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Abstract

The use of large-scale vision-language datasets
is limited for object detection due to the neg-
ative impact of label noise on localization.
Prior methods have shown how such large-scale
datasets can be used for pretraining, which can
provide initial signal for localization, but is
insufficient without clean bounding-box data
for at least some categories. We propose a
technique to “vet” labels extracted from noisy
captions, and use them for weakly-supervised
object detection (WSOD), without any bound-
ing boxes. We analyze the types of label noise
in captions, and train a classifier that predicts
if an extracted label is actually present in the
image or not. Our classifier generalizes across
dataset boundaries and across categories. We
compare the classifier to nine baselines on five
datasets, and demonstrate that it can improve
WSOD without label vetting by 30% (31.2 to
40.5 mAP when evaluated on PASCAL VOC).

1 Introduction

Freely available vision-language (VL) data has
shown great promise to advance vision tasks (Rad-
ford et al., 2021; Mahajan et al., 2018; Jia et al.,
2021). Unlike smaller, curated vision-language
datasets like COCO (Lin et al., 2014), captions on
the web (Ordonez et al., 2011; Desai et al., 2021;
Changpinyo et al., 2021) only partially describe
the corresponding image, and often describe the
context behind it, including objects that do not ap-
pear in the image. We hypothesize this poses a
greater challenge for weakly-supervised object de-
tection (WSOD) than learning cross-modal repre-
sentations for image recognition (e.g. as in CLIP).
WSOD involves learning to localize objects, i.e.
predict bounding box coordinates along with the
corresponding semantic label, from image-level
labels only (i.e. using weaker supervision than
the outputs expected at test time). WSOD has pri-
marily been applied (Ye et al., 2019a; Fang et al.,
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Figure 1: Extracted labels from captions raise chal-
lenges such as missing objects or defects, annotated in
our dataset, Caption Label Noise. None of the under-
lined objects are clearly visible. We propose a method
to detect such noise and compare it to alternatives.

2022) to smaller paid-for crowdsourced vision-
language datasets like COCO (Lin et al., 2014)
and Flickr30K (Young et al., 2014).

Unlike captions written by annotators for the pur-
pose of faithfully describing an image, captions on
the web go beyond a redundant, descriptive rela-
tionship with their corresponding image. For exam-
ple, a word can be used in literal or metaphorical
ways (“that was a piece of cake") or have multi-
ple senses, of which only one corresponds to the
sense intended by the object detection vocabulary.
A caption could share a story by including con-
text that goes beyond the visual contents of the
image but mention an object name, by providing
location names and unpictured interactions with
objects as shown in Figure 1. All of this is relevant
as narration for the image but not as supervision
for precise localization. On the visual side, user-
uploaded content frequently features diverse object
presentations, including intriguing atypical or hand-
drawn objects or photos taken from within vehicles
(“in my car”). We refer to image-level labels ex-
tracted from captions, that are incorrect (object not
present in corresponding image), as visually absent
extracted labels (VAELs). We show VAELSs pose a



challenge for weakly-supervised detection.

To cope with this challenge, we propose VEIL,
short for Vetting Extracted Image Labels, to di-
rectly learn whether a label is clean or not from
caption context. We first extract potential labels
from each caption using substring matching or ex-
act match (Ye et al., 2019b; Fang et al., 2022). We
then use a transformer to predict whether each ex-
tracted label is visually present or absent. We refer
to this prediction fask as extracted label vetting.
We bootstrap labels from an ensemble of two pre-
trained object recognition models (Jocher et al.,
2021; Zhang et al., 2021), to predict image-level
pseudo-ground-truth visual presence labels on a
variety of large-scale, noisy datasets: Conceptual
Captions (Sharma et al., 2018), RedCaps (Desai
et al., 2021), and SBUCaps (Ordonez et al., 2011).
While these detectors are trained on COCO and
similar datasets, they generalize well to estimating
extracted label visual presence on in-the-wild VL
datasets; however, their predictions are better used
as targets for VEIL, rather than directly for vetting.
Once we vet the extracted labels, we use them to
train a weakly-supervised object detector.

We investigate sources of noise across three
in-the-wild datasets from diverse sources: photo-
sharing platform, social media platform, and im-
ages with alt-text (typically used for VL pretrain-
ing). We collect and will release a small dataset
with annotations on object visibility (label noise)
and object appearance defects (visual noise such as
atypical appearance). To support using language
context to filter object labels, we annotate linguis-
tic indicators of noise which explain why a VAEL
is absent from the image but included in the cap-
tion, such as describing context outside the image,
non-literal use, different word sense, etc. We com-
pare our label vetting method to nine baselines, in-
cluding standard cross-modal alignment prediction
methods (CLIP), adaptive noise reduction methods,
pseudo-label prediction, simple rule-based meth-
ods, and no vetting. Our method improves upon the
baselines both in terms of predicting extracted label
visual presence (measured with F1) and producing
cleaner training data for object detection leading to
an improvement of +10 mAP over Large Loss Mat-
ters (Kim et al., 2022) and +3 mAP improvement
over using CLIP (Radford et al., 2021) for filtering.
We show a significant improvement when training
WSOD with both clean (annotated in Pascal VOC
07) and noisy, but vetted labels from SBUCaps
(51.31 mAP) compared to naively combining clean

with noisy labels without vetting (42.06 mAP) or
only using clean labels (43.48 mAP). Lastly, VEIL
generalizes and its gains persist across datasets,
object vocabulary, and scale.

To summarize, our contributions are as follows:

1. We propose VEIL, a transformer-based ex-
tracted label, visual presence classifier.

2. VEIL outperforms language-conditioned and
language-agnostic label noise detection/cor-
rection approaches in vetting labels from a
wide set of in-the-wild datasets for weakly-
supervised object detection.

