR

1523 A key benefit of condenser experts is their contribution to router stability. Because their gate logits
 1524 $s_j(x)$ always participate in the top- k mechanism, router parameters ϕ receive non-vanishing
 1525 gradients:
 1526

$$1527 \nabla_{\phi} \mathcal{L}(x) = \sum_{j \in S(x)} \nabla_{\phi} g_j(x) f_j(x),$$

1529 with $J_B \subset S(x)$ guaranteeing that part of the gradient flows for every token. This effect functions
 1530 as a structural regularizer: it reduces routing-path variance, prevents long-tail experts from dying,
 1531 and mitigates the collapse modes seen in sparse MoE routing. Unlike Type-G experts, which bypass
 1532 gating, condenser experts propagate both forward and backward signals through the router.
 1533

1534 O.4 CAPACITY CONSTRAINTS AND VARIANCE REDUCTION

1536 By enforcing a minimal gated capacity via $J_B \subset S(x)$, the MoE layer incorporates an in-router
 1537 capacity constraint,

$$1538 \min_{\theta} \mathbb{E}[\mathcal{L}(x; \theta)] \quad \text{s.t.} \quad J_B \subset S(x), |S(x)| = k,$$

1540 which stabilizes the selection process. Under standard stochastic top- k routing, the output variance
 1541 satisfies

$$1542 \text{Var}[h(x)] = \text{Var} \left[\sum_{i \in S(x) \setminus J_B} g_i(x) f_i(x) \right] + \text{Var} \left[\sum_{j \in J_B} g_j(x) f_j(x) \right],$$

1545 where the second term is router-selection invariant. Condenser experts thus reduce the stochasticity
 1546 induced by the dynamic expert set, yielding smoother training dynamics.
 1547

1548 O.5 EMPIRICAL EVIDENCE

1550 Across all evaluated benchmarks, replacing ungated shared experts with our gated Type-B condenser
 1551 experts results in measurable improvements in accuracy, training stability, and expert specialization.
 1552 The SFT baseline, which relies solely on Type-G experts, consistently underperforms compared with
 1553 our model augmented with condenser experts (Results are shown in Tab. 1 2 3). These results corroborate
 1554 the theoretical claims above: enforcing a guaranteed, gated path benefits both the optimization
 1555 process and the final model capability.
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565

1566 **P HYPER-PARAMETERS**
15671568 **P.1 MATH7K DATASET AND MATH14K DATASET**
15691570 In this subsection, we perform an ablation study to verify whether the number of fine-tuning epochs
1571 is sufficient for convergence. Since training efficiency and stability are critical in post-training large
1572 MoE models, it is important to ensure that extending training does not yield further improvements or
1573 lead to overfitting. We therefore evaluate the performance of **DeepSeek-V2-Lite (16B)** and **OLMoE**
1574 (**7B**) under the **math7k** and **math14k** benchmark with **ESFT** fine-tuning for 1, 2, and 3 epochs. The
1575 results are reported in Table 12 and 11.1576 Overall, these findings confirm that our main experiments are conducted with models that have
1577 already converged, and that increasing the number of training epochs does not lead to meaningful
1578 gains.1579
1580 **Table 11: Evaluation of SFT model Zero-Shot Results on downstream math reasoning tasks after**
1581 **fine-tuning with *Math-14K*, including SingleEQ, MultiArith, AddSub, GSM8K, SVAMP, and AQuA.**1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Model	Model Size	#Param (Experts)	Distill Type	GSM8k	SingleEq	SVAMP	MultiArith	AddSub	AQuA	mawps	Avg
OLMoE	7B	1B	ESFT-1epoch	55.7	76.2	58.8	71.2	62.8	28.3	64.3	59.6
			ESFT-2epoch	52.8	78.3	59.1	71.8	63.3	29.1	68.9	60.5
			ESFT-3epoch	52.6	77.2	57.8	72.7	64.6	31.9	70.1	60.9

1590 **Table 12: Evaluation of SFT model Zero-Shot Results on downstream math reasoning tasks after**
1591 **fine-tuning with *Math-7K*, including SingleEQ, MultiArith, AddSub, GSM8K, SVAMP, and AQuA.**1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Model	Model Size	#Param (Experts)	Distill Type	GSM8k	SingleEq	SVAMP	MultiArith	AddSub	AQuA	mawps	Avg
DeepSeek-V2-Lite	16B	2.4B	ESFT-1epoch	54.1	88.0	65.3	83.7	72.7	26.8	79.4	67.1
			ESFT-2epoch	58.6	80.9	65.8	90.7	62.3	27.6	76.1	66.0
			ESFT-3epoch	58.2	75.8	65.2	89.0	56.5	29.5	73.5	64.0
OLMoE	7B	1B	ESFT-1epoch	57.0	78.5	58.6	72.0	64.3	28.3	76.1	62.1
			ESFT-2epoch	53.8	70.9	55.7	65.0	61.5	31.5	69.7	58.3
			ESFT-3epoch	50.3	69.3	49.5	54.5	59.2	27.6	59.2	52.8

