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Abstract

Despite the remarkable generation capabilities of diffusion models, recent stud-1

ies have shown that they can memorize and create harmful content when given2

specific text prompts. Although fine-tuning approaches have been developed to3

mitigate this issue by unlearning harmful concepts, these methods can be easily4

circumvented through jailbreaking attacks. This implies that the harmful concept5

has not been fully erased from the model. However, existing jailbreaking attack6

methods, while effective, lack interpretability regarding why unlearned models still7

retain the concept, thereby hindering the development of defense strategies. In this8

work, we address these limitations by proposing an attack method that learns an9

orthogonal set of interpretable attack token embeddings. The attack token embed-10

dings can be decomposed into human-interpretable textual elements, revealing that11

unlearned models still retain the target concept through implicit textual components.12

Furthermore, these attack token embeddings are powerful and transferable across13

text prompts, initial noises, and unlearned models, emphasizing that unlearned14

models are more vulnerable than expected. Finally, building on the insights from15

our interpretable attack, we develop a defense method to protect unlearned models16

against both our proposed and existing jailbreaking attacks. Extensive experimental17

results demonstrate the effectiveness of our attack and defense strategies.18

1 Introduction19

Diffusion models (DMs) have recently emerged as a powerful class of generative models, capable20

of producing diverse and high-quality content such as images [1], videos [2], and protein structures21

[3]. Notably, Text-to-Image (T2I) diffusion models [4–8] have gained significant popularity for their22

ability to generate high-fidelity images from user-provided text prompts. However, the remarkable23

generative capabilities of these models also raise significant concerns regarding their safe deployment.24

For example, users can exploit carefully crafted text prompts to induce these models by generating25

unethical or harmful content, such as nude or violent images, or copyrighted material [9].26

To address such safety concerns, Machine Unlearning (MU) methods have recently been developed27

for “erasing” harmful concepts from the models while preserving the generation quality of safe28

content. For instance, a wide range of methods [10–13] seek to unlearn harmful content in pretrained29

DMs by fine-tuning the model weights [14]. Although these methods have demonstrated notable30

progress, unlearning DMs through fine-tuning still leaves them vulnerable to jailbreaking attacks31

[15–19], which enforce unlearned models to regenerate harmful content. For instance, UnlearnDiff32

[15] crafts adversarial discrete text prompts, and CCE [16] leverages textual inversion [20] to execute33

jailbreaking attacks in embedding space. These jailbreaking attack methods reveal that existing34

unlearned models remain vulnerable and can be used to evaluate the robustness of unlearned models.35

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



They also highlight the pressing need to address the emerging safety challenge of defending unlearned36

diffusion models, which aims to enhance their robustness against attacks.37

However, prior jailbreaking attack approaches rely on discrete or continuous optimization, without38

considering the interpretability of the resulting attack prompts. Consequently, they offer limited39

insights into the underlying causes of the deficiencies in current unlearning methods, nor do they40

explore the potential for defense. To the best of our knowledge, the defense of unlearned models is41

an underexplored problem in the field. A recent work, RECE [21], targets a specific unlearned model42

(i.e., UCE [11]), and focuses on defending it against adversarial attacks (i.e., UnlearnDiff). Yet,43

defending a broader range of unlearned models against other types of attacks remains a challenging44

problem. This leads us to pose the question: Can we design interpretable and effective jailbreaking45

attacks, and leverage the resulting insights to develop defenses for existing unlearned models?46

To address the above challenge, we introduce a subspace attack method that is interpretable, effective,47

and transferable, which further motivates an effective subspace-based defense strategy applicable to48

various unlearned models and attacks. Inspired by the hidden-language interpretability of DMs [22],49

we analyze the token embeddings of the text encoder in unlearned diffusion models, and discover50

that a diverse set of orthogonal token embeddings can be learned–each capable of regenerating the51

same harmful concept. These embeddings achieve greater or comparable attacking effectiveness on52

unlearned models compared to prior methods, while exhibiting stronger transferability across text53

prompts, initial noises, and unlearned models, establishing them a reliable tool for evaluating model54

robustness. Importantly, each attack embedding can be expressed as a nonnegative linear combination55

of interpretable concepts (Sec. 3.1). We leverage this interpretability to uncover how current diffusion56

unlearning methods continue to associate the harmful concept with mixtures of other concepts, thus57

retaining unintended generative capabilities. These insights motivate the design of new defense58

solutions. We propose a concrete defense mechanism that mitigates the harmful concept by removing59

the learned attack token embeddings through orthogonal subspace projection (Sec. 3.2), and outline60

additional future directions in App. J. Our defense strategy can be seamlessly integrated into various61

unlearned models, improving robustness against different jailbreaking attacks while preserving higher62

generation quality than the baseline defense method [21]. For a comprehensive discussion of related63

works, see our discussion in App. A. In summary, this work makes the following contributions:64

• Interpretable jailbreaking attack. We propose a subspace attack method whose token embeddings65

can be interpreted in a bag-of-words fashion, revealing that while explicit associations with the66

target concept are weakened in unlearned diffusion models, implicit associations still persist,67

providing insights for defending unlearned models.68

• Effective and transferrable attack. Our attack method consistently achieves strong attack perfor-69

mance across various unlearned models and concepts, providing a reliable metric for evaluating70

unlearning robustness. Furthermore, these embeddings transfer effectively across initial noise, text71

prompts, and unlearned models, highlighting the vulnerability of current unlearned models.72

• Subspace defense inspired by subspace attack. Our investigation into interpretable jailbreaking73

attacks further motivates a subspace-based defense strategy that mitigates adversarial influence74

by orthogonally projecting out attack embeddings. This defense approach offers more reliable75

and flexible protection for unlearned models against diverse jailbreaking attacks, while preserving76

model utility more effectively than prior defense methods.77

2 Preliminaries and Problem Statement78

Overview of LDM. T2I diffusion models have recently gained popularity for their ability to generate79

desired images from user-provided text prompts. Among these various T2I models, Latent Diffusion80

Model (LDM) [4] is the most widely deployed DM, which current machine unlearning methods81

majorly focus on. In this work, we first introduce an attack method, and then leverage the insights82

gained from it to develop a defense strategy. For a given text prompt p, LDM first encodes p using83

a pretrained CLIP text encoder f(·) to obtain the text embedding c = f(p). Then, the generation84

process begins by sampling a random noise zT ∼ N (0, 1) in the latent space. After that, LDM85

progressively denoises zT conditioned on the context c until the final clean latent z0 is achieved.86

Specifically, for each timestep t = T, T − 1, . . . , 1, its denoising UNet, ϵθ(zt | c), predicts and87

removes the noise to obtain a cleaner latent representation zt−1. The clean latent z0 is then decoded88

to an image with a pretrained image decoder. To train the denoising UNet ϵθ(zt | c) in LDM, we89

minimize the denoising error:90

L = E(z,c),t,ϵ∼N (0,1)

[
∥ϵ− ϵθ (zt | c)∥22

]
, (1)

2



𝒛𝒕

𝒛𝟎Clean latent𝝐Noise

Tokenizer

Embedding 
Lookup

Transformer

CLIP Text 
Encoder

”A photo of a < 𝒗!""> ”
Input Prompt

❄

“a”, “photo”, “of”, “a”, “< 𝒗!""> ”

𝒗# , 𝒗$ , 𝒗%, 𝒗# , 𝒗!""

❄

𝒄∗

…❄ ❄ ❄

🔥

𝒗!""𝒗& 𝒗' 𝒗(

❄

Denoising 
UNet

𝝐𝜽

𝛼", 𝛼#, …, 𝛼$

𝒗%&&  = ∑ 𝛼'$
'(" 𝒗'

MLP 🔥𝒈𝚯

…❄ ❄ ❄𝒗&𝒗' 𝒗(

+

Noisy 
latent

Predicted 
noise

🔥Trainable ❄ Frozen

Figure 1: Learning one interpretable attack token embedding. The learning process of one attack token
embedding vatt for the concept “Van Gogh” is visualized. Blue parts represent the frozen unlearned LDM, where,
for simplicity, we omit the image encoder and decoder. In orange parts, it illustrates the learning mechanism for
optimizing an MLP network to produce vatt, which is a linear combination of the existing token embeddings.

where z is the clean image latent encoded by a pretrained image encoder and c is its corresponding91

text embedding encoded by a pretrained CLIP text encoder [23]. Here, zt =
√
αtz +

√
1− αtϵ is92

the noisy image latent at timestep t, and αt > 0 is a pre-defined constant.93

CLIP text encoder and the token embedding space. To control the generation process, a key94

component of LDM is the pretrained CLIP text encoder f(·). As illustrated in Fig. 1, the CLIP text95

encoder consists of three main components:96

• Tokenizer: This module splits the text prompt p into a sequence of tokens, which can be words,97

sub-words, or punctuation marks. Each token is assigned a unique token ID from the CLIP text98

encoder’s predefined vocabulary.99

• Token Embeddings: These token IDs [i, j, . . . ] are then mapped to corresponding token embed-100

dings vi ∈ Rd stored in the token embedding table. This process generates a sequence of token101

embeddings [vi, vj , . . . ].102

• Transformer Network: This network processes the sequence of token embeddings and encodes103

them into the final text embedding c that can guide the image generation process in LDMs.104

Through optimizing Eq. (1), LDM learns to associate activations in the text encoder with concepts in105

the generated images. Prior research has explored controlling generated content through manipulating106

activations in the text encoder. In particular, it has been identified that the token embedding space v107

plays a vital role in content personalization, where a single text embedding can represent a specific108

attribute [20] and the token embedding space can be utilized for linear decomposition of concepts109