3. VEIL enables effective combination of ex-
tracted noisy and clean labels.

4. Even when VEIL is trained on one dataset/-
category, but applied to another, it shows ad-
vantages over baselines.

5. We construct the Caption Label Noise dataset.

2 Related Work

Vision-language datasets include crowdsourced
captions (Young et al., 2014; Lin et al., 2014;
Huang et al., 2016; Krishna et al., 2016) and alt-text
written by users to aid visually impaired readers
(Sharma et al., 2018; Changpinyo et al., 2021; Rad-
ford et al., 2021; Schuhmann et al., 2021), widely
used for vision-language grounding due to abun-
dance and assumed visual-text alignment. There
are also large in-the-wild datasets sourced from so-
cial media like Reddit (Desai et al., 2021) and user-
uploaded captions for photos shared on Flickr (Or-
donez et al., 2011). We show the narrative element
found in these in-the-wild datasets, captured by the
linguistic cues we investigate, impact the ability to
successfully train an object detection model.
Weakly-supervised object detection (WSOD)
is a multiple-instance learning problem to train a
model to localize and classify objects from image-
level labels (Bilen and Vedaldi, 2016; Tang et al.,
2017a; Wan et al., 2019; Gao et al., 2019; Ren
et al., 2020). Cap2Det was the first work to lever-
age unstructured text accompanying an image for
WSOD by predicting pseudo image-level labels
from captions (Ye et al., 2019b; Unal et al., 2022).
However, Cap2Det cannot operate across novel
categories as it directly predicts image-level la-
bels. Further, Cap2Det targets false negatives
(visually present, not extracted labels), not visu-
ally absent extracted labels. Detic (Zhou et al.,
2022) uses weak supervision from ImageNet (Deng
et al., 2009) and extracts labels from Conceptual



Captions (CC) to pretrain an open vocabulary ob-
ject detection model with a CLIP classifier head.
While these approaches succeed in leveraging rel-
atively clean, crowdsourced datasets like COCO,
Flickr30K and ImageNet, both see lower perfor-
mance in training with CC (Unal et al., 2022; Zhou
et al., 2022). Other prior work (Gao et al., 2022)
uses a pretrained vision-language model to gener-
ate pseudo-bounding box annotations, but always
requires clean data (COCO), and does not explicitly
study the contribution of in-the-wild datasets.

Vision-language pre-training for object detec-
tion. Image-text grounding has been leveraged
as a pretraining task for open vocabulary object
detection (Rahman et al., 2020a,b; Zareian et al.,
2021; Gu et al., 2022; Zhong et al., 2022; Du et al.,
2022; Wu et al., 2023), followed by supervision
from bounding boxes from base classes. Some
methods distill knowledge from existing pretrained
vision-language grounding models like CLIP and
ALIGN (Jia et al., 2021) to get proposals (Shi et al.,
2022) and supervision for object detection (Du
et al., 2022; Zhong et al., 2022); however the lat-
ter do not compare clean vs noisy supervision in a
setting without bounding boxes. In contrast, we per-
form weakly-supervised object detection (WSOD)
using noisy image-level labels from captions only.
WSOD is a distinct task from open-vocabulary
detection and has the advantage of not requiring
expensive bounding boxes on base classes. We
focus on rejecting labels harmful for localization.

Adaptive label noise reduction in classifica-
tion. Adaptive methods reject or correct noisy la-
bels ad-hoc during training. These methods exploit
a network’s ability to learn representations of clean
labels earlier in training, thus assuming there are
no clear visual patterns in the noisy samples corre-
sponding to a particular corrupted label, and these
associations are learnt later in training (Zhang et al.,
2017). We instead show diverse real-world datasets
contain naturally occurring structured noise, where
in many cases there are visual patterns to the cor-
rupted label. Large Loss Matters (Kim et al., 2022)
is representative of such adaptive noise reduction
methods and we find that it struggles with noisy
labels extracted from in-the-wild captions.

3 Label Noise Analysis and Dataset

We analyze what makes large in-the-wild datasets
a challenging source of labels for object detection.
Datasets analysed. RedCaps (Desai et al.,

2021) consists of 12M Reddit image-text pairs col-
lected from a curated set of subreddits with heavy
visual content. SBUCaps (Ordonez et al., 2011)
consists of 1 million Flickr photos with text de-
scriptions written by their owners. Captions were
selected if at least one prepositional phrase and 2
matches with a predefined vocabulary were found.
Conceptual Captions (CC) (Sharma et al., 2018)
contains 3M image-alt-text pairs after heavy post-
processing; named entities in captions were hy-
pernymized and image-text pairs were accepted if
there was an overlap between Google Cloud Vision
API class predictions and the caption. While less
in-the-wild, it is still less clean than COCO. These
datasets exhibit very low precision of the extracted
labels, ranging from 0.463 for SBUCaps, 0.596 for
RedCaps, to 0.737 for CC, all much lower than the
0.948 for COCO (see appx).
Extracted object labels. Given a vocabulary of
object classes, we extract a label for an image if
there is exact match between the object name and
the corresponding caption ignoring punctuation, as
in (Ye et al., 2019b; Fang et al., 2022).
Gold standard object labels. We use pseudo-
ground-truth image-level predictions from a pre-
trained image recognition model to estimate visual
presence gold standard labels because the in-the-
wild datasets do not have object annotations. We
use an object recognition ensemble with the X152-
C4 object-attribute model (Zhang et al., 2021) and
the Ultralytic YOLOV5-XL (Jocher et al., 2021).
This ensemble achieves strong accuracy, 8§2.2% on
SBUCaps, 85.6% on RedCaps, and 86.8% on CC
(see appx). We extract VAELSs by selecting images
where extracted and gold-standard labels disagree.
Note we never use bounding-box pseudo labels,
only image-level ones. Our cross-category experi-
ments show we do not require labels for all classes.
Noise annotations collected. To understand
the label noise distribution, we select 100 VAEL
examples per dataset (RedCaps, SBUCaps, CC)
and annotate four types of information:
¢ (Q1: Label Noise) How much of the VAEL ob-
ject is present (visible, partially visible, com-
pletely absent); o

* (Q2: Similar Context) If the VAEL object is
completely absent, whether traditionally co-
occurring context (“boat” and “water”), or a
semantically similar object (e.g. “cake” and
“bread”, “car” and “truck”™) is present;

* (Q3: Visual Defects) If visible/partially visi-

ble, whether the VAEL object is occluded, has



Label noise Similar context Visual defects Linguistic indicators
Dataset %Vis YoPart % Abs %Co-occ PoSim %0ccl YoParts %o Atyp %Beyond %oPast | %Non-lit YoPrep %Mod %oSense 9% Named
S 21.5 | 20.0 | 585 | 425 132 | 61.6 | 463 | 446 | 260 | 3.0 | 11.0 | 40.5 | 32.0 | 12.0 5.0
R 292|128 | 575 | 150 4.0 21.8 1222 |149.0 | 198 | 3.1 9.3 57 |266| 18.2 | 109
CC | 32.8 | 16.6 | 50.5 | 30.9 12.8 | 363 | 242 | 573 | 27.6 2.6 5.7 313 | 25.0 | 83 2.1

Table 1: Label noise distributions; “other”’/uncommon categories skipped. Similar context is only annotated for
absent objects agreed by both annotators. Visual defects are annotated over examples with full or partial visibility.
Linguistic indicators are annotated over examples with visual defects or partial/no visibility. S = SBUCaps, R =

RedCaps, and CC = Conceptual Captions.

key parts missing, or atypical appearance (e.g.
knitted animal); and

* (Q4: Linguistic Indicators) What linguistic

cues explain why the VAEL object is men-
tioned but absent, e.g. the caption discusses
events or information beyond what the image
shows (“beyond” in Tab. 1), describes the past
the extracted label is part of a prepositional
phrase and likely to describe setting not ob-
jects (e.g. “on a train”), is a noun modifying
another noun, is used in a non-literal way, has
a different word sense (e.g. “bed” vs “river
bed”), or is part of a named entity.

