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Abstract

Drought is one of the most destructive and expensive natural disasters, severely
impacting natural resources and risks by depleting water resources and diminishing
agricultural yields. Under climate change, accurately predicting drought is critical
for mitigating drought-induced risks. However, the intricate interplay among the
physical and biological drivers that regulate droughts limits the predictability and
understanding of drought, particularly at a subseasonal to seasonal (S2S) time scale.
While deep learning has demonstrated potential in addressing complex climate
forecasting challenges, its application to drought prediction has received relatively
less attention. Therefore, in this work, we integrate predictive features and three
drought indices from multiple remote sensing and reanalysis datasets across the
contiguous United States and propose a dataset specifically for predicting the
spatiotemporal variation of drought: DroughtSet. DroughtSet also provides the
machine learning community with a new real-world dataset to benchmark time-
series forecasting methods. Furthermore, We propose a spatial-temporal model to
predict and interpret S2S droughts in the contiguous U.S. Our model learns from the
spatial and temporal information of physical and biological features to predict three
types of droughts simultaneously. Multiple strategies are employed to quantify
the importance of physical and biological features for drought prediction. These
results also give insight for researchers to better understand the predictability and
sensitivity of drought to biological and physical conditions. We aim to contribute to
the climate field by proposing a new tool to predict and understand the occurrence
of droughts and provide AI community with a new benchmark to study deep
learning in the climate science field.

1 Introduction

Drought is among the most disastrous and costly natural hazards, affecting water resources, agricul-
tural yields, heat waves, and ecosystem carbon sink [1]. There are varying definitions and types for
drought, e.g. lack of precipitation, soil moisture deficit, and reduced stream flow and groundwater. As
the global temperatures continue to increase, droughts are setting in quicker, becoming more intense,
and hotter [2, 3]. In particular, recent studies have highlighted the increasing frequency of flash
droughts, which occur when a precipitation deficit is accompanied by abnormally high temperatures
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and low humidity, leading to high evapotranspiration rates that quickly deplete soil moisture. Flash
droughts can have significant ecological and socioeconomic impacts. For example, precipitation
deficits combined with record-high temperatures in 2012 led to rapid drought development across the
central US within just two months, resulting in estimated losses exceeding $30 billion.

Accurate prediction of droughts is crucial for societal preparedness and risk mitigation strategies
[4, 5, 6], but it still remains a significant challenge. Existing drought prediction models include
data-driven [7, 8, 9], physically-based [10, 11], and hybrid models [12]. While some of these
models consider the interaction of biological drivers, their representations are generally simplified.
Tackling the drought prediction challenge requires a robust and interpretable data-driven method
that systematically leverages datasets of relevant climate and vegetation features [13, 14]. However,
most existing methods simplify or ignore dynamic interactions among different factors, which inhibit
realizing the potential of artificial intelligence (AI) to improve drought prediction accuracy and
advance mechanistic understanding of flash drought. We discuss these in Appendix 6.2 included in
the supplementary material.

To address this research gap, we integrate climate, physical, and vegetation conditions that are related
to droughts from various remote sensing and reanalysis datasets to create the DroughtSet, which fo-
cuses on the contiguous United States (CONUS). DroughtSet considers the large diversity of climatic
and ecological settings and frequent occurrences of flash droughts in recent decades. Specifically, we
collect and preprocess drought-related predictors (e.g. Elevation, Temperature, and precipitation) and
three types of drought indices: agricultural droughts measured by normalized surface soil moisture
[15], ecohydrological drought measured by Evaporative Stress Index (ESI) [16], and ecological
drought measured by solar-induced chlorophyll fluorescence (SIF) [17]. These predictors consist of
both static variables and dynamic variables with coordinates. Therefore, DroughtSet could be used to
benchmark multivariate forecasting, spatiotemporal forecasting, and irregular forecasting (learning
from static variables). We hope to accelerate future research in climate and earth system science and
benchmark deep learning-based methods by releasing this dataset.

In addition, we propose a multi-task SPatial-temporal framework for drought prediction on Drought-
Set, referred to as SPDrought, leveraging the spatial-temporal interconnections within and across
climate and vegetation features. It accounts for geographical mutual influences by aggregating
temporal features with neighbor locations and learns from both static and dynamic features to predict
three types of drought indices. Furthermore, we employ the Integrated Gradient (IG) method, as
described in [18], to interpret and quantify how these features influence drought development across
different areas. These insights will serve as a data-driven benchmark, informing further research
towards enhancing the mechanistic understanding and simulation of flash droughts in existing Earth
system models. This, in turn, supports the development of strategies to mitigate associated risks
under future climate. Our contributions can be summarized as follows:

• We introduce DroughtSet, a drought prediction dataset for the machine learning community. It
serves as a complementary resource to existing climate datasets. DroughtSet is a collection of
droughts indices and the corresponding climate, physical, and vegetation conditions, specifically
focusing on the contiguous U.S. 1

• To forecast drought, we propose SPDrought, a spatial-temporal drought prediction model that
incorporates geographic neighbor features fusion. It jointly leverages both static and dynamic
features to accurately predict three key drought indices.

• We leverage the Integrated Gradient to interpret our prediction and to understand the hidden
relationship among climate, physical, and vegetation features and drought indices. It gives a new
insight into the complex correlations of climate systems.