[22]. Inspired by the expressiveness and interpretability of the token embedding space, this work110

proposes both jailbreaking attack and defense mechanisms, as detailed in Sec. 3.111

Problem statement: jailbreaking attack and defense on unlearned LDMs. Existing MU for112

LDMs [10, 11, 13] often rely on heuristic fine-tuning of the denoising UNet of LDM, and the resulting113

models typically lack robustness. Jailbreaking attacks aim to evaluate unlearned models’ robustness,114

while defenses aim to improve their robustness under attacks.115

Given a prompt p =“a photo of a [target concept] ...”, an unlearned LDM originally can not generate116

this target concept. Jailbreaking attack treats the unlearned LDM as a victim model, and manipulates117

the prompt to lead the victim model to regenerate unwanted concepts. There are majorly two kinds118

of attack setup: (i) Adversarial jailbreaking attacks [15, 17–19] optimize an adversarial text prompt119

patt which is appended to p. The combined prompt is then used to trigger the generation of the target120

concept. (ii) CCE [16] follows a different approach by learning an attack token embedding vatt,121

which is assigned to a new token, < vatt > following [20]. This new token is attached to the existing122

token set {vi} and the prompt is modified by replacing the [target concept] with < vatt > to induce123

generation of the target concept. Our attack setup is similar to CCE in that it learns attack token124

embeddings, but it is designed to provide interpretability and achieve stronger attack performance.125

Defense, in contrast, seeks to protect an unlearned LDM from certain jailbreaking attacks. Once a126

defense strategy is applied, it should make the model more resistant to regenerating harmful concepts127

under attack, while preserving its ability to generate harmless content. For example, RECE [21]128

further modifies the denoising UNet of the unlearned model UCE [11] to defend against UnlearnDiff129
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Figure 2: Interpreting the attack token embeddings for concept “nudity”, “Van Gogh”, and “church”.
Tokens with the largest αi are words associated with the target concept. For example, top tokens for “church”
are activities conducted in the church, or names from the Bible.

[15]. In this work, we propose a defense strategy that builds upon existing unlearned LDMs to130

further enhance their robustness through safeguarding the token embedding space. Our objective is to131

develop a broadly applicable defense that can be simply integrated into diverse existing unlearned132

models and remains resilient against jailbreaking attacks having different setups.133

Notations. Before introducing our method, we define the following projection operators. Specifically,134

given vector z, for a vector v, let Projv(z) denote the projection of z onto v. For a matrix V , let135

ProjV (z) denote the projection of z onto the subspace spanned by the columns of V . Formally,136

these operators are given by137

Projv(z) :=
vv⊤

∥v∥22
z, ProjV (z) := V (V ⊤V )−1V ⊤z.

3 Subspace Attacking and Defending Methods138

This section introduces our subspace attacking and defending methods for LDMs. In Sec. 3.1,139

we explore the token embedding space to develop an interpretable and transferable attack method140

(SubAttack) by learning a sequence of attack token embeddings that form a low-dimensional subspace.141

SubAttack reveals the vulnerability of unlearned models and inspires us to propose a defense strategy142

(SubDefense) in Sec. 3.2, by orthogonal subspace projection of learned attack token embeddings,143

which can effectively defend against various jailbreaking attacks.144

3.1 Subspace Attacking: SubAttack145

Before we introduce our subspace attacking (SubAttack) method, let us build some intuition of how146

to learn a single-token embedding attack vatt ∈ Rd first. Based on this, we will then show how to147

iteratively learn a sequence of orthogonal attack token embeddings through deflation, i.e., removing148

already computed embeddings.149

3.1.1 A Single-Token Embedding Attack150

Specifically, inspired by [22], we learn a single-token embedding vatt ∈ Rd through a non-negative151

linear representation of existing token embeddings vi in the CLIP vocabulary V as follows:152

vatt =

N∑
i=1

αivi, αi = gΘ(vi) ≥ 0, (2)

where N is the total size of the original CLIP vocabulary, and vi, i = 1, 2, . . . , N , are original CLIP153

token embeddings within V . Non-negative αi are parameterized via a multi-layer perceptron (MLP)154

network gΘ(·) : Rd 7→ R+ with ReLU activation.155

To learn vatt, we optimize the loss L in (1) with respect to the parameter Θ of the MLP, while156

freezing all the other components. As illustrated in Fig. 1, during training we enforce the training157

data pairs (z, c∗) ∼ D to satisfy the following constraints: (i) z is the latent image containing the158

target harmful concept. (ii) c∗ is the text embedding for the text prompt p, and p contains the new159

special token < vatt > whose token embedding is vatt.160

Remarks. The optimized vatt is the “hidden word” within the unlearned LDM representing the161

target concept, and prompts such as “a photo of < vatt >” can trigger the unlearned model to162

regenerate the target concept. Adopting the constraint in (2) following [22] further enables the163

“hidden word” to be interpretable in a bag-of-words manner. The target concept can be viewed as164

a combination of top-weighted (i.e., having largest αi) concepts in V . As illustrated in Fig. 2, our165
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(a) SD (b) ESD (c) FMN (d) UCE (e) SPM

Figure 3: Interpreting the subspace of attack token embeddings for concept “nudity” across different
models. (a) The original LDM (i.e., SD) majorly relates it to explicit synonyms. (b-e) Unlearned LDMs more
heavily associate it with implicit concepts.

method can identify human-interpretable tokens that are associated with different harmful concepts166

(e.g., nudity, Van Gogh, church) in the unlearned LDM. This aligns with prior findings [24] that167

“negative concepts are not as interpretable as positive concepts.” We discuss such interpretability in168

a broader context, including the LLM linear representation hypothesis [25] in App. A. Moreover,169

we will ultimately learn an orthogonal set of “hidden words” for the target concept, and the set of170

words can be interpreted together to more comprehensively understand how the unlearned models171

still memorize the target concept, as shown in Fig. 3, with a more detailed discussion in Sec. 4.2.172

Now, we first introduce how such a set of “hidden words” are learned.173

3.1.2 Subspace Token Embedding Attacks174

Instead of learning a single attack token embedding vatt, it is more powerful to learn a set of diverse175

attacks {vatt,k}Kk=1 (m ≤ d) that can attack the same harmful concept, as outlined in Algorithm 1.176

We enforce orthogonality on {vatt,k}Kk=1 to increase the diversity of the attacks so that they span a177

low-dimensional subspace.178

We learn such a set of orthogonal token embeddings {vatt,k}Kk=1 through deflation, sharing similar179

ideas with classical methods in numerical linear algebra such as orthogonal matching pursuit [26].180

Specifically, suppose the first attack token embedding vatt,1 is identified following Sec. 3.1.1 by181

optimizing a MLP gΘ1
, we then “remove” the harmful concept vatt,1 from the whole vocabulary V182

via orthogonal projection:183

vi,2 = vi,1 − Projvatt,1
(vi,1), ∀ i ∈ [N ]. (3)

Here, for the ease of presentation, we let vi,1 = vi ∈ V for all i ∈ [N ]. (3) makes all the updated184

v2,i, . . . ,v2,N orthogonal to vatt,1. With the new V2 = {v2,i}Ni=1, we can learn a second attack185

token embedding vatt,2 =
∑N

i=1 αi,2vi,2, αi,2 = gΘ2
(vi,2) ≥ 0, then vatt,2 is ensured to be186

orthogonal to vatt,1. Here, gΘ2
is another MLP optimized in the same way as gΘ1

. As such, we can187

repeat the procedure for K times to learn and construct a set of orthogonal attack token embeddings188

{vatt,k}Kk=1 for the same harmful concept. In practice, during attacking, we choose K = 5, which189

already has a strong attack performance while keeping the optimization efficient.190

3.2 Subspace Defending: SubDefense191

SubAttack can find interpretable “hidden words” representing the target concept in unlearned LDMs.192

On the one hand, we can leverage SubAttack to examine existing unlearned LDMs and test their193

unlearning robustness. On the other hand, it inspires us with potential ways to enhance the robustness194

of unlearned models. Our intuition is to further remove these identified “hidden words” from195

unlearned models, so that the model will be more universally robust to various kinds of jailbreaking196

attacks. Intuitively, this can be achieved by projecting onto the nullspace of learned subspace attacks.197

Thanks to the transferability of these attacks, the resulting defense strategy can be robust against a198

broad range of jailbreaking attacks.199

Specifically, suppose we have learned a set of attack token embeddings {vatt,k}Kk=1 for a target
concept through our subspace attacking method proposed in Sec. 3.1, let us rewrite

Vatt = [vatt,1 vatt,2 · · · vatt,K ] ∈ Rd×K .

