
Actor-Twin Framework for Task Graph Scheduling
Narjes Nourzad

University of Southern California

Los Angeles, USA

nourzad@usc.edu

Jared Coleman

Loyola Marymount University

Los Angeles, USA

jaredcol@usc.edu

Zhongyuan Zhao

Rice University

Houston, USA

zhongyuan.zhao@rice.edu

Bhaskar Krishnamachari

University of Southern California

Los Angeles, USA

bkrishna@usc.edu

Gunjan Verma

US Army’s DEVCOM Army Research

Laboratory

Adelphi, Maryland, USA

gunjan.verma.civ@army.mil

Santiago Segarra

Rice University

Houston, USA

segarra@rice.edu

ABSTRACT
Task graph scheduling involves efficiently assigning computational

tasks to available processors while ensuring the correctness of the

result. As this problem is NP-hard and not polynomial-time approx-

imable, traditional scheduling relies on heuristics. Although these

methods can be effective, they often lack efficiency and fall short in

generalizing well across different graph sizes and structures. More-

over, they are incompatible with optimization techniques that rely

on backpropagation, limiting their adaptability to modern gradient-

based approaches. In this paper, we present a novel Actor-Twin
framework that integrates Multi-Branch Graph Convolutional Net-

works (MB-GCNs) with an Actor-Critic approach to overcome the

non-differentiable nature of heuristic-based scheduling. The heart

of our framework is the Actor-Twin Scheduler (ACTS) module,

which generates a task score via the MB-GCN actor that is subse-
quently used by a heuristic for scheduling. To facilitate gradient-

based training of the actor, we incorporate a differentiable twin
component that approximates heuristic decisions. We also intro-

duce a systematic graph representation for task-server assignments

that is compatible with gradient-based optimization. Experimental

results show that Actor-Twin consistently outperforms traditional

heuristic scheduling approaches in both average and variance of

makespan.

KEYWORDS
Reinforcement Learning, Graph Neural Networks, Task Scheduling

1 INTRODUCTION
Task graph scheduling, though extensively studied [10, 33, 50], re-

mains a challenge in parallel and distributed computing systems,

particularly within modern distributed analytics pipelines [15]. It

involves assigning tasks to computational resources to optimize

performance metrics such as total scheduling time, energy con-

sumption, or throughput [14] while ensuring the correctness of the

result. At the same time, both scheduling overhead and schedule

quality are important in task graph execution. A scheduler that

incurs excessive computation overhead, even if it produces high-

quality schedules, is impractical. Many high-quality solvers are

not viable for task graph scheduling due to their runtime. Given

Proc. of the Adaptive and Learning Agents Workshop (ALA 2025), Avalos, Aydeniz,
Müller, Mohammedalamen (eds.), May 19 – 20, 2025, Detroit, Michigan, USA, ala-
workshop.github.io. 2025.

that this problem is NP-hard [20] and not polynomial-time approx-

imable [7], traditional scheduling methods often rely on heuristic

algorithms such as list scheduling. While these methods are valued

for their simplicity, low computational complexity, and ease of im-

plementation, they often fall short in generalizing across different

scenarios. For example, they struggle with task graphs that have

varying dependency patterns and server networks with diverse

connectivity [8].

Graph Neural Networks (GNNs), particularly Graph Convolu-

tional Networks (GCNs) [30], have advanced graph-based problem-

solving by effectively capturing relational patterns within graph

data. While GNNs generalize well across varying graph sizes and

structures, they face two major challenges when applied to task

scheduling. First, the NP-hard nature of data labeling restricts the

use of supervised learning methods [58]. To eliminate the reliance

on labeled data, reinforcement learning (RL) provides an alterna-

tive [37]. Second, compared to rule-based heuristics, GNNs struggle

to directly enforce the hard constraints in task scheduling [21].

Khalil et al. [28] address this by using GNNs to guide the sequential

decision-making within a heuristic under the Q-learning frame-

work [54]. However, invoking GNNs in each iteration incurs signif-

icant overhead, defeating the very goal of accelerating task execu-

tion. Alternatively, GNNs can refine the inputs of a fast heuristic to

optimize its final outputs at the cost of minimal overheads. Yet, for

heuristics like Heterogeneous Earliest Finish Time (HEFT) schedul-

ing [49], which make discrete batch decisions, direct gradient-based

optimization becomes infeasible due to their non-differentiability.

To address these problems in one comprehensive solution, in-

spired by Zhao et al.’s [61] work, we propose the Actor-Twin frame-

work (Figure 1). The core concept of our novel framework revolves

around generating a task score, which is the primary function of

the GCN actor within our Actor-Twin Scheduler (ACTS) module.

To avoid embedding GCNs into the iterations of the heuristic, we

use them to adjust the task score before calling a heuristic, which

then uses this score to schedule tasks, producing an optimal or

near-optimal scheduling solution. This allows GCNs to influence

the final output while respecting the constraints. To better char-

acterize the structural properties of the scheduling problem, we

introduce a graph-based representation that explicitly models the

relationship between tasks and servers, accounts for dependencies

and communication costs, and adapts to dynamic server networks.

We construct a Directed Acyclic Graph (DAG) that integrates

two distinct graphs: the task graph, representing task dependencies,

 Tw in

Gr ad ien t

H eur ist i c Cr i t i cal Path Iden t i f ier

Actor-Tw in Scheduler (ACT S)

Actor

.

.

Con f l i ct Gr aph Gener ator

D ependency Gr aph Gener ator

M ain Gr aph Gener ator
-

-

Figure 1: Proposed Actor-Twin Architecture. The process begins with generating the Conflict, Dependency, and Main graphs
to represent task-server relationships. The actor computes task prioritization scores, while the twin network approximates
expected outcomes. Together, they enable gradient-based optimization to improve scheduling performance.

and the server network graph, representing computational capabil-

ities and communication links. Each node in this DAG represents a

task-server pair, allowing us to make scheduling decisions while

enforcing constraints such as execution conflicts and resource de-

pendency. Compared to graph models in previous work [13, 14, 29],

a key advantage of this representation is that it empowers GNNs

to generalize to dynamic server networks with varying number of

servers and dynamic connectivity topologies, without retraining.

This adaptability extends our approach to mobile ad-hoc cloud and

edge computing environments [57, 59], as well as real-world cloud

facilities where server availability is shaped by capacity reserva-

tions, failures, upgrades, and maintenance.

In addition, to process this structured representation, we pro-

pose to model the actor using a Multi-Branch Graph Convolutional
Network (MB-GCN) instead of a single GCN. This novel design fol-

lows modular GCN principles and multi-graph processing, where

different aspects of the problem are processed separately before

being merged [6, 17]. Similar to Heterogeneous GNNs [60], which

assign distinct layers to different graph modalities, and Relational

GNNs [38], which apply independent transformations to different

edge types, MB-GCN preserves structural differences when learning

representations.

While this approach enables the actor to generate improved task

scores, the heuristic remains a key decision-making component.

However, direct training of this system is impossible as gradients

cannot propagate back to the actor through the non-differentiable

heuristic. To address this, we introduce a differentiable twin, also an
MB-GCN, that approximates the heuristic’s decisions. This allows

for gradient-based optimization of the actor’s parameters, which

leads to improvements in the overall performance. Once training

is complete, the twin is removed, allowing the actor to operate

independently using the learned parameters.