1620
1621

P.2 GAMMA FOR BIAS UPDATE

1622
1623
1624Table 13: Evaluation of different post-trained Qwen-2 model Zero-Shot Results on downstream math reasoning tasks with different gamma settings after fine-tuning with *Math-7K*, including SingleEQ, MultiArith, AddSub, GSM8K, SVAMP, and AQuA.1625
1626
1627
1628
1629
1630
1631

Model Gamma	Model Size	Distill Type	#Param (Experts)	GSM8k	SingleEq	SVAMP	MultiArith	AddSub	AQuA	mawps	Avg
G-1e-6	14B	aux-free-loss	2.7B	48.6	-76.8	50.0	81.8	59.6	29.6	70.6	59.6
G-1e-5	14B	aux-free+bias	2.7B	48.8	76.4	50.2	81.6	59.8	29.7	70.8	59.6
G-5e-5	14B	aux-free+bias	2.7B	47.8	76.6	50.2	81.8	60.3	29.9	70.6	61.6
G-1e-4	14B	aux-free+bias	2.7B	48.2	76.6	52.7	80.3	59.2	26.8	71.8	59.4
G-1e-3	14B	aux-free+bias	2.7B	47.7	74.2	50.6	83.2	59.0	30.7	67.2	58.9
G-3e-3	14B	aux-free+bias	2.7B	31.8	58.5	37.9	65.2	39.5	28.3	56.7	45.4
G-5e-3	14B	aux-free+bias	2.7B	15.3	32.7	26.0	47.5	29.4	21.7	33.2	29.4
G-1e-2	14B	aux-free+bias	2.7B	7.2	17.3	14.7	28.2	15.7	17.7	18.5	17.0

1632
1633
1634
1635Table 14: Evaluation of different post-trained Deepseek-v2-lite model Zero-Shot Results on downstream math reasoning tasks with different gamma settings after fine-tuning with *Math-7K*, including SingleEQ, MultiArith, AddSub, GSM8K, SVAMP, and AQuA.1636
1637
1638
1639
1640

Model Gamma	Model Size	Distill Type	#Param (Experts)	GSM8k	SingleEq	SVAMP	MultiArith	AddSub	AQuA	mawps	Avg
G-1e-6	14B	aux-free-loss	2.7B	56.2	89.4	68.9	86.2	73.2	35.2	79.0	69.8
G-1e-5	14B	aux-free-loss	2.7B	56.7	89.6	69.8	87.8	74.0	35.8	79.6	70.5
G-5e-5	14B	aux-free-loss	2.7B	58.6	90.6	70.2	88.6	74.4	36.2	80.6	71.1
G-1e-4	14B	aux-free-loss	2.7B	58.8	90.7	69.3	88.7	74.2	36.1	80.3	71.2
G-1e-3	14B	aux-free-loss	2.7B	43.4	78.7	62.8	80.5	60.5	25.2	71.0	60.3

1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

1674 Q REORGANIZED TABLES FOR MODEL COMPARISONS

1676 The following tables provide detailed comparisons of model performance across different fine-tuning
 1677 strategies and datasets. Table 15 and Table 16 report zero-shot results on a suite of math reasoning
 1678 benchmarks (SingleEQ, MultiArith, AddSub, GSM8K, SVAMP, and AQuA) after supervised fine-
 1679 tuning (SFT) with *Math-14K* and *Math-7K*, respectively. We include both ESFT-tuned variants and
 1680 their corresponding base models to highlight the effectiveness of expert tuning. Table 17 presents
 1681 zero-shot pass@1 results (with 4 samples) on more challenging reasoning benchmarks (GPQA
 1682 Diamond, AIME 2024/2025, and MATH-500) using the *Stanford-SI* dataset. Results are shown for
 1683 ESFT, DenseMixer, and our proposed ExpertCondenser method, alongside the corresponding base
 1684 models, enabling direct comparison of different post-training approaches for Mixture-of-Experts
 1685 LLMs.

1686 Table 15: Evaluation of SFT model Zero-Shot Results on downstream math reasoning tasks after
 1687 fine-tuning with *Math-14K*, including SingleEQ, MultiArith, AddSub, GSM8K, SVAMP, and AQuA.

