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Abstract

The use of large-scale vision-language datasets001
is limited for object detection due to the neg-002
ative impact of label noise on localization.003
Prior methods have shown how such large-scale004
datasets can be used for pretraining, which can005
provide initial signal for localization, but is006
insufficient without clean bounding-box data007
for at least some categories. We propose a008
technique to “vet” labels extracted from noisy009
captions, and use them for weakly-supervised010
object detection (WSOD), without any bound-011
ing boxes. We analyze the types of label noise012
in captions, and train a classifier that predicts013
if an extracted label is actually present in the014
image or not. Our classifier generalizes across015
dataset boundaries and across categories. We016
compare the classifier to nine baselines on five017
datasets, and demonstrate that it can improve018
WSOD without label vetting by 30% (31.2 to019
40.5 mAP when evaluated on PASCAL VOC).020

1 Introduction021

Freely available vision-language (VL) data has022

shown great promise to advance vision tasks (Rad-023

ford et al., 2021; Mahajan et al., 2018; Jia et al.,024

2021). Unlike smaller, curated vision-language025

datasets like COCO (Lin et al., 2014), captions on026

the web (Ordonez et al., 2011; Desai et al., 2021;027

Changpinyo et al., 2021) only partially describe028

the corresponding image, and often describe the029

context behind it, including objects that do not ap-030

pear in the image. We hypothesize this poses a031

greater challenge for weakly-supervised object de-032

tection (WSOD) than learning cross-modal repre-033

sentations for image recognition (e.g. as in CLIP).034

WSOD involves learning to localize objects, i.e.035

predict bounding box coordinates along with the036

corresponding semantic label, from image-level037

labels only (i.e. using weaker supervision than038

the outputs expected at test time). WSOD has pri-039

marily been applied (Ye et al., 2019a; Fang et al.,040

Figure 1: Extracted labels from captions raise chal-
lenges such as missing objects or defects, annotated in
our dataset, Caption Label Noise. None of the under-
lined objects are clearly visible. We propose a method
to detect such noise and compare it to alternatives.

