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Abstract

Discourse parsing is a crucial task in natural001
language processing that aims to reveal the002
higher-level semantic relations in a text. De-003
spite growing interest in cross-lingual discourse004
parsing, challenges persist due to limited par-005
allel data and inconsistencies in the Rhetorical006
Structure Theory (RST) application across lan-007
guages and corpora. To address this, we intro-008
duce a parallel Russian annotation for the large009
and diverse English GUM RST corpus. Lever-010
aging recent advances, our end-to-end RST011
parser achieves state-of-the-art results on both012
English and Russian corpora. It demonstrates013
effectiveness in both monolingual and bilingual014
settings, successfully transferring even with015
limited second-language annotation. To the016
best of our knowledge, this work is the first017
to evaluate the potential of cross-lingual end-018
to-end RST parsing on a manually annotated019
parallel corpus.020

1 Introduction021

Discourse parsing aims to reveal the higher-level022

organization of text. While the task has gained023

significant traction in recent years, cross-lingual024

rhetorical structure parsing remains a complex chal-025

lenge. This stems from the inherent diversity of026

annotation schemes across languages within the027

Rhetorical Structure Theory (RST) framework and028

the scarcity of parallel corpora. Existing large RST029

corpora are inconsistent in annotation guidelines,030

genre representation, source selection, and rela-031

tion definitions. Therefore, current studies might032

underestimate the true potential of RST parsers033

for language transfer. This study addresses these034

challenges by introducing a Russian version of the035

RST part of the Georgetown University Multilayer036

(GUM) corpus, encompassing all 213 original doc-037

uments. This large parallel corpus provides a valu-038

able resource for bilingual discourse analysis, en-039

abling the development of robust RST models that040

can effectively capture the rhetorical structure of 041

text in both languages. 042

As previous research suggests (Da Cunha and 043

Iruskieta, 2010; Iruskieta et al., 2015; Cao et al., 044

2018), differences in rhetorical structures across 045

languages primarily arise at the lower structural 046

levels, while the global document organization 047

exhibits some universality. Currently, top-down, 048

unified-model frameworks (Nguyen et al., 2021; 049

Liu et al., 2021) have proven highly effective for 050

end-to-end RST parsing. Hypothetically, these 051

parsers should begin by constructing a language- 052

independent high-level structure, with language- 053

specific nuances incorporated primarily at lower 054

levels. This study investigates the effectiveness 055

of an end-to-end top-down RST parser adaptation 056

across genres in a second language, utilizing both 057

monolingual and bilingual training data. Recog- 058

nizing the substantial cost of RST annotation, we 059

further investigate the efficient amount of second- 060

language annotation for parser transfer. 061

The main contributions1 of this work are: 062

1. A parallel Russian annotation of a large and di- 063

verse English GUM RST corpus dubbed RRG, 064

enabling the development and evaluation of 065

cross-lingual RST models. This resource en- 066

ables the development and evaluation of cross- 067

lingual RST models following the same anno- 068

tation framework, addressing a critical gap in 069

the field. 070

2. A unified end-to-end RST parser achieving 071

state-of-the-art performance on diverse bench- 072

marks in both English and Russian: 073

• English: RST-DT (53.0% end-to-end 074

Full F1), GUM9.1 (47.9% F1 – En, 075

47.6% F1 – bilingual), 076

• Russian: RRT (45.3% F1), new RRG 077

(44.6% F1 – Ru, 45.4% F1 – bilingual). 078
1Links to the dataset and trained models will be available

upon publication.
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2 Related Work079

Our work is closely related to two topics, namely080

end-to-end and cross-lingual RST parsing, in which081

we review prior work in this section.082

Top-down Document-level RST Parsing The083

paradigm of top-down rhetorical parsing has re-084

cently emerged and is receiving significant atten-085

tion for its exceptional capabilities for efficient end-086

to-end analysis through a unified model. Zhang087

et al. (2020) proposed a top-down strategy for pars-088

ing rhetorical structure from a sequence of EDUs089

(Elementary Discourse Units). An encoder-decoder090

module with an internal stack iteratively ranks the091

split points, ultimately assigning each EDU to its092

corresponding rhetorical role. To account for the093

variation in document structure context at differ-094

ent levels of granularity, Kobayashi et al. (2020)095

presented a multi-level tree construction approach096

developing distinct paragraph- and sentence-level097

discourse unit representations. Multiple monolin-098

gual language models were tested in this frame-099

work by Kobayashi et al. (2022). Koto et al. (2021)100

simplified the parsing by reformulating it as a se-101

quence labeling for sequences of EDUs. Zhang102

et al. (2021a) proposed computing an additional103

loss based on the dissimilarity between 3D repre-104

sentations of both gold and predicted trees, guiding105

the latter towards closer alignment with the original106

structures. Addressing the limitations of previous107

methods, Nguyen et al. (2021) devised an end-to-108

end document-level parsing model. This architec-109

ture presents two key advantages: (1) it seamlessly110

integrates tree construction and EDU segmentation111

through token-level splitting decisions, and (2) it112

employs beam search for non-greedy RST parsing.113

Liu et al. (2021) introduced a joint model where a114

shared LM encoder is employed for both segmen-115

tation and tree construction. The tree is built via116

attention over the sequence of EDUs within the117

current unit. We adopt this approach, with further118

details provided in Section 4.119

Cross-lingual Rhetorical Parsing The qualita-120

tive comparison conducted by Iruskieta et al. (2015)121

laid the foundation for multilingual rhetorical struc-122

ture analysis. Applied to a small parallel cor-123

pus across English, Spanish, and Basque (318124

EDUs per language), their method revealed sig-125

nificant similarities in rhetorical structures between126

languages. Differences primarily manifested in127

segmentation (sentence-level discourse structure).128

This insight inspired subsequent efforts to bridge 129

the gap between languages. (Cao et al., 2018) de- 130

veloped a Spanish-Chinese bilingual RST Treebank 131

consisting of 50 texts per language with varying 132

lengths (111-1774 words). Braud et al. (2017) laid 133

the groundwork for cross-lingual parsing experi- 134

ments by harmonizing RST treebanks across lan- 135

guages and introducing 18 unified coarse-grained 136

rhetorical labels. Subsequent work by Iruskieta 137

and Braud (2019) leveraged multilingual word em- 138

beddings to adapt mono- and multilingual parsers 139

to the Basque with limited RST annotations. Liu 140

et al. (2020, 2021) then developed a novel neu- 141

ral parser utilizing EDU-level machine transla- 142

tion (MT). These advancements, while address- 143

ing data sparsity, also reveal challenges like en- 144

suring the rhetorical naturalness of the texts trans- 145

lated segment-by-segment. The recent Georgetown 146

Chinese Discourse Treebank (GCDT) (Peng et al., 147

2022) offers RST annotations for 50 Chinese texts 148

(9710 EDUs) spanning 5 of 10 genres found in the 149

GUM corpus following the same relation inventory. 150

Notably, 19 documents drawn from multilingual 151

sources like Wikipedia, Wikinews, and wikiHow 152

have English counterparts in GUM, although con- 153

tent and presentation may diverge across languages. 154

3 RST Corpora 155

This work employs three previous Rhetorical Struc- 156

ture Theory (RST) datasets for two languages: En- 157

glish (RST-DT2 (Carlson et al., 2001), GUMv9.13 158

(Zeldes, 2017)) and Russian (RuRSTreebankv2.1 159

(Pisarevskaya et al., 2017)). Furthermore, we 160

suggest an additional parallel annotation for the 161

Georgetown RST annotations (GUMv9.1) in Rus- 162

sian. This section discusses the datasets and pre- 163

processing steps. 164

The general corpora analysis outlined in Table 1 165

reveals differences between the corpora extending 166

beyond variation in genres, tree sizes, and relation 167

labels inventory. For instance, in the RST-DT cor- 168

pus, 79.4% of non-elementary sentences4 (those 169

containing at least one relation) are spanned by 170

well-formed rhetorical subtrees. This high preva- 171

lence, along with explicit sentence and paragraph 172

boundary annotation, fostered research on sentence- 173

2https://catalog.ldc.upenn.edu/LDC2002T07; un-
der an LDC license.

3https://github.com/amir-zeldes/gum/releases/
tag/V9.1.0; CC BY 4.0.

