FractalBench: Diagnosing Visual-Mathematical
Reasoning Through Recursive Program Synthesis

Jan Ondras* Marek guppa*
MIT Comenius University in Bratislava, Cisco
janko@mit.edu marek@suppa.sk
Abstract

Mathematical reasoning requires abstracting symbolic rules from visual patterns—
inferring the infinite from the finite. We investigate whether multimodal Al systems
possess this capability through FractalBench, a benchmark evaluating fractal pro-
gram synthesis from images. Fractals provide ideal test cases: Iterated Function
Systems with only a few contraction maps generate complex self-similar patterns
through simple recursive rules, requiring models to bridge visual perception with
mathematical abstraction. We evaluate four leading MLLMs—GPT-40, Claude 3.7
Sonnet, Gemini 2.5 Flash, and Qwen 2.5-VL—on 12 canonical fractals. Models
must generate executable Python code reproducing the fractal, enabling objective
evaluation. Results reveal a striking disconnect: 76% generate syntactically valid
code but only 4% capture mathematical structure. Success varies systematically—
models handle geometric transformations (Koch curves: 17-21%) but fail at branch-
ing recursion (trees: <2%), revealing fundamental gaps in mathematical abstraction.
FractalBench provides a contamination-resistant diagnostic for visual-mathematical
reasoning and is available at https://github.com/NaiveNeuron/FractalBench
Cantor Set Cantor Dust Koch Curve Koch Snowflake

Sierpinski Gasket i inski Sierpinski Pentagon Heighway Dragon

Lévy Dragon McWorter Pentigree Pythagoras Tree

Figure 1: Twelve canonical fractals testing different mathematical reasoning capabilities: linear
recursion (Cantor), geometric transformations (Koch), multi-scale self-similarity (Sierpiriski), space-
filling curves (dragons), and branching recursion (trees). All defined via Iterated Function Systems.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: MATH-AL

https://github.com/NaiveNeuron/FractalBench

1 Introduction

From ancient geometry to modern Al, a central challenge in mathematical reasoning has been the
ability to infer general principles from specific examples—to see the infinite process within finite
observations. Can multimodal large language models (MLLMs) achieve this abstraction, inferring
recursive symbolic programs from visual evidence alone?

Fractals provide an ideal testbed. Each fractal is compactly defined by an Iterated Function System
(IFS) [1, 2]—typically 2-8 contraction mappings—yet generates arbitrarily complex patterns through
recursive self-similarity. Successfully synthesizing fractal code demands three interconnected capabil-
ities: recognizing scale invariance across recursive levels, inferring precise geometric transformations
from visual evidence, and achieving recursive abstraction—understanding the generative process
rather than enumerating visible patterns.

We introduce FractalBench, comprising 12 canonical fractals spanning distinct challenges: Koch
curves test geometric transformations, Sierpifiski structures probe multi-scale self-similarity, dragon
curves evaluate space-filling navigation, and tree fractals assess branching recursion. This diversity
enables systematic diagnosis: which mathematical capabilities do current models possess, and where
do they fail?

Evaluating four leading MLLMs on 7,320 fractal images (610 unique test images across 12 model-
prompt combinations) reveals a striking disconnect: 76% execution success but only 4% visual
correctness. Koch curves achieve 17-21% accuracy, Sierpifiski fractals 3-18%, while tree fractals fail
catastrophically at <2%, revealing models can compose local operations but lack recursive abstraction.

This work makes three contributions to understanding visual-mathematical reasoning in Al systems.
First, we establish a diagnostic framework connecting fractal synthesis to specific mathematical
reasoning requirements, enabling systematic capability assessment. Second, we provide empirical
evidence that current MLLMs possess geometric capabilities but fundamentally lack recursive
abstraction—findings with implications for mathematical Al beyond fractals. Third, we demonstrate
contamination-resistant evaluation through parameterizable complexity, offering a methodology
applicable to future benchmarking efforts.

2 Related Work

Existing benchmarks reveal gaps in visual-mathematical reasoning. TurtleBench [3] achieves only
19% accuracy on simple geometric shapes, testing geometric perception. MathVista [4] and MATH-
Vision [5] evaluate mathematical problem-solving with visual contexts, while MATHGLANCE [6]
reveals models “do not know where to look” in mathematical diagrams. GeoGramBench [7] targets
geometric program reasoning, showing performance degradation with structural complexity. These
benchmarks primarily test applying mathematical knowledge to solve visual problems.

FractalBench tests mathematical abstraction—inferring recursive generative rules from self-similar
patterns. Where TurtleBench [3] asks “can you draw what you see?”, FractalBench asks “can you
infer the infinite process generating finite observations?” This capability—abstracting symbolic
rules from visual examples—is central to mathematical discovery and reasoning. Fractals uniquely
target this gap through recursive self-similarity, precise geometric transformations, and objective
pixel-perfect evaluation. FractalBench is not a general vision or code benchmark, but rather a targeted
diagnostic of visual-mathematical abstraction. Notably, the same difficulty patterns we observe
(e.g., failures on branching recursion) appear in broader benchmarks such as GeoGramBench [7],
MathVista [4], and MATHGLANCE [0], indicating that the limitations we expose are conceptual
rather than API-specific. See App. A for a comprehensive survey.

3 FractalBench
3.1 Fractal Definitions via Iterated Function Systems

Self-similar fractals are defined as attractors of contractive Iterated Function Systems (IFS). Given
contraction mappings fi,..., fm : R? — R? the IFS attractor is the unique compact set K
satisfying K = (J], fi(K). We consider 12 classic fractals [1, 2] (Fig. 1), spanning Cantor sets,
Koch curves, Sierpiniski structures, dragon curves, and tree fractals. Each has contraction ratio
r € (0, 1) determining scale reduction per iteration. Complete definitions are provided in App. B,
and parameters in App. C.

3.2 Benchmark Design and Mathematical Reasoning Requirements

FractalBench comprises 610 images (1,024 x 1, 024 pixels, 4-12 recursive levels) across 12 canonical
fractals spanning distinct challenges: Cantor sets (recursive subdivision), Koch curves (geometric
transformations), Sierpinski structures (multi-scale self-similarity), dragon curves (space-filling
navigation), and trees (branching recursion). Variable depths and colors create difficulty gradients
enabling contamination-resistant evaluation (App. D). Color variants specifically prevent pretrained
MLLMs from relying on cached visual embeddings of canonical black fractals, ensuring genuine
visual-mathematical reasoning rather than memorized patterns.

Our evaluation employs a four-command MinimalTurtle interface (move, turn, pen up/down)—
intentional by design, not a limitation. While allowing generation of arbitrary fractal patterns, this
minimal interface isolates visual-to-symbolic rule abstraction from confounds such as library recall,
memorized syntax, or heuristic shape primitives. Fractals can be fully expressed via move and turn
operations; richer APIs (e.g., L-systems, matplotlib) would allow models to bypass mathematical
reasoning through template recall. This constraint enhances diagnostic value, paralleling minimal-
grammar reasoning tests in formal-language evaluation.

Successfully synthesizing fractal code requires a hierarchy of five capabilities: (1) Scale invariance
recognition—identifying that patterns repeat at different scales with specific contraction ratios
(e.g., Sierpinski gasket’s threefold self-similarity with » = 1/2). (2) Geometric transformation
inference—extracting precise rotation angles, scaling factors, and translations from visual evidence
(Koch curve’s 60° rotations). (3) Recursive structure abstraction—understanding the generative
process through self-referential rules rather than explicit enumeration. (4) Compositional reasoning—
coordinating multiple recursive processes (Koch snowflake applies the same rule to three triangle
edges). (5) Branching recursion—managing exponential computational complexity where each
parent spawns multiple children with independent state. These progress from geometric operations
through recursive abstraction to exponential branching, enabling systematic diagnosis of MLLM
capabilities (detailed in App. E).

4 Evaluation

We evaluate MLLMs across three prompting strategies on 610 fractal images spanning 12 types,
varying recursion depths, and colors. The evaluation pipeline encompasses three stages: generating
code from multimodal prompts, executing it in a sandboxed environment with timeout protection, and
assessing reconstruction quality through Jaccard Index similarity, a.k.a. Intersection over Union (IoU).