2022) to smaller paid-for crowdsourced vision- 041

language datasets like COCO (Lin et al., 2014) 042

and Flickr30K (Young et al., 2014). 043

Unlike captions written by annotators for the pur- 044

pose of faithfully describing an image, captions on 045

the web go beyond a redundant, descriptive rela- 046

tionship with their corresponding image. For exam- 047

ple, a word can be used in literal or metaphorical 048

ways (“that was a piece of cake") or have multi- 049

ple senses, of which only one corresponds to the 050

sense intended by the object detection vocabulary. 051

A caption could share a story by including con- 052

text that goes beyond the visual contents of the 053

image but mention an object name, by providing 054

location names and unpictured interactions with 055

objects as shown in Figure 1. All of this is relevant 056

as narration for the image but not as supervision 057

for precise localization. On the visual side, user- 058

uploaded content frequently features diverse object 059

presentations, including intriguing atypical or hand- 060

drawn objects or photos taken from within vehicles 061

(“in my car”). We refer to image-level labels ex- 062

tracted from captions, that are incorrect (object not 063

present in corresponding image), as visually absent 064

extracted labels (VAELs). We show VAELs pose a 065

1



challenge for weakly-supervised detection.066

To cope with this challenge, we propose VEIL,067

short for Vetting Extracted Image Labels, to di-068

rectly learn whether a label is clean or not from069

caption context. We first extract potential labels070

from each caption using substring matching or ex-071

act match (Ye et al., 2019b; Fang et al., 2022). We072

then use a transformer to predict whether each ex-073

tracted label is visually present or absent. We refer074

to this prediction task as extracted label vetting.075

We bootstrap labels from an ensemble of two pre-076

trained object recognition models (Jocher et al.,077

2021; Zhang et al., 2021), to predict image-level078

pseudo-ground-truth visual presence labels on a079

variety of large-scale, noisy datasets: Conceptual080

Captions (Sharma et al., 2018), RedCaps (Desai081

et al., 2021), and SBUCaps (Ordonez et al., 2011).082

While these detectors are trained on COCO and083

similar datasets, they generalize well to estimating084

extracted label visual presence on in-the-wild VL085

datasets; however, their predictions are better used086

as targets for VEIL, rather than directly for vetting.087

Once we vet the extracted labels, we use them to088

train a weakly-supervised object detector.089

We investigate sources of noise across three090

in-the-wild datasets from diverse sources: photo-091

sharing platform, social media platform, and im-092

ages with alt-text (typically used for VL pretrain-093

ing). We collect and will release a small dataset094

with annotations on object visibility (label noise)095

and object appearance defects (visual noise such as096

atypical appearance). To support using language097

context to filter object labels, we annotate linguis-098

tic indicators of noise which explain why a VAEL099

is absent from the image but included in the cap-100

tion, such as describing context outside the image,101

non-literal use, different word sense, etc. We com-102

pare our label vetting method to nine baselines, in-103

cluding standard cross-modal alignment prediction104

methods (CLIP), adaptive noise reduction methods,105

pseudo-label prediction, simple rule-based meth-106

ods, and no vetting. Our method improves upon the107

baselines both in terms of predicting extracted label108

visual presence (measured with F1) and producing109

cleaner training data for object detection leading to110

an improvement of +10 mAP over Large Loss Mat-111

ters (Kim et al., 2022) and +3 mAP improvement112

over using CLIP (Radford et al., 2021) for filtering.113

We show a significant improvement when training114

WSOD with both clean (annotated in Pascal VOC115

07) and noisy, but vetted labels from SBUCaps116

(51.31 mAP) compared to naively combining clean117

with noisy labels without vetting (42.06 mAP) or 118

only using clean labels (43.48 mAP). Lastly, VEIL 119

generalizes and its gains persist across datasets, 120

object vocabulary, and scale. 121

To summarize, our contributions are as follows: 122

1. We propose VEIL, a transformer-based ex- 123

tracted label, visual presence classifier. 124

2. VEIL outperforms language-conditioned and 125

language-agnostic label noise detection/cor- 126

rection approaches in vetting labels from a 127

wide set of in-the-wild datasets for weakly- 128

supervised object detection. 129

3. VEIL enables effective combination of ex- 130

tracted noisy and clean labels. 131

4. Even when VEIL is trained on one dataset/- 132

category, but applied to another, it shows ad- 133

vantages over baselines. 134

5. We construct the Caption Label Noise dataset. 135

2 Related Work 136

Vision-language datasets include crowdsourced 137

captions (Young et al., 2014; Lin et al., 2014; 138

Huang et al., 2016; Krishna et al., 2016) and alt-text 139

written by users to aid visually impaired readers 140

(Sharma et al., 2018; Changpinyo et al., 2021; Rad- 141

ford et al., 2021; Schuhmann et al., 2021), widely 142

used for vision-language grounding due to abun- 143

dance and assumed visual-text alignment. There 144

are also large in-the-wild datasets sourced from so- 145

cial media like Reddit (Desai et al., 2021) and user- 146

uploaded captions for photos shared on Flickr (Or- 147

donez et al., 2011). We show the narrative element 148

found in these in-the-wild datasets, captured by the 149

linguistic cues we investigate, impact the ability to 150

successfully train an object detection model. 151

Weakly-supervised object detection (WSOD) 152

is a multiple-instance learning problem to train a 153

model to localize and classify objects from image- 154

level labels (Bilen and Vedaldi, 2016; Tang et al., 155

2017a; Wan et al., 2019; Gao et al., 2019; Ren 156

et al., 2020). Cap2Det was the first work to lever- 157

age unstructured text accompanying an image for 158

WSOD by predicting pseudo image-level labels 159

from captions (Ye et al., 2019b; Unal et al., 2022). 160

However, Cap2Det cannot operate across novel 161

categories as it directly predicts image-level la- 162

bels. Further, Cap2Det targets false negatives 163

(visually present, not extracted labels), not visu- 164

ally absent extracted labels. Detic (Zhou et al., 165

2022) uses weak supervision from ImageNet (Deng 166

et al., 2009) and extracts labels from Conceptual 167
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Captions (CC) to pretrain an open vocabulary ob-168

ject detection model with a CLIP classifier head.169

While these approaches succeed in leveraging rel-170

atively clean, crowdsourced datasets like COCO,171

Flickr30K and ImageNet, both see lower perfor-172

mance in training with CC (Unal et al., 2022; Zhou173

et al., 2022). Other prior work (Gao et al., 2022)174

uses a pretrained vision-language model to gener-175

ate pseudo-bounding box annotations, but always176

requires clean data (COCO), and does not explicitly177

study the contribution of in-the-wild datasets.178

Vision-language pre-training for object detec-179

tion. Image-text grounding has been leveraged180

as a pretraining task for open vocabulary object181

detection (Rahman et al., 2020a,b; Zareian et al.,182

2021; Gu et al., 2022; Zhong et al., 2022; Du et al.,183

2022; Wu et al., 2023), followed by supervision184

from bounding boxes from base classes. Some185

methods distill knowledge from existing pretrained186

vision-language grounding models like CLIP and187

ALIGN (Jia et al., 2021) to get proposals (Shi et al.,188

2022) and supervision for object detection (Du189

et al., 2022; Zhong et al., 2022); however the lat-190

ter do not compare clean vs noisy supervision in a191

setting without bounding boxes. In contrast, we per-192

form weakly-supervised object detection (WSOD)193

using noisy image-level labels from captions only.194

WSOD is a distinct task from open-vocabulary195

detection and has the advantage of not requiring196

expensive bounding boxes on base classes. We197

focus on rejecting labels harmful for localization.198

Adaptive label noise reduction in classifica-199

tion. Adaptive methods reject or correct noisy la-200

bels ad-hoc during training. These methods exploit201

a network’s ability to learn representations of clean202

labels earlier in training, thus assuming there are203

no clear visual patterns in the noisy samples corre-204

sponding to a particular corrupted label, and these205

associations are learnt later in training (Zhang et al.,206

2017). We instead show diverse real-world datasets207

contain naturally occurring structured noise, where208

in many cases there are visual patterns to the cor-209

rupted label. Large Loss Matters (Kim et al., 2022)210

is representative of such adaptive noise reduction211

methods and we find that it struggles with noisy212

labels extracted from in-the-wild captions.213

3 Label Noise Analysis and Dataset214

We analyze what makes large in-the-wild datasets215

a challenging source of labels for object detection.216

Datasets analysed. RedCaps (Desai et al.,217

2021) consists of 12M Reddit image-text pairs col- 218

lected from a curated set of subreddits with heavy 219

visual content. SBUCaps (Ordonez et al., 2011) 220

consists of 1 million Flickr photos with text de- 221

scriptions written by their owners. Captions were 222

selected if at least one prepositional phrase and 2 223

matches with a predefined vocabulary were found. 224

Conceptual Captions (CC) (Sharma et al., 2018) 225

contains 3M image-alt-text pairs after heavy post- 226

processing; named entities in captions were hy- 227

pernymized and image-text pairs were accepted if 228

there was an overlap between Google Cloud Vision 229

API class predictions and the caption. While less 230

in-the-wild, it is still less clean than COCO. These 231

datasets exhibit very low precision of the extracted 232

labels, ranging from 0.463 for SBUCaps, 0.596 for 233

RedCaps, to 0.737 for CC, all much lower than the 234

0.948 for COCO (see appx). 235

Extracted object labels. Given a vocabulary of 236

object classes, we extract a label for an image if 237

there is exact match between the object name and 238

the corresponding caption ignoring punctuation, as 239

in (Ye et al., 2019b; Fang et al., 2022). 240

Gold standard object labels. We use pseudo- 241

ground-truth image-level predictions from a pre- 242

trained image recognition model to estimate visual 243

presence gold standard labels because the in-the- 244

wild datasets do not have object annotations. We 245

use an object recognition ensemble with the X152- 246

C4 object-attribute model (Zhang et al., 2021) and 247

the Ultralytic YOLOv5-XL (Jocher et al., 2021). 248

This ensemble achieves strong accuracy, 82.2% on 249

SBUCaps, 85.6% on RedCaps, and 86.8% on CC 250

(see appx). We extract VAELs by selecting images 251

where extracted and gold-standard labels disagree. 252

Note we never use bounding-box pseudo labels, 253

only image-level ones. Our cross-category experi- 254

ments show we do not require labels for all classes. 255

Noise annotations collected. To understand 256

the label noise distribution, we select 100 VAEL 257

examples per dataset (RedCaps, SBUCaps, CC) 258

and annotate four types of information: 259

• (Q1: Label Noise) How much of the VAEL ob- 260

ject is present (visible, partially visible, com- 261

pletely absent); 262

• (Q2: Similar Context) If the VAEL object is 263

completely absent, whether traditionally co- 264

occurring context (“boat” and “water”), or a 265

semantically similar object (e.g. “cake” and 266

“bread”, “car” and “truck”) is present; 267

• (Q3: Visual Defects) If visible/partially visi- 268

ble, whether the VAEL object is occluded, has 269
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Label noise Similar context Visual defects Linguistic indicators
Dataset %Vis %Part %Abs %Co-occ %Sim %Occl %Parts %Atyp %Beyond %Past %Non-lit %Prep %Mod %Sense %Named

S 21.5 20.0 58.5 42.5 13.2 61.6 46.3 44.6 26.0 3.0 11.0 40.5 32.0 12.0 5.0
R 29.2 12.8 57.5 15.0 4.0 21.8 22.2 49.0 19.8 3.1 9.3 5.7 26.6 18.2 10.9

CC 32.8 16.6 50.5 30.9 12.8 36.3 24.2 57.3 27.6 2.6 5.7 31.3 25.0 8.3 2.1

Table 1: Label noise distributions; “other”/uncommon categories skipped. Similar context is only annotated for
absent objects agreed by both annotators. Visual defects are annotated over examples with full or partial visibility.
Linguistic indicators are annotated over examples with visual defects or partial/no visibility. S = SBUCaps, R =
RedCaps, and CC = Conceptual Captions.