We performed a series of experiments to evaluate key aspects

of task scheduling. Results show that Actor-Twin consistently out-

performs HEFT in both average and variance of makespan. While

Actor-Twin incurs a marginally higher scheduling time for small

graphs, it demonstrates better performance for medium and large

graphs, suggesting improved scalability with increasing task graph

complexity.

In summary, this work makes the following contributions:

• We introduce a systematic graph-based DAG representation

tailored for task-server pairs that not only enables cloud

systems to handle a variable number of servers without

requiring retraining but also generalizes to dynamic server

connectivity.

• We propose a Multi-Branch Graph Convolutional Network
(MB-GCN) for task scheduling, where each graph component

is processed independently, preserving structural semantics

and supporting adaptive task prioritization.

• We present the Actor-Twin framework, which integrates the

ACTS module, combining an actor for task scoring along-

side a twin-network architecture. This design bypasses non-

differentiable heuristics, enabling gradient-based optimiza-

tion of the actor. vspace1mm

• We demonstrate that Actor-Twin consistently outperforms

HEFT in both the average and variance of makespan. More-

over, it achieves better scalability and efficiency for medium

and large graphs despite slightly higher scheduling time on

small graphs.

2 RELATEDWORK
Task scheduling is an optimization challenge often addressed through

single or multi-objective approaches. As it is NP-hard [20], numer-

ous solutions have been proposed, each with strengths and limi-

tations. In this context, both machine learning (ML) and classical

algorithmic methods have been explored to enhance adaptability

and improve scheduling efficiency [24, 25].

2.1 Classical Methods for Graph Scheduling
Classical methods for solving graph scheduling problems have fo-

cused on mathematical programming [2], heuristics [16], and meta-

heuristics [1]. Mathematical programming approaches, particularly

linear and convex optimization, have been widely used to model

scheduling as an optimization problem [9, 19, 51]. Even though

they provide optimal solutions for small instances, they become

computationally intractable as the size of the problem grows. While

heuristic-based methods, such as path-planning scheduling [44]

and task duplication strategies [4], provide efficient solutions, but

can misinterpret dependencies or fail in large-scale graphs, leading

to suboptimal results.

To address these limitations, metaheuristic techniques such as

Genetic Algorithms (GAs) and Particle Swarm Optimization (PSO)

have been explored [42, 56]. These methods introduce stochastic

search mechanisms that improve exploration beyond traditional

heuristics. However, their high computational cost and reliance on

extensive parameter tuning often limit their applicability in large-

scale scheduling problems. Hybrid methods, such as GA combined

with PSO [26] or Variable Neighborhood Search (VNS) [56], have

demonstrated improvements in makespan and resource allocation

but introduce additional computational overhead, making them

impractical for large-scale systems.

Beyond these approaches, AI-driven classical methods such as

Constraint Programming (CP) and Logic Programming have been

applied to scheduling. CP formulates scheduling as a constraint

satisfaction problem, leveraging backtracking and constraint prop-

agation for efficient search [5, 32]. Logical reasoning frameworks,

such as Boolean Satisfiability (SAT) solvers, convert scheduling con-

straints into Boolean formulas, enabling efficient search strategies

for task ordering [18]. Their high computational complexity lim-

its practicality in large-scale scenarios despite offering theoretical

guarantees.

Although classical methods can be effective, they often lack

efficiency. An effective scheduling algorithm minimizes makespan,

but an efficient one also reduces the complexity of the optimization

process.

2.2 Learning Methods for Graph Scheduling
In recent years, learning-based approaches have become a popular

method for solving graph scheduling problems due to their ability

to generalize and adapt to complex environments. These methods

are often integrated with heuristic or metaheuristic techniques to

leverage the strengths of both: heuristics provide fast, often near-

optimal solutions, while learning-based models improve through

adaptation and feedback [39, 40, 62].

Supervised learning (SL) has been used to predict schedules

based on labeled datasets, utilizing task durations and dependencies.

While effective, SL methods’ performance relies heavily on the

availability of well-labeled, diverse, and representative datasets. For

instance, SL was combined with constraint programming (CP) to

improve job shop scheduling by predicting variable ordering based

on prior instances [46]. However, the effectiveness of this approach

remains constrained by the quality and availability of training

data. In contrast, unsupervised methods like clustering algorithms

offer more flexibility but face challenges in handling complex task

graphs. As an example, a multi-level parallel scheduling approach

was proposed by Kaur et al. [27], where task graphs are partitioned

into clusters to minimize execution time. Heuristics such as MinMin

were integrated with metaheuristics such as the Bacterial Foraging

Optimization Algorithm (BFOA) and PSO. While communication

delays were reduced by this strategy, the overhead between task

clusters across resources remained a challenge.

Among learning approaches, reinforcement learning (RL) meth-

ods [47] like deep Q-Networks (DQN) [35] and policy gradient

(PG) methods [48] have gained significant traction in recent years.

They frame scheduling as a sequential decision problem, where

models like DeepWave [45] and Decima [34] have shown success

in minimizing job completion time and makespan, respectively.

Nonetheless, these approaches face scalability issues due to large

action spaces. In our approach, RL is used solely for task prioriti-

zation, while the heuristic handles scheduling. By offloading the

scheduling step to the heuristic, the RL model operates in a re-

duced action space. A blend of learning methods is seen in the work

by Wang et al. [52], a system that initially uses heuristics to priori-

tize tasks based on spatial and temporal representations, followed

by a transition to deep RL for automated scheduling. Despite its

improvements, it is computationally intensive and relies on fea-

ture extraction, limiting its performance across diverse scheduling

environments.

In a related setting to our work, READYS [23] integrates a Graph

Convolutional Network (GCN) and an actor-critic approach for

scheduling in heterogeneous environments. However, unlike our

approach, READYS does not account for network settings and lacks

methods to mitigate the challenges typical of pure RL solutions [11].

Our approach integrates RL with a heuristic-based decision pro-

cess to address these issues. Unlike previous RL-based schedulers

that make direct scheduling decisions, our Actor-Twin framework

focuses on task prioritization, allowing the heuristic to handle the

final scheduling step. This maintains computational efficiency while

leveraging the learning capabilities of RL.

3 ACTOR-TWIN METHODOLOGY
We now introduce our method for learning-based task prioritiza-

tion, Actor-Twin. Our desiderata are twofold: we want a trainable,
gradient-based system that adapts to diverse scheduling scenarios;

we also want a computationally efficient approach that scales to

large scheduling problems. Since task graph execution demands

fast responses, relying on high-complexity optimal solvers is im-

practical. Thus, in addition to reducing makespan, we want our

approach to minimize scheduling overhead. Inspired by actor-critic

RL methods, our approach uses reinforcement learning to prioritize

tasks without labeled data, addressing the NP-hard nature of the

problem. The heuristic enforces task-specific constraints, while the

twin, acting as a critic substitute, refines the actor’s performance

and improves generalization across diverse graph structures.

In the following subsections, wewill explore these components of

the Actor-Twin architecture in more detail, discussing the structure

of the graph model and the differentiable twin mechanism and how

they improve task scheduling.

3.1 Graph Modeling
Unified DAG Model. Task scheduling presents a unique chal-

lenge for graph-based learning as it involves managing two distinct

graphs. The task graph represents tasks and their dependencies,

while the server network graph captures node computational capa-

bilities and communication rates. Examples of such graphs can be

seen in Figure 2a and Figure 2b, respectively.