This Vatt is learned in an unlearned diffusion model whose CLIP token embedding vocabulary is200

V = {vi}Ni=1. The proposed defense will “block” the subspace spanned by Vatt to defend against201
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Figure 4: SubAttack jailbreaks various concepts (NSFW, style, objects) across different unlearned models
(ESD, FMN, UCE, SPM). It consistently reveals the residual vulnerabilities in these models.
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Figure 5: SubAttack can generate the target concepts with high ASR while aligning with original text
prompts. For example, our attack generates nude women with different backgrounds while CCE fails to generate
the correct backgrounds.

various jailbreaking attacks. Each token embedding vi in V will be updated as follows:202

vdef,i = vi − ProjVatt
(vi), ∀ i ∈ [N ]. (4)

For UnlearnDiff [15] and SubAttack, their learned jailbreaking attack prompts or embeddings are203

based on the unlearned LDM’s vocabulary. Hence, we will update the unlearned LDM by applying204

(4) to complete the defense. After that, UnlearnDiff and SubAttack can still take place, but turn out205

to have lower ASR (Sec. 5). For CCE [16], which learns an attack token embedding vatt with no206

constraints related to the unlearned LDM’s vocabulary V , simply applying (4) is not enough. Hence,207

additionally, no matter what vatt is learned by CCE, we also apply vdef = vatt − ProjVatt
(vatt).208

4 Experiments for SubAttack209

This section demonstrates that SubAttack is an effective tool for exposing and understanding the210

vulnerabilities of existing unlearned models. Through extensive experiments, we highlight both the211

effectiveness and transferability of SubAttack, and leverage its interpretability to provide insights212

into why current unlearning methods fail.213

4.1 Settings214

(i) Victim Models. The domain of diffusion model unlearning is undergoing rapid advancement. To215

assess the proposed SubAttack, we choose several unlearned LDMs that are widely used in prior216

jailbreaking attack methods [15, 16], including ESD [10], FMN [12], and UCE [11], together with217

a recent unlearned model SPM [13]. These unlearned models are capable of unlearning not-safe-218

for-work (NSFW) concepts, styles, or objects, and perform well on standard unlearning benchmarks219

while preserving reasonable generation ability. Following [15], the unlearned models used in this220

work are finetuned from Stable Diffusion (SD) v1.4 [4]. (ii) Concepts and Dataset. We perform221

jailbreaking attacks on three categories of concepts commonly targeted in unlearned LDMs: “nudity”222

for NSFW concept, “Van Gogh” for style concept, and “church”, “garbage truck”, “parachute”, and223

“tench” for object concept. To facilitate reproducibility, we follow the dataset construction protocol of224

UnlearnDiff [15], creating for each concept a set of 300-900 (text prompt, seed) pairs. Each pair is225

verified to produce the target concept with the original SD v1.4. Our dataset is approximately six times226

larger than that used in UnlearnDiff, enabling more reliable evaluation. Moreover, for each prompt,227

we construct at least 10 (text prompt, seed) pairs using different seeds to reduce randomness and228

support the evaluation of attack transferability across different noise initializations. (iii) SubAttack229

Setup. By default, we conduct SubAttack to learn {vatt,k}Kk=1 with K = 5 for each concept. For230

each (text prompt, seed) pair, we perform the attack by replacing the target concept word in the231
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Table 1: Attack performance of various jailbreaking methods, measured by ASR (%) over 900 prompts for
each concept across various unlearned models, average computation time for attacking one image, and other
features. Best results are highlighted in bold.

ASR (%) ↑ Time per
Image
(s) ↓

Interp-
retable

Inspire
DefenseConcepts: Nudity Van Gogh Church

Victim Models: ESD FMN UCE SPM ESD FMN UCE SPM ESD FMN UCE SPM

NoAttack 18.78 90.00 23.00 22.56 5.78 21.56 71.44 43.78 9.33 51.56 6.55 43.78 NA NA NA
UnlearnDiff 51.11 100.00 78.22 83.33 40.94 100.00 100.00 53.49 51.74 35.33 61.67 53.67 906.6 ✗ ✗
CCE 85.11 98.33 77.22 78.33 75.22 93.33 95.67 81.67 82.00 97.78 81.89 76.67 11.4 ✗ ✗
SubAttack (Ours) 97.56 100.00 81.67 74.89 81.00 96.33 98.33 82.78 91.33 97.78 82.67 84.89 54.2 ✓ ✓

prompt with each vatt,k. The attack is considered successful if at least one of the vatt,k leads to the232

generation of the target concept. We choose K = 5 as it provides strong attack performance while233

maintaining computational efficiency. Ablations on attack performance versus K are in App. F.1.234

(iv) Metrics. Following [15], we utilize pretrained image classifiers to examine whether the target235

concept is generated in the image, and report attack success rate (ASR). For NSFW concept, NudeNet236

[27] is employed. For style concept, we use the publicly available classifier finetuned on the WikiArt237

dataset [28] and report Top-3 since it can better represent the attack results, considering the classifier238

is overly restrictive as discussed in [15]. For objects, an ImageNet-pretrained ResNet-50 classifier239

is deployed. (iv) Baselines. We compare SubAttack with three baselines: NoAttack, UnlearnDiff,240

and CCE, where NoAttack refers to using the original prompts on unlearned models without specific241

jailbreaking techniques. By default, UnlearnDiff and CCE are implemented following their original242

settings, but unified using our dataset. For example, UnlearnDiff will optimize an adversarial attack243

prompt for each <text prompt, seed> pair. We provide more experiment details in App. C.1.244

4.2 On the Effectiveness, Transferability, and Interpretability of SubAttack245

SubAttack is an effective global attack. Unlearndiff is a local attack by optimizing an adversarial246

text prompt for a (prompt, seed) pair. This could be time-consuming since attacking each (prompt,247

seed) pair takes about 30 minutes on average. In contrast, our SubAttack aligns with CCE and can248

learn global attack token embeddings to attack any (prompt, seed) pairs, where the learning of each249

global token embedding takes about 20 minutes on average. As presented in Fig. 4, SubAttack’s250

global attack token embeddings learned on different unlearned models can jailbreak various concepts251

across hundreds of different prompts and seeds. Selecting “nudity”, “Van Gogh”, and “church” as252

representative concepts, we compare ASR of SubAttack with baselines in Tab. 1. Although, as a local253

attack, UnlearnDiff performs worse than CCE and SubAttack in many scenarios, such as attacking any254

unlearned model for the concept “church”. Although CCE learns the attack token embedding freely255

while our SubAttack adds additional constraints to enable interpretability, SubAttack is compatible256

with CCE, and surpasses CCE in many circumstances. Moreover, as illustrated in Fig. 5, our257

attack follows the text prompts better. For example, our attack fits the nude woman into different258

backgrounds, such as snowy parks, jungles, and woods, while CCE overly emphasizes “nudity”. We259

provide additional attack visualizations in App. I.260

Table 2: Transfer attack performance of various jailbreaking methods
from ESD to other models across different concepts, measured by ASR (%).

Concepts: Nudity Van Gogh Church
Victim Models: FMN UCE SPM FMN UCE SPM FMN UCE SPM

NoAttack 90.00 23.00 22.56 21.56 71.44 43.78 51.56 6.55 43.78
UnlearnDiff 93.33 41.33 38.22 12.78 64.00 47.11 6.19 13.33 58.00
CCE 93.00 18.33 37.56 72.33 43.56 81.33 91.00 70.11 92.78
SubAttack (Ours) 96.89 77.00 80.44 72.67 88.89 86.89 92.89 83.77 92.00

SubAttack can transfer261

across different unlearned262

models. The attack to-263

ken embeddings identified264

by SubAttack demonstrate265

strong transferability, even266

across different unlearned267

diffusion models. As shown268

in Fig. 6 (a), embeddings269

learned via SubAttack on the ESD model are directly transferred to attack FMN, SPM, and UCE. All270

three concept types, nudity, style, and object, can be successfully transferred to these target models271

with high ASR. We further compare the transfer ASR of SubAttack against other baselines in Tab. 2272

(more results in Tab. 10 in App. D.2), where we transfer the token embeddings from CCE and the273

adversarial prompts from UnlearnDiff to other victim models accordingly. SubAttack consistently274

achieves the highest transfer ASR across different models and concepts. This strong transferability275

suggests that the learned attack embeddings may either emerge from shared distributional patterns276

introduced during fine-tuning or be inherited from the original SD model, with our following analysis277

supporting the latter.278
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SubAttack token embeddings are inherited from the original SD. We experimentally verify that279

the learned token embeddings are effective in the original SD. Specifically, we transfer the attack280

Figure 6: Transfer attack token embeddings learned by SubAttack
to different unlearned models or to the original diffusion model.

token embeddings from different vic-281

tim models (ESD, FMN, UCE, and282

SPM) back to the original SD, and test283

their transfer ASR on SD. The transfer284

ASR turns out to be high, consistently285

being larger than 80% across all dif-286

ferent concepts and models (details in287

Tab. 5 in Appendix). We visualize the288

transfer results in Fig. 6 (b). These289

results demonstrate that although ef-290

fective on unlearning benchmarks, ex-291

isting machine unlearning methods still preserve certain associations of the target concept that are292

inherited from the original SD. These inherited associations are likely a key reason unlearned models293

continue to generate harmful content. Leveraging the interpretability of our method, we subsequently294

uncover the nature of these residual associations.295

SubAttack reveals concepts implicitly associated with the target concept. As shown in Fig. 2,296

one learned token embedding can be interpreted in a bag-of-words manner. Furthermore, the set297

{vatt,k}Kk=1 can be collectively analyzed as in Fig. 3. Setting K = 100, for each vatt,k, we extract298

the top 50 highest-weighted tokens, resulting in 5,000 tokens per victim model. These tokens are299

stemmed and lemmatized to root forms, and the most frequent root tokens are visualized using300

WordCloud. The same process is applied to the original SD. As depicted in Fig. 3a, the most frequent301

stems in the original SD are “nude” and its direct synonyms, such as “bare” and “naked”. In contrast,302

Fig. 3b, Fig. 3d, and Fig. 3e reveal that the top tokens in ESD, UCE, and SPM are instead implicitly303

related terms such as “slave”, “nip”, and “babes”. This indicates that while these unlearned models304

reduce explicit associations with the target concept, they still retain implicit associations. Interestingly,305

this mirrors human associative thinking. Besides, FMN displays a higher presence of explicit terms306

like “nude” (see Fig. 3c) and produces more nudity-related images than other unlearned models, even307

with no attacks (see Fig. 4). This supports the notion that weaker unlearning leads to retained explicit308

associations as well. Additional results and analysis are provided in App. D.1.309

5 Experiments for SubDefense310

Having demonstrated the effectiveness of our attack method, we now turn to evaluating the defense311

mechanism it motivates. This section evaluates the robustness of SubDefense by integrating it into312

existing unlearned models. Experimental results demonstrate that SubDefense provides a more313

versatile and resilient defense strategy than the baseline, while better preserving generation quality314

on safe prompts.315

5.1 Settings316

(i) Basics. SubDefense is plugged into UCE, ESD, FMN, and SPM for concepts “nudity”, “Van Gogh”,317

and “church” using our constructed dataset by default. To compare with baseline RECE, we apply Sub-318

Defense with 20 blocked tokens. In all other cases, we use the default setting of 100 blocked tokens.319

Figure 7: Defending UCE using RECE or SubDefense across various concepts.