key parts missing, or atypical appearance (e.g.270

knitted animal); and271

• (Q4: Linguistic Indicators) What linguistic272

cues explain why the VAEL object is men-273

tioned but absent, e.g. the caption discusses274

events or information beyond what the image275

shows (“beyond” in Tab. 1), describes the past276

the extracted label is part of a prepositional277

phrase and likely to describe setting not ob-278

jects (e.g. “on a train”), is a noun modifying279

another noun, is used in a non-literal way, has280

a different word sense (e.g. “bed” vs “river281

bed”), or is part of a named entity.282

Two authors provide the annotations, with high283

agreement: 0.76 for Q1, 0.33 for Q2, 0.45 for Q3,284

and 0.58 for Q4. We calculate Cohen’s Kappa for285

each option and aggregate agreement through a286

weighted average for each question, with weights287

derived from average option counts between the288

two annotators across the three datasets. We label289

the dataset Caption Label Noise, or CLaN.290

In Table 1, we show what fraction of samples fall291

into each annotated category, excluding “Other”,292

“Unclear” and uncommon categories. We average293

the distribution between the two annotators.294

Statistics: Label noise. We first characterize the295

visibility of objects flagged as VAELs by the recog-296

nition ensemble. We find that SBUCaps has the297

highest rate of completely absent images (58.5%),298

followed closely by RedCaps. SBUCaps also has299

the highest rate of partially visible objects (20%).300

CC has the highest full visibility (32.8%), defined301

as the object from a given viewpoint having 75%302

or more visibility. The high rate of absent and303

partially-visible objects justifies the use of pseudo-304

ground-truth labels from the recognition ensemble;305

these both constitute poor training data for WSOD.306

Statistics: Similar context. Certain images307

with absent objects may be more harmful than308

others. Prior work has shown that models ex-309

ploit co-occurrences between an object and its con-310

text which helps overall recognition accuracy, but311

can hurt performance when that context is absent 312

(Singh et al., 2020). We hypothesize the inclusion 313

of images with this context bias without the actual 314

object present could affect localization especially 315

when supervising detection implicitly, and semanti- 316

cally similar context may blur decision boundaries. 317

Different annotators may have different references 318

for similarity or co-occurrence frequency, but our 319

annotators achieve fair agreement (κ = 0.33). In 320

Table 1, we find high rates of co-occurring contexts 321

in samples with completely absent VAELs for SBU- 322

Caps (42.5%) and CC (30.9%). Across all datasets, 323

we see a similar rate, 12%-15%, of similar context 324

being present instead of the VAEL. 325

Statistics: Visual defects. We hypothesize there 326

may be visual defects which caused the recogni- 327

tion ensemble to miss fully-visible objects. Over 328

the fully or partially visible subset, in CC 79% of 329

fully or partially visible objects have a visual de- 330

fect, 87% for SBUCaps, and 69% for RedCaps. 331

The most common defect for RedCaps and CC is 332

atypical (49% and 57.3%); we argue atypical exam- 333

ples constitute poor training data for WSOD. We 334

find the caption context (e.g. “acrylic illustration of 335

the funny mouse") may indicate the possibility of a 336

visual defect, further motivating the VEIL design. 337

Statistics: Linguistic indicators. Noun mod- 338

ifier is one of the most frequently occurring indi- 339

cators. Prepositional phrase is also significant in 340

SBUCaps (40.5%) and CC (31.3%). All datasets 341

contain many VAELs mentioned in contexts going 342

beyond the image, e.g.: “just got back from the 343

river. friend sank his truck pulling his boat out. 344

long story short, rip this beast” (RedCaps). We find 345

prevalent structured noise (pattern to the images as- 346

sociated with a particular noisy label) for indicators 347

like “noun modifier" and “prepositional phrase". 348

4 Method 349

Vetting labels (VEIL). The extracted label vetting 350

task aims to predict binary visual presence targets 351
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Figure 2: VEIL model architecture. After the vetting
layer, the masking layer masks visual presence predic-
tions for tokens not corresponding to an extracted label.

(present/absent) for each extracted label in the cap-352

tion using only the caption context. We hypoth-353

esize there is enough signal in the caption to vet354

the most harmful label noise without the additional355

processing cost of adding the visual modality or356

distractions from the visual modality (similar con-357

text). The method is overviewed in Fig. 2. Given358

a caption, WordPiece (Wu et al., 2016) produces359

a sequence of subword tokens C; each token is360

mapped to corresponding embeddings, resulting in361

e ∈ Rd×C . These embeddings are passed through362

a pretrained language model (BERT (Devlin et al.,363

2019)), h, which includes multiple layers of multi-364

head self-attention over tokens in the caption to365

compute token-level output embeddings v ∈ Rd×C .366

An MLP is applied to these embeddings and the367

output is a sequence of visual presence predictions368

per token, r ∈ [0, 1]C .369

v = h(e) (1)370

r = σ(W2(tanh(W1v)) (2)371

where W1 ∈ Rd×d and W2 ∈ R1×d.372

Not all predictions in r correspond to an ex-373

tracted label, so we use a mask, M ∈ [0, 1]C , such374

that only the predictions associated with the ex-375

tracted labels are used in binary cross entropy loss.376

To train this network, the pseudo-label targets are377

present, yi = 1, if a pretrained image-level object378

recognition model also predicts the extracted label.379

Li = Mi

[
yi log ri + (1− yi) log(1− ri)