4For sentence splitting we used spaCy and razdel libraries
for English and Russian, respectively.
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Genres Sources Docs Classes Tokens per tree Spanned
non-EDU
sent., %

EDUs EDUs
per
tree

Relation
pairs

min max median

RST-DT (En) 1 1 385 41 30 2624 396 79.4 21789 56.6 21404
GUM (En) 12 12+ 213 27 167 1879 989 72.5 26319 123.6 26106
RRT (Ru) 2 17+ 233 24 2 1148 89 76.7 28372 11.7 25957
RRG (Ru) 12 12+ 213 27 137 1629 833 77.0 25239 118.5 25026

Table 1: Statistics of the corpora.

level RST analysis (Soricut and Marcu, 2003; Joty174

et al., 2012; Nejat et al., 2017; Lin et al., 2019;175

Zhang et al., 2021b). In contrast, the GUM cor-176

pus takes a different approach by ignoring formal177

sentence and paragraph boundaries and omitting178

paragraph markers altogether. These differences179

underscore that variations in rhetorical structure,180

even within the same genre5, stem not only from181

diverse relation sets and text sources, as Liu and182

Zeldes (2023) suggest, but also from fundamental183

differences in annotation principles.184

3.1 Annotations for English185

RST-DT The RST-DT corpus remains the pri-186

mary benchmark for RST parsing, offering fine-187

grained annotations for WSJ news articles of vari-188

ous lengths.189

GUM The Georgetown University Multilayer190

corpus is an expending multi-genre corpus con-191

taining multiple layers of linguistic annotation, in-192

cluding RST. Featuring both written and spoken193

language across 12 genres, it remains the largest194

monolingual RST annotation corpus to date.195

3.2 RRT (RuRSTreebank)196

We exclude the scientific portion of the RuRSTree-197

bank corpus in our experiments, as these are re-198

ported to be the first attempts at RST annotation for199

Russian following the earliest incompatible guide-200

lines (Chistova et al., 2021). The resulting dataset201

comprises news articles and blogs from diverse202

sources. It includes 5 news sources and 17 blogs203

covering topics such as travel, life stories, IT, cos-204

metics, health, politics, environment, and psychol-205

ogy. Despite the diversity, most documents are206

only partially annotated. Among the 233 docu-207

ment annotations, only one text is fully covered208

by a single tree; the remaining documents have209

random under-annotations. The maximum num-210

ber of trees in a single *.rs3 document reaches211

5See Appendix A for genre-wise comparison.

42, with an average of 11.7 trees per document. 212

This has influenced previous attempts to build a 213

Russian parser (Chistova et al., 2021; Chistova and 214

Smirnov, 2022), in which many efforts are directed 215

towards predicting a look-alike forest for each full 216

document. where efforts focus on predicting a sim- 217

ilar forest for each full document. However, we 218

emphasize the clear randomness of tree boundaries 219

within the text, treating each connected tree as a 220

separate document in our study6. Our approach’s 221

validity is implicitly supported by the absence of 222

rhetorical relations for higher-level textual organi- 223

zation (such as HEADING or TOPIC-CHANGE) in 224

the RRT. Additionally, we’ve observed that in cor- 225

pora for other languages, the fully annotated tree 226

often represents only a portion of the original text. 227

Following established practices in end-to-end dis- 228

course parsing for RRT, we address inconsistencies 229

in the assignment of specific relations documented 230

by Pisarevskaya et al. (2017). The dictionary in 231

Appendix B assists in remapping these relations 232

during corpus preprocessing. 233

3.3 RRG 234

The Russian RST dataset from Georgetown Uni- 235

versity Multilayer corpus (RRG) was constructed 236

by manually translating the RST annotations in 237

GUM9.1. 238

Translation We prioritized manual literary trans- 239

lation and genre-specific text adaptation for 213 240

English texts. This differs from the common prac- 241

tice in cross-lingual RST research relying on EDU- 242

level machine translation. 243

Rhetorical Structure Alignment The translated 244

texts were manually aligned to the original struc- 245

tures unit-by-unit, following the guidelines for 246

6The original train/dev/test corpus splitting is preserved.
The documents are only split into docname_part_*.rs3 files
processed independently. Documents containing only a single
EDU are excluded. Within the refined corpus used for exper-
iments, 12.8% of trees are constructed of 2 to 4 elementary
discourse units.
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EDU segmentation in Russian developed for RRT7.247

We added or removed elementary discourse units248

from the tree based on the discourse segmentation249

in the Russian sentences. Rhetorical relations and250

nuclearity were assigned following the GUM RST251

annotation guidelines8.252

Annotation Polishing Our efforts to detect and253

correct misassigned labels and misaligned EDUs254

in the RRG draft began with an examination of the255

class distribution. It helped us identify obvious an-256

notation errors, including some inherited from the257

original English corpus (such as rare and unlikely258

classes like RESTATEMENT_SN). To further refine259

the annotations, we trained the RST label classifier260

for Russian proposed by Chistova et al. (2021) on261

the draft dataset. This classifier served as an out-262

lier detection tool, allowing us to detect potentially263

mislabeled examples. Specifically, we focused on264

cases where the classifier confidently predicted an265

incorrect class and excluded the true (annotated)266

class from its top 3 most probable predictions. Fol-267

lowing the GUM relation annotation guidelines, we268

fixed any corrupted structures identified through269

this analysis.270

4 End-to-End RST Parser271

The rhetorical structure parsers suggested in re-272

cent years (Zhang et al., 2020; Kobayashi et al.,273

2020; Zhang et al., 2021a; Nguyen et al., 2021)274

often focused on developing innovative features275

to address either specific aspects of the structure276

construction or its global optimization. However,277

these approaches often overlook the integration of278

previously established effective features. They also279

frequently neglect the end-to-end performance, a280

fundamental aspect of any practical framework. We281

are building a hybrid deep model solving both seg-282

mentation and tree construction that benefits from283

the techniques suggested by recent work.284

4.1 Base Model285

As a base end-to-end deep model, we use the286

DMRST (Liu et al., 2021) architecture visualized287

in Figure 1.288

The framework consists of four main modules:289

(1) EDU segmentation via document-level labeling,290

(2) hierarchical EDU encoding, (3) span-splitting291

decoding for tree construction, and (4) nuclearity-292

relation prediction using a bi-affine classifier. The293

7https://rstreebank.ru/eng
8https://wiki.gucorpling.org/gum/guidelines

RS tree

Relation Labeler

Pointer Network

EDU embeddings 
[n x hidden_size]

Hidden  
states

Global EDU 
Encoder

EDU embeddings 
[n x dimedu_emb]

Local EDU 
Encoder

[10001000...10100]
Detected EDU Boundaries

SegmenterToken 
embeddings Token Encoder

Text

Figure 1: Architectural overview of DMRST.

encoded EDU sequence is iteratively parsed during 294

decoding, and the classifier predicts the nuclearity 295

and relations between adjacent units. Training min- 296

imizes the dynamic weighted average (DWA) (Liu 297

et al., 2019) of losses for EDU segmentation, tree 298

structure parsing, and nuclearity+relation labeling. 299

4.2 Modifications to the Base Model 300

To improve end-to-end parsing performance, we 301

introduce modifications to the base model, focusing 302

primarily on EDU segmentation and encoding. 303

Segmentation: ToNy The BiLSTM-CRF seg- 304

menter known by this name (Muller et al., 2019) is 305

a simple yet robust neural token labeler. Original 306

DMRST parser implements a feedforward token 307

classifier (with an additional similar classifier for 308

the right neighbor only for loss penalization)9. We 309

replace the original DMRST segmentation mod- 310

ule with a BiLSTM-CRF layer without additional 311

losses. 312

Local EDU Encoding: E-BiLSTM Rather than 313

averaging subword embeddings for local EDU en- 314

coding like the original method, we utilize another 315

BiLSTM layer, which enables us to achieve better 316

sequence encodings. The concatenation of hidden 317

states at the final time step of each pass captures 318

the context of the phrase more precisely than an 319

average of its subword embeddings. 320

9Directly comparing segmentation scores from the report
with ToNy’s paper raises concerns due to differing method-
ological choices. DMRST employs a different pretrained
language model, potentially augmented data, and document-
level segmentation, contrasting with ToNy’s sentence-level
StanfordNLP splitter. Furthermore, original ToNy functions as
a standalone segmenter, while DMRST incorporates segmen-
tation into its unified encoder training for joint optimization
with tree construction.
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No augmentations One of the distinctive fea-321

tures of the original DMRST is data augmentation322

using corpora unification and EDU-level machine323

translation. However, we emphasize that annotated324

corpora for different languages can present differ-325

ent interpretations of RST with nuances in the tree326

constraints and relation definitions. Furthermore,327

EDU-level MT can result in unnatural discourse328

structures in the target language and offer little329

linguistic knowledge (although it can augment ex-330

amples of some relations in the training set). There-331

fore, we do not consider either corpora unification332

or machine translation. Instead, we build a full par-333

allel RST corpus with consistent relation inventory.334

DWA Window Size Dynamic weighting is cru-335

cial for ensuring that each component of the parser336

receives the necessary attention during training:337

Ltotal =
3∑

k=1

λkLk, wk(i− 1) =
Lk(i− 1)