(ii) Metrics. To assess de-320

fense effectiveness, various321

jailbreaking attacks are con-322

ducted before and after ap-323

plying defenses, and the cor-324

responding ASR is reported.325

SubAttack with K = 5326

is used consistently before327

and after defense to ensure a328

fair comparison. Addition-329

ally, the generative quality of the defended unlearned models is evaluated on the MSCOCO-10k330

dataset [29, 30] using FID and CLIP scores [31]. Further details are provided in App. C.2.331

5.2 Performance of SubDefense332

SubDefense surpasses the defense baseline. Defending unlearned diffusion models against jail-333

breaking attacks remains a largely underexplored area—particularly against strong attacks such as334
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Table 3: SubDefense is more robust than baseline RECE in defending three concepts on UCE against
UnlearnDiff or our SubAttack, while preserving better generative quality.

Metrics: UnlearnDiff ASR ↓ SubAttack ASR ↓ COCO-10k FID ↓ COCO-10k CLIP ↑
Scenarios: SubDefense RECE SubDefense RECE SubDefense RECE SubDefense RECE

Nudity 73.55% 76.44% 34.11% 62.44% 17.51 17.57 30.70 30.07
Van Gogh 52.78% 61.67% 29.44% 84.44% 16.64 17.11 30.94 30.08
Church 39.78% 50.78% 5.22% 80.33% 17.41 17.41 30.86 30.07

CCE. Recently, RECE [21] was proposed to defend UCE from adversarial attacks like UnlearnDiff335

and serves as our baseline. We compare SubDefense with RECE in defending UCE against both336

UnlearnDiff and our SubAttack in Tab. 3. SubDefense achieves lower ASR under both attacks,337

demonstrating its superior robustness. Moreover, it attains lower FID and higher CLIP scores on338

COCO-10k, indicating better preservation of generative quality. Visualization results for RECE and339

Figure 8: Safe image generation after applying RECE or SubDefense.

SubDefense are shown in340

Fig. 7. Visualizations on im-341

age generation quality are342

provided in Fig. 8, and ad-343

ditional results are provided344

in App. H, where we also345

verify SubDefense’s ability346

to retain generation quality347

for safe concepts related to348

the removed harmful ones.349

SubDefense can defend unlearned models against various attacks. Taking ESD and “nudity” as350

an example, Tab. 4 shows that SubDefense is effective against a wide range of jailbreaking attacks.351

While different attack methods impose distinct constraints when learning adversarial prompts or352

token embeddings, they all depend on the unlearned model’s residual ability to generate the target353

concept. By disrupting this capability through “hidden words” removal, SubDefense can reduce354

Table 4: SubDefense can defend ESD against different kinds of attacks.

Metrics: Nudity ASR CLIP FID
NoAttack UnlearnDiff CCE SubAttack

ESD 18.11% 51.11% 85.11% 97.56% 30.13 18.23

ESD+SubDefense 0.0% 4.56% 75.67% 42.33% 29.58 19.20

the ASR of multiple355

attack types, taking a356

step toward a more357

versatile defense strat-358

egy. However, we ob-359

serve that NoAttack,360

UnlearnDiff, and Sub-361

Attack achieve lower362

ASR than CCE after defense. This suggests that the current defense is less effective against CCE, a363

challenging problem remaining underexplored in the literature. We provide a more detailed analy-364

sis of defenses against CCE in App. F.2, showing that blocking more tokens improves robustness365

but comes at the cost of reduced utility. Designing effective defense strategies against CCE while366

preserving model utility is a promising direction for future research. Additionally, extended results367

on other datasets (e.g., I2P dataset for NSFW concept) and unlearned models (e.g., FMN, SPM) are368

available in App. E.2 and App. E.3.369

6 Conclusion370

This paper introduces a new jailbreaking attack method that learns token embeddings capable of371

effectively guiding unlearned diffusion models to regenerate harmful concepts. As an interpretable372

method, it reveals that there still remains a large and diverse subspace within unlearned diffusion373

models. The subspace embeds the target concept with human-interpretable words that are implicitly374

associated with it. The proposed attack exhibits strong transferability across text prompts, noise375

inputs, and unlearned models, underscoring critical limitations in current unlearning approaches,376

which are more vulnerable than previously assumed. Leveraging the interpretability and diversity377

of the attack, we design a plug-and-play defense mechanism that can be integrated into existing378

unlearned models to defend against various jailbreaking attacks while maintaining generation quality.379

In summary, our findings introduce a novel attack strategy that highlights the pressing need for380

more robust unlearning techniques, and propose a new defense approach that enhances the safety of381

generative diffusion models, offering actionable insights for future research.382
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Broader Impacts547

In this work, we investigate the vulnerabilities of diffusion models to jailbreaking attacks—attacks that548

cause a model to regenerate concepts it was intended to unlearn—and develop defense mechanisms549

to mitigate these risks. As diffusion models are increasingly integrated into real-world applications,550

ensuring that unlearning methods are robust against adversarial attacks is crucial for building safe,551

trustworthy, and regulation-compliant AI systems. Our study advances the understanding of how552

diffusion models internalize and forget information, highlights structural weaknesses in current553

unlearning approaches, and proposes practical defenses that improve model resilience. We believe554

our findings will contribute to the development of more secure generative models and inform future555

standards for AI safety, content moderation, and responsible deployment. While our work provides556

tools that could potentially be misused to subvert model protections, we emphasize that our research557

is intended solely to strengthen the safety and reliability of generative models. We urge others to use558

these findings responsibly and in accordance with ethical guidelines for AI research and deployment.559

A Related Works560

T2I Diffusion Models and Machine Unlearning. Text-to-image (T2I) diffusion models [4, 6, 32–561

37] can take prompts as input and generate desired images following the prompt. There are several562

different types of T2I models, such as stable diffusion [4], latent consistency model [33], and563

DeepFloyd [6]. Despite their generation ability, safety concerns arise since these models have also564

gained the ability to generate unwanted images that are harmful or violate copyright. To solve this565

problem, some early works deploy safety filters [4, 38] or modified inference guidance [9] but exhibit566

limited robustness [39, 40]. Recently, machine unlearning (MU) [14, 41] is one of the major strategies567

that makes the model “forget” specific concepts via fine-tuning, and most MU works build on the568

widely used latent diffusion models (LDM), specifically stable diffusion (SD) models. Most diffusion569

machine unlearning works finetune the denoising UNets [10–13, 42–45], while [30] finetunes the570

text encoder. Although MU is a more practical solution than filtering datasets and retraining models571

from scratch, the robustness of MU still needs careful attention.572

Jailbreaking Attacks and Defenses on Unlearned Models. Recent works explore jailbreaking573

attacks on unlearned diffusion models - make unlearned models regenerate unwanted concepts. Such574

attacks can serve as a way to evaluate the robustness of unlearned diffusion models. For example,575

UnlearnDiff [15] learns an adversarial attack prompt and appends the prompt before the original576

text prompt to do attacks, along a similar line of prior attack works [17–19, 46, 47]. Besides, the577

most related work to ours is [16], utilizing Textual Inversion [20]. It also learns a token embedding578

that represents the target concept. Though we experimentally show CCE is in nature global to579

both text prompts and random noise as well, but is less transferable to different unlearned models.580

Prior jailbreaking attacks also do not consider the interpretability of the resulting attack prompts,581

thus offering limited insights into the underlying causes of the deficiencies in current unlearning582

methods, nor do they explore the potential for defense. In contrast, our attack token embeddings are583

interpretable and reveal the human-interpretable associations remained in unlearned diffusion models584

to “remember” the target concepts. Also, our method can be easily extended to learn a diverse set585

of attack token embeddings independent of each other. This diversity sheds light on the volume of586

the inner space where the target concept is still hidden. This motivates us to propose a simple yet587

effective defense method against existing attack methods. To the best of our knowledge, the defense588

of unlearned models is an underexplored problem in the field. A recent work, RECE [21], targets a589

specific unlearned model (i.e., UCE [11]), and focuses on defending it against adversarial attacks (i.e.,590