2 DroughtSet

In this section, we introduce DroughtSet, a spatiotemporal collection of climate, physical, vegetation
conditions, and drought indices from multiple publicly available remote sensing and reanalysis
datasets. We have carefully selected these variables based on their relevance and potential influence
on the mechanisms of drought development.

1https://github.com/osu-srml/DroughtSet

2



2.1 Data collection and preprocessing

DroughtSet includes nationwide weekly climate-related data spinning from 2003 to 2013 (11 years,
572 weeks) across the United States. The area of focus is the contiguous United States, which covers
an area of over 8,000,000 km2. The details of drought/feature types, variables, and their sources
are outlined in Table 1. To ensure consistency in geographical resolution, all variables have been
resampled to a 4 km spatial scale. Therefore, these data are represented as a grid of 585× 1386 pixels
across the contiguous United States, with each pixel denoted as P (i, j), where (i, j) is the spatial
coordinates of the pixel on the map. Note that, 42% of this pixel area consists of the ocean, where
droughts do not occur and no observable metrics are available. Therefore, we only use the remaining
58% pixels to predict and analyze the results. Furthermore, all temporal variables are aggregated
to a weekly time scale, detailed in Section 2.2. For the static variables, both Elevation and Canopy
height are numeric variables while Land cover is a categorical variable with 97 categories. We also
include the mean and standard deviation of the drought variables as the static variables. In total, the
dataset comprises 585× 1386× 11× 52× 3 Drought indices, 585× 1386× 11× 52× 11 temporal
predictors, and 585× 1386× 9 static predictors. All variables are presented in their original units
without normalization. Note that NaN values exist in the datasets due to different temporal coverages
of remote sensing-derived products .

Table 1: Variables to quantify three types of drought and predictive features.
Drought/Feature Type Variables Dynamic

or Static
Dataset & Resolution

Soil moisture drought Soil moisture across depths (SM) Dynamic
NLDAS [19], hourly, 1/8°
SMAP [20], daily, 9 km
NLDAS or SMAP blended with in situ data [21], daily, 4 km

Ecohydrological drought Evaporative Stress Index (ESI) Dynamic ALEXI [22], weekly, 0.25°

Ecological drought Solar Induced Fluorescence (SIF) Dynamic CSIF [23], 4-day, 0.05°

Physical & climate features
Temperature, Radiation, VPD, Precipi-
tation, Wind Speed, PET, PDSI, SP Dynamic gridMET [24], daily, 4 km

ERA5 [25], hourly, 9 km
Elevation Static SRTM [26], 30 m

Vegetation features

Vegetation Optical Depth (VOD) Dynamic VODCA [27], daily, 0.25°

Leaf area index (LAI) Dynamic MODIS [28], 8-day, 500 m

Canopy Height Static GLAD [29], 30 m

Land Cover Static NLCD [30, 31], 30 m

2.2 Drought indices and predictors

DroughtSet focuses on three droughts: soil moisture drought measured by surface soil moisture
(SM), ecohydrological drought measured by Evaporative Stress Index (ESI), and ecological drought
measured by the solar-induced chlorophyll fluorescence (SIF), all normalized using their quantiles at
each location. These drought indices are denoted as Di,j(t) =

[
d1i,j(t), · · · , dKi,j(t)

]
.

• Soil Moisture: Surface soil moisture reflects flash drought intensity and controls the propagated
impacts on the downstream drought types.

• Evaporative Stress Index: ESI quantifies ecohydrological drought, which is controlled by plant
stomatal response to moisture deficit and could regulate drought intensification through atmospheric
feedback [32].

• Solar-induced chlorophyll Fluorescence: SIF, a surrogate highly correlated with gross primary
productivity, reflects the response of photosynthetic activity and has been shown to be sensitive to
water stresses [33].

These metrics are of focus here for flash drought because, unlike other commonly used drought sever-
ity indices such as the Standardized Precipitation Index and Palmer Drought Severity Index (PDSI)
that are typically used to capture interannual drought, these metrics have been demonstrated to
respond quickly and have wide-ranging implications on water resources, ecosystem carbon sink
strength, and agricultural productivity [15, 32, 33, 34, 35, 36]. In our work, these drought indices
serve as prediction targets and our objective is to accurately predict potential future droughts. Figure
1 visualizes the evaporative stress, using the 2012 central US drought as an example, which illustrates
the pattern of a drought index.
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Figure 1: A S2S drought in July 2012. The left figure represents evaporative stress for the 26th week
and the right figure for the 28th week. The area outlined by the red box was affected by the drought
in 2012, where increased evaporative stress are evident.

To predict the three types of drought, we select attributes including climate and physical conditions,
vegetation dynamics, and drought indices themselves in lagged time steps as predictive features for
drought prediction. These features are considered as predictors for droughts and are categorized into
temporal dynamic attributes and spatial static attributes that consist of numeric and categorical data.
These features are described in the following.

Physical and climate conditions:

• Elevation: Elevation is a static numeric variable. It influences local climate conditions which can
affect drought due to variations in temperature and precipitation patterns.

• Air Temperature: Higher air temperatures can increase evaporation rates, accelerating the speed
of drought onset. We aggregate temperature by averaging the daily temperature for one week.

• Precipitation: Precipitation determines the amount of water input. Precipitation deficit directly
leads to drought. We aggregate it by summing daily precipitation for one week.