4.1 Experimental Methodology

We evaluate four representative MLLMs: GPT-4o [8], Claude 3.7 Sonnet [9], Gemini 2.5 Flash [10],
and Qwen 2.5 VL 72B [11]. We employ three prompting strategies to probe different aspects of
synthesis (App. F). Direct Code Generation (DCG) tests raw image-to-code synthesis by directly
mapping fractals to MinimalTurtle code without intermediate reasoning steps. In contrast, Reasoning
Then Code (RTC) enforces structured analysis of fractal properties before code generation, requiring
models to articulate their understanding explicitly. Finally, Recursive Structure Focus (RSF)
emphasizes recursion as the central device, explicitly requiring base cases, self-similarity patterns,
and parameter scaling in the generated code. All prompts include MinimalTurtle interface (App. G)
guide, examples, and formatting requirements.

Generated code executes in a sandboxed environment with a 30-second timeout, handling syntax
errors, runtime exceptions, and non-terminating code. Successfully executed code generates 1,024 x
1,024 images using MinimalTurtle (App. G). We evaluate reconstruction quality using Intersection
over Union: IoU = |B, N B,,|/|Ba U B,,| where B, and ,,, are binary masks of ground truth and
model-generated images. A 95% similarity threshold defines correctness, consistent with vision-to-
code benchmarks.

4.2 Results

Our evaluation reveals a striking disconnect between syntactic and semantic capabilities. While 76.1%
of generated code executes successfully, only 4.2% produces visually correct fractals (Tab. 1)—in-
dicating syntactic competence without semantic understanding. Models generate valid Python
producing visual output, but the wrong fractal, implementing some recursive pattern without inferring
the correct generative rule.

Table 1: Performance Overview for Black Fractals: Results across 3 prompt types and 4 models (1,464
total evaluations, 122 per condition). Prompt Types: Direct Code Generation (DCG), Reasoning
Then Code (RTC), Recursive Structure Focus (RSF). Metrics: Run% = execution success rate; Acc%
= visual correctness among runnable samples; Overall% = end-to-end success rate.

Prompt Type Model Runnable Run% Correct Acc% Overall%
Claude 3.7 Sonnet 100 82.0% 9 9.0% 7.4%
DCG Gemini 2.5 Flash 29 23.8% 14 48.3% 11.5%
GPT-40 115 94.3% 11 9.6% 9.0%
Qwen 2.5-VL 121 99.2% 4 3.3% 3.3%
Claude 3.7 Sonnet 105 86.1% 3 2.9% 2.5%
RTC Gemini 2.5 Flash 38 31.1% 4 10.5% 3.3%
GPT-40 118 96.7% 2 1.7% 1.6%
Qwen 2.5-VL 107 87.7% 6 5.6% 4.9%
Claude 3.7 Sonnet 106 86.9% 4 3.8% 3.3%
RSF Gemini 2.5 Flash 35 28.7% 1 2.9% 0.8%
GPT-40 120 98.4% 3 2.5% 2.5%
Qwen 2.5-VL 120 98.4% 0 0.0% 0.0%
Overall Total 1,114 76.1% 61 55% 4.2%

As seen in Tab. 5, performance varies systematically with mathematical challenge. Koch fractals
achieve the highest success rates (17-21%), which we attribute to their reliance on iterative geo-
metric transformations—locally applying rotation, scaling, and translation operations. This success
demonstrates that models can compose basic geometric operations. However, even here the 80%
failure rate reveals a crucial limitation: geometric intuition alone proves insufficient without true
recursive abstraction. Sierpinski fractals achieve moderate performance (3-18%) despite simpler
structure. Models recognize visual similarity but fail to infer precise scale invariance—that the whole
is composed of exact scaled copies with specific contraction ratios. Tree fractals catastrophically fail
(<2%) despite having the simplest IFS definitions with only 2 maps. This failure isolates a specific
bottleneck: branching recursion, where single parents spawn multiple independent recursive children
with separate state. Rather than implementing true branching, models substitute iterative loops or
single-branch recursion, revealing their inability to represent exponentially growing tree-structured
computation graphs. The contrast with linear recursion—where Cantor sets perform better—confirms
that branching specifically, not recursion itself, constitutes the limiting factor. See App. H for
comprehensive results and App. I for failure cases.

Prompting Strategy Analysis. Counterintuitively, direct code generation substantially outperforms
reasoning-first approaches across Claude, Gemini, and GPT-40 (Tab. 1: DCG 7.4-11.5% vs. RTC
1.6-3.3%, RSF 0.8-3.3%), inverting the typical chain-of-thought advantage observed in mathematical
reasoning tasks [12]. This phenomenon suggests that verbose intermediate reasoning may interfere
with precise visual-to-code synthesis. We hypothesize three complementary explanations: First,
explicit reasoning may anchor models on high-level descriptions (“the pattern branches at each level””)
that are difficult to translate into exact geometric parameters (angles, scaling ratios, coordinates),
creating a semantic gap between verbal analysis and numerical implementation. Second, reasoning-
focused prompts increase output length and complexity, potentially exhausting attention mechanisms
before reaching the critical code generation phase. Third, fractal synthesis requires tight visual-
geometric coupling that direct image-to-code pathways may preserve better than verbally-mediated
translation. This finding aligns with emerging evidence that structured prompting can constrain
generative tasks requiring precise spatial or numerical outputs [13, 14], contrasting with chain-of-
thought benefits observed for high-level logical reasoning [12].

Code Complexity. Analysis in App. J shows that Gemini produces more verbose code, recursion-
focused prompts reduce complexity, while reasoning prompts show minimal impact. Notably, some
fractals exhibit phase-transition behavior where code complexity initially grows with recursion depth
but sharply drops once models recognize the recursive structure—revealing a threshold beyond which
models shift from literal pixel-level descriptions to compressed algorithmic representations. This
connects to algorithmic information theory: fractals have very low Kolmogorov complexity, making
code length a proxy for whether models capture true structural compressibility.

5 Conclusion

Advancing mathematical reasoning in Al requires systems that can infer symbolic generative rules
from visual patterns—bridging perception and abstraction. We introduced FractalBench as a diag-
nostic benchmark for this capability, using fractal program synthesis to isolate core competencies
ranging from scale invariance recognition and geometric transformation inference through recursive
abstraction and branching recursion. Evaluating 7,320 fractal images (610 unique test images across
12 model-prompt combinations) reveals current MLLMs possess geometric capabilities but lack re-
cursive mathematical abstraction. The 76% execution versus 4% correctness disconnect demonstrates
syntactic competence without semantic understanding. Models compose local operations successfully
(Koch: 17-21%) but fail at branching recursion (trees: <2%), suggesting that their operation involves
pattern matching rather than inferring generative processes.

FractalBench provides diagnostic insights beyond binary metrics, revealing which mathematical
reasoning capabilities current systems possess and where they fail. As a contamination-resistant
testbed, it enables measuring progress toward Al genuinely integrating visual perception with
symbolic mathematical reasoning. These insights have implications for mathematical Al across
domains: education systems requiring worked examples and explanations, formal verification tools
needing program synthesis from specifications, and scientific discovery pipelines requiring abstraction
from observational data.

Limitations

Evaluation Methodology. We perform a single generation per image and use binary IoU > 95%
as the correctness criterion, following similar vision-to-code benchmarks such as TurtleBench [3],
which may not fully capture model stochasticity or assess how closely models capture underlying
generative structure. Complementary structure-aware metrics—such as branch count accuracy or
recursive depth detection—could provide finer-grained diagnostics of which geometric properties
models capture versus miss (see Appendix K.1).

Benchmark Scope. Our benchmark focuses on MLLMs rather than traditional program synthesis
baselines [15, 16], and evaluates four representative models (GPT-40, Claude 3.7 Sonnet, Gemini 2.5
Flash, Qwen 2.5-VL) without including recent reasoning-specialized systems such as OpenAl ol or
DeepSeek-R1. Comparisons with specialized synthesis techniques would provide useful performance
context, and evaluating newer reasoning-focused models would help determine whether FractalBench
exposes universal failure modes or distinguishes genuinely stronger capabilities (see Appendix K.2).

Analysis Limitations. Our prompting strategy findings (Sec. 4.2) remain observational without
stepwise ablations, and we do not demonstrate how benchmark diagnostics could guide targeted model
improvements. Controlled experiments isolating prompt complexity, reasoning depth, and instruction
structure would enable causal interpretation, while establishing a feedback loop from diagnostics to
improvements would validate FractalBench as a tool for advancing visual-mathematical reasoning
research (see Appendix K.3).

By releasing FractalBench, we invite the research community to address these limitations to enable
more robust benchmarking of visual-mathematical reasoning in Al systems.