UnlearnDiff). Defending a broader range of unlearned models against diverse attack types remains a591

challenging problem—one we aim to address by leveraging our defense.592

Diffusion Model Interpretability. To understand the semantics within diffusion models for ap-593

plications such as image editing and decomposition, a series of works have attempted to interpret594

the representation space within diffusion models [22, 48–50]. For example, [48] studies the se-595

mantic correspondences in the middle layer of the denoising UNet in diffusion models, while [50]596

investigates the low-rank subspace spanned in the noise space. Some works [51, 52] focus on the597

visualization of attention maps with respect to input texts, while other works study the generalization598

and memorization perspective of diffusion models [53]. The most related work to ours is [22], which599
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decomposes a single concept as a combination of a weighted combination of interpretable elements,600

in line with the concept decomposition and visualization works in a wider domain [54–56]. Inspired601

by [22] as well as other prior works, we attack unlearned diffusion models by learning interpretable602

representations, which leads to further investigation on the root of failures for existing unlearned603

diffusion models, as well as a defense method.604

Linear Representation Hypothesis. In large language models (LLMs), the linear representation605

hypothesis posits that certain features and concepts learned by LLMs are encoded as linear vectors in606

their high-dimensional embedding spaces. This is supported by the fact that adding or subtracting607

specific vectors can manipulate a sentence’s sentiment or extract specific semantic meanings [25]. The608

linear property has been further explored for understanding, detoxing, and controlling the generation609

of LLMs [57]. Similarly, other works investigating the representations of multimodal models find that610

concepts are encoded additively [23, 58], and concepts can be decomposed by human-interpretable611

words [59]. Moreover, in stable diffusion models, [22] finds that concepts can be decomposed in612

the CLIP token embedding space in a bag-of-words manner. Based on these works, and considering613

the flexibility of the token embedding space in diffusion personalization [20] and attacking [16], we614

specifically investigate interpretable jailbreaking attacks and defenses for diffusion model unlearning615

by learning an attack token embedding that is a linear combination of existing token embeddings.616

B SubAttack Algorithm617

Algorithm 1 Learning Attack Token Embeddings
1: Input: the victim model whose CLIP original token embeddings are [v1,1, . . . , vi,1, vN,1], total iteration

K
2: Output: [vatt,1, vatt,2, · · · , vatt,K ]
3: for k = 1, 2, · · · ,K do
4: Optimize the MLP gΘj

5: αi,k ← gΘk (vi,k)

6: vatt,k ←
∑N

i=1 αi,kvi,k ▷ New vatt,k learned
7: for i = 1, 2, · · · , N − 1 do
8: vi,k+1 = vi,k − Projvatt,k

(vi,k)

9: end for
10: end for

C Experiment Settings618

C.1 Attack619

Unlearned LDMs as Victim Models. The field of diffusion unlearning is evolving rapidly, and620

there is a wide range of unlearning methods, most of which finetune the stable diffusion model.621

Following the protocol of [15], we select several unlearned diffusion models that have an open-source622

and reproducible codebase, reasonable unlearning performance, and reasonable generation quality.623

This selection includes three widely used models from prior jailbreaking studies, namely ESD [10],624

FMN [12], and UCE [11], along with a more recent model, SPM [13]. These methods fine-tune the625

denoising UNet for unlearning while freezing other components. In our study, the unlearned models626

are fine-tuned on Stable Diffusion v1.4, and hence, they share the same CLIP text encoders.627

Attacking Dataset. Our learned token embedding represents the target concept, so the attack token628

embedding in nature can attack the victim model with different initial noise and text prompts. Thus,629

we construct a dataset to test such global attacking ability. To facilitate reproducibility, we follow630

the dataset construction protocol of UnlearnDiff as follows. We study three kinds of target concepts:631

“nudity” for NSFW, “Van Gogh” for artistic styles, and “church”, “garbage truck”, “parachute”, and632

“tench” for objects. For each of “nudity”, “Van Gogh”, and “church”, we prepare a corresponding633

dataset containing 900 (prompt, seed) pairs, and mainly use these concepts for baseline comparisons634

with other attacks. For each of the other concepts, we prepare a dataset of size 300. Each prompt635

contains the target concept to attack - for instance, “a photo of a nude woman in a sunlit garden” is an636
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example prompt in the “nudity” dataset. Each prompt is associated with 10 - 30 different random637

seeds controlling the initial noise, and this results in a total of 300 - 900 (prompt, seed) pairs for each638

concept. Each pair is verified to produce the target concept with the original SD v1.4. Our dataset is639

approximately six times larger than that used in UnlearnDiff, enabling more reliable evaluation.640

Learning Details. We use SD 1.4 to generate 100 images containing the target concept as the641

training image dataset. The prompt used to generate images for each concept is similar to “A photo642

of a [target concept]”. After that, to optimize each of the attack token embeddings for conducting643

SubAttack, we train an MLP network using the AdamW optimizer for 500 epochs with a batch size644

of 6. The MLP consists of two linear layers with ReLU activation applied after each layer. The645

first layer maps from 768 to 100 dimensions, and the second maps from 100 to 1. Experimental646

results confirm that this design has sufficient capacity to learn the scalar αi for each embedding in647

the vocabulary. All experiments are conducted on a single NVIDIA A40 GPU.648

Attacking Details. For NoAttack, the original text prompts and seeds are passed to the victim649

model. In SubAttack and CCE attacks, we replace the target concept in the text prompt with the650

special token associated with the learned attack token embedding (For example, change “a photo of a651

nude woman” to “a photo of a <vatt>”). In UnlearnDiff, we modify each text prompt by appending652

the corresponding learned adversarial prompt before it. For each attacking method and each concept,653

we generate 300-900 images using the resulting (prompt, seed) pairs for testing attack performance.654

Evaluation Protocols. (i) After image generation, we use pretrained classifiers to detect the655

percentage of images containing the target concept following UnlearnDiff, and report it as the656

attacking success rate (ASR). For nudity, we use NudeNet [15] to detect the existence of nudity657

subjects. For Van Gogh, we deploy the style classifier finetuned on the WikiArt dataset and released658

by [15]. We report the Top-3 ASR for style, i.e., if Van Gogh is predicted within the Top-3 style659

classes for a generated image, the image is viewed as a successful attack for Van Gogh style. For660

church, the object classifier pretrained on ImageNet [60] using the ResNet-50 [61] architecture is661

utilized. (ii) To evaluate the efficiency of different attack methods, we measure the average attack662

time required per image, which includes both the optimization time for learning embeddings or663

prompts and the generation time for creating images. For a given target concept dataset, CCE learns a664

single token embedding shared across all images and performs one generation per image. By default,665

SubAttack learns five shared token embeddings and generates five images per input. In contrast,666

UnlearnDiff performs up to 999 optimization iterations per image, requiring one image generation667

per iteration. As a result, UnlearnDiff is significantly more time-consuming than both CCE and668

SubAttack.669

C.2 Defense670

Basics. We follow the defending strategy presented in Sec. 3.2 by blocking a list of token em-671

beddings for the entire CLIP vocabulary. SubDefens is plugged into UCE, ESD, FMN, and SPM.672

Defense performance is mainly assessed on concepts “nudity”, “Van Gogh”, and “church” using673

our constructed dataset. RECE, which defends UCE against UnlearnDiff, serves as the defending674

baseline and is compared with UCE+SubDefense with 20 blocked tokens. By default, in other cases,675

SubDefense is performed by learning and blocking 100 token embeddings. Both before and after676

cleaning up the token embedding space, we conduct attacks following the same setting in App. C.1.677

Metrics. An effective defense strategy should reduce the attack success rate while preserving678

the generation quality of safe concepts. Hence, we use the following metrics. (i) ASR. Various679

jailbreaking attacks are conducted before and after applying defenses, and the corresponding ASR680

is reported. Specifically for SubAttack, K = 5 is used consistently before and after defense to681

ensure a fair comparison. (ii) CLIP Score and FID are evaluated to test the generation quality of682

the defended model. MSCOCO [29] contains image and text caption pairs. Following [15, 30], we683

use 10k MSCOCO text captions to generate images before and after defense. Then, we report the684

mean CLIP score [31] of generated images with their corresponding text captions to test the defended685

models’ ability to follow these harmless prompts. And we report the FID between generated images686

and original MSCOCO images to test the quality of generated images.687

16



D Auxiliary Attack Results688

D.1 More Interpretation Results on Attack Token Embeddings689

First of all, we show detailed results of transferring token embeddings from unlearned models to the690

original SD in Tab. 5, emphasizing that these embeddings are inherited from the original SD.691

Table 5: Token embeddings learned by SubAttack originate from the original SD. This is evidenced by the
successful transfer of attack token embeddings from unlearned models to the original SD with high ASR.

Scenarios: ESD→SD FMN→SD UCE→SD SPM→SD
Nudity 97.44% 97.78% 95.89% 86.11%
Van Gogh 86% 84% 88.44% 93.11%
Church 87.22% 92.56% 85.56% 84.33%

Moreover, we should provide additional interpretation of the sets of learned attack token embeddings692

for “church” and “Van Gogh” across different unlearned LDMs in Fig. 9 and Fig. 10, showing693

observations on implicit associations similar to that of “nudity”.694

For example, for “church”, ESD (Fig. 9a) and UCE (Fig. 9c) majorly relate it with religious concepts,695

including names (“mary”), places (“abbey”, “abby”, “rom” for “rome”), etc. Interestingly, in Scotland696

and Northern England English, "kirk" is the traditional word for “church” - this may be integrated697

into LDM during the training of large-scale datasets, but not removed during existing diffusion698

unlearning methods. As for FMN (Fig. 9b) and SPM (Fig. 9d), the explicit concept “church” itself is699

a significant component. Notably, FMN and SPM also exhibit higher ASR with no attack as presented700

in Fig. 4 and Tab. 6. Under NoAttack, both of them achieve ASR greater than 40%, but ASR for701

ESD and UCE is less than 10%. This also emphasizes that explicit associations also remain in some702

unlearned LDMs.703

(a) ESD (b) FMN (c) UCE (d) SPM

Figure 9: Interpreting attack token embeddings for the concept “church”.