Lk(i− 2)
(1)338

λk(i) = softmax(
wk(i− 1)

Temp
)× 3, (2)339

where the loss Ltotal is the DWA of task-specific340

losses with weights λi; wk are the relative descend-341

ing rates for tasks 1 (segmentation), 2 (tree con-342

struction), and 3 (relation labeling), i is an iteration343

index, and Temp controls the softness of the task344

weighting. However, relying solely on the last two345

batches (Equation 1) is susceptible to local trend346

amplification, especially with smaller batches en-347

compassing rhetorical trees of varying sizes and348

complexities. To address this issue, we introduce a349

DWA window size parameter b:350

wk(i− 1) =

∑b
j=1 Lk(i− j)∑2b

j=b+1 Lk(i− j)
(3)351

By analyzing a broader range of loss values, the352

model can effectively identify long-term trends and353

adjust task weights accordingly. This modification354

improved training stability with smaller batches,355

particularly on the RRT dataset comprising a large356

number of single-relation discourse trees.357

5 Experimental Setup358

In this study, we adopt the multilingual359

xlm-roberta-large10 (Conneau et al., 2020).360

10MIT License.

Hyperparameters are fixed as specified in Ap- 361

pendix D. We average results across five runs with 362

varying model seeds (fixed-split corpora: GUM, 363

RRT, RRG) or different train/dev splits (RST-DT). 364

Bilingual experiments (Section 8) additionally 365

involve randomly selecting 25%, 50%, and 75% of 366

the second-language data for each of the five runs. 367

6 Monolingual Evaluation and Discussion 368

6.1 Segmentation 369

Segmentation performance is shown in Table 3 370

alongside other metrics for end-to-end parsing. 371

English The previous best segmentation perfor- 372

mance belongs to the DisCut11 method (Metheniti 373

et al., 2023), achieving 97.6 F1 on RST-DT12 and 374

95.5 F1 on GUM9.0. Our improved DMRST+ToNy 375

surpasses this on RST-DT with an average of 97.9% 376

F1. The final model also outperforms the original 377

DMRST configuration on GUM9.1 reaching an av- 378

erage F1 score of 95.5% compared to 94.7%. 379

Russian Building upon the ToNy method (2019), 380

Chistova and Smirnov (2022) achieve an F1 score 381

of 89.1% on the Russian RuRSTreebank corpus 382

(version 2.1). The DISRPT shared tasks (2019; 383

2021; 2023) featured an early and flawed version 384

of RRT, which had non-hierarchical annotations of 385

academic genres. Thus, the performance in seg- 386

mentation and relation classification reported for 387

their version of the dataset is not consistent with 388

the version used in the current work on end-to- 389

end discourse parsing for Russian. The details on 390

the current version (RuRSTreebank v2.1) are out- 391

lined in Section 3.2. While the architecture modifi- 392

cations did not significantly impact segmentation 393

performance on the RRT corpus, they consistently 394

improved it on the RRG corpus, with an average 395

increase from 96.3% F1 to 96.9% F1. 396

6.2 Assessing the Joint Model 397

Our experiment on joint training of segmentation 398

and parsing modules within a unified architecture 399

produced intriguing results, revealing a fundamen- 400

tal tension between the two tasks. Models with 401

11A simple token classifier for sentences on top of the
XLM-RoBERTa-large.

12Inter-annotator agreement for segmentation on a subset
of 53 (Carlson et al., 2001) double-annotated texts within the
RST-DT corpus yielded a score of 98.3% F1 (Soricut and
Marcu, 2003). However, this evaluation remains limited to a
small part of the corpus that does not align with its test section.
The human agreement scores reported in Table 2 are obtained
on the same part of the corpus (Joty et al., 2015).
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Corpus Method S N R Full

En
RST-DT

Human 78.7 66.8 57.1 55.0

Feng and Hirst (2014) 68.6 55.9 45.8 44.6
DPLP (2014) 64.1 54.2 46.8 46.3
CODRA (2015) 65.1 55.5 45.1 44.3
Surdeanu et al. (2015) 65.3 54.2 45.1 44.2
Li et al. (2016) 64.5 54.0 38.1 36.6
HILDA (2016) 65.1 54.6 44.7 44.1
Braud et al. (2016) 59.5 47.2 34.7 34.3
Braud et al. (2017) 62.7 54.5 45.5 45.1
Yu et al. (2018) 71.4 60.3 49.2 48.1
Mabona et al. (2019) 67.1 57.4 45.5 45.0
Zhang et al. (2020) 67.2 55.5 45.3 44.3
Nguyen et al. (2021) 74.3 64.3 51.6 50.2
Koto et al. (2021) 73.1 62.3 51.5 50.3
Zhang et al. (2021a) 76.3 65.5 55.6 53.8
DMRST + Cross-translation (2021) 76.7 66.2 56.5 –
Yu et al. (2022) 76.4 66.1 54.5 53.5
Kobayashi et al. (2022) 77.8 ± 0.3 68.0 ± 0.5 57.3 ± 0.2 55.4 ± 0.4

DMRST (this work) 78.7 ± 0.4 68.0 ± 0.6 57.3 ± 0.2 55.7 ± 0.3
+ ToNy 78.4 ± 0.7 67.4 ± 0.8 56.8 ± 0.9 55.2 ± 0.9
+ ToNy + E-BiLSTM 78.5 ± 0.5 67.5 ± 0.7 57.0 ± 0.5 55.3 ± 0.5

GUM v9.1 DMRST (this work) 72.7 ± 0.7 60.8 ± 0.6 52.8 ± 0.5 51.7 ± 0.4
+ ToNy 72.8 ± 0.3 61.4 ± 0.6 53.1 ± 0.5 52.0 ± 0.5
+ ToNy + E-BiLSTM 73.1 ± 0.3 61.3 ± 0.2 53.0 ± 0.3 52.0 ± 0.3

Ru
RRT DMRST (this work) 81.0 ± 0.5 63.3 ± 0.9 54.2 ± 0.9 54.0 ± 0.9

+ ToNy 80.9 ± 1.0 63.4 ± 0.9 54.7 ± 0.9 54.6 ± 0.9
+ ToNy + E-BiLSTM 81.2 ± 0.4 62.9 ± 0.9 53.8 ± 1.2 53.6 ± 1.2

RRG DMRST (this work) 71.5 ± 0.4 57.6 ± 0.2 49.1 ± 0.3 47.9 ± 0.2
+ ToNy 71.1 ± 0.5 56.6 ± 1.4 48.2 ± 1.5 47.2 ± 1.4
+ ToNy + E-BiLSTM 70.7 ± 0.4 56.4 ± 0.5 48.3 ± 0.5 47.1 ± 0.5

Table 2: RST parsing performance evaluated on the gold EDU segmentation. Micro F1 scores (original Parseval);
average and standard deviation. Missing values are not reported in the cited work.