Acknowledgments and Disclosure of Funding

Authors contributed equally; author order is alphabetical. Jan Ondras gratefully acknowledges support
from G-Research through a research grant. This work has also been partially supported by grant
APVV-21-0114.

References

[1] Michael F Barnsley. Fractals everywhere. Academic press, 2014.

[2] B.B. Mandelbrot. The Fractal Geometry of Nature. Einaudi paperbacks. Henry Holt and
Company, 1983.

https://www.gresearch.com/nextgen/grants/

[3] Sina Rismanchian, Yasaman Razeghi, Sameer Singh, and Shayan Doroudi. TurtleBench:
A visual programming benchmark in turtle geometry. In Luis Chiruzzo, Alan Ritter, and
Lu Wang, editors, Proceedings of the 2025 Conference of the Nations of the Americas Chapter
of the Association for Computational Linguistics: Human Language Technologies (Volume 1:
Long Papers), pages 12170-12188, Albuquerque, New Mexico, April 2025. Association for
Computational Linguistics.

[4] Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao
Cheng, Kai-Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical
reasoning of foundation models in visual contexts. International Conference on Learning
Representations, 2023.

[5] Ke Wang, Junting Pan, Weikang Shi, Zimu Lu, Mingjie Zhan, and Hongsheng Li. Measuring
multimodal mathematical reasoning with math-vision dataset. OpenReview, 2024.

[6] Yanpeng Sun, Shan Zhang, Wei Tang, Aotian Chen, Piotr Koniusz, Kai Zou, Yuan Xue, and
Anton van den Hengel. Mathglance: Multimodal large language models do not know where to
look in mathematical diagrams. arXiv preprint arXiv:2503.20745, 2024.

[7] Kexin Tian, Jingrui Mao, Yunlong Zhang, Jiwan Jiang, Yang Zhou, and Zhengzhong Tu.
Geogrambench: Benchmarking the geometric program reasoning in modern llms. arXiv
preprint arXiv:2505.17653, 2024.

[8] OpenAl. GPT-40: What It Is, What It Does, and Why It Matters. https://openai.com/
index/hello-gpt-40/,2024. Accessed: 2025-09-27.

[9] Anthropic. Introducing Claude 3.5 Sonnet. https://www.anthropic.com/news/
claude-3-5-sonnet, 2024. Accessed: 2025-09-27.

[10] Google. Gemini 2.0: Flash, Flash-Lite and Pro. https://developers.googleblog.com/
en/gemini-2-family-expands/, 2025. Accessed: 2025-09-27.

[11] QwenLM. QwenLM/Qwen3-VL: Qwen-VL series on GitHub. https://github.com/
QwenLM/Qwen3-VL, 2025. Version released January 28, 2025. Accessed: 2025-09-27.

[12] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in neural information processing systems, 35:24824-24837, 2022.

[13] Ryan Liu, Jiayi Geng, Addison J Wu, Ilia Sucholutsky, Tania Lombrozo, and Thomas L Griffiths.
Mind your step (by step): Chain-of-thought can reduce performance on tasks where thinking
makes humans worse. arXiv preprint arXiv:2410.21333, 2024.

[14] Jia Li, Ge Li, Yongmin Li, and Zhi Jin. Structured chain-of-thought prompting for code
generation. ACM Transactions on Software Engineering and Methodology, 34(2):1-23, 2025.

[15] Swarat Chaudhuri. Neurosymbolic program synthesis. In Handbook on Neurosymbolic Al and
Knowledge Graphs, volume 400 of Frontiers in Artificial Intelligence and Applications, pages
532-549. 10S Press, 2025.

[16] Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. Program synthesis. Foundations and
Trends in Programming Languages, 4(1-2):1-119, 2017.

[17] Yibo Yan, Shen Wang, Jiahao Huo, Hang Li, Boyan Li, Jiamin Su, Xiong Gao, Yi-Fan Zhang,
Tianlong Xu, Zhendong Chu, et al. Errorradar: Benchmarking complex mathematical reasoning

of multimodal large language models via error detection. arXiv preprint arXiv:2410.04509,
2024.

[18] Yunzhuo Hao, Jiawei Gu, Huichen Will Wang, Linjie Li, Zhengyuan Yang, Lijuan Wang, and
Yu Cheng. Emma: An enhanced multimodal reasoning benchmark. arXiv preprint, 2024.

[19] Boyuan Chen, Zhuo Xu, Sean Kirmani, Brian Ichter, Danny Driess, Pete Florence, Dorsa
Sadigh, Leonidas J Guibas, and Fei Xia. Spatialvim: Endowing vision-language models with
spatial reasoning capabilities. Computer Vision and Pattern Recognition, 2024.

https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://developers.googleblog.com/en/gemini-2-family-expands/
https://developers.googleblog.com/en/gemini-2-family-expands/
https://github.com/QwenLM/Qwen3-VL
https://github.com/QwenLM/Qwen3-VL

[20]

[21]

[22]

[23]

[24]

[25]

Jiayu Wang, Yifei Ming, Zhenmei Shi, Vibhav Vineet, Xin Wang, and Neel Joshi. Is a picture
worth a thousand words? delving into spatial reasoning for vision language models. Neural
Information Processing Systems, 2024.

Jiawei Liu, Chungiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated
by chatgpt really correct? rigorous evaluation of large language models for code generation.
Neural Information Processing Systems, 2023.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Yu, Xiaodong Xu, Ming Zhou,
Phil Blunsom, et al. Codebleu: A method for automatic evaluation of code synthesis. arXiv
preprint arXiv:2009.10297, 2020.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Training and

evaluating visual programming with code generation. Neural Information Processing Systems,
2024.

Gustav Larsson, Michael Maire, and Gregory Shakhnarovich. Fractalnet: Ultra-deep neural
networks without residuals. International Conference on Learning Representations, 2016.

Joy Hsu, Jiayuan Mao, Joshua B. Tenenbaum, Noah Goodman, and Jiajun Wu. What makes a
maze look like a maze? In The Thirteenth International Conference on Learning Representa-
tions, 2025.

A Comprehensive Related Work Survey

This appendix provides a detailed survey of related work across multiple research areas relevant to
FractalBench, offering comprehensive context beyond the focused discussion in the main paper.

A.1 Mathematical Reasoning in Multimodal Models

The evaluation of mathematical reasoning capabilities in vision-language models has emerged as a
critical research area. MathVista [4] established the foundation for visual mathematical reasoning
evaluation, revealing that even advanced models like GPT-4V fall short of human performance by
significant margins. MATH-Vision [5] provides a comprehensive dataset of 3,040 high-quality
mathematical problems with visual contexts, spanning 16 mathematical disciplines.

Recent specialized benchmarks have identified specific failure modes in mathematical reasoning.
ErrorRadar [17] focuses on error detection in mathematical problem-solving, while EMMA [1§]
targets enhanced multimodal reasoning across mathematics, physics, chemistry, and coding domains.
These evaluations consistently show that current models struggle with complex multi-step reasoning
and visual-mathematical integration.

Notably, MATHGLANCE [6] reveals that multimodal models “do not know where to look” in math-
ematical diagrams, highlighting fundamental visual attention problems when processing geometric
content—a challenge particularly relevant to fractal understanding.

A.2 Geometric and Spatial Reasoning

Spatial reasoning represents another dimension crucial to fractal understanding. SpatialVLM [19]
introduces comprehensive 3D spatial reasoning evaluation, while SpatialEval [20] provides sys-
tematic assessment across relationship understanding, navigation, and counting tasks. These works
consistently identify significant performance gaps between human and Al capabilities in spatial
reasoning.

GeoGramBench [7] specifically targets geometric program reasoning, revealing that models show
clear performance degradation as structural complexity increases. This finding is particularly relevant
to fractal synthesis, where recursive complexity scales exponentially with iteration depth.

A.3 Program Synthesis and Evaluation Methodologies

The broader program synthesis literature provides important context for evaluation methodologies.
HumanEval+ [2 1] demonstrates that traditional code evaluation metrics significantly overestimate
model performance, while CodeBLEU [22] attempts to address limitations of text-based similarity
metrics through syntactic and semantic analysis.

Recent work on visual program synthesis [23] shows that while models can learn to generate code
from visual specifications, they often fail to capture underlying algorithmic principles, instead relying
on surface-level pattern matching.

A.4 Fractal Generation and Mathematical Structures

While extensive work exists on neural fractal generation for computer graphics [24] and fractal-
inspired neural architectures, the intersection of fractal understanding and code synthesis remains
largely unexplored. Previous work has focused on generating fractals through neural networks rather
than understanding fractal images to synthesize their generating algorithms.