• Radiation: Solar radiation drives evapotranspiration and higher radiation can increase water loss
from soil and vegetation. We use the downward shortwave radiation and aggregate it by averaging
the daily radiation for one week.

• Vapor Pressure Deficit (VPD): VPD characterizes the degree of atmospheric moisture deficit and
directly influences the evapotranspiration rates. We aggregate it by averaging the daily VPD for
one week.

• Wind Speed: Wind speed influences evapotranspiration rates, thereby contributing to drought
development. We aggregate it by averaging the daily value for one week.

• Potential Evapotranspiration (PET): PET represents the amospheric water demand. We aggregate
it by averaging the daily PET for one week.

• PDSI: It quantifies the severity of meteorological drought in an area using temperature and
precipitation data, which primarily characterizes long-term drought conditions.

• Surface Pressure (SP): SP is the atmospheric pressure at Earth’s surface. Changes in surface
pressure can regulate weather patterns, atmospheric moisture supply, and thus drought development.

• SM Root: Different from surface soil moisture, soil moisture at the root zone measures the amount
of water available in the soil where most plant roots are located.

Vegetation dynamics:

• Biomass dynamics measured by Leaf Area Index (LAI): LAI represents the leaf area per ground
unit area. We aggregate it by linearly interpolating the raw data with an 8-day temporal resolution.

• Vegetation Optical Depth (VOD): VOD represents vegetation water content. We aggregate it by
averaging the daily VOD for one week.

• Canopy Height: Canopy height is a static categorical variable, representing ecosystem structure.

Auxiliary data:

• Land Cover: It is a static categorical variable, including categories such as forests, water bodies,
and grasslands.
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With these climate-related drought indices and attributes, each pixel has N static features Si,j =[
s1i,j , · · · , sNi,j

]
(i.e., land cover, elevation, canopy height, long-term averages of drought in-

dices and their standard deviations to capture variability) and M dynamic features Xi,j(t) =[
x1
i,j(t), · · · , xM

i,j(t)
]
. The goal is to train a machine learning model h ∈ H from existing static

and dynamic features {Si,j , Di,j(t), Xi,j(t)}i∈[I],j∈[J],t∈[T ] that can simultaneously predict multiple
drought indices {Di,j (T + τ)}τ≥1 for any location (i, j) in the future. Because both drought indices
Di,j(t) and dynamic features Xi,j(t) are time-varying and jointly used for predictive tasks, we
combine them and define Ui,j(t) = [Di,j(t), Xi,j(t)].

In addition, as DroughtSet consists of both static features and temporal features for each location with
geographic coordinates, it offers a versatile platform for benchmarking various forecasting methods.
This dataset can be utilized in univariate forecasting tasks, which focus on directly predicting drought
indices from single variables. It also supports multivariate forecasting, where multiple variables
are used jointly to predict drought indices. Furthermore, DroughtSet is ideal for spatiotemporal
forecasting, which leverages both spatial and temporal information to enhance prediction accuracy.
Lastly, it can be employed in irregular forecasting tasks that jointly use static and temporal features,
providing a comprehensive tool for advanced drought prediction models.
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Figure 2: SPDrought architecture for Forecasting Drought Indices: the spatial-temporal fusion module
first exploits the spatial correlation of data with its neighbors using static features and leverages
the learned correlation to aggregate the dynamic features; the static-dynamic feature representation
exploits both spatial and temporal patterns with three network modules. Such representation is
shared among multi-task regressors for generating multiple drought indices predictions. Subsequently,
we analyze how individual features at various timestamps influence the final predictions using our
interpretation method. Domain experts are encouraged to provide feedback on variable selection and
model design, which can further refine the model and uncover deeper relationships among variables.

3 Method

Next, we introduce a comprehensive framework that utilizes both spatial and temporal information to
predict drought indices. Our approach considers regional spatial similarity to aggregate information
for robust prediction and introduces climate attribute-specific representation functions to learn from
the hidden pattern of both static and time-series data.

Spatial-Temporal Fusion. Since climate information from proximate geographical locations often
exhibits mutual influences, we hypothesize that data from neighboring locations may contain useful
information that can help enhance the accuracy and reliability of the prediction. The key challenge
is to exploit the spatial correlation and strategically leverage the learned correlation to enhance
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prediction at the target location. Intuitively, the target location may benefit more from those neighbors
that are sufficiently correlated, e.g., sharing similar topography or land cover. Let neighborhood
Ni,j = {(̄i, j̄) | (|̄i− i| ≤ d, |̄i− j| ≤ d, (̄i, j̄) ̸= (i, j))}, where d is a distance threshold. Inspired
by scaled dot-product attention mechanism [37], we exploit the spatial correlation between any target
location (i, j) (known as a query in attention mechanism) and neighbors in Ni,j (known as keys)
based on the following:

A = softmax

(
(Si,jWquery)(SNi,jWkey)

T

Ri,j ×
√
N

)
(1)

where Si,j are N static features at (i, j), SNi,j is a matrix with each column the static features
corresponding to one neighbor in Ni,j . Wquery ∈ RN×N and Wkey ∈ RN×N are two linear
transformation matrices that are learned to exploit spatial correlation. Ri,j is a vector with each
element the Euclidean distance between (i, j) and neighbors in Ni,j , which leverages the prior spatial
information to refine correlation learning process. For simplicity, we consider a 5× 5 square area in
this study, where d is set to 2 in this paper. To avoid division by zero, we manually set the distance to
itself as 0.8. The spatial correlation weight A can then be used to aggregate the regional time-varying
attributes: Ũī,j̄(t) = Σī,j̄∈N(i,j)

Aī,j̄ · Uī,j̄(t).