As for the concept “Van Gogh”, when interpreting the sets of embeddings collectively, more explicit704

words are exposed for existing unlearned models such as “vincent”, “gogh”, “vangogh”, along with705

implicit words “art”, “artist”, “munch” (Edvard Munch is an impressionist sharing similar themes706

and styles with Van Gogh, and the Van Gogh Museum in Amsterdam and the Munch Museum707

have collaborated to give a joint exhibition, "Munch: Van Gogh".) “monet” (also an impressionist),708

“nighter” and “oats” (concepts commonly in Van Gogh’s paintings), etc. Although UCE, which709

shows the highest ASR with no attack, has the largest amount of explicitly associated concepts, other710

unlearned models all show explicit words more or less. This suggests that current unlearning methods711

retain more explicit associations with the target concept when applied to styles, compared to their712

application to NSFW and object concepts.713

D.2 More ASR Results714

We present SubAttack ASR details with K=5 on different models in Tab. 6. Besides, we show transfer715

attack performance details from ESD to other unlearned models using different attack methods across716

different concepts in Tab. 7, Tab. 8, and Tab. 9. Moreover, we present additional transfer results717

between other unlearned model pairs using SubAttack with K=5 in Tab. 10.718
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(a) ESD (b) FMN (c) UCE (d) SPM

Figure 10: Interpreting attack token embeddings for the concept “Van Gogh”.

Table 6: Attack success rates (ASR) targeting different unlearned diffusion models across different concept
unlearning tasks (NSFW, artist style, object).

Attacks: NoAttack Ours

Victim Model: ESD FMN UCE SPM ESD FMN UCE SPM

Nudity 18.78% 90% 23% 22.56% 97.56% 100.00% 81.67% 74.89%
Van Gogh 5.78% 21.56% 71.44% 43.78% 81% 96.33% 98.33% 82.78%
Church 9.33% 51.56% 6.55% 43.78% 91.33% 97.78% 82.67% 84.89%
Garbage Truck 4% 41.33% 11.33% 12.67% 31.33% 91.67% 44% 77.67%
Parachute 4% 63.67% 1.3% 30.67% 88.67% 100% 67% 97%
Tench 1.67% 40% 0% 14.33% 26.67% 80% 49% 84.33%

Table 7: Transfer attack success rate for the concept “Nudity” using different attack methods.

Scenarios: ESD→FMN ESD→UCE ESD→SPM
NoAttack 90% 23% 22.56%
UnlearnDiff 93.33% 41.33% 38.22%
CCE 93% 18.33% 37.56%
SubAttack (Ours) 96.89% 77% 80.44%

Table 8: Transfer attack success rate for the concept “Van Gogh” using different attack methods.

Scenarios: ESD→FMN ESD→UCE ESD→SPM
NoAttack 21.56% 71.44% 43.78%
UnlearnDiff 12.78% 64% 47.11%
CCE 72.33% 43.56% 81.33%
SubAttack (Ours) 72.67% 88.89% 86.89%

Table 9: Transfer attack success rate for the concept “Church” using different attack methods.

Scenarios: ESD→FMN ESD→UCE ESD→SPM
NoAttack 51.56% 6.55% 43.78%
UnlearnDiff 6.19% 13.33% 58%
CCE 91% 70.11% 92.78%
SubAttack (Ours) 92.89% 83.77% 92%

Table 10: More SubAttack transfer results across four model pairs.

Scenario: FMN->UCE UCE->ESD SPM->UCE UCE->FMN

Nudity 72% 81.33% 86.11% 93.44%
Van Gogh 91.11% 48.55% 80.55% 62.55%
Church 79.33% 42.44% 68.33% 78.77%
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E Auxiliary Defense Results719

E.1 Detailed Baseline Comparison of Defending UCE Against UnlearnDiff720

A more detailed comparison results of RECE and SubDefense together with UCE with no defense721

are presented in Tab. 11 and Tab. 12.722

Table 11: SubDefense is stronger than baseline RECE in defending three concepts on UCE against
UnlearnDiff or our SubAttack.
Attacks: UnlearnDiff SubAttack

Scenarios: UCE UCE + SubDefense RECE UCE UCE + SubDefense RECE

Nudity 78.22% 73.55% (-4.67%) 76.44% (-1.78%) 81.67% 34.11% (-47.56%) 62.44% (-19.23%)
Van Gogh 100% 52.78% (-47.22%) 61.67% (-38.33%) 98.33% 29.44% (-68.89%) 84.44% (-13.89%)
Church 61.67% 39.78% (-64.34%) 50.78% (-10.89%) 82.67% 5.22% (-77.45%) 80.33% (-2.34%)

Table 12: SubDefense preserves better utility than baseline RECE after defense.
Metrics: COCO-10k FID (↓) COCO-10k CLIP (↑)

Scenarios: UCE UCE + SubDefense RECE UCE UCE + SubDefense RECE

Nudity 17.14 17.51 17.57 30.86 30.70 30.07
Van Gogh 16.64 16.64 17.11 31.14 30.94 30.08
Church 17.84 17.41 17.41 30.95 30.86 30.07

E.2 Defending Against UnlearnDiff on the I2P Dataset for Various Unlearned Models723

We construct dataset for concepts belonging to the style and object class following UnlearnDiff724

but with a larger size. Hence, defending against UnlearnDiff using these datasets can demonstrate725

the effectiveness of SubDefense in a scenario consistent with UnlearnDiff. However, for NSFW726

concepts such as nudity, UnlearnDiff filters prompts and seeds from the I2P dataset. Hence, to727

further test SubDefense’s ability in defending against UnlearnDiff in this specific setting, we conduct728

UnlearnDiff with or without SubDefense using the I2P dataset as well. We report the defense results729

on ESD, FMN, UCE, and SPM in Tab. 13, Tab. 14, Tab. 15, and Tab. 16 accordingly. We can see730

that SubDefense can reduce ASR on I2P consistently for all four models.731

Table 13: SubDefense for I2P-nudity on ESD against UnlearnDiff, with 100 blocked tokens.

Scenario: ESD ESD + SubDefense

NoAttack 20.56% 9.93% (-10.63%)
UnlearnDiff 74.47% 41.13% (-33.34%)

Table 14: SubDefense for I2P-nudity on FMN against UnlearnDiff, with 100 blocked tokens.

Scenario: FMN FMN + SubDefense

NoAttack 87.94% 37.59% (-50.35%)
UnlearnDiff 97.87% 45.39% (-52.58%)

Table 15: SubDefense for I2P-nudity on UCE against UnlearnDiff, with 100 blocked tokens.

Scenario: UCE UCE + SubDefense

NoAttack 21.98% 13.47% (-8.51%)
UnlearnDiff 78.72% 45.39% (-33.33%)
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Table 16: SubDefense for I2P-nudity on SPM against UnlearnDiff, with 100 blocked tokens.

Scenario: SPM SPM + SubDefense

NoAttack 55.31 % 34.04% (-21.27%)
UnlearnDiff 91.49 % 58.97% (-32.52%)

E.3 Defending Against SubAttack on Various Concepts for Various Unlearned Models732

Apart from the major baseline comparison of defense on UCE, and the defense results against different733

attacks on ESD presented in the main paper, we provide additional defense results of various concepts734

and unlearned models against SubAttack in this section. The results are shown in Tab. 17, Tab. 18,735

Tab. 19, and Tab. 20 accordingly. Notice that ASR on various concepts is reduced with SubDefense,736

while ASR reduction on “Van Gogh” is the most significant. It is worth exploring in the future to737

design new methods and make the defense more robust for other concepts as well.738

Table 17: SubDefense for three concepts on ESD against SubAttack, with 100 blocked tokens.

Scenario: ESD ESD + SubDefense

Nudity 97.56% 42.33% (-55.23%)
Van Gogh 81% 17% (-64%)
Church 91.33% 40.22% (-51.11%)

Table 18: SubDefense for three concepts on FMN against SubAttack, with 100 blocked tokens.

Scenario: FMN FMN + SubDefense

Nudity 100% 62.89% (-37.11%)
Van Gogh 96.33% 22.78% (-73.55%)
Church 82.67% 13.78% (-68.89%)

Table 19: SubDefense for three concepts on UCE against SubAttack, with 100 blocked tokens.

Scenario: UCE UCE + SubDefense

Nudity 81.67% 28% (-53.67%)
Van Gogh 93.78% 14.33% (-79.45%)
Church 82.67% 3.22% (-79.45%)

Table 20: SubDefense for three concepts on SPM against SubAttack, with 100 blocked tokens.