Hsu et al. [25] study the inverse problem of reasoning from images of abstract concepts to generative
programs, demonstrating program synthesis as a bridge between visual patterns and algorithmic
rules. However, their approach targets different structures like mazes rather than the mathematically
rigorous recursive patterns of fractals.

B Fractal Definitions via Iterated Function Systems

Fractals can often be described as the attractors of Iterated Function Systems (IFS), which are finite
sets of contractive similarity maps f; : R¢ — R? acting on Euclidean space, typically combining a
scaling (contraction) with a rigid motion such as a rotation or translation. Below, we summarize twelve
classical examples, grouped by their geometric type. In each case, the IFS is written explicitly, and
we briefly describe the geometric intuition behind the construction. See Fig. 1 for the corresponding
fractal images.

B.1 Cantor-Type Fractals

* Cantor Set. The standard middle-third Cantor set is generated by repeatedly removing the
open middle third from each interval. Equivalently, it is the attractor of the IFS on [0, 1]
defined by

filz) =3z, folz) =iz + 2.

+ Cantor Dust. The Cartesian product C' x C' C R? of two Cantor sets, also called Cantor
dust, is obtained from four similarity maps:

flj(xay):%(xvy)+(%72?j)a Z,]G{Ovl}
This construction generalizes naturally to higher dimensions, yielding fractal "dusts" sup-
ported on hypercubes.
B.2 Koch-Type Fractals

* Koch Curve. The Koch curve is obtained by recursively replacing each line segment with
four smaller segments forming an equilateral "bump". In the IFS form, it is defined by

fi(z) = %%

fo(@) = $Reys(2) + (3,0),
fa(@) = SR _aps(@) + (3,2)
fa(x) = 52+ (5,0),

where Ry is a 2D rotation matrix corresponding to a counterclockwise rotation by angle 6.

* Koch Snowflake. Applying the Koch curve construction simultaneously to each side of
an equilateral triangle yields the famous Koch snowflake, a closed Jordan curve of infinite
perimeter that nevertheless bounds a finite area.

B.3 Sierpinski-Type Fractals

* Sierpinski Gasket. Starting from an equilateral triangle with vertices vy, v2, v3, the gasket
is the attractor of

fl() (J/'_U'L)—FUZ, i:172737
which maps the entire triangle onto its three corner subtriangles.

* Sierpinski Carpet. Subdividing the unit square into a 3 x 3 grid and removing the central
subsquare produces the Sierpifiski carpet. The remaining eight squares correspond to the
similarities

filw) =3z +t;, i=1,...,8,
where ¢; is the translation vector that places the contracted square in the i-th position of the

grid.
* Sierpinski Pentagon. Analogously, for a regular pentagon with vertices vy, . . ., v, define
file)=r(z—v;)+v;, i=1,...,5,
with contraction ratio r = ﬁ ~ 0.382, where ¢ = 1+‘[is the Golden ratio. The attractor

is a fractal pentagonal analog of the gasket.

B.4 Dragon Curves

* Heighway Dragon. The Heighway dragon, one of the most well-known fractal curves, is
generated by

fl() R7r/4()’ f2() R*ﬂ'/4() (170)'

Its attractor is a self-overlapping curve that fills a two-dimensional region of positive area.

* Lévy Dragon (Lévy C Curve). Closely related is the Lévy C curve, defined by
fl(x) = %Rﬂ'/ﬁl(l’)? f2(1') - %R—ﬂ'/él(x)‘i’ (%7%)

Unlike the Heighway dragon, it forms a symmetric zig-zag curve without self-intersections.

B.5 Tree Fractals
* McWorter’s Pentigree. For a regular pentagon with vertices v;, the system

file)=r(z—v;)+v;, i=1,...,5,

with contraction ratio r = —— = 0.382 produces a branching, tree-like structure with

14+¢
pentagonal symmetry.

» Pythagoras Tree. The Pythagoras tree is a branching fractal constructed from squares. The
process begins with a unit square. At each step, two child squares of side length scaled by
1/+/2 are attached along the top edge of the parent square. One square is anchored in the
top left corner of the parent and rotated counterclockwise by 7 /4, the other is anchored
in the top right corner of the parent and rotated clockwise by 7 /4. Repeating this process
indefinitely yields a branching, tree-like arrangement of squares. Formally, the IFS is given

by
fi@) = 5Rea(@) + 11, fo(z) = 5R_zya(@) + ta,

where R /4 denote 2D rotation matrices, and the translatlon vectors ¢; position the rotated
child squares precisely on the top edge of the parent square.

e Symmetric Binary Tree. In a general symmetric binary fractal tree, each parent segment
spawns two scaled child copies rotated symmetrically by angles +6 about the parent’s
endpoint. The corresponding IFS is

filz) =rRe(z) +t1, fao(a) = rR_g(x) + 12,

where r € (0, 1) is the custom contraction ratio, R4 are the 2D rotation matrices, and the
translation vectors t; place the child segments at the tip of the parent segment.

C Fractal Parameters

Table 2: Parameters of twelve classic fractals defined as attractors of Iterated Function Systems.
¢ = 115 ~ 1,618 i the Golden ratio.

Fractal Type # Maps Contraction Ratio r
Cantor Set 2 1/3
Cantor Dust 4 1/3
Koch Curve 4 1/3
Koch Snowflake 4 per edge 1/3
Sierpiriski Gasket 3 1/2
Sierpiriski Carpet 8 1/3
Sierpiniski Pentagon 5 m ~ 0.382
Heighway Dragon 2 1/v2
Lévy Dragon 2 1/v2
McWorter’s Pentigree 5 ﬁ ~ 0.382
Pythagoras Tree 2 1/v2
Symmetric Binary Tree 2 custom

10

D Test Set Generation Configuration

This section documents the complete configuration used to generate the FractalBench test set, enabling
exact replication of our evaluation dataset.

D.1 Rendering Parameters
All fractal images are generated with the following specifications:

* Resolution: 1,024 x 1,024 pixels
DPI: 128 dots per inch

* Line width: 0.5 pixels

¢ Background color: White

* Line colors: Black, red, blue, green, purple (5 variations)

¢ File format: PNG with transparency support

D.2 Fractal-Specific Configurations

Each fractal is generated with fractal-specific parameters to ensure optimal visual quality and
appropriate complexity scaling:

Table 3: Fractal-Specific Generation Parameters: Images generated for all depths from O to the
maximum depth, with initial base size of 500 pixels. Additional Parameters list fractal-specific
rendering options.

Fractal Type Max Recursion Depth Additional Parameters

Cantor Set 5 y_spacing=20
Cantor Dust -

Koch Curve

Koch Snowflake
Sierpifiski Gasket
Sierpiniski Carpet
Sierpifiski Pentagon
Heighway Dragon
Lévy Dragon
McWorter’s Pentigree
Pythagoras Tree
Symmetric Binary Tree

AN e == o BN
I

angle=60°, ratio=0.65

D.3 Maximum Recursion Depth

When rendering recursive fractals, the recursion depth must be capped so that substructures remain
visually distinguishable. Continuing recursion beyond this limit would produce features smaller
than the minimum resolvable size, which would likely lead to repeated images and thus duplicated
samples in the dataset.

We compute the recursion depth limit by comparing the minimum distinguishable size to the con-
tracted linear size of the initial base building block. Let sg denote the initial linear size of the base
building block in pixels (e.g., a single line segment, the first triangle, square, etc.) and let r € (0, 1)
denote the contraction ratio applied at each recursive step. At recursion depth d, the characteristic
linear size of a substructure is approximately

Sa ~ So ~’I"d.

In particular, we take s = 500 pixels and derive r from fractal mathematical properties (Tab. 2) or,
in the case of symmetric binary trees, specify explicitly, » = 0.65.

11

To ensure that features remain resolvable, we impose the criterion
Sd Z Smin,
where we set the minimum distinguishable size s,;, = 1 pixel.

Solving for the recursion depth yields

o = | 250

For fractals with multiple contraction ratios (e.g., asymmetric branching), we would use the smallest
ratio to avoid overestimating the resolvable depth. In practice, we also visually inspect the difference
between the two highest admissible recursion depths to ensure that the last iteration still adds
distinguishable structure.