To facilitate cost computation and enable a graph-based ma-

chine learning model, we have constructed a Directed Acyclic

Graph (DAG) from the task graph G𝑡 (T , E𝑡) and the server graph

G𝑠 (S, E𝑠) as illustrated in Figure 3.

In our DAG model G = (V, E), each node represents a pair of

task and server, e.g., (𝑡1, 𝑠1), or simply (1, 1), for task 𝑡1 executed

on server 𝑠1. A directed edge ((𝑡𝑖 , 𝑠𝑚), (𝑡 𝑗 , 𝑠𝑛)) ∈ E connects node

(𝑡𝑖 , 𝑠𝑚) to node (𝑡 𝑗 , 𝑠𝑛) if there is a directed edge from 𝑡𝑖 to 𝑡 𝑗 on the

task graph and an edge between 𝑠𝑚 and 𝑠𝑛 on the server graph. The

cost of a node (𝑡𝑖 , 𝑠𝑚) is 𝑐𝑖𝑚 = 𝑝𝑖/𝑒𝑚 and the cost of an edge from

(a) Task Graph (b) Server Graph

Figure 2: Example of a task graph and a server graph. The task
graph represents the relationships between tasks and their
dependencies, whereas the server graph illustrates nodes’
computational capabilities and communication rates.

(𝑡𝑖 , 𝑠𝑚) to (𝑡 𝑗 , 𝑠𝑛) is 𝑐𝑖𝑚,𝑗𝑛 = 𝑑𝑖 𝑗/𝑏𝑚𝑛 , as defined under the related

machines model [22]. The cost matrix C ∈ R |V |× |V | places node
costs on its diagonal elements and edge costs on the off-diagonal

elements. The diagonal elements of C can change from time to

time as the servers are occupied by different lists of tasks, even if

constant communication costs are assumed. We further extend our

graph model by introducing a virtual source 𝑆 connected to all the

nodes of zero incoming degrees and a virtual sink 𝑇 connected to

all the nodes of zero outgoing degrees. The costs of virtual edges

are zero.

Some list scheduling methods, such as HEFT [49], do not in-

herently prevent a task from being assigned to multiple servers,

assuming each task is assigned to a single processor without con-

flict checks. To address this limitation, we define a Conflict graph

G𝑐 = (V, E𝑐), where ((𝑡𝑖 , 𝑠𝑚), (𝑡𝑖 , 𝑠𝑛)) ∈ E𝑐 for all tasks 𝑡𝑖 and

servers 𝑠𝑚 and 𝑠𝑛 . This formulation ensures that task-server pairs

associated with the same task conflict with each other, meaning that

only one of them can be scheduled at a time. To capture sequential

resource dependencies for tasks scheduled on the same server, we

introduce a third graph, the Dependency Graph, G𝑑 = (V, E𝑑).
In this graph, an undirected edge ((𝑡𝑖 , 𝑠𝑚), (𝑡 𝑗 , 𝑠𝑚)) ∈ E𝑑 exists

between two task-server pairs if there is no direct path between

them in G, indicating a potential resource dependency between

these tasks when assigned to the same server.

The scheduler not only guarantees conflict constraints but also

ensures that scheduled nodes remain connected in our graph model,

preserving task dependencies. Specifically, if a valid schedule as-

signs multiple tasks to the same server, it must define their execu-

tion order. To enforce this order, once a schedule is determined, we

introduce additional edges, a zero-cost directed edge from (𝑡𝑖 , 𝑠𝑚)

to (𝑡 𝑗 , 𝑠𝑚) if the former is scheduled immediately before the latter.

These edges capture sequential dependencies between tasks that

share a server (depicted as directed green edge in Figure 3). With

these constraints in place, we construct the residual DAG
˜G by

removing unscheduled nodes (and their corresponding edges) from

G. The total cost of a given schedule, known as the makespan, is

then computed as the sum of the costs of nodes and edges along

the critical path from the virtual source to the virtual sink in
˜G.

The critical path, which determines the overall completion time, is

the longest-cost path from the source to the sink (depicted as bold

purple edges in Figure 3).

T

S

1,1 1,2 1,3 1,4

3,1 3,2 3,3 3,4

2,1 2,2 2,3 2,4

4,1 4,2 4,3 4,4

5,1 5,2 5,45,3Critical path Schedule

zero-cost edge

Figure 3: Proposed Graph Model. In this DAG, nodes repre-
sent task-server pairs, with edges capturing dependencies
and costs reflecting processing and communication overhead.
Virtual source and sink nodes handle tasks without prede-
cessors or successors. The green directed edge indicates a
resource dependency post-scheduling.

One of the main advantages of using this modeling approach,

as opposed to the graph modeling described in [13, 14, 29], is its

ability to generalize across diverse server network configurations

and dynamically changing task graphs. This adaptability is particu-

larly critical in decentralized environments such as mobile ad-hoc

clouds, edge computing, and fog computing systems, where both

computational resources and network topology can vary over time.

Unlike traditional centralized cloud facilities with fixed infrastruc-

ture, these dynamic settings demand flexible scheduling approaches

capable of adjusting to fluctuating resources and connectivity with-

out necessitating retraining [3, 12].

The graph modeling discussed by Kiamari and Krishnamachari

[29] andColeman et al. [13, 14], where node features [𝑝𝑖/𝑒𝑠 |𝑠 ∈ S] ∈
R |S | for task 𝑡𝑖 ∈ T and edge features

[
𝑑𝑖 𝑗/𝑏𝑚𝑛

��𝑠𝑚, 𝑠𝑛 ∈ S
]
∈

R |S |
2

for tasks 𝑡𝑖 , 𝑡 𝑗 ∈ T remain fixed, only works for systems with

a constant number of servers. Consequently, modifying the number

of servers in these systems requires retraining the GCN.

Graph Input Processing. Once the Unified (Main) Graph, Conflict

Graph, and Dependency Graph are constructed (Algorithms 1, 2,

and 3), they are fed into both the actor and the twin networks. The

primary challenge here is to process these graphs in a way that

preserves their unique structural constraints while enabling effec-

tive task prioritization. A standard GCN, which applies uniform

message passing across all edges, cannot distinguish between task

dependencies, execution conflicts, and server constraints, leading

to information loss or misinterpretation of graph relationships. To

mitigate this problem, we model them as a Multi-Branch Graph
Convolutional Network (MB-GCN), where each graph is processed

by a dedicated GCN branch before their representations are com-

bined. This ensures that distinct structural constraints of the graphs

are preserved rather than collapsed into a single representation.

The embeddings from these branches are then aggregated through

a weighted combination, preserving the semantic roles of each

graph while providing a comprehensive representation for task

prioritization.

3.2 ACTS Architecture
We present a model for task graph scheduling that leverages the

GDPG-Twin framework, structured into several stages to optimize

task assignments and minimize makespan under the constraints of

a dynamic task-server environment. This process is illustrated in

Figure 1 and outlined in Algorithm 5.