Scenario: SPM SPM + SubDefense

Nudity 74.89% 50.78% (-24.11%)
Van Gogh 82.78% 12.33% (-70.45%)
Church 84.89% 23.78% (-61.11%)
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F Ablations739

F.1 Attack740

In practice, we use K = 5 to conduct SubAttack as it provides strong attack performance while741

maintaining computational efficiency. Here, we take ESD as an example to show how ASR varies742

with K. To conduct ablations more efficiently, we subsample 300 out of 900 prompts for the concepts743

“church” and “nudity” to study the relationship between ASR and K. Results are presented in Fig. 11744

and Fig. 12. The additional attack time per image caused by each additional token embedding is745

approximately 10 seconds, which leads to about 3 more hours to attack a single concept having 900746

prompts in the dataset. Therefore, considering the needs of attacking multiple concepts and multiple747

models in practice, we choose K = 5 where the ASR is approximately stabilized. For some unique748

scenarios, users can choose to increase K for higher ASR at a cost of longer computation time.749

Figure 11: ASR versus K when conducting SubAttack on ESD for the concept “church”.

Figure 12: ASR versus K when conducting SubAttack on ESD for the concept “nudity”.
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F.2 Defense750

Gradual degradation of generation utility with stronger defense. We show an ablation study on751

COCO-10k generation CLIP score and FID versus the number of blocked tokens in Tab. 21 using752

ESD for the concept of “nudity”. We can see that, after the number of blocked tokens surpasses 100,753

there appears to be a significant harm to the CLIP score and FID. In practice, the number of blocked754

tokens during defense can be selected to balance good generation quality and low ASR according to755

one’s preference. In this paper, we provide an ablation study on ESD as an example, and report ASR756

majorly with 20 or 100 blocked tokens for different unlearned models and concepts.757

Table 21: SubDefense exhibits gradual degradation of CLIP score and FID when the number of blocked
token embeddings increases.

#Blocked Tokens: 0 20 50 100 200 300 350

CLIP Score (↑) 30.13 30.02 29.86 29.58 28.54 26.15 24.72
FID (↓) 18.23 19.02 19.09 19.20 20.92 26.42 30.33

More results and discussions on defending against CCE. Defending against CCE is an underex-758

plored problem in the field, where there are no baselines to compare with, to the best of our knowledge.759

Hence, we show a detailed study on defense against CCE, along with more discussions to support760

future research. As shown in Tab. 22, different from UlearnDiff, CCE requires a large number of761

tokens to be blocked if we aim to have low ASR. However, lower ASR achieved by more blocked762

attack tokens leads to a degradation of generation utility, with an increased FID and a decreased CLIP763

score, referring to Tab. 21. Such a phenomenon indicates that the embedding identified by CCE has764

a complex association with the target concept, sharing components with a variety of interpretable765

token embeddings found by our method. This suggests that fully understanding the behavior of766

CCE requires a deeper analysis of how LDMs interpret and generate concepts other than the current767

approach we use. For example, currently, the interpretability of retained associations of concepts768

relies on predefined CLIP vocabularies, which may not capture all implicit or nuanced representations769

retained in unlearned models. While the above question is beyond the scope of the current work, such770

insights could inform the development of more robust and versatile defense strategies in the future.771

With improved understanding of LDMs, future research may come up with more efficient and robust772

defenses against CCE while preserving model utility.773

Table 22: ASR of concept “nudity” on CCE after blocking different numbers of token embeddings.

#Blocked Tokens: 0 100 230 270 320 350 390 390

CCE ASR 85.11% 75.67% 65.78% 37.44% 28.11% 18.11% 8.89% 5.44%

G Sparsity of Attack Token Embeddings774

Sparsity constraints are widely adopted in prior concept decomposition works - where the linear775

combination coefficients αi are forced to be nearly zeros except for dozens of tokens (usually 20-50).776

However, in our attacks, where the unlearned diffusion models majorly associate the target concept777

with a set of implicit tokens, removing such sparsity regularization is helpful, especially for attack778

token embeddings discovered later in the iterative learning process. Hence, we do not impose a779

sparsity constraint. Yet, it’s interesting to find through our learning that a weaker sparse structure still780

emerges, and such sparsity gradually decreases as we learn more attack token embeddings through781

the iterative learning process.782

Specifically, for each learned attack token embedding, we normalize α = [α1, . . . , αN ] to have a783

unit norm. Then, we find the index i∗ such that:784

i∗ = argmin
i

i, such that
i∑

j=1

α2
j ≥ 0.9 (5)
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Besides, we also count the number of αi such that αi ≥ 0.01. We report the results of the first attack785

token embedding on ESD for each concept in Tab. 23. Notice the size of the CLIP token vocabulary786

is more than 40000.787

Table 23: Sparsity of the learned attack token embeddings.

Concept: Nudity Van Gogh Church

i∗ 1455 668 547
#αi ≥ 0.01 1743 1023 885

During our iterative learning process of a set of tokens for the nudity concept, we observe a decreasing788

sparsity, as shown in Tab. 24. This is intuitive since later attacking requires more complex associations789

to the target concept.790

Table 24: Sparsity of the learned attack token embeddings decreases during the iterative subspace attack
process.

#Itrs 1 10 30 50 70 100 130 150 170 200

i∗ 1455 1799 1905 1784 1914 2062 2062 2136 2155 2115
#αi ≥ 0.01 1743 2019 2078 2009 2206 2298 2328 2368 2358 2326

Furthermore, we visualize the nudity concept attacking results on ESD by selecting only the largest791

dozens of αi within a learned α and setting other entries as zeros. As shown in Fig. 13, we see the792

nudity concept is gradually enhanced as the number of selected αi increases to 1500: the woman793

generated happens to wear fewer and fewer clothes until she’s completely bare.794

Figure 13: Attacking the concept nudity on ESD when α has different numbers of non-zero entries.

H Image Generation Quality Visualization After Defense795

In this section, we provide a more detailed study on the generation quality of unlearned models after796

we plug SubDefense into them. First, we provide more detailed MSCOCO prompts and the generated797

images of UCE and UCE + SubDefense (with 20 blocked tokens) in Fig. 14, Fig. 15, and Fig. 16.798

Next, taking UCE and “Van Gogh” as an example, whose attack token embeddings are highly related799

to “blue” and “star”, we study whether SubDefense of “Van Gogh” harms the generation of “blue”800

and “star” in Fig. 17 and Fig. 18. It turns out that the ability to generate these related concepts is801

highly preserved, which highlights that subdefense is different from direct token blocking of all802

related concepts. Instead, SubDefense blocks the composed embeddings, which represent the concept803

“Van Gogh” more accurately.804
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Figure 14: More detailed visualization of COCO generation results with or without SubDefense on the
concept nudity.
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Figure 15: More detailed visualization of COCO generation results with or without SubDefense on the
concept Van Gogh.
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Figure 16: More detailed visualization of COCO generation results with or without SubDefense on the
concept church.
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Figure 17: Visualization of “blue” image generation results before and after defending “Van Gogh” on
UCE.
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Figure 18: Visualization of “star” image generation results before and after defending “Van Gogh” on
UCE.
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I More Attack Visualizations805

Figure 19: Visualizing nudity attacking results on ESD.

Figure 20: Visualizing nudity attacking results on FMN.

Figure 21: Visualizing nudity attacking results on UCE.
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Figure 22: Visualizing nudity attacking results on SPM.

Figure 23: Visualizing Van Gogh attacking results on ESD.

Figure 24: Visualizing Van Gogh attacking results on FMN.
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Figure 25: Visualizing Van Gogh attacking results on UCE.

Figure 26: Visualizing Van Gogh attacking results on SPM.

Figure 27: Visualizing church attacking results on ESD.
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Figure 28: Visualizing church attacking results on FMN.

Figure 29: Visualizing church attacking results on SPM.
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J Future Directions806

We identify the following future directions. First, future work may explore ensemble techniques to807

directly compose one powerful attack token embedding with the set of interpretable token embeddings,808

to conduct more efficient yet powerful and interpretable attacks. Second, future research may design809

adaptive and automatic methods to decide the number of blocked tokens or even the specific set of810

tokens, potentially using learned importance scores or attention-based relevance. Besides, future811

work may explore joint visual-textual embeddings for jailbreaking attacks and defenses. Moreover,812

as the first baseline defense work against CCE, SubDefense highlights a trade-off between robustness813

and utility that future work can aim to address when defending against it. Finally, exploring the814

interpretability of residual associations without relying on predefined vocabularies may help capture815

more implicit or nuanced representations retained in unlearned models and improve interpretability.816

Future research may investigate along these lines to further understand what unlearned models still817

“remember” in a more comprehensive way, guiding the design of more robust defense strategies.818
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NeurIPS Paper Checklist819

1. Claims820

Question: Do the main claims made in the abstract and introduction accurately reflect the821

paper’s contributions and scope?822

Answer: [Yes]823

Justification: We mainly contribute to an interpretable jailbreaking attack method, inspiring824

a defense strategy for diffusion model unlearning. Our experiment results verify their825

effectiveness across a wide range of unlearned models and concepts, supporting potential826

generalizations to other settings.827

Guidelines:828

• The answer NA means that the abstract and introduction do not include the claims829

made in the paper.830

• The abstract and/or introduction should clearly state the claims made, including the831

contributions made in the paper and important assumptions and limitations. A No or832

NA answer to this question will not be perceived well by the reviewers.833

• The claims made should match theoretical and experimental results, and reflect how834

much the results can be expected to generalize to other settings.835

• It is fine to include aspirational goals as motivation as long as it is clear that these goals836

are not attained by the paper.837

2. Limitations838

Question: Does the paper discuss the limitations of the work performed by the authors?839