Two authors provide the annotations, with high
agreement: 0.76 for Q1, 0.33 for Q2, 0.45 for Q3,
and 0.58 for Q4. We calculate Cohen’s Kappa for
each option and aggregate agreement through a
weighted average for each question, with weights
derived from average option counts between the
two annotators across the three datasets. We label
the dataset Caption Label Noise, or CLaN.

In Table 1, we show what fraction of samples fall
into each annotated category, excluding “Other”,
“Unclear” and uncommon categories. We average
the distribution between the two annotators.

Statistics: Label noise. We first characterize the
visibility of objects flagged as VAELSs by the recog-
nition ensemble. We find that SBUCaps has the
highest rate of completely absent images (58.5%),
followed closely by RedCaps. SBUCaps also has
the highest rate of partially visible objects (20%).
CC has the highest full visibility (32.8%), defined
as the object from a given viewpoint having 75%
or more visibility. The high rate of absent and
partially-visible objects justifies the use of pseudo-
ground-truth labels from the recognition ensemble;
these both constitute poor training data for WSOD.

Statistics: Similar context. Certain images
with absent objects may be more harmful than
others. Prior work has shown that models ex-
ploit co-occurrences between an object and its con-
text which helps overall recognition accuracy, but

can hurt performance when that context is absent
(Singh et al., 2020). We hypothesize the inclusion
of images with this context bias without the actual
object present could affect localization especially
when supervising detection implicitly, and semanti-
cally similar context may blur decision boundaries.
Different annotators may have different references
for similarity or co-occurrence frequency, but our
annotators achieve fair agreement (x = 0.33). In
Table 1, we find high rates of co-occurring contexts
in samples with completely absent VAELSs for SBU-
Caps (42.5%) and CC (30.9%). Across all datasets,
we see a similar rate, 12%-15%, of similar context
being present instead of the VAEL.

Statistics: Visual defects. We hypothesize there
may be visual defects which caused the recogni-
tion ensemble to miss fully-visible objects. Over
the fully or partially visible subset, in CC 79% of
fully or partially visible objects have a visual de-
fect, 87% for SBUCaps, and 69% for RedCaps.
The most common defect for RedCaps and CC is
atypical (49% and 57.3%); we argue atypical exam-
ples constitute poor training data for WSOD. We
find the caption context (e.g. “acrylic illustration of
the funny mouse") may indicate the possibility of a
visual defect, further motivating the VEIL design.

Statistics: Linguistic indicators. Noun mod-
ifier is one of the most frequently occurring indi-
cators. Prepositional phrase is also significant in
SBUCaps (40.5%) and CC (31.3%). All datasets
contain many VAELs mentioned in contexts going
beyond the image, e.g.: “just got back from the
river. friend sank his truck pulling his boat out.
long story short, rip this beast” (RedCaps). We find
prevalent structured noise (pattern to the images as-
sociated with a particular noisy label) for indicators
like “noun modifier" and “prepositional phrase".

4 Method

Vetting labels (VEIL). The extracted label vetting
task aims to predict binary visual presence targets
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Figure 2: VEIL model architecture. After the vetting
layer, the masking layer masks visual presence predic-
tions for tokens not corresponding to an extracted label.

(present/absent) for each extracted label in the cap-
tion using only the caption context. We hypoth-
esize there is enough signal in the caption to vet
the most harmful label noise without the additional
processing cost of adding the visual modality or
distractions from the visual modality (similar con-
text). The method is overviewed in Fig. 2. Given
a caption, WordPiece (Wu et al., 2016) produces
a sequence of subword tokens C; each token is
mapped to corresponding embeddings, resulting in
e € R, These embeddings are passed through
a pretrained language model (BERT (Devlin et al.,
2019)), h, which includes multiple layers of multi-
head self-attention over tokens in the caption to
compute token-level output embeddings v € R?*C.
An MLP is applied to these embeddings and the
output is a sequence of visual presence predictions
per token, r € [0, 1].

v = h(e) (1
r = o(Wa(tanh(Wyv)) (2)

where W, € R%%4 and W, € R1*4,

Not all predictions in r correspond to an ex-
tracted label, so we use a mask, M € [0, 1], such
that only the predictions associated with the ex-
tracted labels are used in binary cross entropy loss.
To train this network, the pseudo-label targets are
present, y; = 1, if a pretrained image-level object
recognition model also predicts the extracted label.

L; = M; |y;logr; + (1 — y;) log(1 — Ti)} 3)
e
L=y 2L @

During inference, if an extracted label was mapped
to multiple tokens (e.g. “teddy bear"), the predic-
tions are averaged for a single presence prediction.

Weakly-supervised object detection. To test
the ability of extracted label filtering or correction
methods for weakly-supervised object detection,

we train MIST (Ren et al., 2020). MIST extends
WSDDN (Bilen and Vedaldi, 2016) and OICR
(Tang et al., 2017b) which combine class scores
for a large number of regions in the image to com-
pute an image-level prediction (used for training).
VEIL uses image-level pseudo training data from
the in-the-wild datasets to train the vetting model,
and we want to see how its ability to vet labels for
WSOD generalizes to unseen data. Thus, we use
the test splits of the in-the-wild datasets to train
MIST, as they are unseen by all vetting methods.
We do not evaluate the WSOD model on these in-
the-wild datasets, but on disjoint datasets which
have bounding boxes (PASCAL VOC and COCO).

S Experiments

We show the ability of VEIL to exceed language-
agnostic filtering and image-based filtering meth-
ods in extracted label vetting, to vet noisy extracted
labels prior to weakly-supervised object detection
training and to remove structured noise. We also
benchmark the generalization ability of VEIL in
cross-dataset and cross-category settings.

5.1 Experiment Details

We use three in-the-wild image-caption datasets:
SBUCaps (Ordonez et al., 2011), RedCaps (Desai
et al., 2021), Conceptual Captions (Sharma et al.,
2018); and three crowdsourced datasets that fall
into descriptive: COCO (Lin et al., 2014), VIST-
DII (Huang et al., 2016)) and narrative: VIST-SIS
(Huang et al., 2016). Each in-the-wild dataset and
VIST are reduced to a subset of image-caption pairs
where there is an substring match with a COCO cat-
egory. This subset is split into 80%-20% train-test;
see appx for image-caption counts. The WSOD
models are trained on SBUCaps with labels vet-
ted by different methods, and evaluated on PAS-
CAL VOC 2007 test (Everingham et al., 2010) and
COCO val 2014 (Lin et al., 2014).