]
(3)380

L =
1

MTM

C∑
i=1

Li (4)381

During inference, if an extracted label was mapped382

to multiple tokens (e.g. “teddy bear"), the predic-383

tions are averaged for a single presence prediction.384

Weakly-supervised object detection. To test385

the ability of extracted label filtering or correction386

methods for weakly-supervised object detection,387

we train MIST (Ren et al., 2020). MIST extends 388

WSDDN (Bilen and Vedaldi, 2016) and OICR 389

(Tang et al., 2017b) which combine class scores 390

for a large number of regions in the image to com- 391

pute an image-level prediction (used for training). 392

VEIL uses image-level pseudo training data from 393

the in-the-wild datasets to train the vetting model, 394

and we want to see how its ability to vet labels for 395

WSOD generalizes to unseen data. Thus, we use 396

the test splits of the in-the-wild datasets to train 397

MIST, as they are unseen by all vetting methods. 398

We do not evaluate the WSOD model on these in- 399

the-wild datasets, but on disjoint datasets which 400

have bounding boxes (PASCAL VOC and COCO). 401

5 Experiments 402

We show the ability of VEIL to exceed language- 403

agnostic filtering and image-based filtering meth- 404

ods in extracted label vetting, to vet noisy extracted 405

labels prior to weakly-supervised object detection 406

training and to remove structured noise. We also 407

benchmark the generalization ability of VEIL in 408

cross-dataset and cross-category settings. 409

5.1 Experiment Details 410

We use three in-the-wild image-caption datasets: 411

SBUCaps (Ordonez et al., 2011), RedCaps (Desai 412

et al., 2021), Conceptual Captions (Sharma et al., 413

2018); and three crowdsourced datasets that fall 414

into descriptive: COCO (Lin et al., 2014), VIST- 415

DII (Huang et al., 2016)) and narrative: VIST-SIS 416

(Huang et al., 2016). Each in-the-wild dataset and 417

VIST are reduced to a subset of image-caption pairs 418

where there is an substring match with a COCO cat- 419

egory. This subset is split into 80%-20% train-test; 420

see appx for image-caption counts. The WSOD 421

models are trained on SBUCaps with labels vet- 422

ted by different methods, and evaluated on PAS- 423

CAL VOC 2007 test (Everingham et al., 2010) and 424

COCO val 2014 (Lin et al., 2014). 425

5.2 Methods Compared 426

For VEIL, we use the convention VEIL-DatasetX 427

to signify that VEIL is trained on the train-split 428

of DatasetX. We group the methods we com- 429

pare against into language-based, visual-based, 430

and visual-language methods. They are category- 431

agnostic, except for Cap2Det (Ye et al., 2019b) 432

and Large Loss Matters (LLM) (Kim et al., 2022) 433

which must be applied on closed vocabulary. 434

No Vetting accepts all extracted labels (recall=1). 435
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Method SBUCaps RedCaps CC VIST VIST-
DII

VIST-
SIS

COCO AVG

No Vetting 0.633 0.747 0.849 0.853 0.876 0.820 0.973 0.822
Global CLIP (Radford et al., 2021) 0.604 0.583 0.569 0.668 0.625 0.683 0.662 0.628VL Global CLIP - E (Radford et al., 2021) 0.594 0.569 0.534 0.654 0.613 0.660 0.640 0.609
Local CLIP (Radford et al., 2021) 0.347 0.651 0.363 0.427 0.476 0.418 0.464 0.449
Local CLIP - E (Radford et al., 2021) 0.760 0.840 0.597 0.759 0.695 0.812 0.788 0.750V
Reject Large Loss (Kim et al., 2022) 0.667 0.790 0.831 0.782 0.794 0.743 0.896 0.786
Accept Descriptive 0.491 0.413 0.740 0.687 0.844 0.264 0.935 0.625
Reject Noun Mod. 0.618 0.703 0.814 0.823 0.847 0.788 0.906 0.786
Cap2Det (Ye et al., 2019b) 0.639 0.758 0.846 0.826 0.854 0.774 0.964 0.809
VEIL-Same Dataset 0.809 0.890 0.909 0.871 0.892 0.816 0.973 0.884

L

VEIL-Cross Dataset 0.716 0.793 0.850 0.875 0.892 0.830 0.958 0.842

Table 2: Extracted label vetting F1 Performance. Bold indicates best performance in each column, and underlined
second-best. (V) signifies method uses the visual modality and (L) signifies use of language.

Global CLIP and CLIP-E use the ViT-B/32 pre-436

trained CLIP (Radford et al., 2021) model. To437

enhance alignment (Hessel et al., 2021), we add438

the prompt “A photo depicts” to the caption and439

calculate the cosine similarity between the image440

and text embeddings generated by CLIP. We train441

a Gaussian Mixture Model with two components442

on dataset-specific cosine similarity distributions.443

During inference, we accept image-text pairs with444

predicted components aligned with higher visual-445

caption cosine similarity. For the ensemble variant446

(CLIP-E), we prepend multiple prompts to the cap-447

tion, and use maximum cosine similarity.448

Local CLIP and CLIP-E use cosine similarity be-449

tween the image and the prompt “this is a photo of450

a” followed by the extracted label. Only extracted451

labels are filtered rather than entire captions, mak-452

ing this image-conditioned, not image-language453

conditioned vetting like Global CLIP. Local CLIP-454

E ensembles prompts.455

Reject Large Loss. LLM (Kim et al., 2022) is456

a language-agnostic adaptive noise rejection and457

correction method. To test its vetting ability, we458

simulate five epochs of WSOD training (Bilen and459

Vedaldi, 2016) and consider label targets with a loss460

exceeding the large loss threshold as “predicted to461

be visually absent” after the first epoch. The thresh-462

old uses a relative delta controlling the rejection463

rate (set as 0.002 in (Kim et al., 2022)).464

Accept Descriptive. We train a logistic regression465

model to predict whether a VIST (Huang et al.,466

2016) caption comes from the DII (descriptive) or467

SIS (narrative) split. The input vector to this logis-468

tic regression model consists of part of speech tags469

(e.g. proper noun, adjective, verb - past tense, etc)470

present in the caption. We accept extracted labels471

from captions with descriptiveness over 0.5.472

Reject Noun Mod. Since an extracted label could 473

be modifying another noun (“car park"), a simple 474

baseline is to reject an extracted label if the POS 475

label is an adjective or is followed by a noun. 476

Cap2Det. We reject a label if it is not predicted by 477

the Cap2Det (Ye et al., 2019b) classifier. 478

5.3 Extracted Label Vetting Evaluation 479

VEIL selects cleaner labels compared to no vet- 480

ting and other methods, even when not trained 481

on target data. Tab. 9 shows the F1 score which 482

combines the precision and recall of their vet- 483

ting (shown separately in appx). Most language- 484

based methods improve or maintain the F1 score 485

of No Vetting, even though it has perfect recall, 486

except Accept Descriptive. Rule-based methods 487

and Cap2Det perform strongly, but are outper- 488

formed by both VEIL-Same Dataset (trained and 489

tested on the same dataset) and VEIL-Cross Dataset 490

(trained on a different dataset than that shown in 491

the column; we show the best cross-dataset result). 492

VEIL-Cross Dataset outperforms other language- 493

based approaches, showing VEIL’s generalization 494

potential, except on COCO where Cap2Det does 495

slightly better. Image-and-language-conditioned 496

approaches (Global CLIP/CLIP-E) make label de- 497

cisions based on the overall caption, so certain lan- 498

guage can affect the alignment even if the object 499

is actually visually present. Among image-based 500

approaches for label vetting, Local CLIP benefits 501

significantly from using an ensemble of prompts 502

compared to Global CLIP; ensembling is well doc- 503

umented in improving zero-shot image recognition 504

in prior work (Radford et al., 2021). Reject Large 505

Loss has the strongest F1 score among the image- 506

based methods, but worse than VEIL. 507

Using CLaN, we find that VEIL is stronger 508

than CLIP-based vetting at rejecting different 509

6



Data Vetting Method Label noise Similar context Visual defects Linguistic indicators
%Part %Abs %Co-occ %Sim %Occl %Parts %Atyp %Mod %Prep %Non-lit %Sense %Named %Beyond