higher F1 scores on gold-standard segmentation402

(Table 2) performed worse on both segmentation403

and end-to-end parsing metrics than models with404

lower gold-segmentation scores but better utiliza-405

tion of their predicted segments (Table 3). This pat-406

tern suggests that the encoder representations are407

being pulled in two opposing directions during fine-408

tuning. Sentence segmentation relies heavily on409

local cues within sentences, leading segmentation-410

optimized models to develop encodings for fine-411

grained syntactic patterns. However, building a412

document-level parse tree requires capturing long-413

range context and global relationships, demanding414

encodings that recognize complex discourse units.415

Therefore, directly comparing jointly trained mod-416

els on gold-EDU trees may not be reliable in this417

scenario. The following discussion delves into the418

end-to-end parsing evaluated in Table 3.419

English The enhanced models achieve state-of-420

the-art results for end-to-end English RST pars-421

ing. Leveraging ToNy segmentation for the RST-422

DT dataset and both ToNy and BiLSTM EDU en-423

coding for the GUM dataset, we obtain a substan-424

tial improvement in unlabeled tree construction,425

measured by the Span metric (average increase of426

0.8% for RST-DT and 1.9% for GUM). This gain is427

noteworthy considering the widespread use of un- 428

labeled rhetorical trees in RST parsing applications 429

(Guzmán et al., 2014; Khosla et al., 2021). Nucle- 430

arity assignment, crucial for tasks like summariza- 431

tion and sentiment analysis (Goyal and Eisenstein, 432

2016; Fu et al., 2016; Huber and Carenini, 2020), 433

also benefits from our approach. The best models 434

achieve an average F1-score of 64.8% (+0.7) on 435

RST-DT and 56.1% (+1.9) on GUM for the Nucle- 436

arity metric. Finally, the full rhetorical structure 437

construction for both datasets achieves 53.0% for 438

RST-DT and 47.9% for GUM. 439

Russian While the enhanced model noticeably 440

improved performance on other corpora, it surpris- 441

ingly failed to do so on RRT. This disparity might 442

be attributed to the overfitting of the ToNy seg- 443

menter, potentially caused by the larger batch size 444

necessary for stable RRT training (Appendix D). 445

RRT’s smaller median tree size (Table 1) results in 446

the highest Span score on gold-standard segmen- 447

tation across all corpora (Table 2). Building trees 448

on EDUs predicted with 92% F1 (Table 3) signifi- 449

cantly drops the Span metric (15% F1 gap). Similar 450

to the original GUM corpus, the model incorporat- 451

ing both modifications achieved the best results on 452

RRG, exhibiting an average F1-score of 44.6%. 453
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Corpus Method Segm. S N R Full

En

RST-DT

SegBot (2018) & Zhang et al. (2020) 92.2 62.3 50.1 40.7 39.6
Nguyen et al. (2021) 96.3 68.4 59.1 47.8 46.6
DMRST (2021) 96.4 69.8 59.4 49.4 48.6
+ Cross-translation 96.5 70.4 60.6 51.6 50.1

DMRST (this work) 97.3 ± 0.1 74.3 ± 0.6 64.1 ± 0.7 53.9 ± 0.5 52.4 ± 0.5
+ ToNy 97.9 ± 0.1 75.1 ± 0.7 64.8 ± 0.7 54.5 ± 0.9 53.0 ± 0.9
+ ToNy + E-BiLSTM 97.8 ± 0.1 74.8 ± 0.5 64.5 ± 0.8 54.5 ± 0.7 53.0 ± 0.7

GUM v9.1 DMRST (this work) 94.7 ± 0.4 65.0 ± 0.5 54.2 ± 0.5 47.3 ± 0.5 46.4 ± 0.4
+ ToNy 95.4 ± 0.1 66.4 ± 0.3 55.8 ± 0.5 48.5 ± 0.5 47.6 ± 0.6
+ ToNy + E-BiLSTM 95.5 ± 0.1 66.9 ± 0.5 56.1 ± 0.3 48.8 ± 0.4 47.9 ± 0.4

Ru

RRT DMRST (this work) 92.4 ± 0.3 66.5 ± 1.0 52.4 ± 1.2 45.3 ± 1.0 45.3 ± 1.0
+ ToNy 92.4 ± 0.2 65.4 ± 1.1 51.3 ± 0.6 44.6 ± 0.5 44.5 ± 0.5
+ ToNy + E-BiLSTM 92.2 ± 0.2 65.9 ± 0.5 51.0 ± 0.7 43.9 ± 1.0 43.8 ± 1.0

RRG DMRST (this work) 96.3 ± 0.1 65.6 ± 0.3 52.8 ± 0.3 45.1 ± 0.2 44.0 ± 0.3
+ ToNy 96.7 ± 0.2 66.6 ± 0.9 53.0 ± 1.7 45.3 ± 1.7 44.3 ± 1.5
+ ToNy + E-BiLSTM 96.9 ± 0.2 66.5 ± 0.4 53.3 ± 0.6 45.8 ± 0.5 44.6 ± 0.4

Table 3: End-to-end parsing performance. Micro F1 scores (original Parseval); average and standard deviation.

En Ru En Ru

Segm. S N R Full Segm. S N R Full

100%

0% 95.5 ± 0.1 66.9 ± 0.5 56.1 ± 0.3 48.8 ± 0.4 47.9 ± 0.4 95.5 ± 0.3 63.9 ± 0.7 51.4 ± 1.0 43.4 ± 0.6 42.2 ± 0.6
25% 95.5 ± 0.1 66.4 ± 0.7 55.1 ± 1.0 48.2 ± 1.0 47.4 ± 1.0 96.4 ± 0.3 66.3 ± 0.6 53.8 ± 0.6 45.9 ± 0.7 44.9 ± 0.6
50% 95.5 ± 0.1 66.6 ± 0.5 55.4 ± 0.6 48.7 ± 0.6 47.7 ± 0.7 96.6 ± 0.2 67.0 ± 0.5 54.2 ± 0.6 46.6 ± 0.8 45.5 ± 0.8
75% 95.6 ± 0.2 67.2 ± 0.2 55.7 ± 0.5 48.9 ± 0.6 47.9 ± 0.5 96.8 ± 0.2 67.0 ± 0.4 54.0 ± 0.5 46.2 ± 0.5 45.0 ± 0.5
100% 95.3 ± 0.1 66.4 ± 0.7 55.2 ± 0.6 48.6 ± 0.6 47.6 ± 0.7 96.8 ± 0.1 66.9 ± 0.4 54.3 ± 0.3 46.5 ± 0.4 45.4 ± 0.4

Table 4: Performance of the models trained with second language data injection.

7 Cross-Dataset Compatibility in Russian454

RST Parsing455

This section explores the cross-dataset compati-456

bility of Russian RST parsing by comparing two457

relation inventories derived from RRT and RRG458

parsers using a data-driven approach.459

Relation Labeling To categorize the discourse460

unit pairs connected in the annotated corpora, we461

trained the relation classifier for Russian developed462

by Chistova et al. (2021). It is an ensemble of a463

feature-rich classifier and an ELMo-driven clas-464

sifier. The feature-rich classifier includes a com-465

prehensive dictionary of discourse cues in Russian,466

various morpho-syntactic features, a sentiment clas-467

sifier, and USE vectors (Cer et al., 2018). The neu-468

ral classifier is based on the BiMPM architecture469

(Wang et al., 2017), and utilizes the ELMo model470

for Russian as well as pre-trained fastText embed-471

dings (Bojanowski et al., 2017) and character n-472

gram embeddings to encode a discourse unit. The473

RRT dataset, which includes 24 classes, yielded474

a 48.9% macro F1 score, while the RRG dataset,475

which includes 27 classes, yielded a 46.3% macro476

F1 score (see Appendix C for detailed results).477

Cross-dataset classification results illustrated in Ap-478

pendix C Figure 5 indicate a notable overlap among479

the majority of classes from the two datasets while480

also highlighting the challenge of RST treebanks 481

unification across languages and frameworks. 482

8 Cross-Lingual Evaluation 483

In this section, we explore the capabilities of our 484

best +ToNy+E-BiLSTM model in two scenarios: (1) 485

its performance on an unseen or under-annotated 486

language, and (2) its bilingual adaptation when 487

trained on a fully-annotated parallel corpus. We as- 488

sess the performance of a model on a new language, 489

analyzing how expanding the parallel training data 490

influences its ability to parse diverse writing and 491

speech styles. With the English training data held 492

constant, we investigate its ability to adapt to dif- 493

ferent genres in Russian. 494

Direct Transfer By employing documents that 495

differ only in language, we isolate the impact of lan- 496

guage on RST parsing within zero-shot generaliza- 497

tion, offering a more nuanced evaluation compared 498

to typical mixed-source approaches. As demon- 499

strated in Table 4, the RST parser achieves remark- 500

able results on Russian test documents in zero-shot 501

setting (0%), showcasing the strength of multilin- 502

gual language models. It performs nearly on par 503

with the monolingual parser specifically trained on 504

Russian data (RRG, Table 3). Although the Rus- 505

sian parser exhibits improvements across all met- 506
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Figure 2: Impact of second language injection on the
end-to-end Full performance.