5.2 Methods Compared

For VEIL, we use the convention VEIL-DatasetX
to signify that VEIL is trained on the train-split
of DatasetX. We group the methods we com-
pare against into language-based, visual-based,
and visual-language methods. They are category-
agnostic, except for Cap2Det (Ye et al., 2019b)
and Large Loss Matters (LLM) (Kim et al., 2022)
which must be applied on closed vocabulary.

No Vetting accepts all extracted labels (recall=1).



Method SBUCaps | RedCaps | CC VIST VIST- | VIST- | COCO | AVG
DII SIS

No Vetting 0.633 0.747 0.849 0.853 0.876 0.820 0.973 0.822

VL Global CLIP (Radford et al., 2021) 0.604 0.583 0.569 0.668 0.625 0.683 0.662 0.628
Global CLIP - E (Radford etal., 2021) | 0.594 0.569 0.534 0.654 0.613 0.660 0.640 0.609

Local CLIP (Radford et al., 2021) 0.347 0.651 0.363 0.427 0.476 0.418 0.464 0.449

\Y% Local CLIP - E (Radford et al.,, 2021) | 0.760 0.840 0.597 0.759 0.695 0.812 0.788 0.750
Reject Large Loss (Kimetal., 2022) | 0.667 0.790 0.831 0.782 0.794 0.743 0.896 0.786
Accept Descriptive 0.491 0.413 0.740 0.687 0.844 0.264 0.935 0.625

L Reject Noun Mod. 0.618 0.703 0.814 0.823 0.847 0.788 0.906 0.786
Cap2Det (Ye et al., 2019b) 0.639 0.758 0.846 0.826 0.854 0.774 0.964 0.809
VEIL-Same Dataset 0.809 0.890 0.909 0.871 0.892 0.816 0.973 0.884
VEIL-Cross Dataset 0.716 0.793 0.850 0.875 0.892 0.830 0.958 0.842

Table 2: Extracted label vetting F1 Performance. Bold indicates best performance in each column, and underlined
second-best. (V) signifies method uses the visual modality and (L) signifies use of language.

Global CLIP and CLIP-E use the ViT-B/32 pre-
trained CLIP (Radford et al., 2021) model. To
enhance alignment (Hessel et al., 2021), we add
the prompt “A photo depicts” to the caption and
calculate the cosine similarity between the image
and text embeddings generated by CLIP. We train
a Gaussian Mixture Model with two components
on dataset-specific cosine similarity distributions.
During inference, we accept image-text pairs with
predicted components aligned with higher visual-
caption cosine similarity. For the ensemble variant
(CLIP-E), we prepend multiple prompts to the cap-
tion, and use maximum cosine similarity.

Local CLIP and CLIP-E use cosine similarity be-
tween the image and the prompt “this is a photo of
a” followed by the extracted label. Only extracted
labels are filtered rather than entire captions, mak-
ing this image-conditioned, not image-language
conditioned vetting like Global CLIP. Local CLIP-
E ensembles prompts.

Reject Large Loss. LLM (Kim et al., 2022) is
a language-agnostic adaptive noise rejection and
correction method. To test its vetting ability, we
simulate five epochs of WSOD training (Bilen and
Vedaldi, 2016) and consider label targets with a loss
exceeding the large loss threshold as “predicted to
be visually absent” after the first epoch. The thresh-
old uses a relative delta controlling the rejection
rate (set as 0.002 in (Kim et al., 2022)).

Accept Descriptive. We train a logistic regression
model to predict whether a VIST (Huang et al.,
2016) caption comes from the DII (descriptive) or
SIS (narrative) split. The input vector to this logis-
tic regression model consists of part of speech tags
(e.g. proper noun, adjective, verb - past tense, etc)
present in the caption. We accept extracted labels
from captions with descriptiveness over 0.5.

Reject Noun Mod. Since an extracted label could
be modifying another noun (“car park"), a simple
baseline is to reject an extracted label if the POS
label is an adjective or is followed by a noun.
Cap2Det. We reject a label if it is not predicted by
the Cap2Det (Ye et al., 2019b) classifier.

5.3 Extracted Label Vetting Evaluation

VEIL selects cleaner labels compared to no vet-
ting and other methods, even when not trained
on target data. Tab. 9 shows the F1 score which
combines the precision and recall of their vet-
ting (shown separately in appx). Most language-
based methods improve or maintain the F1 score
of No Vetting, even though it has perfect recall,
except Accept Descriptive. Rule-based methods
and Cap2Det perform strongly, but are outper-
formed by both VEIL-Same Dataset (trained and
tested on the same dataset) and VEIL-Cross Dataset
(trained on a different dataset than that shown in
the column; we show the best cross-dataset result).
VEIL-Cross Dataset outperforms other language-
based approaches, showing VEIL’s generalization
potential, except on COCO where Cap2Det does
slightly better. Image-and-language-conditioned
approaches (Global CLIP/CLIP-E) make label de-
cisions based on the overall caption, so certain lan-
guage can affect the alignment even if the object
is actually visually present. Among image-based
approaches for label vetting, Local CLIP benefits
significantly from using an ensemble of prompts
compared to Global CLIP; ensembling is well doc-
umented in improving zero-shot image recognition
in prior work (Radford et al., 2021). Reject Large
Loss has the strongest F1 score among the image-
based methods, but worse than VEIL.

Using CLaN, we find that VEIL is stronger
than CLIP-based vetting at rejecting different



Data Vetting Method Label noise | Similar context Visual defects Linguistic indicators
YoPart % Abs %Co-occ %Sim %0Occl YoParts % Atyp %Mod %Prep %eNon-lit %Sense %Named %Beyond
SBUCaps VEIL-Same Dataset | 85.0 | 94.7 87.0 80.0 | 81.1 90.6 87.2 95.2 93.9 90.6 100.0 100.0 88.8
LocalCLIP-E 51.5 | 80.7 71.3 70.0 | 52.7 52.1 65.6 63.8 70.6 82.9 96.2 62.5 82.4
RedCaps VEIL-Same Dataset | 91.7 | 74.1 71.4 85.7 | 833 89.0 68.3 74.8 90.0 66.7 88.9 80.9 76.3
LocalCLIP-E 52.8 | 78.4 40.0 38.1 47.0 45.0 232 68.4 63.3 70.8 70.6 90.0 76.7
cC VEIL-Same Dataset | 60.6 | 83.0 81.2 55.0 | 549 53.6 56.3 64.2 73.7 81.7 100.0 - 77.4
LocalCLIP-E 45.0 | 89.1 74.9 575 | 499 50.0 24.1 73.3 63.9 91.7 100.0 86.8