Actor and Twin Network.We define the actor Ψ(·) and twin Φ(·)
networks as follows:

z = Ψ(G,G𝑐 ,G𝑑 ,C;𝝎𝑎), Ô = Φ(G,G𝑐 ,G𝑑 ,C, z;𝝎𝑡). (1)

The actor network generates task prioritization scores based on the

MB-GCN embeddings, while the twin estimates expected sched-

uling outcomes. This is motivated by list-based scheduling ap-

proaches, such as HEFT and CPOP [49], that consist of two phases

of task prioritization and server selection (to assign the task to

the server nodes). Unlike the HEFT algorithm, which uses static

prioritization, our Actor-Twin framework continuously adapts task

priorities according to evolving task-server relationships, making

it better suited for handling fluctuating system loads and closely

reflecting real-world conditions.

Heuristic Scheduler. A pre-defined heuristic scheduler ℎ(·) is
used to generate a scheduling policy,

y = ℎ(G,G𝑐 ,G𝑑 ,C ⊙ z) . (2)

The heuristic utilizes the actor’s task prioritization score to deter-

mine an efficient schedule.

Twin Training. The expected outcome matrix O ∈ R |V |× |V |

represents the cost associated with each task and is defined as

O = EC∼Ω [C ⊙ P(y,C,G)] , (3)

where P(y,C,G) is the critical path indicator matrix under the

given schedule and graph model. Since direct gradient propagation

through the heuristic is infeasible, the twin approximates the ex-

pected scheduling outcomes using an Mean Squared Error (MSE)

loss function,

ℓ𝑀𝑆𝐸 (Ô,O) =
1

|V|2
∑︁

(𝑢,𝑣) ∈V
(Ô𝑢𝑣 − O𝑢𝑣)2 . (4)

Essentially, the twin component in our framework mirrors the

heuristic decisions, allowing for smooth gradient propagation dur-

ing training. This allows our model to handle non-differentiable

components, addressing a key limitation of traditional methods. The

twin is trained via gradient descent 𝝎𝑡 ← 𝝎𝑡 − 𝛼𝑡∇𝝎𝑡
ℓ𝑀𝑆𝐸 (Ô,O),

where 𝛼𝑡 is the twin’s learning rate. Since O is an expectation over

our sample space, we can further incorporate stochastic gradient

descent (SGD) to simplify this equation using the following lemma.

Lemma 1. The gradient of the Mean Squared Error (MSE) loss
with respect to the twin network parameters 𝝎𝑡 is ∇𝝎𝑡

ℓ𝑀𝑆𝐸 (Ô,O) =

∇𝝎𝑡
ℓ𝑀𝑆𝐸 (Ô,C⊙P(y,C,G)) where Ô is the predicted outcome matrix

and O is the expected outcome matrix.

Proof. See Appendix A.3 □

As a consequence of this lemma, we can refine the twin update

to 𝝎𝑡 ← 𝝎𝑡 − 𝛼𝑡∇𝝎𝑡
ℓ𝑀𝑆𝐸 (Ô,C ⊙ P(y,C,G)).

Actor Training. After the twin is trained, we train the actor by

computing the gradient of the total outcome sum 1⊤Ô1with respect
to the actor parameters,

∇𝝎𝑎
1⊤Ô1 =

(
∇Z (1⊤Ô1)

)⊤
· ∇𝝎𝒂Ψ(G,G𝑐 ,G𝑑 ,C;𝝎𝒂) . (5)

The actor’s parameters are updated accordingly using gradient

descent 𝝎𝑎 ← 𝝎𝑎 − 𝛼𝑎∇𝝎𝑎
1⊤Ô1, where 𝛼𝑎 is the learning rate

for the actor. To enhance exploration during training, noise can

be added to the actor output z, encouraging diverse scheduling

decisions.

4 EXPERIMENTS
In this section, we empirically evaluate the performance of the

proposed Actor-Twin scheduler against the traditional HEFT and a

Random scheduler. The Random scheduler is of interest as a naive

baseline to quantify the lower bound of scheduling performance,

given its minimal computation overhead but suboptimal scheduling

quality. Conversely, we select HEFT as our primary benchmark be-

cause it balances scheduling efficiency and makespan optimization,

making it one of the few practical schedulers for real-world task

graph execution.

Experimental Setup. The experiments analyze two aspects of

scheduling:

(1) Makespan: Total time required to execute all tasks in a task

graph.

(2) Scheduling Time: Computation time taken by the scheduler

to generate a schedule for a given task graph.

These metrics provide complementary insights: makespan re-

flects how quickly a scheduler can complete an entire task set, while

scheduling time indicates the computational overhead of gener-

ating the schedule. Notably, a low scheduling overhead does not

guarantee a minimized makespan, making both metrics essential

to report. We incorporate variance bars and confidence intervals

(CIs) where applicable, as minimal variance is crucial for stable

performance across diverse task configurations and resource condi-

tions. CIs provide statistical significance, helping assess both mean

performance and the consistency of each scheduling approach.

We perform experiments on task graphs of three sizes: Small (10

tasks), Medium (50 tasks), and Large (100 tasks). These task graphs

were generated following the methodology outlined in SAGA [13].

For each graph size, we consider two dependency conditions: Dense
(highly connected graphs, e.g., cycles dataset) and Sparse (lightly
connected graphs, e.g., chain and in-trees datasets). For each task

graph size and dependency type, we generate 10 task graphs per

category, leading to a total of 60 task graphs. These graphs are split

into 40 for training and 20 for testing. Each task graph is executed

on a simulated system with 3 servers for small graphs, 5 servers for

medium graphs, and 10 servers for large graphs.

Small (10 tasks) Medium (50 tasks) Large (100 tasks)
Dense Sparse Dense Sparse Dense Sparse

0

5

10

15

20

25

30

M
ak

es
pa

n(
 ×

 0
.1

)

(a) Makespan Comparison

HEFT Actor-Twin

Small (10 tasks) Medium (50 tasks) Large (100 tasks)
Task Graph Size

0.0

0.8

1.6

2.4

3.2

std
 o

f m
ak

es
pa

n

(b) Standard Deviation

Figure 4: Makespan comparison between HEFT and Actor-Twin across different task graph sizes and dependency structures. (a)
Mean Makespan comparison: Actor-Twin achieves lower makespan in most cases, especially for larger, denser graphs, while
HEFT shows greater variability with wider confidence intervals across runs. (b) Standard Deviation Comparison: HEFT shows
greater variability in makespan, particularly for larger and denser graphs, whereas Actor-Twin achieves more stable scheduling
behavior across different task structures.

Small (10 tasks) Medium (50 tasks) Large (100 tasks)
Task Graph Size

0

20

40

60

80

100

120

Sc
he

du
lin

g
Ti

m
e (

m
s)

Scheduling Time Comparison

HEFT Actor-Twin Random

Figure 5: Scheduling Time Comparison. Actor-Twin scales
more efficiently than HEFT, maintaining lower scheduling
times for larger graphs, while HEFT’s performance degrades
due to its sorting overhead. The Random Scheduler has the
lowest scheduling time due to minimal computational over-
head

Results and Analysis. Figure 4a presents the makespan results

for HEFT and Actor-Twin across different graph sizes and densities.

For each DAG type, we compute the makespan and report it with a

95% confidence interval (CI) to indicate statistical significance and

variability. Actor-Twin consistently achieves a lower makespan than

HEFT, particularly in larger task graphs and dense configurations,

where HEFT’s reliance on static priorities leads to inefficiencies.