rics (segmentation: +1.4%, Span splitting: +2.6%,507

Nuclearity assignment: +1.9%, Full: +2.4%), the508

gap remains relatively narrow, demonstrating the509

effectiveness of the original GUM-based parser510

across languages. Reversing the direction (Rus-511

sian to English) revealed a substantial performance512

drop (Table 11, Appendix E). Its F1 score for En-513

glish segmentation is only 86.9%. This disparity514

likely stems from heavy reliance on commas to515

separate elementary discourse units in Russian (ex-516

amples in Figure 4, Appendix E). With only 18.5%517

of EDUs ending with commas in GUM compared518

to a staggering 37.5% in RRG, the segmenter be-519

came overly reliant on a feature less common in520

English.521

Mixed Train Data The objective of this experi-522

ment is to estimate the data requirements for suc-523

cessful cross-lingual parser transfer in RST parsing,524

a task that relies on laborious expert annotation. We525

evaluate cross-lingual transfer performance across526

different amounts of annotation, ranging from 25%527

to 100% of the target language corpus. Our eval-528

uation considers an ideal scenario involving full529

parallel data. Table 4 presents the model’s perfor-530

mance as the number of labeled examples in the531

second language increases. We observe a gradual532

improvement in the model’s ability to construct533

rhetorical trees with attached nuclearities. How-534

ever, the rhetorical labeling accuracy plateaus at ap-535

proximately 50% of second language annotations.536

The genre-specific performance of the model is il-537

lustrated in Figure 2. A more detailed evaluation538

is provided in Appendix E. Genres such as wiki-539

how, textbook, academic, voyage, bio (Wikipedia),540

speech, interview, and news exhibit the highest541

adaptation to the second language. Spoken dis-542

Test Language English Russian
Train Data GUM GUM+RRG GUM RRG GUM+RRG

academic 56.3 55.5 (–0.8) 52.1 55.7 55.2 (–0.5)
bio 51.5 52.5 (+1.0) 46.3 52.2 50.3 (–1.9)
conversation 29.3 30.2 (+0.9) 22.1 25.9 27.4 (+1.5)
fiction 38.5 40.2 (+1.7) 37.2 36.7 38.0 (+1.3)
interview 55.1 54.7 (–0.4) 46.1 47.3 48.8 (+1.5)
news 55.0 52.9 (–2.1) 44.4 45.9 47.9 (+2.0)
reddit 44.0 42.3 (–1.7) 40.6 41.5 41.8 (+0.3)
speech 57.6 57.2 (–0.4) 47.8 50.2 50.1 (–0.1)
textbook 57.0 56.4 (–0.6) 51.4 53.6 55.3 (+1.7)
vlog 41.7 40.6 (–1.1) 33.3 35.5 36.6 (+1.1)
voyage 44.1 43.4 (–0.7) 46.8 49.3 51.0 (+1.7)
whow 57.0 56.8 (–0.2) 52.0 54.1 54.7 (+0.6)

all 47.9 47.6 (–0.3) 42.2 44.6 45.4 (+0.8)

Table 5: Mono- vs. bilingual model evaluation (avg.
end-to-end Full F1).

course genres achieved the lowest parsing scores 543

but showed notable adaptation (vlog: 33.3% to 544

36.6% F1; conversation: 22.1% to 27.4% F1). 545

The bilingual model outperforms the monolin- 546

gual RRG model (44.6% F1), achieving an impres- 547

sive Full end-to-end score of 45.4% F1. Despite a 548

slight F1 decrease in English, the bilingual parser 549

excelled in 9 out of 12 genres in Russian (as de- 550

tailed in Table 5). This underscores its efficacy in 551

cross-lingual transfer. 552

9 Conclusion 553

This study addresses the challenges of cross-lingual 554

discourse parsing. We introduce a large parallel 555

Russian annotation of the multigenre GUM RST 556

corpus and assess the performance of an end-to- 557

end top-down model in bilingual rhetorical struc- 558

ture parsing. The top-down unified parser employ- 559

ing a multilingual language model established a 560

strong baseline on end-to-end parsing in both lan- 561

guages. Further analysis explored direct parser 562

transfer without second-language data. Surpris- 563

ingly, transferring the English parser to Russian 564

achieved comparable quality to the monolingual 565

parser. However, the reverse transfer suffered due 566

to nuances in Russian discourse segmentation, un- 567

derlining the critical role of language-specific fea- 568

tures in language transfer. We investigated the ef- 569

fectiveness of porting the analyzer with limited 570

second-language data. Our findings demonstrate 571

that even with minimal data, such transfer remains 572

effective. Finally, training the bilingual parser on 573

the entire parallel dataset yielded the best discourse 574

parsing performance in Russian, and strong perfor- 575

mance in English. 576
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Limitations577

While the written sections of the corpus are well-578

adapted into Russian, accurately capturing the nu-579

ances of Russian spontaneous speech in documents580

outlining English spoken discourse (vlog, conversa-581

tion) through translation can be challenging. This582

presents an exciting opportunity for future research583

to explore the unique RST features of spoken dis-584

course in Russian.585
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A Sentence Subtrees Coverage912

Examining tree-covered non-elementary sentences913

in the analyzed corpora (see Table 6) reveals ev-914

ident disparities in formal structure between an-915

notation schemas, even within the recurring news916

genre.917

Corpus Genre En Ru

RST-DT news 79.4 –

GUM, academic 72.0 77.0
RRG bio 61.1 72.8

conversation 65.8 68.2
fiction 70.4 78.5
interview 71.4 78.1
news 69.0 79.7
reddit 73.0 77.0
speech 85.8 86.7
textbook 78.5 76.4
vlog 75.3 77.6
voyage 71.3 71.4
whow 77.5 78.4

RRT blogs – 71.6
news – 82.9

Table 6: Spanned non-EDU sentences, %

While (Soricut and Marcu, 2003) briefly men-918

tion a 95% coverage of sentences spanned by well-919

formed rhetorical subtrees in RST-DT, our anal-920

ysis, based on automatic sentence segmentation921

and counting within binarized trees (the standard922

format for RST parsing), suggests a more conser-923

vative estimate of 86%. Notably, even among non-924

elementary sentences (those containing at least two925

elementary units) there remains a prevalence of926

79.4% well-formed rhetorical trees in the corpus.927

This value exceeds what has been observed in other928

examined corpora.929

B RRT Preprocessing Details930

Table 7 provides information about the common931

renaming of mislabeled samples in RRT.932

The mislabelings, which persist in version 2.1933

and are consequently addressed during corpus pre-934

processing, can be attributed to the following fac-935

tors:936

• Relation selection errors. TThe Antithesis937

relation is intentionally excluded from the cor-938

pus during annotation. However, a few in-939

stances of this class within the corpus clearly940

imply the Attribution relation. Furthermore,941

Restatement_SN(NS), Preparation_NS, Elab-942

oration_SN are considered impossible accord-943

ing to the annotation manual.944

Original Annotation Preprocessing

antithesis Attribution
cause, effect, cause-effect Cause-effect
condition, motivation Condition
evaluation, interpretation,
interpretation-evaluation Interpetation-evaluation

RESTATEMENT_SN CONDITION_SN
RESTATEMENT_NS ELABORATION_NS
SOLUTIONHOOD_NS SOLUTIONHOOD_SN
PREPARATION_NS ELABORATION_NS
ELABORATION_SN PREPARATION_SN
BACKGROUND_NS ELABORATION_SN

Table 7: Common renaming of mislabeled relations
during RRT preprocessing.