Table 3: VAEL recall on CLaN. Bold indicates best performance per column/dataset. We omit named entity results
for CC as it substitutes them with predefined categories (e.g. person, org.).

forms of label noise. Captions alone contain cues
about noise. We hypothesize that Local CLIP-E
would do well at vetting VAELSs explained by lin-
guistic cues like non-literal and beyond the image
as they are likely to have low image-caption cosine
similarity. We also hypothesize that VEIL would
do better than LocalCLIP-E at vetting VAELs that
are noun modifiers or in prepositional phrases,
which can be easily picked up from the cap-
tion. Further, similar context can sometimes be
explained by noun modifiers and prepositional
phrases, but Local CLIP-E may be oblivious to the
context differing from the VAEL category. We eval-
uate these hypotheses on the CLaN dataset in Tab. 3.
We omit “visible” VAEL samples as these may be
pseudo-label errors, and the “past” linguistic indi-
cator due to too few samples. We find that VEIL
vets truly absent objects for SBUCaps much better
than Local CLIP-E, and comparably for RedCaps
or CC. It vets partially visible objects better than
LocalCLIP-E by a significant margin; these can be
harmful in WSOD which is already prone to part
domination (Ren et al., 2020). VEIL also recog-
nizes that similar context to, rather than the actual
VAEL category, are present. VEIL performs better
at vetting visible objects that have visual defects
which can be mentioned in caption context (“acryl-
lic illustration of dog"). As expected, we find that
for all datasets, VEIL vets VAELSs from preposi-
tional phrases better than Local CLIP-E, and noun
modifiers for SBUCaps and RedCaps. Local CLIP-
E does better on “beyond the image" and non-literal
VAELSs except on SBUCaps where VEIL excels.

VEIL generalizes across training sources and
is complementary to CLIP-based vetting. We
train VEIL on one dataset (or multiple) and eval-
uate on an unseen target. We find that combining
multiple sources improves precision (Tab. 4). We
also try ensembling by averaging predictions be-
tween LocalCLIP-E and VEIL-Cross Dataset, and
find that its precision and recall is highest among
the VEIL variants and Local CLIP-E. This means

Method Train Dataset Prec/Rec F1

No Vetting - 0.463/1.000 | 0.633
VEIL SBUCaps 0.828/0.791 | 0.809
VEIL RedCaps (R) 0.668/0.759 | 0.710
VEIL CC 0.585/0.846 | 0.692
VEIL R, CC 0.689/0.722 | 0.705
LCLIP-E WIT 0.708 /0.820 | 0.760
VEIL+LCLIP-E | R,CC,WIT 0.733/0.848 | 0.786

Table 4: Source generalization of VEIL; vet on SBU-
Caps. LCLIP-E is Local CLIP-E. CLIP trained on WIT.

Method Prec/Rec F1
No Vetting | 0.323/1.000 | 0.488
1D 0.651/0.656 | 0.654
OOD 0.585/0.556 | 0.570

Table 5: VEIL category generalization on SBUCaps.

that VEIL and Local CLIP-E can be used together.
There is still a significant gap between VEIL-Same
Dataset and even the ensembled model in terms
of precision and F1. We leave improving source
generalizability to future research.

VEIL produces cleaner labels even on unseen
object categories. We define an in-domain cate-
gory set (ID) of 20 randomly picked categories
from COCO (Lin et al., 2014), and an out-of-
domain category set (OOD) consisting of the 60
remaining categories. We restrict the labels using
these limited category sets and create two train sub-
sets, ID and OOD from SBUCaps train and one 1D
test subset from SBUCaps fest. We find that trans-
ferring VEIL-OOD to unseen categories improves
F1 score compared to no vetting as shown in Ta-
ble 5. We hypothesize training on more categories
could improve category generalization, but leave
further experiments to future research.

5.4 TImpact on Weakly Sup. Object Detection

We select the most promising vetting methods from
the previous section and use them to vet labels from
an in-the-wild dataset’s, SBUCaps, unseen (fest)
split and then train WSOD models using the vetted
labels. Then, these WSOD models are evaluated
on detection benchmarks like VOC-07 and COCO-



Method VOC | VOC | COCO
Det. Rec. Det
mAPso| mAP mAPs5qo

40.0 | 69.0 | 9.2

GT* (upper bound)
No Vetting 312 | 653 | 7.7
Large Loss (Kim et al., 2022) 309 | 653 | 7.5
LocalCLIP-E (Radford et al., 2021) | 37.1 | 70.7 | 7.9
VEIL-R,CC 378 | 7114 | 8.6
VEIL-SBUCaps 40.5 | 743 | 104

Table 6: Impact of vetting on WSOD performance on
VOC-07 and COCO-14. (GT*) directly vets labels using
the pretrained recognition models used to train VEIL.

14. We show two different VEIL methods, VEIL-
SBUCaps and VEIL-RedCaps,CC to demonstrate
the generalizability of VEIL on WSOD. Note that
Large Loss Matters (Kim et al., 2022) has been re-
laxed to correct visually absent extracted labels, in
addition to unmentioned but present objects (false
negatives). After vetting, we remove any images
without labels and since category distribution fol-
lows a long-tail distribution, we apply weighted
sampling (Mikolov et al., 2013). We train MIST
(Ren et al., 2020) for 50K iter. with batch size 8.

VEIL vetting leads to better detection and
recognition capabilities than vetting through
CLIP, an adaptive label noise correction method
(Large Loss Matters) or even directly using its
bootstrapped data. We find that VEIL-SBUCaps
performs the best as shown in Tab. 6. In partic-
ular, it boosts the detection performance of No
Vetting by 9.3% absolute and 29.8% relative gain
(40.5/31.2% mAP) on VOC-07 and by 35% rela-
tive gain (10.4/7.7% mAP) on COCO. Interestingly,
VEIL-SBUCaps and VEIL-Redcaps,CC have a
similar performance improvement, despite VEIL-
Redcaps,CC (best VEIL cross-dataset result on
SBUCaps) having poorer performance than Lo-
cal CLIP-E in Tab. 4. Additionally, directly using
predictions from the pretrained object recognition
model (used to produce visual presence targets for
VEIL at the image level) to vet (GT* method in the
table) performs worse than VEIL in both detection
and recognition showing VEIL’s generalization
from its bootstrapped data.