Spatial-Temporal Representation and Multi-task Learning. Given {Si,j , Ũi,j(t)}, we next learn
the representations of the climate data, which combine static and dynamic feature representations
generated by separated networks:

• Static feature representation: Given a set of static features Si,j =
[
s1i,j , · · · , sNi,j

]
, we aim to

obtain higher-level representation that encapsulates the underlying patterns among them. Because
categorical (land cover type) and numerical (elevation, canopy height, long-term averages, and
standard deviations of SM, SIF, and ESI) features have inherent differences in semantic meanings,
we shall generate their representations differently. We apply two layers of MLP linked by the ReLU
function to learn the representations of numerical features and adopt embedding approaches for
categorical features to generate their representations, which we denote as fs

i,j .
• Dynamic feature representation: To learn the temporal patterns, especially the long-term dependen-

cies of climate data, we first adapt Transformer [37] encoder to generate temporal representations.
Before the Transformer, we expand the initial temporal features Ũi,j(t) of our data (including K
drought indices and M dynamic features with a total dimension of 14) via linear transformation W
and project the dimensions to 48. This linear transformation also facilitates learning the intercon-
nections among these distinct dynamic features. After integrating the positional encoding PE(t),
we generate temporal representation f t

i,j(t) = TransformerEncoder
(
Ũi,j(t) ·W + PE(t)

)
. We

then concatenate the static representations to dynamic feature representations at each time stamp.
The concatenated representations are fed into the Transformer decoder to generate representations
{Fi,j(t

′)}t′∈{T+1...T+26} for the next 26 weeks .

With the representation {Fi,j(t
′)}t′∈{T+1...T+26} for the prediction weeks, we employ three task-

specific regressors to map the representation of the next 26 weeks to drought indices. Specifically,
let d̂ki,j(t

′) = Regressork (Fi,j(t
′)) be the prediction of k-th drought index dki,j(t

′) after t′ weeks.
We jointly train all the parameters by minimizing the total loss between predictions d̂ki,j(t

′) and
ground-truth dki,j(t

′) for all drought indices at all locations (we use a batch of locations to update the
model at every iteration in implementation) under mean absolute error loss function L:

min
∑

k∈[K]

∑
t′∈{T+1...T+26}

∑
i∈[I],j∈[J]

L
(
d̂ki,j(t

′), dki,j(t
′)
)

(2)

Drought Understanding. To identify which attributes and time steps contribute most to the final
predictions, we leverage integrated gradient [18] to investigate how their contributions to final
predictions change over time (i.e., how sensitive the predictions are to these features). It finds the
feature sensitivities by integrating the gradients of the model’s output with respect to the input along
a straight path from a “baseline" to the input. Then we quantify the importance of static variables by
looking at the features that cause the larger performance change and are more important for prediction
tasks.
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Table 2: Average mean absolute error over three runs of experiments

MAE (×10−3) SPDrought Transformer Informer PatchTST DLinear iTransformer TimesNet LSTM
Soil Moisture 21.39±0.14 34.56±0.24 38.08±0.14 36.32±0.19 47.61±0.04 32.34±0.09 25.96±0.46 31.36±0.40

Evaporative Stress Index 4.40±0.02 5.99±0.07 6.37±0.06 6.37±0.00 6.82±0.01 6.06±0.01 5.11±0.02 5.83±0.09

Solar-induced chlorophyll Fluorescence 12.21±0.23 16.00±0.23 17.71±0.33 21.36±0.19 20.99±0.03 15.47±0.07 14.11±0.03 15.35±0.02

Total 38.01±0.35 56.56±0.05 62.16±0.43 64.05±0.34 75.41±0.05 53.87±0.16 45.18±0.44 52.54±0.40
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Figure 3: Interpretation on Soil Moisture prediction. Surface Pressure, Radiation, and PET are the
most significant variables influencing surface soil moisture.

4 Experiments

4.1 Experimental setup

Training details. All experiments are conducted on a server equipped with multiple NVIDIA V100
GPUs, Intel Xeon(R) Platinum 8260 CPU, and 256GB memory. The code is implemented with
Python 3.9 and PyTorch 1.10.0.

In this study, we split the pixels by 5×5 pixel block to avoid similar neighboring pixels and randomly
select 80% blocks as training pixels and the remaining 20% for testing. Each pixel in our dataset
has 572 weeks of temporal features and drought indices. We divide these 572 weeks into multiple
windows for training and analysis. Each window consists of 100 weeks (approximately 2 years)
designated as the training period, followed by 26 weeks (approximately half a year) designated as the
prediction period. We then slide this window forward by 26 weeks (half a year) at a time, creating a
total of 18 overlapping windows. To mitigate the impact of missing values (NaN) in the dataset, we
impute the yearly average value for each week to maintain seasonal trends. Training is skipped for
any NaN values in drought indices. Additionally, before training, we normalize each predictor and
drought index by dividing it by its maximum value, scaling all values to a range between 0 and 1.