• Artifacts of shifting relation definitions. In 945

pursuit of objectivity and annotation agree- 946

ment, Pisarevskaya et al. (2017) combined 947

or eliminated certain initial relations (cause, 948

effect, motivation, evaluation, interpretation). 949

Nevertheless, remnants of these fine-grained 950

labels persist within the corpus. 951

C Relation Classification Results 952

Table 8 presents a detailed rhetorical relation classi- 953

fication performance for each corpus employing a 954

standalone classifier. The task is treated in the con- 955

text of the end-to-end system, with merged relation 956

and nuclearity. 957

Figure 3 shows confusion matrices for the 958

same classification models focusing only on the 959

coarse-grained relation. Overlapping RST relation- 960

nuclearity classes across two corpora are illustrated 961

in Figure 5. Confidently predicted relations (en- 962

tropy >75th percentile) are shown on the right, with 963

the target corpus’s ground truth relations on the left. 964

Only frequent transitions (>2.5% of gold class) are 965

included. These figures reveal recurring patterns of 966

overlapping relations in the two annotation types. 967

The classes ORGANIZATION_NS, MODE, CON- 968

TEXT_SN, and ORGANIZATION_NS in the RRG 969

corpus do not correspond with certain classes in 970

RRT when examining the mentioned discourse unit 971

features. The RRT-trained classifier consistently 972

assigns the CONDITION class to both RRG’s CON- 973

TINGENCY (contingency-condition) and CONTEXT 974

(context-circumstance) classes. For parser effi- 975

ciency, RRG merges its specific adversative classes 976

(antithesis, concession, contrast) into a single AD- 977

VERSATIVE category. This unified category maps 978

to two distinct relations in the RRT: CONTRAST 979

and CONCESSION, leading to inconsistencies in 980
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P R F1 Num.

RRT

Attribution_NS 87.21 97.40 92.02 77
Attribution_SN 77.05 94.95 85.07 198
Background_SN 00.00 00.00 00.00 10
Cause-effect_NS 50.88 37.18 42.96 78
Cause-effect_SN 43.18 48.72 45.78 78
Comparison_NN 35.71 26.32 30.30 38
Concession_NS 83.33 90.91 86.96 22
Concession_SN 40.00 20.00 26.67 10
Condition_NS 53.47 75.00 62.43 72
Condition_SN 62.38 67.74 64.95 93
Contrast_NN 70.94 76.60 73.66 188
Elaboration_NS 52.72 71.21 60.59 639
Evidence_NS 26.67 08.89 13.33 45
Evidence_SN 00.00 00.00 00.00 12
Interpretation-evaluation_NS 45.24 39.58 42.22 144
Interpretation-evaluation_SN 33.33 15.38 21.05 13
Joint_NN 72.18 60.12 65.60 682
Preparation_SN 56.44 48.72 52.29 117
Purpose_NS 89.06 78.08 83.21 73
Purpose_SN 55.00 57.89 56.41 19
Restatement_NN 33.33 22.73 27.03 22
Sequence_NN 59.72 30.50 40.38 141
Solutionhood_SN 51.16 48.89 50.00 45
same-unit_NN 59.02 45.00 51.06 80

Macro avg. 51.58 48.41 48.92 2896

RRG

adversative_NN 24.32 17.31 20.22 52
adversative_NS 35.85 33.33 34.55 57
adversative_SN 36.23 51.02 42.37 49
attribution_NS 84.00 72.41 77.78 29
attribution_SN 69.47 88.35 77.78 103
causal_NS 29.55 16.46 21.14 79
causal_SN 07.14 05.88 06.45 17
context_NS 60.56 42.16 49.71 102
context_SN 35.24 30.58 32.74 121
contingency_NS 71.43 71.43 71.43 14
contingency_SN 86.49 84.21 85.33 38
elaboration_NS 50.66 69.33 58.54 551
evaluation_NS 33.80 23.30 27.59 103
evaluation_SN 50.00 07.14 12.50 14
explanation_NS 54.41 26.62 35.75 139
explanation_SN 20.00 03.57 06.06 28
joint_NN 60.69 71.48 65.64 568
mode_NS 46.43 31.71 37.68 41
mode_SN 00.00 00.00 00.00 3
organization_NS 73.68 96.55 83.58 29
organization_SN 78.57 65.13 71.22 152
purpose_NS 85.07 82.61 83.82 69
purpose_SN 75.00 85.71 80.00 7
restatement_NN 37.50 32.14 34.62 28
restatement_NS 16.67 04.00 06.45 25
same-unit_NN 82.61 45.97 59.07 124
topic_SN 63.27 73.81 68.13 42

Macro avg. 50.69 45.64 46.30 2584

Table 8: Performance of the relation classification model
on Russian corpora.

nuclearity correspondence. The classifiers exhibit981

similar error patterns across both corpora. For in-982

stance, despite having its own dedicated Evidence983

relation within the broader EXPLANATION category,984

the RRG classifier consistently misidentifies the985

RRT’s EVIDENCE samples as ATTRIBUTION, mir-986

roring 14% of the RRT classifier’s predictions. This987

suggests a bias in both models towards interpreting988

references to information sources as attributions,989

regardless of the intended meaning. Meanwhile,990

RRT’s CAUSE-EFFECT class absorbs EXPLANA-991

TION’s Justify and Motivation, encompassing both 992

event causality and justifications (except for EVI- 993

DENCE). 994

D Implementation Details 995

Table 9 shows the hyperparameters used in our 996

experiments. 997

RST-DT GUM RRG RRT

batch size (# of trees) 2 1 1 6
bDWA (# of trees) 12 12 12 24

LM

hidden size 1024
sliding window length 400
learning rate 2e-05

Parser

hidden size 1024 1024 1024 768
dropout (segmenter input) 0.4
dropout (encoder input) 0.5
learning rate 1e-04

ToNy

hidden size 200

E-BiLSTM

hidden size 512

Table 9: Parameters used in the experiments.

The experiments are performed on an NVIDIA 998

Tesla v100 GPU. A single run takes 4 to 8 GPU 999

hours, depending on the dataset and batch size. 1000

E Genre-wise Evaluation 1001

Tables 10, 11, and 12 offer in-depth performance 1002

metrics for the end-to-end RST parsing in both lan- 1003

guages. Additionally, Figure 4 provides an example 1004

for segmentation mistakes made by the Russian- 1005

trained monolingual parser on English text. 1006
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en ru

Segm S N R Full Segm S N R Full

academic 94.6 ± 0.6 72.7 ± 1.3 64.0 ± 1.9 56.9 ± 1.7 56.3 ± 1.7 94.6 ± 0.5 72.6 ± 1.8 62.9 ± 1.1 55.8 ± 0.8 55.7 ± 0.8
bio 97.7 ± 0.6 68.1 ± 1.8 57.0 ± 2.9 53.2 ± 2.1 51.5 ± 2.1 98.5 ± 0.3 69.0 ± 1.8 58.4 ± 1.1 52.8 ± 1.2 52.2 ± 1.2
conversation 95.5 ± 0.3 49.5 ± 1.3 39.0 ± 1.5 29.8 ± 1.4 29.3 ± 1.6 95.5 ± 0.5 48.5 ± 1.2 33.8 ± 1.1 27.4 ± 1.2 25.9 ± 1.4
fiction 93.9 ± 0.7 59.3 ± 2.4 47.8 ± 2.9 39.7 ± 2.2 38.5 ± 2.3 96.2 ± 0.6 61.0 ± 1.1 47.3 ± 1.2 38.2 ± 0.6 36.7 ± 1.0
interview 95.1 ± 0.4 73.8 ± 0.6 65.7 ± 1.3 55.3 ± 1.2 55.1 ± 1.1 96.6 ± 0.3 71.6 ± 1.9 60.3 ± 0.7 47.3 ± 0.8 47.3 ± 0.8
news 94.6 ± 0.8 69.0 ± 1.9 60.4 ± 2.4 56.7 ± 2.0 55.0 ± 2.1 96.3 ± 0.5 65.7 ± 2.1 54.2 ± 3.2 47.6 ± 1.2 45.9 ± 1.7
reddit 93.3 ± 0.6 60.5 ± 1.1 51.5 ± 1.4 44.5 ± 1.6 44.0 ± 1.4 97.7 ± 0.3 61.1 ± 1.3 48.6 ± 1.6 42.7 ± 1.4 41.5 ± 1.7
speech 97.5 ± 0.4 79.1 ± 1.7 67.4 ± 2.4 57.8 ± 1.8 57.6 ± 2.0 96.0 ± 0.6 70.5 ± 2.5 58.7 ± 1.9 50.9 ± 0.5 50.2 ± 0.5
textbook 97.5 ± 0.3 78.7 ± 1.3 66.1 ± 1.8 57.4 ± 2.0 57.0 ± 1.9 97.4 ± 0.3 76.0 ± 2.0 62.7 ± 2.3 54.6 ± 2.0 53.6 ± 2.0
vlog 95.6 ± 0.5 61.9 ± 1.0 48.8 ± 2.0 43.5 ± 1.5 41.7 ± 1.7 97.9 ± 0.3 65.8 ± 2.1 43.2 ± 2.1 38.8 ± 1.5 35.5 ± 1.3
voyage 94.6 ± 0.5 67.2 ± 1.9 51.6 ± 2.2 44.6 ± 2.0 44.1 ± 1.9 99.0 ± 0.1 73.7 ± 0.9 58.1 ± 0.8 50.4 ± 1.2 49.3 ± 1.0
whow 97.3 ± 0.3 75.7 ± 0.9 64.3 ± 1.9 58.6 ± 1.7 57.0 ± 1.7 97.8 ± 0.5 75.5 ± 1.7 64.4 ± 2.3 55.5 ± 2.1 54.1 ± 2.2