Structured noise negatively impacts localiza-
tion. Using the CLaN dataset, we observe one type
of structured noise found from extracting labels
from prepositional phrases, specifically where im-
ages were taken inside vehicles. We hypothesize
such structured noise would have significant impact
on localization for the vehicle objects. We use Cor-
Loc to estimate the localization ability for vehicles

Clean Labels | Noisy Labels | WS | Vetting | mAPsq
v n/a 43.48
v v 42.06
v v v 51.31
v v v v 54.76

Table 7: Mixed supervision from clean (VOC-07 train-
val) and noisy labels (SBUCaps). Eval on VOC-07 test.

in VOC-07 (“aeroplane”, ‘bicycle", “boat", “car",
“bus", “motorbike", “train"). We observe a Cor-
Loc of 60.2% and 54.1% for VEIL-SBUCaps and
LocalCLIP-E, respectively. This shows structured
noise can have strong impact on localization.

Naively mixing clean and noisy samples with-
out vetting for WSOD leads to worse perfor-
mance than only using clean samples. Vetting
in-the-wild samples (noisy) with VEIL is essen-
tial to improving performance. We study how
vetting impacts a setting where labels are drawn
from both annotated image-level labels from 5K
VOC-07 train-val (Everingham et al., 2010) (clean)
and 50K in-the-wild SBUCaps (Ordonez et al.,
2011) captions (noisy). In Tab. 7 we observe that
naively adding noisy supervision to clean supervi-
sion actually hurts performance compared to only
using clean supervision. After vetting the labels ex-
tracted from SBUCaps (Ordonez et al., 2011) using
VEIL-SBUCaps, we observe that the model sees a
17.9% relative improvement (51.31/43.48% mAP)
to using only clean supervision from VOC-07. We
see further improvements when applying weighted
sampling (WS) to the added, class imbalanced data
(54.76/51.31% mAP).

VEIL improves WSOD performance even at
scale. We sampled the held-out RedCaps dataset
in increments of 50K samples up to a total of 200K
samples. For each scale, we train two WSOD mod-
els with weighted sampling using the unfiltered
samples and those vetted with VEIL-SBUCaps,CC.
The mAP at 50K, 100K, 150K, and 200K sam-
ples is 4.2, 10.7, 12.0, 12.9 with vetting and 1.9,
8.2, 10.6, 10.4 without vetting. The non-vetted
model’s performance declines after 150K samples.
This indicates vetting can adapt to scale better even
when VEIL is trained on other datasets. The trend
suggests that vetting will continue outperforming
no-vetting even when dataset sizes increase.

Conclusion. We showed visually absent ex-
tracted labels are common in the wild, VEIL which
uses language context to infer if mentioned objects
are visually present, and the benefits of its vetting.
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A Appendix

We provide supplemental materials to our main
text.

First, we present additional dataset details. Then,
we provide a detailed table of the vetting precision
and recall of all methods described in the main text,
for which we show F1 performance in Table 9 of
the main text. Furthermore, we show more com-
prehensive cross-dataset ablations, such as adding
more training datasets and training with a special
token.

We discuss our hyperparameter selection for
WSOD in further detail and show additional met-
rics of the WSOD models on the COCO-14 bench-
mark presented in the main text.

Finally, we showcase the vetting ability of VEIL
in comparison to other approaches through qualita-
tive results, along with additional examples from
the WSOD models trained using vetted training
data.

A.1 Vetting Dataset Details

Dataset Train Test
VIST 20339 5086
VIST-DII 12106 3028
VIST-SIS 8233 2060
COCO 216096 | 94004
SBUCaps | 166986 | 41747
RedCaps | 845333 | 211334
CcC 350043 | 87511

Table 8: The number of samples per split and dataset af-
ter filtering captions based on exact match with COCO
objects. Note VIST and COCO have multiple captions
per image; for the sake of vetting, we evaluate on ex-
tracted labels from all captions.

While the overall image-text pairs are 12M pairs
for RedCaps, 3M pairs for CC, 1M for SBUCaps,
500K pairs for COCO, 40K and 60K pairs for VIST-
DII and VIST-SIS, respectively, after extracting
labels using exact match with COCO categories,
there are a number of captions which don’t have
any matches. We filter out those captions. In Table
8 we provide counts after filtering for both vetting
train and test splits of each dataset.
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Non-Literal:

did a wen trim for the first
time and it was a piece of
ake

larity:
[..] put a few drops of
orange oil on it for good

on a boat the
other day.

{boat}

Extracted Labels from
Each Image

{orange} {cake}

No Vetting (Same as
Above)

Reject Noun Modifier {boat} {} {cake}
LocalCLIP-E {boat} {orange} {
VEIL-SBUCapsCC { { o
VEIL-RedCaps { i o

{boat} {orange} {cake}

Figure 3: Qualitative examples of extracted labels after
vetting on RedCaps-Test. These are additional com-
pletely absent VAEL examples from CLaN with their
linguistic indicators and similar context annotations, and
only VEIL-based methods are able to overcome these
three noise types.

A.2 Vetting Precision/Recall

Table 9 in the main text showed the F1 on the ex-
tracted label vetting task, from twelve methods. In
Table 9 here, we separately show Precision and
Recall on the same task.

A.3 Cross-Dataset Ablations

Table 10 is included as reference which shows that
precision in the cross dataset setting is always better
than no vetting with the exception of COCO.

Combining multiple datasets. We find that
VEIL is able to leverage additional datasets to an
extent. For example, combining SBUCaps and
CC leads to significant improvements (7-16% rel-
ative) in F1 as shown in Table 11 and, combining
SBUCaps and Redcaps in training improves perfor-
mance on both validation sets. When combining
all datasets, only the non-in the wild datasets see
an improved performance.

Using special token. We test VEILgy which
inserts a special token [EM_LABEL] before each ex-
tracted label in the caption to reduce the model’s re-
liance on category-specific cues and improve gener-
alization to other datasets. We find that using VEIL
w/ ST on average improves F1 by 1 pt compared to
just VEIL when transferring to other datasets. This
comes at a tradeoff with respect to the performance
on the same dataset; however CC w/ ST improves
performance on all datasets.