Moreover, HEFT exhibits wider confidence intervals, especially in

dense graphs and larger task sizes, suggesting greater variability

due to differences in task dependencies and execution conditions.

In contrast, confidence intervals of Actor-Twin tend to be narrower

across most cases, indicating more consistent scheduling perfor-

mance.

Figure 4b presents standard deviation bars of makespan across

different task graph sizes and dependency structures. HEFT tends

to show greater variability, particularly in larger and denser task

graphs, indicating that its performance is more affected by task de-

pendencies and execution conditions. In contrast,Actor-Twin consis-
tently results in lower variance, implying a more stable scheduling

behavior between different scenarios.

Figure 5 represents the raw computation time required by each

scheduler to make scheduling decisions (independent of network

conditions). HEFT starts off faster for small graphs due to its sim-

plistic design and minimal overhead; however, its performance de-

grades as the graph size increases. In contrast, Actor-Twin, although
incurring slightly higher overhead for small graphs, scales more

efficiently and outperforms HEFT on medium and large graphs.

The twin-network design of Actor-Twin ensures scalability while

maintaining low scheduling times for larger graphs. This speedup

is likely due to several factors. In heuristics like HEFT, task pri-

oritization is explicitly determined using a computed metric (e.g.,

upward rank), requiring 𝑂 (𝑛 log𝑛) complexity for sorting. In con-

trast, Actor-Twin learns an implicit ordering through the MB-GCN’s

representations and policy network, eliminating the need for ex-

plicit sorting at inference time. Additionally, the model’s learned

representations allow Actor-Twin to generalize across graphs, avoid-
ing redundant recomputation. The Random Scheduler shows the

lowest scheduling time across all task sizes, as it does not perform

dependency-aware computations, resulting in minimal overhead.

However, this comes at the cost of higher makespan due to its lack

of structured decision-making [29].

5 CONCLUSION AND FUTUREWORK
In this work, we introduced the Actor-Twin framework, a reinforce-

ment learning-based approach for task scheduling that integrates

graph-based modeling with heuristic optimization. By introducing

a Unified DAG Model and processing it through a Multi-Branch

GCN (MB-GCN), our method captures task dependencies, execu-

tion conflicts, and resource constraints while preserving structural

semantics. The core concept of our framework revolves around

generating a task score, which is the primary function of the actor

within our Actor-Twin Scheduler (ACTS) module. Our framework

further enables gradient-based optimization by leveraging a differ-

entiable twin network to approximate the heuristic’s scheduling

behavior. Unlike prior RL-based schedulers [34, 45], which directly

optimize scheduling decisions and suffer from large action spaces,

our method decouples task prioritization (via the actor) from ex-

ecution decisions (via the twin/heuristic). Empirical results show

that Actor-Twin consistently outperforms HEFT in makespan, par-

ticularly for larger and denser task graphs. The learned scheduling

policy not only scales efficiently but also achieves lower overhead

and variance, leading to more stable scheduling decisions across

diverse task structures.

Moving forward, we plan to extend our evaluation by incorpo-

rating additional learning-based schedulers to better contextualize

the advantages of our approach. Furthermore, we plan to compare

Actor-Twin with other algorithms, particularly from Coleman et

al.’s [13] parametric scheduler work. Another key direction is to

leverage the PISA framework [15] to identify adversarial instances

where our approach significantly outperforms HEFT, and vice versa.

Given the NP-hard nature of task scheduling, a single approach is

unlikely to be universally optimal. These comparisons will provide

a deeper understanding of Actor-Twin ’s comparative strengths and

limitations.

ACKNOWLEDGMENTS
This work was supported by Army Research Laboratory under

Cooperative Agreement W911NF-17-2-0196.

REFERENCES
[1] Sourav Kanti Addya, Ashok Kumar Turuk, Bibhudatta Sahoo, Mahasweta Sarkar,

and Sanjay Kumar Biswash. 2017. Simulated annealing based VM placement

strategy to maximize the profit for Cloud Service Providers. Engineering science
and technology, an international journal 20, 4 (2017), 1249–1259.

[2] Yossi Azar and Amir Epstein. 2005. Convex programming for scheduling unre-

lated parallel machines. In Proceedings of the thirty-seventh annual ACM sympo-
sium on Theory of computing. 331–337.

[3] Enzo Baccarelli, Michele Scarpiniti, and Alireza Momenzadeh. 2019. EcoMobi-

Fog – Design and Dynamic Optimization of a 5G Mobile-Fog-Cloud Multi-Tier

Ecosystem for the Real-Time Distributed Execution of Stream Applications. arXiv
preprint arXiv:1906.07578 (2019). https://arxiv.org/abs/1906.07578

[4] Nirmeen A Bahnasawy, Magdy A Koutb, Mervat Mosa, and Fatma Omara. 2011. A

new algorithm for static task scheduling for heterogeneous distributed computing

systems. African Journal of Mathematics and Computer Science Research 4, 6 (2011),
221–234.

[5] Philippe Baptiste, Claude Le Pape, andWimNuijten. 2001. Constraint-based sched-
uling: applying constraint programming to scheduling problems. Vol. 39. Springer
Science & Business Media.

[6] Eda Bayram, Dorina Thanou, Elif Vural, and Pascal Frossard. 2020. Mask combi-

nation of multi-layer graphs for global structure inference. IEEE Transactions on
Signal and Information Processing over Networks 6 (2020), 394–406.

[7] Abbas Bazzi and Ashkan Norouzi-Fard. 2015. Towards tight lower bounds for

scheduling problems. In Algorithms-ESA 2015: 23rd Annual European Symposium,
Patras, Greece, September 14-16, 2015, Proceedings. Springer, 118–129.

[8] Jakub Beránek, Stanislav Böhm, and Vojtěch Cima. 2022. Analysis of workflow

schedulers in simulated distributed environments. The Journal of Supercomputing
78, 13 (2022), 15154–15180.

[9] Pierre Bonami, Andrea Lodi, Andrea Tramontani, and SvenWiese. 2015. Onmath-

ematical programming with indicator constraints. Mathematical programming
151 (2015), 191–223.

[10] Vincent Boudet. 2001. Heterogeneous task scheduling: a survey. Ph.D. Dissertation.
Laboratoire de l’informatique du parallélisme.

[11] Tim Brys. 2016. Reinforcement Learning with Heuristic Information. Disserta-
tionm Vrije Universiteit Brussel (2016).

[12] Weiwei Chen, Chin-Tau Lea, and Kenli Li. 2017. Dynamic Resource Allocation in

Ad-Hoc Mobile Cloud Computing. In 2017 IEEE Wireless Communications and
Networking Conference (WCNC). IEEE, 1–6. https://doi.org/10.1109/WCNC.2017.

7925613

[13] Jared Coleman, Ravi Vivek Agrawal, Ebrahim Hirani, and Bhaskar Krishna-

machari. 2024. Parameterized Task Graph Scheduling Algorithm for Comparing

Algorithmic Components. arXiv preprint arXiv:2403.07112 (2024).
[14] Jared Coleman, Mehrdad Kiamari, Lillian Clark, Daniel D’Souza, and Bhaskar

Krishnamachari. 2022. Graph convolutional network-based scheduler for dis-

tributing computation in the internet of robotic things. In MILCOM 2022-2022
IEEE Military Communications Conference (MILCOM). IEEE, 1070–1075.