During the training, we sample a batch of pixels randomly and shuffle the order of these windows
to sequentially update the model. We train the model over 30 epochs where an epoch is defined as
each training pixel being visited and trained once. After filtering out ocean locations, where most
variables are NaN, the number of effective training pixels totals 380,801. The test set comprises
93,220 effective pixels. We set the batch size to 32, and employ Adam optimizer with a learning rate
of 1e-4. The mean absolute error is used as the loss function. For categorical variable land cover,
the embedding dimension is set at 4. For static numeric variables, the MLP uses a hidden dimension
of 10 and an output dimension of 16. Temporal features are first processed through a linear layer
with a dropout rate of 0.1, mapping the dimension from 14 to 48. Then three layers of Transformer
encoders and two layers of decoders with dimensions of 256 and 2 attention heads are used to learn
from the projected temporal features.

Baselines We consider state-of-the-art deep learning methods for time-series forecasting as base-
lines to evaluate our method. Note that these methods are mostly designed for time-series features
without considering static features, including Transformer [37], Informer [38], PatchTST [39], DLin-
ear [40], iTransformer [41], TimesNet [42], and LSTM [43]. We introduce the details of each baseline
in Appendix 6.1.

4.2 Results

Performance Comparison. We first compare SPDrought with five widely recognized time-series
forecasting baseline models. Table 2 presents the average mean absolute error across three runs

7



200 400 600 800 1000 1200

100

200

300

400

500

-2

-1

0

1

2
#10-3

(a) Influence of Radiation
200 400 600 800 1000 1200

100

200

300

400

500

-2

-1

0

1

2
#10-3

(b) Influence of Pressure
200 400 600 800 1000 1200

100

200

300

400

500

-2

-1

0

1

2
#10-3

(c) Influence of SIF

Figure 4: Interpretation on Evaporative Stress Index. Radiation and Pressure show a positive
influence on the evaporative stress index while SIF reflects a minor negative influence.
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Figure 5: Interpretation on Solar-induced Fluorescence. Both radiation and root-zone soil moisture
directly influence the rate of photosynthesis, which in turn affects the SIF signal.

on DroughtSet. The results demonstrate that SPDrought has superior forecasting performance at
forecasting 26 weeks of three drought indices at test locations compared with baselines. This outcome
underscores its effectiveness in capturing the dynamics of the variables under study—Soil Moisture,
Evaporative Stress Index, and Solar-induced Chlorophyll Fluorescence.

Among the baselines, DLinear has previously shown robust performance, outperforming several
transformer-based methods [40]. DLinear decomposes the time series and uses two linear layers for
trend and abnormality respectively. However, DLinear encounters challenges with drought indices
forecasting tasks because it uses prediction variables (drought indices) independently rather than
leveraging all predictors and indices together. In contrast, transformer-based methods typically
account for patterns among variables, resulting in better performance in our tasks. It highlights the
importance of learning the interplay of predictors to improve forecasting performance in drought
prediction challenges. We also compare our model with a vanilla Transformer. Except for the main
difference in using static features, the Transformer baseline uses embedding for temporal input
tokenization as same as other methods, while our model considers the linear transformation for the
temporal features to learn the representation across predictors.

Drought Interpretation. To examine the relative contribution of features to a drought, we study
the flash drought in July 2012 in the US. Specifically, we leverage integrated gradient to analyze the
prediction in July 2012 and use gradient information to compare the contribution of features to the
drought. Here, we evaluate the influence of each variable on soil moisture prediction by comparing the
integrated gradient value in Figure 3. We select and present the top 3 significant influence variables.
Pressure, Radiation, and PET show strong negative contributions (negative gradients) to soil moisture,
which means a higher value of these metrics may lead to a decrease in soil moisture and indicate a
potential drought. For example, high-pressure surface climate typically leads to drier weather, reduces
rainfall, which in turn leads to drier soil conditions. In contrast, low-pressure systems are often
associated with increased cloud cover and precipitation, which can enhance soil moisture [44]. Our
model effectively captures the negative influence of pressure on soil moisture. Similar to radiation,
high radiation heats the soil surface, increasing soil evaporation and thus reducing soil moisture. Thus,
our model is able to capture the relationship between radiation and soil moisture. Figure 4 highlights
the significant predictors influencing the Evaporative Stress Index, including Radiation, Pressure,
and SIF. Nationwide, higher levels of radiation and surface pressure are indicative of increased
evaporative stress [44, 45], which aligns with domain knowledge. Through comparative analysis, it
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can be found that radiation should be prioritized when analyzing the drought type forecasted by the
evaporative stress. Figure 5 shows pressure, radiation, and root zone soil moisture largely influence
solar-induced fluorescence. These observed results are consistent with established meteorological
principles. The results on interoperability reveal the relative importance of these predictors to each
drought indices, which contributes to discipline-specific insights to understand the development and
propagation of droughts.

Assessment of Drought Using Soil Moisture Percentiles In this section, we use the soil moisture
as an example to assess drought. We employ a percentile-based approach [46] using soil moisture
data. Each measurement of weekly soil moisture is compared against a multi-year average for the
same calendar week, derived from historical data to represent typical moisture levels. We calculate
the deviation of current soil moisture levels from these averages. We then use the 30th percentile as
the threshold in our analysis, values below this percentile are indicative of drought conditions. Our
method is compared with baselines in terms of accuracy and precision and the results on the test set
are reported in Table 3.