SBUCaps VEIL-Same Dataset 85.0 94.7 87.0 80.0 81.1 90.6 87.2 95.2 93.9 90.6 100.0 100.0 88.8
LocalCLIP-E 51.5 80.7 71.3 70.0 52.7 52.1 65.6 63.8 70.6 82.9 96.2 62.5 82.4

RedCaps VEIL-Same Dataset 91.7 74.1 71.4 85.7 83.3 89.0 68.3 74.8 90.0 66.7 88.9 80.9 76.3
LocalCLIP-E 52.8 78.4 40.0 38.1 47.0 45.0 23.2 68.4 63.3 70.8 70.6 90.0 76.7

CC VEIL-Same Dataset 60.6 83.0 81.2 55.0 54.9 53.6 56.3 64.2 73.7 81.7 100.0 - 77.4
LocalCLIP-E 45.0 89.1 74.9 57.5 49.9 50.0 24.1 73.3 63.9 91.7 100.0 - 86.8

Table 3: VAEL recall on CLaN. Bold indicates best performance per column/dataset. We omit named entity results
for CC as it substitutes them with predefined categories (e.g. person, org.).

forms of label noise. Captions alone contain cues510

about noise. We hypothesize that LocalCLIP-E511

would do well at vetting VAELs explained by lin-512

guistic cues like non-literal and beyond the image513

as they are likely to have low image-caption cosine514

similarity. We also hypothesize that VEIL would515

do better than LocalCLIP-E at vetting VAELs that516

are noun modifiers or in prepositional phrases,517

which can be easily picked up from the cap-518

tion. Further, similar context can sometimes be519

explained by noun modifiers and prepositional520

phrases, but LocalCLIP-E may be oblivious to the521

context differing from the VAEL category. We eval-522

uate these hypotheses on the CLaN dataset in Tab. 3.523

We omit “visible” VAEL samples as these may be524

pseudo-label errors, and the “past” linguistic indi-525

cator due to too few samples. We find that VEIL526

vets truly absent objects for SBUCaps much better527

than LocalCLIP-E, and comparably for RedCaps528

or CC. It vets partially visible objects better than529

LocalCLIP-E by a significant margin; these can be530

harmful in WSOD which is already prone to part531

domination (Ren et al., 2020). VEIL also recog-532

nizes that similar context to, rather than the actual533

VAEL category, are present. VEIL performs better534

at vetting visible objects that have visual defects535

which can be mentioned in caption context (“acryl-536

lic illustration of dog"). As expected, we find that537

for all datasets, VEIL vets VAELs from preposi-538

tional phrases better than LocalCLIP-E, and noun539

modifiers for SBUCaps and RedCaps. LocalCLIP-540

E does better on “beyond the image" and non-literal541

VAELs except on SBUCaps where VEIL excels.542

VEIL generalizes across training sources and543

is complementary to CLIP-based vetting. We544

train VEIL on one dataset (or multiple) and eval-545

uate on an unseen target. We find that combining546

multiple sources improves precision (Tab. 4). We547

also try ensembling by averaging predictions be-548

tween LocalCLIP-E and VEIL-Cross Dataset, and549

find that its precision and recall is highest among550

the VEIL variants and LocalCLIP-E. This means551

Method Train Dataset Prec/Rec F1
No Vetting - 0.463 / 1.000 0.633
VEIL SBUCaps 0.828 / 0.791 0.809
VEIL RedCaps (R) 0.668 / 0.759 0.710
VEIL CC 0.585 / 0.846 0.692
VEIL R, CC 0.689 / 0.722 0.705
LCLIP-E WIT 0.708 / 0.820 0.760
VEIL+LCLIP-E R,CC,WIT 0.733 / 0.848 0.786

Table 4: Source generalization of VEIL; vet on SBU-
Caps. LCLIP-E is LocalCLIP-E. CLIP trained on WIT.

Method Prec/Rec F1
No Vetting 0.323 / 1.000 0.488

ID 0.651 / 0.656 0.654
OOD 0.585 / 0.556 0.570

Table 5: VEIL category generalization on SBUCaps.

that VEIL and LocalCLIP-E can be used together. 552

There is still a significant gap between VEIL-Same 553

Dataset and even the ensembled model in terms 554

of precision and F1. We leave improving source 555

generalizability to future research. 556

VEIL produces cleaner labels even on unseen 557

object categories. We define an in-domain cate- 558

gory set (ID) of 20 randomly picked categories 559

from COCO (Lin et al., 2014), and an out-of- 560

domain category set (OOD) consisting of the 60 561

remaining categories. We restrict the labels using 562

these limited category sets and create two train sub- 563

sets, ID and OOD from SBUCaps train and one ID 564

test subset from SBUCaps test. We find that trans- 565

ferring VEIL-OOD to unseen categories improves 566

F1 score compared to no vetting as shown in Ta- 567

ble 5. We hypothesize training on more categories 568

could improve category generalization, but leave 569

further experiments to future research. 570

5.4 Impact on Weakly Sup. Object Detection 571

We select the most promising vetting methods from 572

the previous section and use them to vet labels from 573

an in-the-wild dataset’s, SBUCaps, unseen (test) 574

split and then train WSOD models using the vetted 575

labels. Then, these WSOD models are evaluated 576

on detection benchmarks like VOC-07 and COCO- 577
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Method VOC
Det.
mAP50

VOC
Rec.
mAP

COCO
Det
mAP50

GT* (upper bound) 40.0 69.0 9.2
No Vetting 31.2 65.3 7.7
Large Loss (Kim et al., 2022) 30.9 65.3 7.5
LocalCLIP-E (Radford et al., 2021) 37.1 70.7 7.9
VEIL-R,CC 37.8 71.4 8.6
VEIL-SBUCaps 40.5 74.3 10.4

Table 6: Impact of vetting on WSOD performance on
VOC-07 and COCO-14. (GT*) directly vets labels using
the pretrained recognition models used to train VEIL.