[15] Jared Coleman and Bhaskar Krishnamachari. 2024. Comparing Task Graph

SchedulingAlgorithms: AnAdversarial Approach. arXiv preprint arXiv:2403.07120
(2024).

[16] Yanyan Dai and Xiangli Zhang. 2014. A synthesized heuristic task scheduling

algorithm. The Scientific World Journal 2014, 1 (2014), 465702.
[17] Nima Dehmamy, Albert-László Barabási, and Rose Yu. 2019. Understanding

the representation power of graph neural networks in learning graph topology.

Advances in Neural Information Processing Systems 32 (2019).
[18] Nicolai Fiege and Peter Zipf. 2023. BLOOP: Boolean Satisfiability-based Optimized

Loop Pipelining. ACM Transactions on Reconfigurable Technology and Systems 16,
3 (2023), 1–32.

[19] Christodoulos A Floudas and Xiaoxia Lin. 2005. Mixed integer linear program-

ming in process scheduling: Modeling, algorithms, and applications. Annals of
Operations Research 139 (2005), 131–162.

[20] Michael R Garey, David S Johnson, et al. 1990. A Guide to the Theory of NP-

Completeness. Computers and intractability (1990), 37–79.

[21] Diana Gomes, Frederik Ruelens, Kyriakos Efthymiadis, Ann Nowe, and Peter

Vrancx. [n.d.]. When are graph neural networks better than structure-agnostic

methods?. In I Can’t Believe It’s Not Better Workshop: Understanding Deep Learning
Through Empirical Falsification.

[22] Ronald L. Graham. 1969. Bounds on multiprocessing timing anomalies. SIAM
journal on Applied Mathematics 17, 2 (1969), 416–429.

[23] Nathan Grinsztajn, Olivier Beaumont, Emmanuel Jeannot, and Philippe Preux.

2021. Readys: A reinforcement learning based strategy for heterogeneous dy-

namic scheduling. In 2021 IEEE International Conference on Cluster Computing
(CLUSTER). IEEE, 70–81.

[24] Mirsaeid Hosseini Shirvani. 2024. A survey study on task scheduling schemes

for workflow executions in cloud computing environment: classification and

challenges. The Journal of Supercomputing 80, 7 (2024), 9384–9437.

[25] EssamHHoussein, Ahmed GGad, YaserMWazery, and Ponnuthurai Nagaratnam

Suganthan. 2021. Task scheduling in cloud computing based on meta-heuristics:

review, taxonomy, open challenges, and future trends. Swarm and Evolutionary
Computation 62 (2021), 100841.

[26] Habib Izadkhah. 2019. Learning based genetic algorithm for task graph scheduling.

Applied Computational Intelligence and Soft Computing 2019, 1 (2019), 6543957.

[27] Mandeep Kaur, Sanjay Kadam, and Naeem Hannoon. 2022. Multi-level parallel

scheduling of dependent-tasks using graph-partitioning and hybrid approaches

over edge-cloud. Soft Computing 26, 11 (2022), 5347–5362.

[28] Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. 2017. Learn-

ing combinatorial optimization algorithms over graphs. In Advances in Neural
Information Processing Systems. 6348–6358.

[29] Mehrdad Kiamari and Bhaskar Krishnamachari. 2021. GCNScheduler: Schedul-

ing Distributed Computing Applications using Graph Convolutional Networks.

arXiv:2110.11552 [cs.DC]

[30] Thomas N Kipf and Max Welling. 2017. Semi-Supervised Classification with

Graph Convolutional Networks. In International Conference on Learning Repre-
sentations (ICLR).

[31] Vijay R. Konda and John N. Tsitsiklis. 2000. Actor-Critic Algorithms. In Pro-
ceedings of the 13th International Conference on Neural Information Processing
Systems.

[32] Feng Kong and Dong Dou. 2021. Resource-constrained project scheduling prob-

lem under multiple time constraints. Journal of Construction Engineering and
Management 147, 2 (2021), 04020170.

[33] Yu-Kwong Kwok and Ishfaq Ahmad. 1999. Static scheduling algorithms for

allocating directed task graphs to multiprocessors. ACM Computing Surveys
(CSUR) 31, 4 (1999), 406–471.

[34] Hongzi Mao, Malte Schwarzkopf, Shravan Venkatakrishnan, Ziliang Meng, and

Mohammad Alizadeh. 2019. Learning scheduling algorithms for data processing

clusters. In Proceedings of the ACM Special Interest Group on Data Communication.
270–288.

[35] Volodymyr Mnih. 2013. Playing atari with deep reinforcement learning. arXiv
preprint arXiv:1312.5602 (2013).

[36] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Tim-

othy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asyn-

chronous Methods for Deep Reinforcement Learning. In Proceedings of the 33rd
International Conference on Machine Learning.

[37] Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E Taylor,

and Peter Stone. 2020. Curriculum learning for reinforcement learning domains:

A framework and survey. Journal of Machine Learning Research 21, 181 (2020),

1–50.

[38] Hao Peng, Ruitong Zhang, Yingtong Dou, Renyu Yang, Jingyi Zhang, and Philip S

Yu. 2021. Reinforced neighborhood selection guided multi-relational graph neural

networks. ACM Transactions on Information Systems (TOIS) 40, 4 (2021), 1–46.
[39] Yaoyao Ping, Yongkui Liu, Lin Zhang, Lihui Wang, and Xun Xu. 2023. Sequence

generation for multi-task scheduling in cloud manufacturing with deep reinforce-

ment learning. Journal of manufacturing systems 67 (2023), 315–337.
[40] Shubham Suresh Pol and Avtar Singh. 2021. Task scheduling algorithms in

cloud computing: a survey. In 2021 2nd International Conference on Secure Cyber
Computing and Communications (ICSCCC). IEEE, 244–249.

[41] Franco Scarselli, MarcoGori, AhChung Tsoi, MarkusHagenbuchner, andGabriele

Monfardini. 2008. The graph neural network model. IEEE transactions on neural

https://arxiv.org/abs/1906.07578
https://doi.org/10.1109/WCNC.2017.7925613
https://doi.org/10.1109/WCNC.2017.7925613
https://arxiv.org/abs/2110.11552

networks 20, 1 (2008), 61–80.
[42] Henrique Yoshikazu Shishido, Júlio Cezar Estrella, Claudio Fabiano Motta Toledo,

and Marcio Silva Arantes. 2018. Genetic-based algorithms applied to a workflow

scheduling algorithm with security and deadline constraints in clouds. Computers
& Electrical Engineering 69 (2018), 378–394.

[43] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and

Martin Riedmiller. 2014. Deterministic policy gradient algorithms. International
Conference on Machine Learning (2014), 387–395.

[44] Jiri Stastny, Vladislav Skorpil, Zoltan Balogh, and Richard Klein. 2021. Job shop

scheduling problem optimization by means of graph-based algorithm. Applied
Sciences 11, 4 (2021), 1921.

[45] Penghao Sun, Zehua Guo, Junchao Wang, Junfei Li, Julong Lan, and Yuxiang Hu.

2021. Deepweave: Accelerating job completion time with deep reinforcement

learning-based coflow scheduling. In Proceedings of the Twenty-Ninth International
Conference on International Joint Conferences on Artificial Intelligence. 3314–3320.