Table 3: Evaluation of drought prediction by soil moisture. The standard deviations are reported in
Appendix.

SPDrought Transformer Informer PatchTST DLinear iTransformer TimesNet LSTM
Accuracy 86.26 76.09 72.16 62.24 62.85 77.18 81.54 77.45

Precision 76.80 59.94 53.40 36.94 37.96 61.74 68.98 62.18

We visualize our prediction using the drought in 2012. In Figure 6, we use soil moisture ground truth
to indicate the drought and present Figure 6.a. Figure 6.b shows the drought indicated by the soil
moisture prediction from SPDrought. In addition, we conduct ablation studies on static variables and
model components, which are reported in Appendix 6.3.
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(a) Drought indicated by Soil Moisture ground truth
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(b) Drought indicated by Soil Moisture Prediction

Figure 6: Drought Prediction using Soil Moisture

5 Conclusion

This paper introduces DroughtSet, a specialized time-series forecasting dataset designed for predicting
drought indices. It integrates vegetation and climate predictors, incorporating static and dynamic
features. Based on DroughtSet, we also propose a framework, SPDrought, which leverages spatial-
temporal interactions to accurately predict drought indices, and interpret the prediction results to
advance our understanding of drought development and propagation.

Limitation and Future Work. This paper focuses exclusively on the contiguous U.S., as the dataset
is only collected for this region. Therefore, the trained model is not suitable for direct deployment in
other regions because of the geographical differences. However, our method is not limited to CONUS
and is expected to be effective in other regions, provided that suitable data covering both static and
dynamic predictors is available. In this study, we primarily examine the spatial influence of physical
and climate conditions, as well as vegetation dynamics, on drought indices. In future case studies, we
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will conduct a comprehensive analysis of the temporal interplay and dependencies related to flash
droughts.
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A Appendix

A.1 Baselines

We ensured consistent representation dimensions and batch sizes across all baseline methods and
adjusted model layers to maintain comparable training times. Additionally, other method-specific
hyperparameters are adjusted to improve performance and ensure similar training times across all
methods.

• Transformer [37]: A vanilla Transformer for the time-series forecasting task.

• Informer [38]: Informer introduces the ProbSparse self-attention mechanism for efficiently captur-
ing long-range dependencies in time series forecasting.

• PatchTST [39]: PatchTST applies patching techniques to time series data, enhancing the transformer
architecture’s performance in capturing temporal patterns.

• DLinear [40]: DLinear is a simplified linear model which succeeds many transformer-based models.

• iTransformer [41]: iTransformer inverted the duties of the self-attention mechanism and the
feed-forward network to achieve better performance.

• TimesNet [42]: TimesNet considers intraperiod and interperiod variations in 2D space for time
series analysis.

• LSTM [43]: LSTM is widely used in drought prediction. We follow the same architecture as
existing studies [47, 48, 49], with a convolution neural network as the feature extractor and an
LSTM network to forecast drought indices.

To ensure comparable training times across different methods, we utilize a 3-layer encoder and 2-layer
decoder for Transformer, PatchTST, and iTransformer, aligning with our approach. For TimesNet,
we employ a 2-layer encoder and 1-layer decoder to maintain training durations similar to those of
other baselines.

A.2 Related Work

A.2.1 AI in Climate

AI in climate science has received significant attention in recent years. These advancements have
enabled researchers to enhance climate models, improve climate prediction accuracy, and gain deeper
insights into the complex dynamics of the Earth’s climate system. Currently, AI has been applied to
predict El Niño-Southern Oscillation (ENSO) [50], Typhoon detection [51], climate modeling [52].

Traditional climate models rely on physical equations and numerical methods to simulate the climate
system, which can be computationally intensive and limited by the resolution and accuracy of input
data. In contrast, deep learning models excel in recognizing complex patterns in large datasets,
offering a robust complementary approach to traditional methods. Especially, some deep learning
models show strong performance in processing temporal features. For example, [51] successfully
used a transformer model to predict typhoon trajectories without relying on reanalysis data. [53]
proposed AirFormer for nationwide air quality prediction in China. [54] proposed a foundation model
to forecast key climate variables. These examples underscore the growing efficacy and application of
machine learning in climate science.