D.4 Dataset Structure
The complete dataset organization follows this structure:

test_set/

— black/
cantor_set_depthO_sizeb00_y_spacing20.png
cantor_set_depthl_sizeb00_y_spacing20.png

(progressive depth sequences)

— red/

L ... (same fractal sequences in red)

— blue/

— green/

L — purple/

File naming convention: <fractal_name>_<param><value>_<fixed_params>.png

This systematic approach generates exactly 610 test images covering the complete parameter space
of fractal types, complexity levels, and color variations, ensuring comprehensive evaluation coverage
while maintaining consistent visual quality standards. Each color variant contains 122 images (610/5).
We evaluate all images across 12 model-prompt combinations (4 models x 3 prompting strategies),
yielding 1,464 runs per color and 7,320 runs in total across five colors.

E Detailed Mathematical Reasoning Requirements

This appendix provides detailed explanations of the five mathematical reasoning capabilities required
for fractal synthesis, expanding on the condensed framework in Sec. 3.2.

E.1 Scale Invariance Recognition

Models must identify that visual patterns repeat identically at different scales, governed by a specific

contraction ratio r € (0, 1). For example, the Sierpiniski gasket exhibits threefold self-similarity with

r = 1/2, while the Cantor set uses » = 1/3. Recognizing scale invariance requires understanding
m

that the fractal K satisfies the self-similarity equation K = | J,_, fi(/) where each f; contracts by
ratio 7.

This capability goes beyond recognizing visual similarity—it requires inferring the precise quantitative
relationship between scales. A model might visually recognize that a Sierpiniski gasket contains three
smaller copies of itself, but without determining that each copy is exactly half the size of the parent,
it cannot generate correct code. Small errors in the contraction ratio accumulate through recursive
iterations, causing the generated fractal to diverge from the target.

E.2 Geometric Transformation Inference

Beyond recognizing repetition, models must extract precise quantitative parameters—rotation angles,
scaling factors, and translation vectors—from visual evidence alone. The Koch curve requires

12

determining that edges rotate by exactly § = 7 /3 radians (60 degrees). Small errors accumulate
exponentially through recursion, making this capability critical for correctness.

For instance, a model observing the Koch curve might recognize that line segments are subdivided and
rotated, but must infer the exact angle from the visual pattern. An error of even 5 degrees compounds
through recursion, producing a visually distinct fractal after a few iterations. This demands not just
pattern recognition but quantitative inference from visual geometry.

E.3 Recursive Structure Abstraction

Models must understand the generative process rather than merely enumerating visible patterns. This
requires self-referential reasoning: recognizing that the whole is composed of transformed copies
of itself. Implementing this demands recursive function calls, not iterative loops—a fundamental
distinction in algorithmic thinking.

The key insight is understanding that the fractal is defined by the equation K = | J, f;(/)—the set
K appears on both sides. This is fundamentally different from iterative construction where each level
is explicitly computed from the previous one. Recursive abstraction means recognizing that the entire
structure can be defined by a simple self-referential rule, rather than explicitly enumerating all levels.
This is the essence of mathematical abstraction: finding the compact generative rule underlying
complex patterns.

E.4 Compositional Reasoning

More complex fractals require composing multiple recursive processes. The Koch snowflake applies
the Koch curve construction to three edges of a triangle simultaneously. The Pythagoras tree combines
square placement with recursive branching. Models must coordinate multiple transformation rules
operating at different structural levels.

Compositional reasoning tests whether models can maintain multiple simultaneous recursive pro-
cesses with different parameters. For the Koch snowflake, this means applying the same recursive
rule (Koch curve) to three different initial segments (the triangle edges), each with different orienta-
tions. For the Pythagoras tree, it means combining two distinct operations: positioning a square at a
specific location and angle, then recursively applying the same process to the new squares. Failure in
compositional reasoning manifests as applying the recursive rule to only one component or failing to
maintain consistent parameters across multiple recursive calls.

E.5 Branching Recursion

Tree fractals introduce exponential complexity: a single parent spawns multiple recursive children,
each requiring independent state maintenance. Unlike linear recursion (Cantor set) or fixed-arity
iteration (Sierpinski structures), branching recursion demands representing and navigating tree-
structured computation graphs.

The critical distinction is exponential growth in computational structure. In linear recursion (Cantor
set), each recursive call spawns one child. In branching recursion (binary tree), each call spawns two
independent children, creating 2¢ nodes at depth d. This requires maintaining independent state for
each branch, tracking position, angle, and scaling for each recursive child separately. Models consis-
tently fail at this by: (1) using iterative loops that cannot maintain branching state, (2) implementing
single-branch recursion that only follows one child, or (3) generating static approximations with fixed
depth. True branching recursion requires representing and navigating tree-structured computation
graphs—a capability current MLLMs fundamentally lack.

F Prompt Templates

This section provides the complete prompt templates used in our evaluation, enabling reproducibility
and detailed analysis of our methodology.

13

F.1 Direct Code Generation Prompt

Direct Code Generation Prompt

Analyze the provided fractal image and write Python code that recreates it using Minimal Turtle.
Use MinimalTurtle to draw the fractal. You have access to:

e turtle.move(distance) — move forward

* turtle.turn(degrees) — turn by angle

e turtle.goto(x, y) —move to position

e turtle.pen_up() / turtle.pen_down() — control drawing

Starter example:

from utils.minimal_turtle import MinimalTurtle
from utils.minimal_renderer import render_turtle

def simple_line(length=100):
turtle = MinimalTurtle ()
turtle.move (length)
return turtle

if __name__ == "__main__":
turtle = simple_line ()
render_turtle (turtle, "output.png")

Create a function that returns a configured MinimalTurtle instance and exposes any relevant
parameters (e.g., depth, size, iterations).

Return your final answer in triple backticks with a complete, runnable implementation:

Your fractal implementation here

if __name__ == "__main__":

turtle = your_function_name ()
render_turtle (turtle, "output.png")

IMPORTANT: Always include the if __name__ == "__main__" block so the code can be
executed directly.

F.2 Reasoning Then Code Prompt

Reasoning Then Code Prompt

Study the fractal image, then document your reasoning before generating code.
Address these questions:

1. What type of fractal is this (e.g., recursive subdivision, L-system)?

2. What is the base shape or starting configuration?

3. Which transformation rules or drawing steps repeat each iteration?

4. How does complexity evolve with each iteration?

After the analysis, produce MinimalTurtle code.

Use MinimalTurtle to draw the fractal. You have access to:
e turtle.move(distance) — move forward

* turtle.turn(degrees) — turn by angle

14

* turtle.goto(x, y) —move to position
e turtle.pen_up() / turtle.pen_down() — control drawing

Reference snippet:

from utils.minimal_turtle import MinimalTurtle
from utils.minimal_renderer import render_turtle

def square(size=50):
turtle = MinimalTurtle ()
for _ in range(4):
turtle.move (size)
turtle.turn (90)

return turtle

if name__ == "__main__":

turtle = square ()
render_turtle (turtle, "output.png")

Structure the response as:
Analysis: (Your reasoning)
Code: Fractal implementation with required imports and main block

F.3 Recursive Structure Focus Prompt
Recursive Structure Focus Prompt

This fractal exhibits recursion. Produce Python code that makes the recursive structure explicit.
Highlight in your code:

1. The termination condition for recursion.

2. The self-similar pattern in each recursive call.

3. How parameters (e.g., length, angle, position) evolve between calls.

Use MinimalTurtle to draw the fractal. You have access to:
e turtle.move(distance) — move forward
e turtle.turn(degrees) — turn by angle
e turtle.goto(x, y) —move to position

e turtle.pen_up() / turtle.pen_down() — control drawing

Reference pattern:

from utils.minimal_turtle import MinimalTurtle
from utils.minimal_renderer import render_turtle

def tree(turtle, length, depth):
if depth == 0:
return
turtle.move (length)
turtle.turn (30)
tree(turtle, length * 0.7, depth - 1)
turtle.turn (-60)
tree(turtle, length * 0.7, depth - 1)

def create_tree(depth=5, initial_length=100):

turtle = MinimalTurtle ()
tree(turtle, initial_length, depth)

15

return turtle

if __name__ == "__main__":
turtle = create_tree ()
render_turtle (turtle, "output.png")

Return your final answer in triple backticks with a complete, runnable implementation:
Your fractal implementation here

if name == "__main

turtle = your_function_name ()
render_turtle (turtle, "output.png")

IMPORTANT: Always include the if
executed directly.

_name__ == "__main__" block so the code can be

G MinimalTurtle Graphics Interface

Our evaluation uses a custom MinimalTurtle graphics library designed for fractal synthesis. This
lightweight implementation provides essential turtle graphics operations while maintaining simplicity
for code generation tasks.