all 95.5 ± 0.1 66.9 ± 0.5 56.1 ± 0.3 48.8 ± 0.4 47.9 ± 0.4 96.9 ± 0.2 66.5 ± 0.4 53.3 ± 0.6 45.8 ± 0.5 44.6 ± 0.4

Table 10: Detailed evaluation of the monolingual parsers.

ru → en en → ru

Segm S N R Full Segm S N R Full

academic 83.1 ± 1.3 52.0 ± 4.3 43.2 ± 3.2 39.0 ± 3.0 38.7 ± 2.9 93.1 ± 0.9 69.2 ± 0.8 61.5 ± 0.2 52.1 ± 0.9 52.1 ± 0.9
bio 94.4 ± 0.5 63.0 ± 1.8 50.1 ± 2.8 45.9 ± 3.0 44.8 ± 3.2 97.3 ± 0.4 66.3 ± 1.0 54.6 ± 0.5 47.5 ± 0.8 46.3 ± 0.9
conversation 91.6 ± 0.6 42.4 ± 1.7 30.8 ± 2.0 23.5 ± 1.2 22.8 ± 1.4 94.4 ± 0.7 45.5 ± 2.5 32.9 ± 3.3 23.2 ± 2.5 22.1 ± 2.4
fiction 85.3 ± 0.8 47.8 ± 2.6 35.9 ± 2.6 28.8 ± 1.9 27.7 ± 1.7 94.9 ± 0.7 60.0 ± 2.4 48.1 ± 2.8 38.1 ± 1.8 37.2 ± 1.7
interview 83.2 ± 1.4 43.9 ± 3.6 37.1 ± 2.3 29.6 ± 2.9 29.5 ± 2.7 95.6 ± 0.8 69.7 ± 1.3 58.2 ± 1.0 46.9 ± 0.8 46.1 ± 1.0
news 84.5 ± 1.8 45.9 ± 3.3 38.7 ± 3.4 36.9 ± 2.9 34.8 ± 2.6 93.5 ± 1.2 61.9 ± 1.2 51.8 ± 1.7 45.8 ± 0.9 44.4 ± 1.0
reddit 83.1 ± 1.4 37.1 ± 2.7 30.7 ± 1.8 24.9 ± 2.5 24.6 ± 2.3 97.1 ± 0.4 59.8 ± 2.1 48.5 ± 1.7 41.1 ± 0.8 40.6 ± 0.8
speech 83.7 ± 1.6 44.6 ± 2.1 34.8 ± 1.3 29.8 ± 2.4 29.5 ± 2.5 94.5 ± 0.5 69.8 ± 1.1 56.6 ± 0.9 48.6 ± 1.6 47.8 ± 1.3
textbook 87.8 ± 1.4 56.2 ± 2.3 45.7 ± 2.3 39.9 ± 2.3 39.2 ± 2.1 95.1 ± 0.3 71.2 ± 0.9 58.0 ± 1.8 51.9 ± 0.6 51.4 ± 0.6
vlog 88.1 ± 1.9 52.7 ± 3.4 35.7 ± 3.1 32.8 ± 3.5 30.2 ± 3.9 97.2 ± 0.1 61.6 ± 1.8 41.5 ± 0.6 36.1 ± 1.0 33.3 ± 0.7
voyage 85.1 ± 1.2 46.6 ± 2.6 34.9 ± 2.3 28.8 ± 1.7 28.7 ± 1.5 96.7 ± 0.3 71.6 ± 1.4 55.2 ± 1.6 48.8 ± 2.4 46.8 ± 1.9
whow 90.6 ± 1.8 58.7 ± 3.8 49.8 ± 3.9 42.9 ± 3.2 42.1 ± 3.0 96.5 ± 0.5 74.0 ± 1.6 61.9 ± 1.8 54.1 ± 1.7 52.0 ± 1.9

all 86.9 ± 1.0 49.0 ± 2.2 38.6 ± 2.1 33.1 ± 1.9 32.2 ± 1.9 95.5 ± 0.3 63.9 ± 0.7 51.4 ± 1.0 43.4 ± 0.6 42.2 ± 0.6

Table 11: Evaluating monolingual parsing transfer to a second language.

en+ru → en en+ru → ru

Segm S N R Full Segm S N R Full

academic 94.2 ± 0.4 71.6 ± 1.1 63.1 ± 2.0 55.9 ± 2.1 55.5 ± 2.3 94.9 ± 0.6 72.9 ± 1.7 63.2 ± 1.6 55.3 ± 1.0 55.2 ± 1.0
bio 97.6 ± 0.3 70.0 ± 0.9 58.4 ± 1.0 54.0 ± 1.4 52.5 ± 1.5 98.4 ± 0.4 68.1 ± 1.9 57.5 ± 1.7 51.4 ± 1.4 50.3 ± 1.4
conversation 95.1 ± 0.1 51.5 ± 1.5 39.2 ± 0.7 31.1 ± 1.4 30.2 ± 1.3 95.3 ± 0.4 47.8 ± 1.0 34.8 ± 1.3 28.9 ± 0.5 27.4 ± 0.5
fiction 93.3 ± 0.6 59.2 ± 2.8 48.8 ± 2.3 41.2 ± 1.8 40.2 ± 1.8 96.6 ± 0.3 62.8 ± 1.9 49.6 ± 0.7 39.2 ± 2.0 38.0 ± 2.2
interview 94.6 ± 0.5 71.7 ± 1.2 63.5 ± 1.8 55.2 ± 1.3 54.7 ± 1.2 96.9 ± 0.1 70.0 ± 1.7 60.2 ± 1.9 49.2 ± 1.8 48.8 ± 1.8
news 94.8 ± 0.7 67.5 ± 2.4 59.2 ± 1.8 54.5 ± 1.6 52.9 ± 1.7 96.8 ± 0.7 68.5 ± 0.6 56.8 ± 1.7 49.6 ± 1.0 47.9 ± 1.4
reddit 92.6 ± 0.8 58.5 ± 1.5 48.9 ± 2.3 43.0 ± 2.2 42.3 ± 2.2 97.2 ± 0.3 60.9 ± 1.6 49.4 ± 2.0 42.5 ± 1.6 41.7 ± 1.7
speech 97.3 ± 0.3 75.7 ± 1.6 64.8 ± 1.9 57.2 ± 1.1 57.2 ± 1.1 96.3 ± 0.5 69.9 ± 2.4 57.5 ± 1.0 50.7 ± 1.1 50.1 ± 1.1
textbook 97.5 ± 0.4 77.3 ± 1.7 65.3 ± 2.0 57.3 ± 0.8 56.4 ± 0.9 97.1 ± 0.3 77.1 ± 0.6 64.6 ± 1.0 56.1 ± 1.3 55.3 ± 1.1
vlog 95.9 ± 0.4 62.8 ± 2.0 46.1 ± 2.6 42.8 ± 2.8 40.6 ± 2.7 97.8 ± 0.5 66.0 ± 1.7 46.0 ± 3.1 39.8 ± 3.4 36.5 ± 3.0
voyage 94.2 ± 0.5 65.7 ± 2.5 49.5 ± 3.0 43.7 ± 2.6 43.4 ± 2.6 98.5 ± 0.3 76.4 ± 1.5 60.0 ± 1.9 51.7 ± 1.5 51.0 ± 1.4
whow 97.2 ± 0.3 75.5 ± 1.3 65.0 ± 1.8 58.3 ± 1.9 56.8 ± 1.6 97.8 ± 0.3 75.9 ± 1.5 64.5 ± 2.5 56.3 ± 1.1 54.7 ± 1.5

all 95.3 ± 0.1 66.4 ± 0.7 55.2 ± 0.6 48.6 ± 0.6 47.6 ± 0.7 96.8 ± 0.1 66.9 ± 0.4 54.3 ± 0.3 46.5 ± 0.4 45.4 ± 0.4