A.2.2 Drought Prediction

Drought Prediction is one of the important tasks in climate science. Traditional climate models
for drought prediction, which rely on physical equations and historical data, often struggle with
the chaotic nature of climate systems. For example, the current generation of Earth system models
(ESMs) has large biases in predicting precipitation at a sub-seasonal scale and thus flash drought [55].
The Global Ensemble Forecast System based on process-based models, which holds the potential to
implement operationally flash drought forecast guidance, also exhibits large prediction errors[56].
Thus, many studies have highlighted the effectiveness of data-driven models in predicting droughts
and identifying their key indicators. With the ability to deal with multicollinearity and non-linear
relations among predictive features, machine learning (ML) models were applied to predict flash
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drought from weeks to months, measured by hydrological, meteorological, and agricultural metrics.
These methods include support vector machines, random forests, decision trees, etc. For example,
Adede et al. [57] predicts vegetation condition index using a simple ANN model. It is also applied
for agricultural drought prediction using satellite images and climate indices Marj and Meijerink
[58]. However, these simple models were built using traditional ML approaches and often require
handcrafted feature engineering or cannot effectively learn the feature from the data, which cannot
exploit complex intercorrelation among different features and usually has limited predictive power. To
tackle this issue, recent studies have leveraged more advanced deep learning methods for flash drought
predictions, which can learn hierarchical feature representations automatically from data and often
outperform traditional ML methods [59, 60]. For example, deep neural networks have been applied
in drought prediction [61, 62, 63]. Models specifically designed for time-series data, such as LSTM,
have also been used for predicting natural drought index [64], and agricultural drought conditions
[65]. Dikshit and Pradhan [66] further combine LSTM with the convolution neural network to predict
the meteorological drought index in Eastern Australia and use SHapley Additive exPlanations to
understand model outputs. Similar CNN-LSTM combined models are also used in Yu et al. [47],
Danandeh Mehr et al. [48] and Khan and Maity [49], where Yu et al. [47] predicts vegetation Index,
Danandeh Mehr et al. [48] consider meteorological drought forecasting andKhan and Maity [49]
focus on predicting hydrological drought. Amanambu et al. [67] further adapts Transformer [37] to
accurately forecast hydrological drought in the Apalachicola River.

Compared with other studies using limited features, we consider more extensive features including
physical conditions, climate conditions, and vegetation dynamics based on the underlying mechanisms
of drought development. In particular, we consider the interplay between physical drivers and
vegetation dynamics and advance our understanding of how climate and vegetation features and
their spatial-temporal interactions regulate droughts. Thus we could learn more comprehensive
representation from both static and temporal data to improve the forecasting performance. In addition,
our method forecasts three different types of drought through multi-task learning using the shared
representation without the need for extra computations to train separate models.

A.2.3 Time-series Forecasting

Time series forecasting has been extensively studied across various domains, including climate
science [53], traffic [68], and healthcare [69]. The complex and dynamic nature of time series data
makes forecasting a challenging task. Depending on the forecasting length, time series tasks can
be categorized into long-term and short-term forecasting. Additionally, based on data types, there
are univariate, multivariate, and spatio-temporal forecasting. LSTM [43] has been widely used in
many time-series forecasting tasks. Recently, due to the tremendous success of the Transformer in
natural language processing and computer vision, it has also been widely adopted in time-series
forecasting problems. Researchers have proposed many variants of Transformers, such as Informer
[38], Autoformer [70], FEDformer [71], PatchTST [39], iTransformer [41]. Even though some
transformers are proven not effective as linear-based methods like [40] in some tasks. The ability of
Transformer to model global dependencies still makes them a popular choice for time series problems.

A.3 Addition Results

A.3.1 Variable Importance Comparison

In this section, we quantify the importance of each attribute to prediction from the perspective of
prediction accuracy. We train models by excluding the predictive features one at a time and measure
the change in model loss at the first epoch compared to a baseline model that uses all features. The
differences shows in Figure 7 illustrate the contribution of each feature to the performance of the
models. The results also prove that static features such as vegetation dynamics and climate conditions
are valuable in spatiotemporal forecasting for drought prediction tasks.

A.3.2 Ablation Study on Static Features

In this section, we analyze the impact of each component within our model design. Initially, we assess
the effectiveness of integrating static features into drought prediction tasks. To do this, we ablate the
static features and compare SPDrought with the modified version (SPDrought(t)) that does not utilize
static features. SPDrought(t) concatenates a full zero vector to the temporal representations before
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Figure 7: Relative Importance of Predictors

Table 4: Average MAE of the ablation study on multi-task learning

Model Soil Moisture Evaporative Stress Index Solar-induced chlorophyll Fluorescence Total
SPDrought(Single) 19.39±1.26 3.35±0.22 10.50±0.45 33.24±0.93

SPDrought(Multi) 21.39±0.14 4.40±0.02 12.21±0.23 38.01±0.35

the transformer decoder and is also trained for 30 epochs. Then, we also investigate the impact of the
spatial-temporal feature fusion module on model performance. So, we also conduct an additional
experiment where we remove this module (denoted as SPDrought(f)) and present results in Figure
8. The results show that combining static predictors in representation can improve the forecasting
performance across all drought prediction tasks, and the spatial-temporal feature fusion module
consistently improves the performance and yields more stable outcomes.
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Figure 8: Ablation study on static features and spatial-temporal fusion module. We run the experiment
three times and report the average MAE loss on the test set.

A.3.3 Ablation Study on Multi-task Training

Here, we compare multi-task training with single-task training and report the results in Table 4.
The ablation study highlights the efficiency of the multi-task learning approach. While training the

Table 5: Ablation study on model parameters

MAE (×10−3) SPDrought SPDrought(w/o Encoder) SPDrought(w/o Decoder) SPDrought(50)
Soil Moisture 21.39±0.14 28.20±0.17 23.87±0.33 22.46±0.14

Evaporative Stress Index 4.40±0.02 5.51±0.01 4.72±0.04 4.51±0.01

Solar-induced chlorophyll Fluorescence 12.21±0.23 17.24±0.58 12.41±0.13 12.30±0.15

Total 38.01±0.35 50.95±0.70 41.01±0.48 39.27±0.06
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Table 6: Average MAE over three runs of experiments on drought indices over 26 weeks using the
temporal split