G.1 Core Interface

The MinimalTurtle class provides the following key methods:

* move (distance): Move forward by specified distance

* turn(angle): Turn by angle in degrees (positive = counterclockwise)
* pen_up(), pen_down(): Control drawing state

* goto(x, y): Move to position without drawing

* reset (): Reset turtle to origin and clear paths

G.2 Implementation

The turtle maintains internal state including position (z, y), heading angle, pen state, and drawing
paths. All movements use standard trigonometry with heading 0° pointing east and positive angles
rotating counterclockwise. The get_paths () method returns line segments for rendering.

class MinimalTurtle:
def __init__(self, x=0.0, y=0.0, heading=0.0):
self.x, self.y, self.heading = x, y, heading
self.pen_is_down = True

self.paths = [[]]

def move(self, distance):
radians = math.radians(self.heading)
new_x = self.x + distance * math.cos(radians)
new_y = self.y + distance * math.sin(radians)
if self.pen_is_down:
if not self.paths[-1]:
self.paths[-1].append((self.x, self.y))
self .paths[-1] .append((new_x, new_y))
self.x, self.y = new_x, new_y

This interface balances simplicity for LLM code generation with sufficient functionality for com-
plex fractal rendering. The path-based approach enables efficient vectorized rendering at arbitrary
resolutions.

16

H Comprehensive Evaluation Results
H.1 Complete Performance Overview Across All Colors

Table 4: Comprehensive Performance Overview: Complete results across 3 prompt types, 4 models,
and 5 colors (7,320 total evaluations, 122 per condition). Prompt Types: Direct Code Generation
(DCG), Reasoning Then Code (RTC), Recursive Structure Focus (RSF). Run% = execution success
rate; Acc% = visual correctness among runnable samples; Overall% = end-to-end success rate.

Prompt Type Model Color Runnable Run% Correct Acc% Overall%
M Black 100 82.0% 9 9.0% 7.4%

H Blue 103 84.4% 12 11.7% 9.8%

Claude 3.7 Sonnet Green 101 82.8% 13 129% 10.7 %
M Purple 98 80.3% 11 11.2% 9.0%

M Red 9 81.1% 7 7.1% 5.7%

M Black 29 23.8% 14 48.3% 11.5%

H Blue 29 23.8% 12 414% 9.8%

Gemini 2.5 Flash Green 30 24.6% 11 36.7% 9.0%
M Purple 20 16.4% 5 25.0% 4.1%

DCG B Red 28 23.0% 12 429% 9.8%
M Black 115 943% 11 9.6 % 9.0%

H Blue 114 93.4% 7 6.1% 5.7%

GPT-40 Green 115 943% 9 7.8% 7.4%
M Purple 116 95.1% 6 5.2% 4.9%

M Red 119 97.5% 7 5.9% 5.7%

M Black 121 99.2% 4 3.3% 3.3%

M Blue 120 98.4% 11 9.2% 9.0%

Qwen 2.5-VL Green 121 99.2% 9 7.4% 7.4%
M Purple 121 99.2% 8 6.6% 6.6%

M Red 122 100.0% 7 5.7% 5.7%

M Black 105 86.1% 3 2.9% 2.5%

H Blue 105 86.1% 6 57% 4.9%

Claude 3.7 Sonnet Green 105 86.1% 3 2.9% 2.5%
M Purple 108 88.5% 3 2.8% 2.5%

M Red 106 86.9% 1 0.9% 0.8%

M Black 38 31.1% 4 10.5% 3.3%

H Blue 47 38.5% 4 8.5% 3.3%

Gemini 2.5 Flash Green 43 35.2% 2 4.7% 1.6%
M Purple 44 36.1% 5 11.4% 4.1%

RTC M Red 32 262% 4 125% 3.3%
M Black 118 96.7% 2 1.7% 1.6%

H Blue 116 95.1% 4 34% 3.3%

GPT-40 Green 118 96.7% 3 2.5% 2.5%
M Purple 112 91.8% 3 2.7% 2.5%

M Red 117 95.9% 2 1.7% 1.6%

M Black 107 87.7% 6 5.6% 4.9%

H Blue 113 92.6% 9 8.0% 7.4%

Qwen 2.5-VL Green 113 92.6% 11 9.7% 9.0%
M Purple 114 93.4% 11 9.6% 9.0%

M Red 109 89.3% 10 9.2% 8.2%

H Black 106 86.9% 4 38% 3.3%

H Blue 106 86.9% 4 38% 3.3%

Claude 3.7 Sonnet Green 102 83.6% 1 1.0% 0.8%
M Purple 108 88.5% 2 1.9% 1.6%

M Red 110 90.2% 2 1.8% 1.6%

M Black 35 28.7% 1 2.9% 0.8%

H Blue 43 352% 1 2.3% 0.8%

Gemini 2.5 Flash Green 42 34.4% 2 4.8% 1.6 %
M Purple 43 352% 2 4.7% 1.6%

RSF B Red 39 32.0% 1 2.6% 0.8%
H Black 120 98.4% 3 25% 2.5%

H Blue 122 100.0% 1 0.8% 0.8%

GPT-40 Green 118 96.7% 1 0.8% 0.8%
M Purple 122 100.0% 1 0.8% 0.8%

B Red 121 99.2% 1 0.8% 0.8%

H Black 120 98.4% 0 0.0% 0.0%

H Blue 119 97.5% 1 0.8% 0.8%

Qwen 2.5-VL Green 119 97.5% 0 0.0% 0.0%
M Purple 121 99.2% 1 0.8% 0.8%

B Red 120 98.4% 0 0.0% 0.0%

Overall Total 5,627 76.9% 310 55% 4.2%

17

H.2 Fractal Type Analysis

Table 5: Fractal Type Analysis: Performance aggregated by fractal type across all depth variations and
parameters. Shows which fractal categories are most successfully generated by Al models, revealing
systematic difficulty hierarchies from Koch-type curves (highest accuracy) to tree fractals (lowest
accuracy). Metrics: IoU = Intersection over Union; Std Dev = standard deviation of IoU scores.

Fractal Type Total Correct Accuracy MeanIoU Std Dev
Koch Snowflake 331 69 20.8% 0.343 0.382
Sierpinski Carpet 297 55 18.5% 0.288 0.374
Koch Curve 314 54 17.2% 0.222 0.372
Sierpifiski Pentagon 284 24 8.5% 0.133 0.271
Cantor Dust 296 19 6.4% 0.140 0.252
McWorter’s Pentigree 312 15 4.8% 0.067 0.211
Cantor Set 295 11 3.7% 0.055 0.191
Sierpiniski Gasket 450 14 3.1% 0.128 0.183
Lévy Dragon 831 16 1.9% 0.041 0.146
Pythagoras Tree 757 14 1.8% 0.040 0.135
Heighway Dragon 899 14 1.6% 0.041 0.133
Symmetric Binary Tree 561 5 0.9% 0.024 0.094

H.3 Color Variation Analysis

Table 6: Color Variation Analysis: Performance across 5 fractal colors, aggregated across all models
and prompt types. Shows minimal impact of color complexity on generation accuracy and visual
similarity, with blue fractals achieving marginally higher success rates.

Color Total Correct Accuracy MeanIoU Median IoU

M Blue 1,137 72 6.3% 0.107 0.013

Green 1,127 65 5.8% 0.100 0.012
M Black 1,114 61 5.5% 0.100 0.013
M Purple 1,127 58 5.1% 0.097 0.013
H Red 1,122 54 4.8% 0.091 0.011

H.4 Model Performance Summary

Table 7: Model Performance Summary: Evaluation metrics for each model across all fractal generation
tasks, showing total images generated, correct visual matches, accuracy percentages, and similarity
score statistics. Gemini 2.5 Flash achieves the highest accuracy. IoU = Intersection over Union.

Model Total Correct Accuracy MeanIoU Median IoU
Gemini 2.5 Flash 542 80 14.8% 0.204 0.020
Claude 3.7 Sonnet 1,562 81 5.2% 0.095 0.012
Qwen 2.5-VL 1,760 88 5.0% 0.082 0.011
GPT-40 1,763 61 3.5% 0.088 0.013

18

H.5 Statistical Significance Analysis

Table 8: Pairwise Model Comparison with Statistical Significance Analysis: Mann-Whitney U tests
for model performance differences in accuracy and IoU (Intersection over Union) scores, with p-
values and Sig. columns indicating statistical significance. Cohen’s d provides effect size estimation.