14. We show two different VEIL methods, VEIL-578

SBUCaps and VEIL-RedCaps,CC to demonstrate579

the generalizability of VEIL on WSOD. Note that580

Large Loss Matters (Kim et al., 2022) has been re-581

laxed to correct visually absent extracted labels, in582

addition to unmentioned but present objects (false583

negatives). After vetting, we remove any images584

without labels and since category distribution fol-585

lows a long-tail distribution, we apply weighted586

sampling (Mikolov et al., 2013). We train MIST587

(Ren et al., 2020) for 50K iter. with batch size 8.588

VEIL vetting leads to better detection and589

recognition capabilities than vetting through590

CLIP, an adaptive label noise correction method591

(Large Loss Matters) or even directly using its592

bootstrapped data. We find that VEIL-SBUCaps593

performs the best as shown in Tab. 6. In partic-594

ular, it boosts the detection performance of No595

Vetting by 9.3% absolute and 29.8% relative gain596

(40.5/31.2% mAP) on VOC-07 and by 35% rela-597

tive gain (10.4/7.7% mAP) on COCO. Interestingly,598

VEIL-SBUCaps and VEIL-Redcaps,CC have a599

similar performance improvement, despite VEIL-600

Redcaps,CC (best VEIL cross-dataset result on601

SBUCaps) having poorer performance than Lo-602

cal CLIP-E in Tab. 4. Additionally, directly using603

predictions from the pretrained object recognition604

model (used to produce visual presence targets for605

VEIL at the image level) to vet (GT* method in the606

table) performs worse than VEIL in both detection607

and recognition showing VEIL’s generalization608

from its bootstrapped data.609

Structured noise negatively impacts localiza-610

tion. Using the CLaN dataset, we observe one type611

of structured noise found from extracting labels612

from prepositional phrases, specifically where im-613

ages were taken inside vehicles. We hypothesize614

such structured noise would have significant impact615

on localization for the vehicle objects. We use Cor-616

Loc to estimate the localization ability for vehicles617

Clean Labels Noisy Labels WS Vetting mAP50

✓ n/a 43.48
✓ ✓ 42.06
✓ ✓ ✓ 51.31
✓ ✓ ✓ ✓ 54.76

Table 7: Mixed supervision from clean (VOC-07 train-
val) and noisy labels (SBUCaps). Eval on VOC-07 test.

in VOC-07 (“aeroplane", ‘bicycle", “boat", “car", 618

“bus", “motorbike", “train"). We observe a Cor- 619

Loc of 60.2% and 54.1% for VEIL-SBUCaps and 620

LocalCLIP-E, respectively. This shows structured 621

noise can have strong impact on localization. 622

Naively mixing clean and noisy samples with- 623

out vetting for WSOD leads to worse perfor- 624

mance than only using clean samples. Vetting 625

in-the-wild samples (noisy) with VEIL is essen- 626

tial to improving performance. We study how 627

vetting impacts a setting where labels are drawn 628

from both annotated image-level labels from 5K 629

VOC-07 train-val (Everingham et al., 2010) (clean) 630

and 50K in-the-wild SBUCaps (Ordonez et al., 631

2011) captions (noisy). In Tab. 7 we observe that 632

naively adding noisy supervision to clean supervi- 633

sion actually hurts performance compared to only 634

using clean supervision. After vetting the labels ex- 635

tracted from SBUCaps (Ordonez et al., 2011) using 636

VEIL-SBUCaps, we observe that the model sees a 637

17.9% relative improvement (51.31/43.48% mAP) 638

to using only clean supervision from VOC-07. We 639

see further improvements when applying weighted 640

sampling (WS) to the added, class imbalanced data 641

(54.76/51.31% mAP). 642

VEIL improves WSOD performance even at 643

scale. We sampled the held-out RedCaps dataset 644

in increments of 50K samples up to a total of 200K 645

samples. For each scale, we train two WSOD mod- 646

els with weighted sampling using the unfiltered 647

samples and those vetted with VEIL-SBUCaps,CC. 648

The mAP at 50K, 100K, 150K, and 200K sam- 649

ples is 4.2, 10.7, 12.0, 12.9 with vetting and 1.9, 650

8.2, 10.6, 10.4 without vetting. The non-vetted 651

model’s performance declines after 150K samples. 652

This indicates vetting can adapt to scale better even 653

when VEIL is trained on other datasets. The trend 654

suggests that vetting will continue outperforming 655

no-vetting even when dataset sizes increase. 656

Conclusion. We showed visually absent ex- 657

tracted labels are common in the wild, VEIL which 658

uses language context to infer if mentioned objects 659

are visually present, and the benefits of its vetting. 660
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A Appendix890

We provide supplemental materials to our main891

text.892

First, we present additional dataset details. Then,893

we provide a detailed table of the vetting precision894

and recall of all methods described in the main text,895

for which we show F1 performance in Table 9 of896

the main text. Furthermore, we show more com-897

prehensive cross-dataset ablations, such as adding898

more training datasets and training with a special899

token.900

We discuss our hyperparameter selection for901

WSOD in further detail and show additional met-902

rics of the WSOD models on the COCO-14 bench-903

mark presented in the main text.904

Finally, we showcase the vetting ability of VEIL905

in comparison to other approaches through qualita-906

tive results, along with additional examples from907

the WSOD models trained using vetted training908

data.909

A.1 Vetting Dataset Details910

Dataset Train Test
VIST 20339 5086

VIST-DII 12106 3028
VIST-SIS 8233 2060

COCO 216096 94004
SBUCaps 166986 41747
RedCaps 845333 211334

CC 350043 87511

Table 8: The number of samples per split and dataset af-
ter filtering captions based on exact match with COCO
objects. Note VIST and COCO have multiple captions
per image; for the sake of vetting, we evaluate on ex-
tracted labels from all captions.

While the overall image-text pairs are 12M pairs911

for RedCaps, 3M pairs for CC, 1M for SBUCaps,912

500K pairs for COCO, 40K and 60K pairs for VIST-913

DII and VIST-SIS, respectively, after extracting914

labels using exact match with COCO categories,915

there are a number of captions which don’t have916

any matches. We filter out those captions. In Table917

8 we provide counts after filtering for both vetting918

train and test splits of each dataset.919

Figure 3: Qualitative examples of extracted labels after
vetting on RedCaps-Test. These are additional com-
pletely absent VAEL examples from CLaN with their
linguistic indicators and similar context annotations, and
only VEIL-based methods are able to overcome these
three noise types.

A.2 Vetting Precision/Recall 920

Table 9 in the main text showed the F1 on the ex- 921

tracted label vetting task, from twelve methods. In 922

Table 9 here, we separately show Precision and 923

Recall on the same task. 924

A.3 Cross-Dataset Ablations 925

Table 10 is included as reference which shows that 926

precision in the cross dataset setting is always better 927

than no vetting with the exception of COCO. 928

Combining multiple datasets. We find that 929

VEIL is able to leverage additional datasets to an 930

extent. For example, combining SBUCaps and 931

CC leads to significant improvements (7-16% rel- 932

ative) in F1 as shown in Table 11 and, combining 933

SBUCaps and Redcaps in training improves perfor- 934

mance on both validation sets. When combining 935

all datasets, only the non-in the wild datasets see 936

an improved performance. 937

Using special token. We test VEILST which 938

inserts a special token [EM_LABEL] before each ex- 939

tracted label in the caption to reduce the model’s re- 940

liance on category-specific cues and improve gener- 941

alization to other datasets. We find that using VEIL 942

w/ ST on average improves F1 by 1 pt compared to 943

just VEIL when transferring to other datasets. This 944

comes at a tradeoff with respect to the performance 945

on the same dataset; however CC w/ ST improves 946

performance on all datasets. 947

A.4 WSOD Implementation Details 948

We used 4 RTX A5000 GPUs and trained for 50k 949

iterations with a batch size of 8, or 100k iterations 950

on 4 Quadro RTX 5000 GPUs with a batch size of 951

4 and gradient accumulation (parameters updated 952
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SBUCaps RedCaps Conceptual Captions
Method PREC / REC F1 PREC / REC F1 PREC / REC F1
No Vetting 0.463 / 1.000 0.633 0.596 / 1.000 0.747 0.737 / 1.000 0.849
Global CLIP (Radford et al., 2021) 0.531 / 0.700 0.604 0.618 / 0.551 0.583 0.753 / 0.458 0.569