MAE (×10−3) SPDrought Informer PatchTST DLinear iTransformer TimesNet LSTM
Soil Moisture 47.77±0.58 51.97±0.09 48.27±0.28 48.66±0.81 49.55±0.12 48.48±0.21 53.61±0.16

Evaporative Stress Index 5.94±0.02 6.37±0.06 6.52±0.04 6.69±0.10 6.39±0.03 6.20±0.03 6.48±0.04

Solar-induced chlorophyll Fluorescence 22.26±0.05 25.91±0.18 29.16±0.47 29.28±0.38 25.28±0.15 25.27±0.59 26.04±0.20

Total 75.94±0.65 84.24±0.19 83.93±0.78 84.60±1.23 81.20±0.13 79.93±0.81 86.10±0.23

SPDrought model on multiple tasks simultaneously (SPDrought(Multi)), it achieves comparable
results to training on individual tasks (SPDrought(Single)) but in about one-third the time. This
demonstrates that multi-task learning can significantly speed up the training process without a
substantial drop in accuracy, making it a valuable strategy when time and computational resources
are limited.

A.3.4 Ablation Study on Model Parameters

In this section, we explore the contribution of each component by removing the component from
SPDrought. We conduct this study by creating variants of the model: SPDrought without the
Transformer Encoder (SPDrought(w/o Encoder)), SPDrought without the Transformer Decoder (SP-
Drought(w/o Decoder)), and SPDrought with a reduced training window of 50 weeks, approximately
one year (SPDrought(50)). These variants help us understand the role of each component in capturing
temporal dependencies and learning drought patterns from historical data. As shown in Table 5, the
Transformer encoder effectively helps to capture time dependence and thus significantly improves
the overall performance. Furthermore, reducing the training window to 50 weeks (SPDrought(50))
slightly affects the model’s accuracy. It suggests that SPDrought can effectively learn drought pat-
terns even with limited historical data. However, extended historical data contributes to better model
performance, highlighting the importance of a more comprehensive dataset for training.

A.3.5 Comparison on Temporal Splitting

In the previous comparison, we evaluate each method on test pixel regions. Here, we adopt a temporal
split in the data, assessing the baseline methods and our approach for predicting drought indices over
the next 26 weeks which are not seen during training in Table 6.

Table 7: Evaluation of drought prediction by soil moisture with standard deviations (Full version of
Table 2).

SPDrought Transformer Informer PatchTST DLinear iTransformer TimesNet LSTM
Accuracy 86.26±0.11 76.09±0.11 72.16±0.34 62.24±4.63 62.85±0.01 77.18±0.04 81.54±0.91 77.45±0.26

Precision 76.80±0.17 59.94±0.19 53.40±0.57 36.94±7.70 37.96±0.02 61.74±0.07 68.98±1.51 62.18±0.43

p-value - 1.49× 10−4 9.96× 10−5 1.17× 10−2 6.78× 10−6 1.68× 10−5 9.77× 10−3 5.57× 10−4

A.4 Data Source

We collect data from the following source:

• NLDAS [19]: NLDAS is provided by NASA, collected from https://ldas.gsfc.nasa.
gov/nldas.

• SMAP [20]: SMAP is a public dataset provided by NASA, collected from https://smap.
jpl.nasa.gov/.

• ALEXI [22]: ALEXI is provided under the U.S. Geological Survey (USGS), collected from
https://lpdaac.usgs.gov/products/eco4esialexiuv001/.

• CSIF [23]: CSIF dataset is under CC BY 4.0, collected from https://figshare.com/
articles/dataset/CSIF/6387494.

• ERA5 [25]: ERA5 is provided by the European Centre for Medium-Range Weather
Forecasts under Copernicus license, data collected from https://www.ecmwf.int/en/
forecasts/dataset/ecmwf-reanalysis-v5.
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• SRTM [26]: NASA Shuttle Radar Topography Mission (SRTM) datasets are provided
under the U.S. Geological Survey (USGS), collected from https://lpdaac.usgs.gov/
products/srtmgl1v003/.

• VODCA [27]: VODCA is under CC BY 4.0.
• MODIS [28]: MODIS is provided by NASA, collected from https://modis.gsfc.nasa.
gov/.

• GLAD [29]: Global Land Analysis & Discovery (CC BY), collected from https://glad.
umd.edu/.

• NLCD [30]: Nation Land Cover Database is in the public domain, provided
under USGS, collected from https://www.usgs.gov/centers/eros/science/
national-land-cover-database.

19

https://lpdaac.usgs.gov/products/srtmgl1v003/
https://lpdaac.usgs.gov/products/srtmgl1v003/
https://modis.gsfc.nasa.gov/
https://modis.gsfc.nasa.gov/
https://glad.umd.edu/
https://glad.umd.edu/
https://www.usgs.gov/centers/eros/science/national-land-cover-database
https://www.usgs.gov/centers/eros/science/national-land-cover-database

	Introduction
	DroughtSet
	Data collection and preprocessing
	Drought indices and predictors

	Method
	Experiments
	Experimental setup
	Results

	Conclusion
	Appendix
	Baselines
	Related Work
	AI in Climate
	Drought Prediction
	Time-series Forecasting

	Addition Results
	Variable Importance Comparison
	Ablation Study on Static Features
	Ablation Study on Multi-task Training
	Ablation Study on Model Parameters
	Comparison on Temporal Splitting

	Data Source