A4 WSOD Implementation Details

We used 4 RTX A5000 GPUs and trained for 50k
iterations with a batch size of 8, or 100k iterations
on 4 Quadro RTX 5000 GPUs with a batch size of
4 and gradient accumulation (parameters updated



SBUCaps RedCaps Conceptual Captions
Method PREC/REC F1 PREC/REC F1 PREC/REC F1
No Vetting 0.463/1.000 | 0.633 | 0.596/1.000 | 0.747 | 0.737/1.000 | 0.849
VL Global CLIP (Radford et al., 2021) 0.531/0.700 | 0.604 | 0.618/0.551 | 0.583 | 0.753/0.458 | 0.569
Global CLIP - E (Radford et al., 2021) 0.526/0.683 | 0.594 | 0.625/0.522 | 0.569 | 0.745/0.417 | 0.534
Local CLIP (Radford et al., 2021) 0.588/0.246 | 0.347 | 0.723/0.591 | 0.651 | 0.750/0.240 | 0.363
v | Local CLIP - E (Radford et al., 2021) 0.708/0.820 | 0.760 | 0.770/0.924 | 0.840 | 0.842/0.462 | 0.597
Reject Large Loss (Kim et al., 2022) 0.530/0.898 | 0.667 | 0.700/0.908 | 0.790 | 0.806/0.858 | 0.831
Accept Descriptive 0.449/0.542 | 0.491 | 0.561/0.326 | 0.413 | 0.739/0.741 | 0.740
L | Reject Noun Mod. 0.517/0.769 | 0.618 | 0.644/0.776 | 0.703 | 0.765/0.870 | 0.814
Cap2Det (Ye et al., 2019a) 0.500/0.884 | 0.639 | 0.633/0.945 | 0.758 | 0.758/0.956 | 0.846
VEIL-Same Dataset 0.828/0.791 | 0.809 | 0.855/0.929 | 0.890 | 0.884/0.935 | 0.909
VEIL-Cross Dataset 0.636/0.811 | 0.713 | 0.747/0.847 | 0.793 | 0.834/0.866 | 0.850
VIST VIST-DII VIST-SIS
Method PREC/REC F1 PREC/REC F1 PREC/REC F1
No Vetting 0.74471.000 | 0.853 | 0.779/1.000 | 0.876 | 0.695/1.000 | 0.820
VL Global CLIP (Radford et al., 2021) 0.772/0.589 | 0.668 | 0.788/0.518 | 0.625 | 0.754/0.624 | 0.683
Global CLIP - E (Radford et al., 2021) 0.769/0.569 | 0.654 | 0.785/0.504 | 0.613 | 0.741/0.595 | 0.660
Local CLIP (Radford et al., 2021) 0.752/0.298 | 0.427 | 0.787/0.341 | 0476 | 0.738/0.292 | 0.418
v | Local CLIP - E (Radford et al., 2021) 0.874/0.671 | 0.759 | 0.886/0.572 | 0.695 | 0.833/0.793 | 0.812
Reject Large Loss (Kim et al., 2022) 0.755/0.811 | 0.782 | 0.792/0.796 | 0.794 | 0.700/0.791 | 0.743
Accept Descriptive 0.755/0.631 | 0.687 | 0.784/0.913 | 0.844 | 0.686/0.163 | 0.264
L | Reject Noun Mod. 0.775/0.879 | 0.823 | 0.813/0.883 | 0.847 | 0.716/0.875 | 0.788
Cap2Det (Ye et al., 2019a) 0.781/0.877 | 0.826 | 0.823/0.887 | 0.854 | 0.704/0.859 | 0.774
VEIL-Same Dataset 0.789/0.971 | 0.871 | 0.819/0.992 | 0.892 | 0.690/0.998 | 0.816
VEIL-Cross Dataset 0.835/0.920 | 0.875 | 0.870/0.915 | 0.892 | 0.765/0.920 | 0.830
COCO
Method PREC/REC F1
No Vetting 0.948/1.000 | 0.973
VL Global CLIP (Radford et al., 2021) 0.945/0.509 | 0.662
Global CLIP - E (Radford et al., 2021) 0.931/0.487 | 0.640
Local CLIP (Radford et al., 2021) 0.951/0.307 | 0.464
v | Local CLIP - E (Radford et al., 2021) 0.972/0.663 | 0.788
Reject Large Loss (Kim et al., 2022) 0.963/0.837 | 0.896
Accept Descriptive 0.948/0.923 | 0.935
Accept Narrative 0.942/0.077 | 0.143
L | Reject Noun Mod. 0.958/0.859 | 0.906
Cap2Det (Ye et al., 2019a) 0.978 /0.950 | 0.964
VEIL-Same Dataset 0.948 /1.000 | 0.973
VEIL-Cross Dataset 0.975/0.942 | 0.958

Table 9: Extracted Label Vetting Evaluation Metrics. Bold indicates best result in column, and in the recall columns
No Vetting is excluded as it always has perfect recall.

Train Dataset(s) | ST | DII-VIST SIS-VIST COCO VIST SBUCaps RedCaps CC
No Vetting 0.779/1.000 | 0.695/1.000 | 0.948/1.000 | 0.741/1.000 | 0.463/1.000 | 0.596/1.000 | 0.737/1.000
SBUCaps 0.895/0.717 | 0.831/0.609 | 0.979/0.647 | 0.878/0.690 | 0.828/0.791 | 0.808/0.684 | 0.844/0.831
RedCaps (R) 0.865/0.794 | 0.787/0.752 | 0.975/0.824 | 0.839/0.785 | 0.668/0.759 | 0.855/0.929 | 0.837/0.709
CC 0.863/0.902 | 0.759/0.917 | 0.974/0.925 | 0.824/0.914 | 0.585/0.846 | 0.713/0.844 | 0.884/0.935
VIST 0.826/0.978 | 0.729/0.949 | 0.958/0.926 | 0.789/0.971 | 0.518/0.939 | 0.658/0.883 | 0.771/0.981
COCO 0.779/1.000 | 0.695/1.000 | 0.948/1.000 | 0.741/1.000 | 0.463/1.000 | 0.599/1.000 | 0.739/1.000
SBUCaps,CC 0.885/0.840 | 0.788/0.837 | 0.978/0.893 | 0.847/0.838 | 0.923/0.950 | 0.762/0.822 | 0.965/0.978
R,CC 0.876/0.888 | 0.801/0.784 | 0.976/0.918 | 0.855/0.852 | 0.691/0.720 | 0.845/0.836 | 0.892/0.914
SBUCaps,R 0.876/0.779 | 0.789/0.697 | 0.976/0.791 | 0.849/0.758 | 0.892/0.940 | 0.923/0.958 | 0.846/0.785
SBUCaps v | 0.885/0.798 | 0.817/0.719 | 0.977/0.745 | 0.866/0.768 | 0.790/0.814 | 0.782/0.754 | 0.834/0.866
R v 1 0.880/0.744 | 0.809/0.697 | 0.976/0.776 | 0.856/0.721 | 0.686/0.724 | 0.843/0.901 | 0.831/0.526
CC v 1 0.868/0.913 | 0.765/0.920 | 0.975/0.942 | 0.835/0.920 | 0.609/0.841 | 0.721/0.862 | 0.922/0.955
SBUCaps,CC v 1 0.870/0.915 | 0.776/0.881 | 0.976/0.932 | 0.830/0.905 | 0.754/0.821 | 0.747/0.847 | 0.891/0.943
R,CC v | 0.862/0.922 | 0.779/0.842 | 0.971/0.944 | 0.837/0.894 | 0.649/0.797 | 0.793/0.887 | 0.868/0.931
SBUCaps,R v’ | 0.877/0.807 | 0.805/0.712 | 0.973/0.856 | 0.844/0.828 | 0.826/0.724 | 0.804/0.905 | 0.839/0.771
ALL 0.860/0.969 | 0.779/0.903 | 0.973/0.990 | 0.832/0.947 | 0.713/0.829 | 0.803/0.898 | 0.874/0.941