Model A Model B Acc p-value IoU p-value Cohen’sd Acc Sig. IoU Sig.
Claude 3.7 Sonnet Gemini 2.5 Flash 0.0278 0.0004 -0.982 Yes Yes
Claude 3.7 Sonnet GPT-40 0.1247 0.0010 0.508 No Yes
Claude 3.7 Sonnet Qwen 2.5-VL 0.8033 0.6686 0.052 No No
Gemini 2.5 Flash ~ GPT-4o 0.0021 0.1166 1.145 Yes No
Gemini 2.5 Flash ~ Qwen 2.5-VL 0.0343 0.0008 1.002 Yes Yes
GPT-40 Qwen 2.5-VL 0.3722 0.0000 -0.466 No Yes

I Representative Failure Cases

This section presents representative examples of fractal generation failures where models produced
visual output but failed to correctly implement the intended fractal structure. These examples
demonstrate the challenges in translating fractal mathematical definitions into correct algorithmic
implementations, showing cases where models understood basic drawing concepts but missed crucial
recursive patterns.

Figure 2 shows six green fractal cases where models achieved low similarity scores (0.010-0.011) with
ground truth images, representing substantial generation attempts that went wrong. Each example

pairs the

model’s output (left) with the correct fractal (right), highlighting specific failure modes:

Heighway Dragon (depth 8): Model attempts to draw curved lines but fails to capture the
proper recursive folding pattern and self-similarity structure.

Symmetric Binary Tree (depth 10): Basic branching attempted but incorrect angle calcula-
tions and recursive depth handling result in malformed tree structure.

Lévy Dragon (depth 17): Some curve generation visible but wrong turning angles and
scaling factors produce unrecognizable patterns.

Pythagoras Tree (depth 2): Square elements drawn but improper recursive placement and
scaling destroy the characteristic tree-like growth pattern.

Heighway Dragon (depth 9): Alternative dragon curve attempt showing different failure
mode with incorrect segment orientations.

Symmetric Binary Tree (depth 11): Another tree variant demonstrating systematic errors
in recursive branching logic.

These failures often stem from: (1) incorrect recursive parameter propagation, (2) improper angle
and scaling calculations, (3) coordinate transformation errors, (4) misunderstanding of fractal self-
similarity principles, and (5) inadequate handling of recursive depth and termination conditions.

19

Generated Ground Truth Fractal Type

Heighway Dragon

Symmetric Binary Tree

Lévy Dragon

Pythagoras Tree

Heighway Dragon

Symmetric Binary Tree

Figure 2: Representative failure cases showing model-generated green fractals (left) versus ground
truth (right). These six examples achieved low similarity scores, IoU € (0.010, 0.011), demonstrating
cases where models produced visual output but failed to implement correct fractal structures.

20

J Synthesized Code Complexity Analysis

One of the key motivations for evaluating fractals in the image-to-code synthesis setting is their
inherent compressibility, admitting extremely concise mathematical definitions—often specified by
only a few similarity transformations in an IFS. From the standpoint of algorithmic information
theory, this means that their Kolmogorov complexity is very low: the shortest description of the
pattern is much shorter than the raw pixel-level encoding of its image.

We thus investigate the extent to which the models capture this compactness when synthesizing
code from fractal images. In particular, we measure the complexity of the generated programs in
terms of code length. Shorter code is taken to reflect a more efficient internal representation of the
fractal pattern, whereas longer code may suggest that the model is relying on more literal or ad-hoc
descriptions rather than recognizing the recursive self-similar structure.

Concretely, for each fractal type, we compute the number of non-blank, non-comment lines of code
in the generated output. We average this length over different color instantiations of the same fractal
to reduce variance, and track how it evolves with the fractal recursion depth. This metric gives an
empirical proxy for the compactness of the synthesized code.

Figures 3—14 compare code complexity across fractals and prompting strategies. Overall, Gemini
produces consistently more verbose code than the other models. In several cases—most notably the
Heighway Dragon—we observe a phase-transition—like behavior: complexity grows with recursion
depth up to a threshold, after which the model appears to recognize and exploit the recursive structure,
yielding a sharp reduction in code length. Prompts that explicitly emphasize recursion tend to reduce
complexity, whereas prompts encouraging step-by-step reasoning show little measurable impact.

21

Direct Code Generation Reasoning Then Code Recursive Structure Focus

—e— GPT-40

—@— Claude 3.7 Sonnet
—8— Gemini 2.5 Flash
—8— Qwen 2.5-VL

Lines of code
= N N w w B S w
G o » & & o h o
| P L | L | L
s P s s s s

o
)
!

L

T T T T T T T T T T T T T T T T
1 2 3 4 5 1 2 3 4 5 0 1 2 3 4 5
Recursion depth Recursion depth Recursion depth

Figure 3: Cantor Set: Synthesized code complexity (# non-blank, non-comment lines of code,
averaged over colors) vs. recursion depth comparing all models for each prompting strategy.

o4
o4

Direct Code Generation Reasoning Then Code Recursive Structure Focus
—e— GPT-40
504 i | —o— Claude 3.7 Sonnet
—e— Gemini 2.5 Flash
—8— Qwen 2.5-VL
$ 404 4 f
o
S
“
Is)
0
£ 301 1 1
3
#*
204 4 <
10 1 1
T T T T T T T T T T T T T T T T T T
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
Recursion depth Recursion depth Recursion depth

Figure 4: Cantor Dust: Synthesized code complexity (# non-blank, non-comment lines of code,
averaged over colors) vs. recursion depth comparing all models for each prompting strategy.

Direct Code Generation Reasoning Then Code Recursive Structure Focus
—o— GPT-40
100 - 1 1 —®— Claude 3.7 Sonnet
—8— Gemini 2.5 Flash
—— Qwen 2.5-VL
804 4 <

@

=l

o

S

G 60 4 <

s

4}

<

3

404 R]

20 A 4 <
T T T T T T T T T T T T T T T T T T
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
Recursion depth Recursion depth Recursion depth

Figure 5: Koch Curve: Synthesized code complexity (# non-blank, non-comment lines of code,
averaged over colors) vs. recursion depth comparing all models for each prompting strategy.

Direct Code Generation Reasoning Then Code Recursive Structure Focus
100
—e— GPT-40
—o— Claude 3.7 Sonnet
804 i il —e— Gemini 2.5 Flash

—8— Qwen 2.5-VL

Q

<

3

S 60 1 4

Is]

0

v

£

3

401 9 1

20 A 4 < E E %—% i
T T T T T T T T T T T T T T T T T T
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
Recursion depth Recursion depth Recursion depth

Figure 6: Koch Snowflake: Synthesized code complexity (# non-blank, non-comment lines of code,
averaged over colors) vs. recursion depth comparing all models for each prompting strategy.

Direct Code Generation

Reaso

ning Then Code

Recursive Structure Focus

Lines of code

w I
o o
! !
L L

N
o
!
L

104 1

—o— GPT-40

—@— Claude 3.7 Sonnet
—&— Gemini 2.5 Flash
—8— Qwen 2.5-VL

T T T T T T T
1 2 3 4 5 6 7
Recursion depth

o4

T T T

T T T T

T
1 2 3 4 5 6 7 8
Recursion depth

Recursion depth

Figure 7: Sierpinski Gasket: Synthesized code complexity (# non-blank, non-comment lines of
code, averaged over colors) vs. recursion depth comparing all models for each prompting strategy.

Direct Code Generation

Reaso

ning Then Code

Recursive Structure Focus

201 1

104 1

Lines of code
w B i =)
o o o o
L L L L
s s s s

—e— GPT-40

—®— Claude 3.7 Sonnet
—8— Gemini 2.5 Flash
—&— Qwen 2.5-VL

T T T T
1 2 3 4
Recursion depth

o4

T

1

T T T

2 3 4

e

Recursion depth

T T T T T T

0 1 2 3 4 5

Recursion depth

Figure 8: Sierpinski Carpet: Synthesized code complexity (# non-blank, non-comment lines of
code, averaged over colors) vs. recursion depth comparing all models for each prompting strategy.

Direct Code Generation

Reasoning Then Code

Recursive Structure Focus

140

120 A

100 A

Lines of code
[=)) =3
o (=}
L L

IS
o
!

201

—e— GPT-40

—®— Claude 3.7 Sonnet
—®— Gemini 2.5 Flash
—8— Qwen 2.5-VL

Recursion depth

o

1 2

3 4 5

o4

Recursion depth

0 1 2 3 4 5 6
Recursion depth

Figure 9: Sierpinski Pentagon: Synthesized code complexity (# non-blank, non-comment lines of
code, averaged over colors) vs. recursion depth comparing all models for each prompting strategy.