VL Global CLIP - E (Radford et al., 2021) 0.526 / 0.683 0.594 0.625 / 0.522 0.569 0.745 / 0.417 0.534
Local CLIP (Radford et al., 2021) 0.588 / 0.246 0.347 0.723 / 0.591 0.651 0.750 / 0.240 0.363
Local CLIP - E (Radford et al., 2021) 0.708 / 0.820 0.760 0.770 / 0.924 0.840 0.842 / 0.462 0.597V
Reject Large Loss (Kim et al., 2022) 0.530 / 0.898 0.667 0.700 / 0.908 0.790 0.806 / 0.858 0.831
Accept Descriptive 0.449 / 0.542 0.491 0.561 / 0.326 0.413 0.739 / 0.741 0.740
Reject Noun Mod. 0.517 / 0.769 0.618 0.644 / 0.776 0.703 0.765 / 0.870 0.814
Cap2Det (Ye et al., 2019a) 0.500 / 0.884 0.639 0.633 / 0.945 0.758 0.758 / 0.956 0.846
VEIL-Same Dataset 0.828 / 0.791 0.809 0.855 / 0.929 0.890 0.884 / 0.935 0.909

L

VEIL-Cross Dataset 0.636 / 0.811 0.713 0.747 / 0.847 0.793 0.834 / 0.866 0.850
VIST VIST-DII VIST-SIS

Method PREC / REC F1 PREC / REC F1 PREC / REC F1
No Vetting 0.744 / 1.000 0.853 0.779 / 1.000 0.876 0.695 / 1.000 0.820
Global CLIP (Radford et al., 2021) 0.772 / 0.589 0.668 0.788 / 0.518 0.625 0.754 / 0.624 0.683

VL Global CLIP - E (Radford et al., 2021) 0.769 / 0.569 0.654 0.785 / 0.504 0.613 0.741 / 0.595 0.660
Local CLIP (Radford et al., 2021) 0.752 / 0.298 0.427 0.787 / 0.341 0.476 0.738 / 0.292 0.418
Local CLIP - E (Radford et al., 2021) 0.874 / 0.671 0.759 0.886 / 0.572 0.695 0.833 / 0.793 0.812V
Reject Large Loss (Kim et al., 2022) 0.755 / 0.811 0.782 0.792 / 0.796 0.794 0.700 / 0.791 0.743
Accept Descriptive 0.755 / 0.631 0.687 0.784 / 0.913 0.844 0.686 / 0.163 0.264
Reject Noun Mod. 0.775 / 0.879 0.823 0.813 / 0.883 0.847 0.716 / 0.875 0.788
Cap2Det (Ye et al., 2019a) 0.781 / 0.877 0.826 0.823 / 0.887 0.854 0.704 / 0.859 0.774
VEIL-Same Dataset 0.789 / 0.971 0.871 0.819 / 0.992 0.892 0.690 / 0.998 0.816

L

VEIL-Cross Dataset 0.835 / 0.920 0.875 0.870 / 0.915 0.892 0.765 / 0.920 0.830
COCO

Method PREC / REC F1
No Vetting 0.948 / 1.000 0.973
Global CLIP (Radford et al., 2021) 0.945 / 0.509 0.662

VL Global CLIP - E (Radford et al., 2021) 0.931 / 0.487 0.640
Local CLIP (Radford et al., 2021) 0.951 / 0.307 0.464
Local CLIP - E (Radford et al., 2021) 0.972 / 0.663 0.788V
Reject Large Loss (Kim et al., 2022) 0.963 / 0.837 0.896
Accept Descriptive 0.948 / 0.923 0.935
Accept Narrative 0.942 / 0.077 0.143
Reject Noun Mod. 0.958 / 0.859 0.906
Cap2Det (Ye et al., 2019a) 0.978 / 0.950 0.964
VEIL-Same Dataset 0.948 / 1.000 0.973

L

VEIL-Cross Dataset 0.975 / 0.942 0.958

Table 9: Extracted Label Vetting Evaluation Metrics. Bold indicates best result in column, and in the recall columns
No Vetting is excluded as it always has perfect recall.

Train Dataset(s) ST DII-VIST SIS-VIST COCO VIST SBUCaps RedCaps CC
No Vetting 0.779 / 1.000 0.695 / 1.000 0.948 / 1.000 0.741 / 1.000 0.463 / 1.000 0.596 / 1.000 0.737 / 1.000
SBUCaps 0.895 / 0.717 0.831 / 0.609 0.979 / 0.647 0.878 / 0.690 0.828 / 0.791 0.808 / 0.684 0.844 / 0.831

RedCaps (R) 0.865 / 0.794 0.787 / 0.752 0.975 / 0.824 0.839 / 0.785 0.668 / 0.759 0.855 / 0.929 0.837 / 0.709
CC 0.863 / 0.902 0.759 / 0.917 0.974 / 0.925 0.824 / 0.914 0.585 / 0.846 0.713 / 0.844 0.884 / 0.935

VIST 0.826 / 0.978 0.729 / 0.949 0.958 / 0.926 0.789 / 0.971 0.518 / 0.939 0.658 / 0.883 0.771 / 0.981
COCO 0.779 / 1.000 0.695 / 1.000 0.948 / 1.000 0.741 / 1.000 0.463 / 1.000 0.599 / 1.000 0.739 / 1.000

SBUCaps,CC 0.885 / 0.840 0.788 / 0.837 0.978 / 0.893 0.847 / 0.838 0.923 / 0.950 0.762 / 0.822 0.965 / 0.978
R,CC 0.876 / 0.888 0.801 / 0.784 0.976 / 0.918 0.855 / 0.852 0.691 / 0.720 0.845 / 0.836 0.892 / 0.914

SBUCaps,R 0.876 / 0.779 0.789 / 0.697 0.976 / 0.791 0.849 / 0.758 0.892 / 0.940 0.923 / 0.958 0.846 / 0.785
SBUCaps ✓ 0.885 / 0.798 0.817 / 0.719 0.977 / 0.745 0.866 / 0.768 0.790 / 0.814 0.782 / 0.754 0.834 / 0.866

R ✓ 0.880 / 0.744 0.809 / 0.697 0.976 / 0.776 0.856 / 0.721 0.686 / 0.724 0.843 / 0.901 0.831 / 0.526
CC ✓ 0.868 / 0.913 0.765 / 0.920 0.975 / 0.942 0.835 / 0.920 0.609 / 0.841 0.721 / 0.862 0.922 / 0.955

SBUCaps,CC ✓ 0.870 / 0.915 0.776 / 0.881 0.976 / 0.932 0.830 / 0.905 0.754 / 0.821 0.747 / 0.847 0.891 / 0.943
R,CC ✓ 0.862 / 0.922 0.779 / 0.842 0.971 / 0.944 0.837 / 0.894 0.649 / 0.797 0.793 / 0.887 0.868 / 0.931