Table 10: Cross Dataset Vetting Precision and Recall Performance on visual presence validations sets from different
sources (DII-VIST...CC). All methods improve precision compared to no vetting.
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Train Dataset | ST | DII-VIST | SIS-VIST | COCO | VIST | SBUCaps | RedCaps CC
No Vetting 0.876 0.820 0.973 0.851 0.633 0.747 0.849
SBUCaps 0.796 0.703 0.779 | 0.773 0.809 0.741 0.837
R 0.828 0.769 0.893 0.811 0.710 0.890 0.768
CcC 0.882 0.830 0.949 | 0.867 0.692 0.773 0.909
VIST 0.895 0.825 0.942 0.871 0.668 0.754 0.863
COCoO 0.876 0.820 0.973 | 0.851 0.633 0.749 0.850
SBUCaps,CC 0.862 0.812 0.933 0.843 0.937 0.791 0.972
R,CC 0.882 0.793 0.946 | 0.854 0.705 0.841 0.903
SBUCaps,R 0.825 0.741 0.874 | 0.801 0.915 0.940 0.810
SBUCaps v 0.839 0.765 0.846 | 0.814 0.802 0.767 0.850
R v 0.806 0.749 0.865 0.783 0.705 0.871 0.644
CC v 0.890 0.836 0.958 0.875 0.707 0.785 0.938
SBUCaps,CC | v 0.892 0.825 0.954 | 0.866 0.786 0.793 0.916
R,CC v 0.891 0.809 0.957 | 0.865 0.716 0.837 0.899
SBUCaps,R v 0.841 0.756 0911 0.836 0.772 0.851 0.803
ALL 0.911 0.836 0.981 | 0.886 0.767 0.848 0.906

Table 11: Cross Dataset Vetting F1 Performance on visual presence validations sets from different sources (DII-
VIST...CC). Bold indicates if result is better than no vetting. Train data containing the same source as the validation
is highlighted in yellow.

mAP, IoU mAP, Area

0.5:095 05 0.75 S M L
GT* 4.19 9.17 340 | 1.10 434 6.76
No Vetting 3.24 7.70 237 | 1.06 4.00 5.08
Large Loss (Kim et al., 2022) 3.11 7.54 2151092 3.80 4.88
LocalCLIP-E (Radford et al., 2021) 3.66 777 3.08 1079 396 5.96
VEILgT-R,CC 3.90 8.60 3.14 ]| 093 425 6.28
VEIL-SBUCaps 4.89 10.37 4.20 | 1.26 5.24 7.53

Table 12: COCO-14 benchmark for WSOD models trained with various vetting methods. (GT*) directly vets
labels using the pretrained object detectors which were used to train VEIL. Bold indicates best performance in each
column and underline indicates second best result in the column.

every two iterations to simulate a batch size of 8). Relative Delta | Pascal VOC-07 mAP5q
Learning Rates. We trained four models without 0.002 28.25

vetting on SBUCaps with learning rates from ‘le- 0.01 30.93

5’ till “‘le-2’, for each order of magnitude, and 0.05 28.11

observed that the model trained with a learning rate _ _
of “le-2” had substantially better Pascal VOC-07 Table 13: Relative delta hyperparameter ablation

detection performance and used this learning rate

for all the WSOD models trained on SBUCaps. We  recommended in (Kim et al., 2022). We used the

applied a similar learning rate selection method  best result in Table 13 when reporting results in the

for WSOD models trained on RedCaps, except we  main paper.

tested over every half order of magnitude and found

that ‘5e-5" was optimal when training on RedCaps. A.5 WSOD Benchmarking on Additional
Relative Delta. In Large Loss Matters (LLM) COCO Metrics

(Kim et al., 2022), relative delta controls how fast ~ In our main text we compared the average preci-

the rejection rate will increase over training. To  sion of the model across all the classes and all the

find the best relative delta, we tested over three ini-  IoU (Intersection over Union) thresholds from 0.5

tializations, with rel_delta = 0.002 as the setting  to 0.95. We show mAP at specific thresholds 0.5
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and 0.75 in Table 12. We see that cross dataset
VEIL vetting performs relatively 32% better than
no vetting in a stricter IoU (0.75). The mAP met-
ric can be further broken down by area sizes of
ground truth bounding boxes, which is denoted
by S, M, and L. VEIL-based vetting outperforms
the rest in Medium (6% better than best non-VEIL
vetting) and Large objects (5% better than best non-
VEIL vetting); while VEIL-Same Dataset still per-
forms best on small objects, VEIL-Cross Dataset
performs slightly worse than no vetting.

A.6 Additional Qualitative Results

Vetting Qualitative Examples. Using annotations
from CLaN, we provide qualitative examples com-
paring the vetting capability of methods on VAELs
with common linguistic indicators (prepositional
phrase, different word sense, non-literal) found in
RedCaps in Figure 3.

WSOD Qualitative Examples. In Figure 4, we
present further qualitative evidence on the impact
of different vetting methods on weakly supervised
object detection. There are varying degrees of part
and contextual bias from all methods; however,
No Vetting has the most pronounced part domi-
nation and context bias as shown by its detection
of bicycle wheels and car doors (top two rows),
and misidentifying a child as a chair (bottom row)
and detections covering both boat and water. Both
VEIL methods outperform the rest of the models
in detecting smaller objects (see first two rows).
Local CLIP-E misses smaller objects in the back-
ground (first two rows) and also has part domina-
tion (bicycle).
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No Vetting Large Loss CLIP VEILs-R,CC VEIL-SBUCaps

Figure 4: Detections (blue bounding box) from WSOD models trained with various vetting methods (top row)
indicate that training with either VEIL-based vetting method (two rightmost columns) leads to similar detection
capability on VOC-07 (Everingham et al., 2010). The categories shown by row (from top to bottom) are: horse, car,
boat, bicycle, chair.
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