[46] Yuan Sun, Su Nguyen, Dhananjay Thiruvady, Xiaodong Li, Andreas T Ernst, and

Uwe Aickelin. 2024. Enhancing constraint programming via supervised learning

for job shop scheduling. Knowledge-Based Systems 293 (2024), 111698.
[47] Richard S Sutton and Andrew G Barto. 2018. Reinforcement Learning: An Intro-

duction (2 ed.). MIT Press.

[48] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. 1999.

Policy gradient methods for reinforcement learning with function approximation.

Advances in neural information processing systems 12 (1999).
[49] Haluk Topcuoglu, SalimHariri, andMin-YouWu. 2002. Performance-effective and

low-complexity task scheduling for heterogeneous computing. IEEE transactions
on parallel and distributed systems 13, 3 (2002), 260–274.

[50] Kagan Tumer and John Lawson. 2009. Coordinating learning agents for multiple

resource job scheduling. In International Workshop on Adaptive and Learning
Agents. Springer, 123–140.

[51] Michael HVeatch. 2020. Linear and convex optimization: AMathematical Approach.
John Wiley & Sons.

[52] HaoyuWang, Zetian Liu, and Haiying Shen. 2022. Machine learning feature based

job scheduling for distributed machine learning clusters. IEEE/ACM Transactions

on Networking 31, 1 (2022), 58–73.

[53] Huijun Wang and Oliver Sinnen. 2018. List-scheduling versus cluster-scheduling.

IEEE Transactions on Parallel and Distributed Systems 29, 8 (2018), 1736–1749.
[54] Christopher JCH Watkins and Peter Dayan. 1992. Q-learning. Machine learning

8 (1992), 279–292.

[55] Christopher JCH Watkins and Peter Dayan. 1992. Q-learning. Machine learning
8, 3-4 (1992), 279–292.

[56] Yun Wen, Hua Xu, and Jiadong Yang. 2011. A heuristic-based hybrid genetic-

variable neighborhood search algorithm for task scheduling in heterogeneous

multiprocessor system. Information Sciences 181, 3 (2011), 567–581.
[57] Minxian Xu, Qiheng Zhou, Huaming Wu, Weiwei Lin, Kejiang Ye, and

Chengzhong Xu. 2022. PDMA: Probabilistic service migration approach for

delay-aware and mobility-aware mobile edge computing. Software: Practice and
Experience 52, 2 (2022), 394–414.

[58] Artur Yakimovich, Anaël Beaugnon, Yi Huang, and Elif Ozkirimli. 2021. Labels in

a haystack: Approaches beyond supervised learning in biomedical applications.

Patterns 2, 12 (2021).
[59] Ibrar Yaqoob, Ejaz Ahmed, Abdullah Gani, Salimah Mokhtar, Muhammad Imran,

and Sghaier Guizani. 2016. Mobile ad hoc cloud: A survey. Wireless Communica-
tions and Mobile Computing 16, 16 (2016), 2572–2589.

[60] Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh V

Chawla. 2019. Heterogeneous graph neural network. In Proceedings of the 25th
ACM SIGKDD international conference on knowledge discovery & data mining.
793–803.

[61] Zhongyuan Zhao, Ananthram Swami, and Santiago Segarra. 2022. Graph-based

deterministic policy gradient for repetitive combinatorial optimization problems.

In The Eleventh International Conference on Learning Representations.
[62] Jian Zhou, Lianyu Zheng, and Wei Fan. 2024. Multirobot collaborative task

dynamic scheduling based on multiagent reinforcement learning with heuristic

graph convolution considering robot service performance. Journal of Manufac-
turing Systems 72 (2024), 122–141.

A APPENDIX
A.1 Preliminaries

List-scheduling. The list-scheduling method is widely adopted in

heuristic scheduling algorithms [53]. List-scheduling algorithms

typically involve the following steps: (1) Computing a priority for

each task such that every task has a higher priority than its de-

pendents. (2) Greedily scheduling tasks in order of their computed

priorities (from highest to lowest) to run on the node that minimizes

a predefined cost function. Variations of list-scheduling algorithms

mainly differ in their prioritization functions, cost functions, and

strategies for inserting tasks into existing schedules [13].

• The HEFT Algorithm. Topcuoglu et al. [49] proposed HEFT

with three ranking approaches: upward, downward, and

level ranking, each labeling tasks differently, leading to vary-

ing performance. HEFT minimizes makespan by scheduling

tasks on the processor with the earliest finish time (EFT),

aiming to achieve the shortest possible makespan (the time

that the final task in the DAG is completed).

While HEFT provides an efficient heuristic for task scheduling,

it relies on predefined ranking strategies that do not adapt dynami-

cally. We expand on these limitations in Section 3 and propose an

alternative learning-based approach.

Actor-Critic Methods. One of the foundational frameworks in

reinforcement learning (RL) that combine the benefits of policy-

based and value-based approaches is Actor-Critic methods [31].

This hybrid strategy consists of two main components: the actor,

which learns to select actions, and the critic, which evaluates the

actions taken by the actor by computing the value function. The

actor updates the policy in the direction that maximizes the ex-

pected reward, as informed by the critic’s temporal difference error.

Formally, the actor updates the policy parameters 𝜃 by applying

the gradient of the policy function 𝜋𝜃 to maximize the expected

reward 𝐽 , guided by the TD error 𝛿𝑡

∇𝜃 𝐽 ≈ E[𝛿𝑡∇𝜃 log𝜋𝜃 (𝑠𝑡 , 𝑎𝑡)] .
The dual learning process, which simultaneously optimizes the

policy (actor) and the value estimation (critic), facilitates more

stable convergence compared to approaches that optimize these

components alone [31, 36]. Moreover, unlike Q-learning [55], which

processes actions sequentially, policy gradient methods [43] are

more adept at managing the expansive and dynamic action spaces

typical of networked environments.

While Actor-Critic methods are widely used in RL for sequential

decision-making, we adapt this structure for task prioritization. To

tailor it to our problem, instead of using a traditional critic, we in-

troduce a differentiable twin that approximates heuristic outcomes

and enables gradient-based optimization.

Graph Neural Networks. Graph Neural Networks (GNNs) [41]

are designed to process data that inherently form graphs, efficiently

capturing complex relational patterns between entities. Central to

GNNs is the message-passing mechanism, which allows nodes to

exchange and integrate information across their local neighbor-

hoods.

• Graph Convolutional Neural Network. By processing data

through 𝐿 layers, Graph Convolutional Neural Networks

(GCNs) transform initial node features into more abstract

representations. Starting with initial features 𝑺 (0) = 𝑺 on

graph G , the network’s output 𝒁 = 𝑺 (𝐿) is derived by

𝑺 (𝑙) = 𝜎 (𝑙)
(
𝑺 (𝑙−1)𝚯(𝑙)

0
+ L𝑺 (𝑙−1)𝚯(𝑙)

1

)
, 𝑙 ∈ {1, . . . , 𝐿}.

where L represents the normalized Laplacian matrix that

embeds the graph structure into the learning process, Θ
(𝑙)
0

and 𝚯
(𝑙)
1

are layer-specific trainable parameters, and 𝜎 (𝑙) is
the activation function.