Direct Code Generation

Reasoning Then Code

Recursive Structure Focus

140 4

Lines of code

120 J
1004 4
80 4
60 4
40 4
20 4

—e— GPT-40

—&— Claude 3.7 Sonnet
—8— Gemini 2.5 Flash
—8— Qwen 2.5-VL

— T T T T T T T T T T T
12345678 91011121314151617
Recursion depth

o4

—

T T T T T T T
1234567 8 91011121314151617
R

ecursion depth

— T T T T T T T T T
01234567 8 91011121314151617
Recursion depth

Figure 10: Heighway Dragon: Synthesized code complexity (# non-blank, non-comment lines of
code, averaged over colors) vs. recursion depth, comparing all models for each prompting strategy.

23

Direct Code Generation

Reasoning Then Code

Recursive Structure Focus

160 -

140

-

N

o
!

100 A

©
o
!

L L L L L L L L

Lines of code

-
S o
! !

N
o
!

E

—— GPT-40

—@— Claude 3.7 Sonnet
—&— Gemini 2.5 Flash
—8— Qwen 2.5-VL

— T T
12345678 91011121314151617
Recursion depth

S S e e e e e S S S S
1234567 8 91011121314151617
Recursion depth

T T T T T
34567 891011121314151617
Recursion depth

Figure 11: Lévy Dragon: Synthesized code complexity (# non-blank, non-comment lines of code,
averaged over colors) vs. recursion depth comparing all models for each prompting strategy.

Direct Code Generation

Reasoning Then Code

Recursive Structure Focus

100

801

60 1

Lines of code

40

201

—e— GPT-40

—®— Claude 3.7 Sonnet
—8— Gemini 2.5 Flash
—&— Qwen 2.5-VL

T T T T T

1 2 3 4 5
Recursion depth

o4
oA

Recursion depth

T T T T T T T
0 1 2 3 4 5 6
Recursion depth

Figure 12: McWorter’s Pentigree: Synthesized code complexity (# non-blank, non-comment lines
of code, averaged over colors) vs. recursion depth comparing all models for each prompting strategy.

Direct Code Generation

Reasoning Then Code

Recursive Structure Focus

120 A

100 A

80 1

60 1

Lines of code

404

201

L

—e— GPT-40
Claude 3.7 Sonnet
Gemini 2.5 Flash

—o—
—o—
—8— Qwen 2.5-VL

L L L L L L

7 8 91011121314151617

123456
Recursion depth

01234567 8 91011121314151617
Recursion depth

6 7 8 91011121314151617
Recursion depth

12345

Figure 13: Pythagoras Tree: Synthesized code complexity (# non-blank, non-comment lines of code,
averaged over colors) vs. recursion depth comparing all models for each prompting strategy.

Direct Code Generation

Reasoning Then Code

Recursive Structure Focus

120 1 4 —e— GPT-40
—&— Claude 3.7 Sonnet
100 4 i | —— Gemini 2.5 Flash
—8— Qwen 2.5-VL
o
B 80 1 1
S
“
Is]
0
£ %0 1]
3
#*
401 q 4
20 1 1
A S s e e e B S S s e e e S S s e e e
01234546 7 8 91011121314 0123456 7 8 91011121314 012 3456 7 8 91011121314
Recursion depth Recursion depth Recursion depth

Figure 14: Symmetric Binary Tree: Synthesized code complexity (# non-blank, non-comment lines
of code, averaged over colors) vs. recursion depth comparing all models for each prompting strategy.

24

K Extended Discussion of Limitations

K.1 Evaluation Methodology

Single Generation and Stochasticity. We perform a single generation per image, which may not
fully capture model stochasticity. Observed color-level fluctuations in some cases (e.g., Gemini 2.5
Flash: 11.5% black vs 4.1% purple in Tab. 4) likely stem from sampling variance rather than genuine
difficulty differences, as empirically Tab. 6 shows <1.5% average difference across colors. Averaging
multiple generations per image would improve statistical reliability and enable rigorous significance
testing with confidence intervals and variance analysis.

Pixel-Based Similarity Limitations. We use pixel-based similarity (IoU > 95%) as the primary
correctness criterion, following similar vision-to-code benchmarks such as TurtleBench [3]. While
effective for judging visual fidelity, this binary threshold does not assess how closely a model captures
the underlying generative structure. Minor errors in geometric parameters—such as small angle
deviations—can compound recursively, producing large visual discrepancies even when the intended
rule is nearly correct. Incorporating multi-threshold or continuous similarity analysis would yield
finer diagnostic resolution.

Structure-Aware Metrics. Complementary structure-aware metrics—such as branch count ac-
curacy, angle set matching, recursive depth detection, or IFS parameter extraction—could further
provide finer-grained diagnostics of which specific geometric or recursive properties models capture
versus miss. Such metrics would distinguish, for example, between code that produces visually
similar output through incorrect means (e.g., iterative approximation) versus code that implements
the correct generative process with minor visual artifacts.

K.2 Benchmark Scope

Program Synthesis Baselines. FractalBench is designed as a diagnostic benchmark for current
multimodal large language models (MLLMs), focusing on vision-to-code reasoning rather than full
program synthesis pipelines. We therefore do not include comparisons with traditional program
synthesis baselines such as symbolic search, neurosymbolic inference, and constraint-based syn-
thesis [15, 16]. Such comparisons would, however, provide useful performance context, situating
MLLM capabilities relative to specialized synthesis techniques.

Model Coverage. Our evaluation covers four representative MLLMs available at the time of
benchmark development (GPT-40, Claude 3.7 Sonnet, Gemini 2.5 Flash, and Qwen 2.5-VL). More
recent reasoning-specialized models (e.g., OpenAl o1, DeepSeek-R1) or math-focused models are
not included. Evaluating such models would help determine whether FractalBench distinguishes
genuinely stronger reasoning capabilities or primarily exposes universal failure modes in visual-
mathematical abstraction. Expanding coverage to these systems would sharpen the benchmark’s
diagnostic scope.

K.3 Analysis Limitations

Observational Findings. The observed differences in prompting strategies—where direct code
generation unexpectedly outperforms reasoning-first prompts (Sec. 4.2)—remain observational.
We do not perform stepwise ablations to isolate whether the performance gap stems from prompt
complexity overload, genuine incompatibility between verbal reasoning and geometric precision,
or other factors. Controlled experiments varying prompt length, reasoning depth, and instruction
complexity independently would enable causal interpretation beyond our current hypotheses.

Model Improvement Feedback Loop. While FractalBench systematically identifies characteristic
failure modes in recursive and branching reasoning, we do not demonstrate how these diagnostics
could guide targeted model improvements through few-shot tuning, structured prompting refinements,
or tool integration. Establishing such a feedback loop—where benchmark insights lead to measurable
capability gains—would further validate FractalBench as a tool for advancing visual-mathematical
reasoning research.

25

	Introduction
	Related Work
	FractalBench
	Fractal Definitions via Iterated Function Systems
	Benchmark Design and Mathematical Reasoning Requirements

	Evaluation
	Experimental Methodology
	Results

	Conclusion
	Comprehensive Related Work Survey
	Mathematical Reasoning in Multimodal Models
	Geometric and Spatial Reasoning
	Program Synthesis and Evaluation Methodologies
	Fractal Generation and Mathematical Structures

	Fractal Definitions via Iterated Function Systems
	Cantor-Type Fractals
	Koch-Type Fractals
	Sierpiński-Type Fractals
	Dragon Curves
	Tree Fractals

	Fractal Parameters
	Test Set Generation Configuration
	Rendering Parameters
	Fractal-Specific Configurations
	Maximum Recursion Depth
	Dataset Structure

	Detailed Mathematical Reasoning Requirements
	Scale Invariance Recognition
	Geometric Transformation Inference
	Recursive Structure Abstraction
	Compositional Reasoning
	Branching Recursion

	Prompt Templates
	Direct Code Generation Prompt
	Reasoning Then Code Prompt
	Recursive Structure Focus Prompt

	MinimalTurtle Graphics Interface
	Core Interface
	Implementation

	Comprehensive Evaluation Results
	Complete Performance Overview Across All Colors
	Fractal Type Analysis
	Color Variation Analysis
	Model Performance Summary
	Statistical Significance Analysis

	Representative Failure Cases
	Synthesized Code Complexity Analysis
	Extended Discussion of Limitations
	Evaluation Methodology
	Benchmark Scope
	Analysis Limitations