Model	Model Size	Distill Type	#Param (Experts)	GSM8k	SingleEq	SVAMP	MultiArith	AddSub	AQuA	mawps	Avg
DeepSeek-V2-Lite	16B	ESFT	2.4B	58.6	80.9	65.8	90.7	62.3	27.6	76.1	66.0
Qwen2	14B	ESFT	2.7B	52.5	76.0	54.1	86.2	62.3	29.5	71.4	57.1
OLMOE	7B	ESFT	1B	53.8	70.9	55.7	65.0	61.5	31.5	69.7	58.3
DeepSeek-V2-Lite	16B	Base Model	2.4B	8.0	20.0	26.6	24.0	35.4	21.4	33.6	24.2
Qwen2	14B	Base Model	2.7B	25.6	31.3	27.4	33.5	46.8	25.4	28.2	31.2
GPT-OSS	20B	Base Model	3.6B	77.4	82.9	84.0	91.8	79.7	31.5	92.0	77.4
OLMOE	7B	Base Model	1B	16.1	23.6	17.7	9.2	21.3	22.8	13.9	17.8

1695 Table 16: Evaluation of SFT model Zero-Shot Results on downstream math reasoning tasks after
 1696 fine-tuning with *Math-7K*, including SingleEQ, MultiArith, AddSub, GSM8K, SVAMP, and AQuA.

Model	Model Size	Distill Type	#Param (Experts)	GSM8k	SingleEq	SVAMP	MultiArith	AddSub	AQuA	mawps	Avg
DeepSeek-V2-Lite	16B	ESFT	2.4B	54.7	87.2	67.3	86.8	68.1	28.7	76.3	67.0
Qwen2	14B	ESFT	2.7B	46.9	69.3	54.1	75.7	52.2	27.6	68.1	56.2
OLMOE	7B	ESFT	1B	52.8	78.3	59.1	71.8	63.3	29.1	68.9	60.5
DeepSeek-V2-Lite	16B	Base Model	2.4B	8.0	20.0	26.6	24.0	35.4	21.4	33.6	24.2
Qwen2	14B	Base Model	2.7B	25.6	31.3	27.4	33.5	46.8	25.4	28.2	31.2
GPT-OSS	20B	Base Model	3.6B	77.4	82.9	84.0	91.8	79.7	31.5	92.0	77.4
OLMOE	7B	Base Model	1B	16.1	23.6	17.7	9.2	21.3	22.8	13.9	17.8

1707 Table 17: Evaluation of SFT model Zero-Shot *P@ss1:4 samples* Results on downstream math
 1708 reasoning benchmarks after fine-tuning with *Stanford-SI*, including GPQA Diamond, AIME 2024,
 1709 AIME 2025, and MATH-500.

Model	Model Size	Distill Type	#Param (Experts)	GPQA Diamond	AIME 2024	AIME 2025	MATH-500	Avg
Qwen3	30B	Base Model	3.3B	38.9	20.6	7.7	72.8	35.0
DeepSeek-V2-Lite	16B	Base Model	2.4B	31.9	0.8(1/120)	1.7(2/120)	62.0	24.1
Qwen2	14B	Base Model	2.7B	25.9	0.0	0.0	8.4	8.6
Qwen3	30B	ESFT	3.3B	54.8	61.6	45.6	93.4	63.9
DeepSeek-V2-Lite	16B	ESFT	2.4B	32.2	2.5(3/120)	2.5(3/120)	63.0	25.0
Qwen2	14B	ESFT	2.7B	26.4	0.8(1/120)	0.8(1/120)	18.1	11.5
Qwen3	30B	DenseMixer	2.4B	58.5	63.9	45.8	93.6	65.5
DeepSeek-V2-Lite	16B	DenseMixer	2.4B	34.8	2.5(3/120)	2.5(3/120)	64.8	26.1
Qwen2	14B	DenseMixer	2.4B	26.8	1.7(2/120)	0.8(1/120)	20.4	12.4
Qwen3	30B	ExpertCondenser (Ours)	2.4B	68.8	68.3(82/120)	51.7(62/120)	96.8	71.4
DeepSeek-V2-Lite	16B	ExpertCondenser (Ours)	2.4B	40.6	9.2(11/120)	6.7(8/120)	68.9	31.4
Qwen2	14B	ExpertCondenser (Ours)	2.4B	34.6	6.7(8/120)	6.7(8/120)	28.6	19.5

1728 R GPT-OSS

1729
 1730 Table 18: Evaluation of SFT model Results on downstream math reasoning tasks after fine-tuning
 1731 with *Math-7K*, including SingleEQ, MultiArith, AddSub, GSM8K, SVAMP, and AQuA.

1733 Model	1734 Model Size	1735 Distill Type	1736 #Param (Experts)	1737 GSM8k	1738 SingleEq	1739 SVAMP	1740 MultiArith	1741 AddSub	1742 AQuA	1743 mawps	1744 AVG
GPT-OSS	20B	CondenserExperts	3.6B	81.7	93.2	82.5	98.5	85.6	38.6	91.6	81.7
GPT-OSS	20B	DenseMixer	3.6B	80.1	92.3	83.2	98.7	82.5	37.4	90.8	80.7
GPT-OSS	20B	ESFT	3.6B	76.6	92.9	80.2	98.2	82.0	35.4	90.3	79.4
GPT-OSS	20B	Base Model	3.6B	77.4	82.9	84.0	91.8	79.7	31.5	92.0	77.0

1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781