Table 12: Bilingual parser performance.
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CONCESSION

CONDITION

CONTRAST

ELABORATION

EVIDENCE

INT.-EVALUATION

JOINT

PREPARATION

PURPOSE

RESTATEMENT

SAME-UNIT

SEQUENCE

SOLUTIONHOOD

96.0% 0.0% 0.4% 0.0% 0.0% 0.0% 0.0% 2.5% 0.0% 0.0% 0.7% 0.0% 0.0% 0.0% 0.0% 0.0% 0.4%

20.0% 0.0% 0.0% 0.0% 0.0% 10.0% 10.0% 30.0% 0.0% 0.0% 10.0% 10.0% 0.0% 0.0% 0.0% 10.0% 0.0%

3.2% 0.6% 46.8% 1.3% 0.6% 9.0% 1.9% 18.6% 0.6% 5.1% 8.3% 0.0% 0.0% 0.6% 1.3% 1.9% 0.0%

0.0% 0.0% 5.3% 26.3% 0.0% 0.0% 13.2% 15.8% 2.6% 10.5% 23.7% 0.0% 2.6% 0.0% 0.0% 0.0% 0.0%

0.0% 0.0% 3.1% 0.0% 68.8% 3.1% 12.5% 9.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 3.1% 0.0% 0.0%

3.0% 0.0% 4.2% 0.0% 0.0% 72.1% 3.6% 7.9% 0.0% 0.0% 4.8% 0.0% 1.2% 0.0% 3.0% 0.0% 0.0%

0.0% 0.0% 2.1% 0.5% 0.0% 4.8% 76.6% 8.5% 0.0% 1.1% 4.3% 0.0% 0.0% 0.5% 0.0% 1.1% 0.5%

3.0% 0.2% 1.1% 0.9% 0.3% 2.7% 1.4% 71.2% 1.1% 4.5% 5.8% 4.2% 0.9% 0.8% 0.5% 0.5% 0.9%

14.0% 0.0% 12.3% 0.0% 0.0% 0.0% 0.0% 49.1% 7.0% 3.5% 12.3% 0.0% 0.0% 1.8% 0.0% 0.0% 0.0%

3.8% 0.0% 5.7% 1.3% 0.0% 1.9% 1.9% 33.1% 0.6% 37.6% 8.9% 0.6% 0.0% 0.6% 1.9% 0.6% 1.3%

1.6% 0.0% 2.3% 0.6% 0.4% 2.8% 2.9% 20.5% 0.1% 2.6% 60.1% 1.6% 0.4% 0.0% 0.9% 2.3% 0.6%

2.6% 0.9% 0.9% 0.9% 0.0% 1.7% 1.7% 29.9% 1.7% 1.7% 3.4% 48.7% 0.0% 0.0% 0.0% 1.7% 4.3%

0.0% 0.0% 2.2% 0.0% 0.0% 5.4% 0.0% 8.7% 0.0% 1.1% 2.2% 0.0% 75.0% 0.0% 4.3% 0.0% 1.1%

0.0% 0.0% 0.0% 0.0% 0.0% 9.1% 4.5% 40.9% 0.0% 0.0% 18.2% 0.0% 0.0% 22.7% 4.5% 0.0% 0.0%

7.5% 0.0% 8.8% 0.0% 1.2% 8.8% 1.2% 15.0% 0.0% 3.8% 5.0% 0.0% 2.5% 1.2% 45.0% 0.0% 0.0%

0.7% 0.0% 4.3% 1.4% 0.0% 1.4% 2.1% 24.8% 0.0% 0.0% 30.5% 2.8% 0.7% 0.0% 0.0% 30.5% 0.7%

0.0% 0.0% 4.4% 0.0% 0.0% 2.2% 2.2% 26.7% 0.0% 8.9% 4.4% 0.0% 0.0% 0.0% 0.0% 2.2% 48.9%

(a) RRT
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ATTRIBUTION

CAUSAL
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CONTINGENCY

ELABORATION

EVALUATION

EXPLANATION

JOINT

MODE

ORGANIZATION

PURPOSE

RESTATEMENT

SAME-UNIT

TOPIC

50.6% 1.9% 2.5% 4.4% 0.6% 18.4% 3.2% 2.5% 10.1% 0.0% 0.0% 1.3% 2.5% 1.3% 0.6%

0.0% 84.8% 0.0% 1.5% 0.8% 9.1% 0.0% 0.0% 0.8% 1.5% 1.5% 0.0% 0.0% 0.0% 0.0%

12.5% 1.0% 16.7% 3.1% 0.0% 32.3% 4.2% 2.1% 22.9% 0.0% 0.0% 0.0% 1.0% 4.2% 0.0%

3.1% 0.9% 1.3% 40.4% 0.9% 21.5% 4.0% 1.3% 21.1% 1.8% 1.3% 0.9% 0.4% 0.0% 0.9%

0.0% 0.0% 0.0% 7.7% 80.8% 1.9% 0.0% 1.9% 1.9% 0.0% 3.8% 0.0% 0.0% 1.9% 0.0%

2.9% 1.5% 1.5% 3.3% 0.0% 69.3% 1.3% 2.0% 15.1% 0.5% 1.3% 0.4% 0.5% 0.2% 0.4%

5.1% 6.8% 5.1% 7.7% 0.0% 29.1% 22.2% 3.4% 14.5% 0.0% 5.1% 0.0% 0.0% 0.0% 0.9%

6.6% 3.0% 6.6% 4.8% 0.0% 32.3% 3.6% 23.4% 16.2% 0.0% 1.8% 0.6% 0.6% 0.0% 0.6%

2.6% 0.0% 1.2% 3.9% 0.0% 14.3% 1.2% 0.7% 71.5% 0.5% 1.1% 0.5% 0.9% 0.4% 1.2%

0.0% 2.3% 2.3% 2.3% 4.5% 36.4% 2.3% 0.0% 9.1% 29.5% 0.0% 2.3% 0.0% 4.5% 4.5%

0.6% 6.6% 0.0% 2.8% 0.6% 7.2% 0.6% 0.6% 8.8% 0.6% 70.2% 0.0% 1.1% 0.0% 0.6%

0.0% 0.0% 1.3% 1.3% 0.0% 10.5% 0.0% 2.6% 0.0% 1.3% 0.0% 82.9% 0.0% 0.0% 0.0%

7.5% 1.9% 0.0% 5.7% 1.9% 26.4% 11.3% 3.8% 11.3% 0.0% 3.8% 0.0% 24.5% 0.0% 1.9%

4.0% 2.4% 0.0% 1.6% 0.8% 24.2% 0.0% 0.0% 16.1% 0.8% 4.0% 0.0% 0.0% 46.0% 0.0%

4.8% 0.0% 2.4% 2.4% 0.0% 2.4% 2.4% 0.0% 7.1% 0.0% 2.4% 2.4% 0.0% 0.0% 73.8%

(b) RRG

Figure 3: Confusion matrices for the relation classifica-
tion on Russian corpora; nuclearity omitted.

(a) Original annotation from GUM9.1.

NASA 
Administrator 

Charles Bolden
announces

where four 
space shuttle 
orbiters will be 
permanently 
displayed at 

the conclusion 
of the Space 

Shuttle 
Program

during an event

commemorating 
the 30th 

anniversary 
of the first 

shuttle launch on 
April 12, 2011 .

(b) RRG corpus annotation. Commas mark EDU boundaries.

(c) RRG parser prediction for English text.

Figure 4: An example of the direct cross-language seg-
mentation prediction. From GUM_news_nasa.
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(a) RRT Classifier → RRG
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(b) RRG Classifier → RRT

Figure 5: A visual representation of the cross-dataset alignment between ground truth and predicted RST relations.
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