A.2 Algorithms

Algorithm 1 Unified Graph

Input: G𝑡 (T , E𝑡), G𝑠 (S, E𝑠)
Output: G(V, E)
V ← {(𝑡𝑖 , 𝑠𝑚) | 𝑡𝑖 ∈ T , 𝑠𝑚 ∈ S}
E ← ∅
for each (𝑡𝑖 , 𝑡 𝑗) ∈ E𝑡 do

for each (𝑠𝑚, 𝑠𝑛) ∈ E𝑠 do
if (𝑡𝑖 , 𝑠𝑚) ∈ V and (𝑡 𝑗 , 𝑠𝑛) ∈ V then
E ← E ∪ {((𝑡𝑖 , 𝑠𝑚), (𝑡 𝑗 , 𝑠𝑛))}

end if
end for

end for

Algorithm 2 Conflict Graph

Input: G𝑡 (T , E𝑡),G𝑠 (S, E𝑠)
Output: G𝑐 (V, E𝑐)
V ← {(𝑡𝑖 , 𝑠𝑚) | 𝑡𝑖 ∈ T , 𝑠𝑚 ∈ S} ⊲ Nodes represent task-server

pairs

E𝑐 ← {((𝑡𝑖 , 𝑠𝑚), (𝑡𝑖 , 𝑠𝑛)) | 𝑡𝑖 ∈ T , 𝑠𝑚, 𝑠𝑛 ∈ S, 𝑠𝑚 ≠ 𝑠𝑛} ⊲

Conflict edges

Algorithm 3 Dependency Graph

Input: G(V, E), G𝑡 (T , E𝑡), G𝑠 (S, E𝑠)
Output:G𝑑 (V, E𝑑)
V ← {(𝑡𝑖 , 𝑠𝑚) | 𝑡𝑖 ∈ T , 𝑠𝑚 ∈ S}
E𝑑 ← ∅
for each pair ((𝑡𝑖 , 𝑠𝑚), (𝑡 𝑗 , 𝑠𝑚)) ∈ V ×V do

if (𝑡𝑖 , 𝑠𝑚) ≠ (𝑡 𝑗 , 𝑠𝑚) and there is no path between (𝑡𝑖 , 𝑠𝑚)
and (𝑡 𝑗 , 𝑠𝑚) in G then

E𝑑 ← E𝑑 ∪ {((𝑡𝑖 , 𝑠𝑚), (𝑡 𝑗 , 𝑠𝑚))} ⊲ Add dependency edge

end if
end for

Algorithm 4 ACTS ⊲ for a mini-batch

Input: G,G𝑐 ,G𝑑 ,C, ℎ(·), 𝛼𝑎, 𝛼𝑡 , 𝐵, 𝜖
Q𝑎 = ∅,Q𝑡 = ∅ ⊲ Clear gradient buffers

for 𝑏 ∈ {1, . . . , 𝐵} do
z = Ψ(G,G𝑐 ,G𝑑 ,C;𝝎𝒂)
z𝑗 = z + N𝑗 ,N𝑗 ∈ U(−𝜖, 𝜖) ⊲ Random policy sampling

y = ℎ(G,G𝑐 ,G𝑑 ,C ⊙ z(𝑗))
Ô = Φ(G,G𝑐 ,G𝑑 ,C, z𝑗 ;𝝎𝒕)
∇𝝎𝒕 ℓMSE (Ô,C ⊙ P(y,C,G)) ⊲ Estimate gradient for twin

∇𝝎𝒂1
⊤Ô1 =

(
∇z (1⊤Ô1)

)⊤
· ∇𝝎𝒂Ψ(G,G𝑐 ,G𝑑 ,C;𝝎𝒂) ⊲

Estimate gradient for actor

Q𝑎 ← Q𝑎 ∪ {∇𝝎𝒂1
⊤Ô1}

Q𝑡 ← Q𝑡 ∪ {∇𝝎𝒕 ℓMSE (Ô,C ⊙ P(y,C,G))}
end for
𝝎𝒕 ← 𝝎𝒕 − 𝛼𝑡EQ𝑡

[
∇𝝎𝒕 ℓMSE (Ô,C ⊙ P(y,C,G))

]
𝝎𝒂 ← 𝝎𝒂 − 𝛼𝑎EQ𝑎

[
∇𝝎𝒂1

⊤Ô1
]

Algorithm 5 Actor-Twin Task Graph Scheduling

Input: Ω𝐺𝑡 ,Ω𝐺𝑠 , ℎ(.), 𝛼𝑎, 𝛼𝑡 , 𝐸, 𝐵, 𝜖
for 𝑒 ∈ {1, 2, . . . , 𝐸} do

Draw G𝑡 (V, E𝑡) ∈ Ω𝐺𝑡 ,G𝑠 (V, E𝑠) ∈ Ω𝐺𝑠 ⊲ Draw data

from training dataset

G = create_unified_graph(G𝑡 ,G𝑠)
G𝑐 = create_conflict_graph(G𝑡 ,G𝑠)
G𝑑 = create_dependency_graph(G𝑡 ,G𝑠)
C = calculate_cost_matrix(G𝑡 ,G𝑠)
ACTS(G,G𝑐 ,G𝑑 ,C, ℎ, 𝛼𝑎, 𝛼𝑡 , 𝐵, 𝜖)

end for

A.3 Proof of Lemma 1
Proof. Given the MSE loss function (Equation 4), the gradient

with respect to the twin network parameters, 𝝎𝑡 , is:

𝜕ℓ𝑀𝑆𝐸 (Ô,O)
𝜕𝝎𝑡

=
𝜕ℓ𝑀𝑆𝐸 (Ô,O)

𝜕Ô
𝜕Ô
𝜕𝝎𝑡

Substituting O from Equation 3:

𝜕ℓ𝑀𝑆𝐸 (Ô,O)
𝜕𝝎𝑡

=
2

|V|2
(
Ô − EC∼Ω [C ⊙ P(y,C,G)]

)⊤ 𝜕Ô
𝜕𝝎𝑡

By linearity of expectation:

EC∼Ω

[
2

|V|2
(
Ô − C ⊙ P(y,C,G)

)⊤ 𝜕Ô
𝜕𝝎𝑡

]
Thus, the stochastic gradient estimation is:

∇𝝎𝑡
ℓ𝑀𝑆𝐸 (Ô,O) = EC∼Ω

[�
𝜕ℓ𝑀𝑆𝐸 (Ô,O)

𝜕𝝎𝑡

]
where �

𝜕ℓ𝑀𝑆𝐸 (Ô,O)
𝜕𝝎𝑡

=
2

|V|2
(
Ô − C ⊙ P(y,C,G)

)⊤ 𝜕Ô
𝜕𝝎𝑡

.

Finally,

∇𝝎𝑡
ℓ𝑀𝑆𝐸 (Ô,O) = ∇𝝎𝑡

ℓ𝑀𝑆𝐸 (Ô,C ⊙ P(y,C,G)) .
□

	Abstract
	1 Introduction
	2 Related Work
	2.1 Classical Methods for Graph Scheduling
	2.2 Learning Methods for Graph Scheduling

	3 Actor-Twin Methodology
	3.1 Graph Modeling
	3.2 ACTS Architecture

	4 Experiments
	5 Conclusion and Future work
	Acknowledgments
	References
	A Appendix
	A.1 Preliminaries
	A.2 Algorithms
	A.3 Proof of Lemma 1