SBUCaps,R ✓ 0.877 / 0.807 0.805 / 0.712 0.973 / 0.856 0.844 / 0.828 0.826 / 0.724 0.804 / 0.905 0.839 / 0.771
ALL 0.860 / 0.969 0.779 / 0.903 0.973 / 0.990 0.832 / 0.947 0.713 / 0.829 0.803 / 0.898 0.874 / 0.941

Table 10: Cross Dataset Vetting Precision and Recall Performance on visual presence validations sets from different
sources (DII-VIST...CC). All methods improve precision compared to no vetting.
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Train Dataset ST DII-VIST SIS-VIST COCO VIST SBUCaps RedCaps CC
No Vetting 0.876 0.820 0.973 0.851 0.633 0.747 0.849
SBUCaps 0.796 0.703 0.779 0.773 0.809 0.741 0.837

R 0.828 0.769 0.893 0.811 0.710 0.890 0.768
CC 0.882 0.830 0.949 0.867 0.692 0.773 0.909

VIST 0.895 0.825 0.942 0.871 0.668 0.754 0.863
COCO 0.876 0.820 0.973 0.851 0.633 0.749 0.850

SBUCaps,CC 0.862 0.812 0.933 0.843 0.937 0.791 0.972
R,CC 0.882 0.793 0.946 0.854 0.705 0.841 0.903

SBUCaps,R 0.825 0.741 0.874 0.801 0.915 0.940 0.810
SBUCaps ✓ 0.839 0.765 0.846 0.814 0.802 0.767 0.850

R ✓ 0.806 0.749 0.865 0.783 0.705 0.871 0.644
CC ✓ 0.890 0.836 0.958 0.875 0.707 0.785 0.938

SBUCaps,CC ✓ 0.892 0.825 0.954 0.866 0.786 0.793 0.916
R,CC ✓ 0.891 0.809 0.957 0.865 0.716 0.837 0.899

SBUCaps,R ✓ 0.841 0.756 0.911 0.836 0.772 0.851 0.803
ALL 0.911 0.836 0.981 0.886 0.767 0.848 0.906

Table 11: Cross Dataset Vetting F1 Performance on visual presence validations sets from different sources (DII-
VIST...CC). Bold indicates if result is better than no vetting. Train data containing the same source as the validation
is highlighted in yellow.

mAP, IoU mAP, Area
0.5:0.95 0.5 0.75 S M L

GT* 4.19 9.17 3.40 1.10 4.34 6.76
No Vetting 3.24 7.70 2.37 1.06 4.00 5.08

Large Loss (Kim et al., 2022) 3.11 7.54 2.15 0.92 3.80 4.88
LocalCLIP-E (Radford et al., 2021) 3.66 7.77 3.08 0.79 3.96 5.96

VEILST-R,CC 3.90 8.60 3.14 0.93 4.25 6.28
VEIL-SBUCaps 4.89 10.37 4.20 1.26 5.24 7.53

Table 12: COCO-14 benchmark for WSOD models trained with various vetting methods. (GT*) directly vets
labels using the pretrained object detectors which were used to train VEIL. Bold indicates best performance in each
column and underline indicates second best result in the column.

every two iterations to simulate a batch size of 8).953

Learning Rates. We trained four models without954

vetting on SBUCaps with learning rates from ‘1e-955

5’ till ‘1e-2’, for each order of magnitude, and956

observed that the model trained with a learning rate957

of ‘1e-2’ had substantially better Pascal VOC-07958

detection performance and used this learning rate959

for all the WSOD models trained on SBUCaps. We960

applied a similar learning rate selection method961

for WSOD models trained on RedCaps, except we962

tested over every half order of magnitude and found963

that ‘5e-5’ was optimal when training on RedCaps.964

Relative Delta. In Large Loss Matters (LLM)965

(Kim et al., 2022), relative delta controls how fast966

the rejection rate will increase over training. To967

find the best relative delta, we tested over three ini-968

tializations, with rel_delta = 0.002 as the setting969

Relative Delta Pascal VOC-07 mAP50

0.002 28.25
0.01 30.93
0.05 28.11

Table 13: Relative delta hyperparameter ablation

recommended in (Kim et al., 2022). We used the 970

best result in Table 13 when reporting results in the 971

main paper. 972

A.5 WSOD Benchmarking on Additional 973

COCO Metrics 974

In our main text we compared the average preci- 975

sion of the model across all the classes and all the 976

IoU (Intersection over Union) thresholds from 0.5 977

to 0.95. We show mAP at specific thresholds 0.5 978
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and 0.75 in Table 12. We see that cross dataset979

VEIL vetting performs relatively 32% better than980

no vetting in a stricter IoU (0.75). The mAP met-981

ric can be further broken down by area sizes of982

ground truth bounding boxes, which is denoted983

by S, M, and L. VEIL-based vetting outperforms984

the rest in Medium (6% better than best non-VEIL985

vetting) and Large objects (5% better than best non-986

VEIL vetting); while VEIL-Same Dataset still per-987

forms best on small objects, VEIL-Cross Dataset988

performs slightly worse than no vetting.989

A.6 Additional Qualitative Results990

Vetting Qualitative Examples. Using annotations991

from CLaN, we provide qualitative examples com-992

paring the vetting capability of methods on VAELs993

with common linguistic indicators (prepositional994

phrase, different word sense, non-literal) found in995

RedCaps in Figure 3.996

WSOD Qualitative Examples. In Figure 4, we997

present further qualitative evidence on the impact998

of different vetting methods on weakly supervised999

object detection. There are varying degrees of part1000

and contextual bias from all methods; however,1001

No Vetting has the most pronounced part domi-1002

nation and context bias as shown by its detection1003

of bicycle wheels and car doors (top two rows),1004

and misidentifying a child as a chair (bottom row)1005

and detections covering both boat and water. Both1006

VEIL methods outperform the rest of the models1007

in detecting smaller objects (see first two rows).1008

LocalCLIP-E misses smaller objects in the back-1009

ground (first two rows) and also has part domina-1010

tion (bicycle).1011
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Figure 4: Detections (blue bounding box) from WSOD models trained with various vetting methods (top row)
indicate that training with either VEIL-based vetting method (two rightmost columns) leads to similar detection
capability on VOC-07 (Everingham et al., 2010). The categories shown by row (from top to bottom) are: horse, car,
boat, bicycle, chair.

15


	Introduction
	Related Work
	Label Noise Analysis and Dataset
	Method
	Experiments
	Experiment Details
	Methods Compared
	Extracted Label Vetting Evaluation
	Impact on Weakly Sup. Object Detection

	Appendix
	Vetting Dataset Details
	Vetting Precision/Recall
	Cross-Dataset Ablations
	WSOD Implementation Details
	WSOD Benchmarking on Additional COCO Metrics
	Additional Qualitative Results