Answer: [Yes]840

Justification: The paper discusses the limitations of the proposed methods in computation841

efficiency if a larger K is used in App. F.1, and that the current defense for CCE requires842

some degradations on model utility to reach lower ASR in App. F.2. Besides, future843

directions inspired by the paper are provided in App. J.844

Guidelines:845

• The answer NA means that the paper has no limitation while the answer No means that846

the paper has limitations, but those are not discussed in the paper.847

• The authors are encouraged to create a separate "Limitations" section in their paper.848

• The paper should point out any strong assumptions and how robust the results are to849

violations of these assumptions (e.g., independence assumptions, noiseless settings,850

model well-specification, asymptotic approximations only holding locally). The authors851

should reflect on how these assumptions might be violated in practice and what the852

implications would be.853

• The authors should reflect on the scope of the claims made, e.g., if the approach was854

only tested on a few datasets or with a few runs. In general, empirical results often855

depend on implicit assumptions, which should be articulated.856

• The authors should reflect on the factors that influence the performance of the approach.857

For example, a facial recognition algorithm may perform poorly when image resolution858

is low or images are taken in low lighting. Or a speech-to-text system might not be859

used reliably to provide closed captions for online lectures because it fails to handle860

technical jargon.861

• The authors should discuss the computational efficiency of the proposed algorithms862

and how they scale with dataset size.863

• If applicable, the authors should discuss possible limitations of their approach to864

address problems of privacy and fairness.865

• While the authors might fear that complete honesty about limitations might be used by866

reviewers as grounds for rejection, a worse outcome might be that reviewers discover867

limitations that aren’t acknowledged in the paper. The authors should use their best868

judgment and recognize that individual actions in favor of transparency play an impor-869

tant role in developing norms that preserve the integrity of the community. Reviewers870

will be specifically instructed to not penalize honesty concerning limitations.871
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3. Theory assumptions and proofs872

Question: For each theoretical result, does the paper provide the full set of assumptions and873

a complete (and correct) proof?874

Answer: [NA]875

Justification: The paper does not include theoretical results.876

Guidelines:877

• The answer NA means that the paper does not include theoretical results.878

• All the theorems, formulas, and proofs in the paper should be numbered and cross-879

referenced.880

• All assumptions should be clearly stated or referenced in the statement of any theorems.881

• The proofs can either appear in the main paper or the supplemental material, but if882

they appear in the supplemental material, the authors are encouraged to provide a short883

proof sketch to provide intuition.884

• Inversely, any informal proof provided in the core of the paper should be complemented885

by formal proofs provided in appendix or supplemental material.886

• Theorems and Lemmas that the proof relies upon should be properly referenced.887

4. Experimental result reproducibility888

Question: Does the paper fully disclose all the information needed to reproduce the main ex-889

perimental results of the paper to the extent that it affects the main claims and/or conclusions890

of the paper (regardless of whether the code and data are provided or not)?891

Answer: [Yes]892

Justification: The paper discusses in detail on how to reproduce the results in the main893

paper’s experiment setup settings before presenting results, as well as additional details in894

App. C.895

Guidelines:896

• The answer NA means that the paper does not include experiments.897

• If the paper includes experiments, a No answer to this question will not be perceived898

well by the reviewers: Making the paper reproducible is important, regardless of899

whether the code and data are provided or not.900

• If the contribution is a dataset and/or model, the authors should describe the steps taken901

to make their results reproducible or verifiable.902

• Depending on the contribution, reproducibility can be accomplished in various ways.903

For example, if the contribution is a novel architecture, describing the architecture fully904

might suffice, or if the contribution is a specific model and empirical evaluation, it may905

be necessary to either make it possible for others to replicate the model with the same906

dataset, or provide access to the model. In general. releasing code and data is often907

one good way to accomplish this, but reproducibility can also be provided via detailed908

instructions for how to replicate the results, access to a hosted model (e.g., in the case909

of a large language model), releasing of a model checkpoint, or other means that are910

appropriate to the research performed.911

• While NeurIPS does not require releasing code, the conference does require all submis-912

sions to provide some reasonable avenue for reproducibility, which may depend on the913

nature of the contribution. For example914

(a) If the contribution is primarily a new algorithm, the paper should make it clear how915

to reproduce that algorithm.916

(b) If the contribution is primarily a new model architecture, the paper should describe917

the architecture clearly and fully.918

(c) If the contribution is a new model (e.g., a large language model), then there should919

either be a way to access this model for reproducing the results or a way to reproduce920

the model (e.g., with an open-source dataset or instructions for how to construct921

the dataset).922

(d) We recognize that reproducibility may be tricky in some cases, in which case923

authors are welcome to describe the particular way they provide for reproducibility.924
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In the case of closed-source models, it may be that access to the model is limited in925

some way (e.g., to registered users), but it should be possible for other researchers926

to have some path to reproducing or verifying the results.927

5. Open access to data and code928

Question: Does the paper provide open access to the data and code, with sufficient instruc-929

tions to faithfully reproduce the main experimental results, as described in supplemental930

material?931

Answer: [No]932

Justification: The authors promise to open-source all data and code with sufficient in-933

structions at least upon acceptance, which are prepared and implemented following the934

experiment setup details shown in the paper.935

Guidelines:936

• The answer NA means that paper does not include experiments requiring code.937

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/938

public/guides/CodeSubmissionPolicy) for more details.939

• While we encourage the release of code and data, we understand that this might not be940

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not941

including code, unless this is central to the contribution (e.g., for a new open-source942

benchmark).943

• The instructions should contain the exact command and environment needed to run to944

reproduce the results. See the NeurIPS code and data submission guidelines (https:945

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.946

• The authors should provide instructions on data access and preparation, including how947

to access the raw data, preprocessed data, intermediate data, and generated data, etc.948

• The authors should provide scripts to reproduce all experimental results for the new949

proposed method and baselines. If only a subset of experiments are reproducible, they950

should state which ones are omitted from the script and why.951

• At submission time, to preserve anonymity, the authors should release anonymized952

versions (if applicable).953

• Providing as much information as possible in supplemental material (appended to the954

paper) is recommended, but including URLs to data and code is permitted.955

6. Experimental setting/details956

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-957

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the958

results?959

Answer: [Yes]960

Justification: Optimization and testing details are provided in the main paper with additional961

details in App. C.962

Guidelines:963

• The answer NA means that the paper does not include experiments.964

• The experimental setting should be presented in the core of the paper to a level of detail965

that is necessary to appreciate the results and make sense of them.966

• The full details can be provided either with the code, in appendix, or as supplemental967

material.968

7. Experiment statistical significance969

Question: Does the paper report error bars suitably and correctly defined or other appropriate970

information about the statistical significance of the experiments?971

Answer: [Yes]972

Justification: Providing error bars for jailbreaking attacks and defenses for the proposed973

methods as well as baselines, would be too computationally expensive. For example,974

baseline UnlearnDiff requires one week to attack a single concept on a single model975

using the constructed dataset. However, other appropriate information about the statistical976
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significance of the experiments is provided: Results in the paper are ensured to be reliable977

by the paper intrinsically through the dataset design, model selection, and concept coverage.978

For each concept, every text prompt is associated with 10 to 30 different random seeds979

(where in prior works, only one seed per prompt is considered), to enhance the reliability980

of the results. Moreover, attacks and defenses are conducted across 4 models and 3 to 6981

different concepts to strengthen the validity of the results.982

Guidelines:983

• The answer NA means that the paper does not include experiments.984

• The authors should answer "Yes" if the results are accompanied by error bars, confi-985

dence intervals, or statistical significance tests, at least for the experiments that support986

the main claims of the paper.987

• The factors of variability that the error bars are capturing should be clearly stated (for988

example, train/test split, initialization, random drawing of some parameter, or overall989

run with given experimental conditions).990

• The method for calculating the error bars should be explained (closed form formula,991

call to a library function, bootstrap, etc.)992

• The assumptions made should be given (e.g., Normally distributed errors).993

• It should be clear whether the error bar is the standard deviation or the standard error994

of the mean.995

• It is OK to report 1-sigma error bars, but one should state it. The authors should996

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis997

of Normality of errors is not verified.998

• For asymmetric distributions, the authors should be careful not to show in tables or999

figures symmetric error bars that would yield results that are out of range (e.g. negative1000

error rates).1001

• If error bars are reported in tables or plots, The authors should explain in the text how1002

they were calculated and reference the corresponding figures or tables in the text.1003

8. Experiments compute resources1004

Question: For each experiment, does the paper provide sufficient information on the com-1005

puter resources (type of compute workers, memory, time of execution) needed to reproduce1006

the experiments?1007

Answer: [Yes]1008

Justification: The paper indicates that all experiments are conducted on a single NVIDIA1009

A40 GPU in App. C, as well as for the full research project.1010

Guidelines:1011

• The answer NA means that the paper does not include experiments.1012

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,1013

or cloud provider, including relevant memory and storage.1014

• The paper should provide the amount of compute required for each of the individual1015

experimental runs as well as estimate the total compute.1016

• The paper should disclose whether the full research project required more compute1017

than the experiments reported in the paper (e.g., preliminary or failed experiments that1018

didn’t make it into the paper).1019

9. Code of ethics1020

Question: Does the research conducted in the paper conform, in every respect, with the1021

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?1022

Answer: [Yes]1023

Justification: The research in the paper conforms, in every respect, with the NeurIPS Code1024

of Ethics.1025

Guidelines:1026

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1027

• If the authors answer No, they should explain the special circumstances that require a1028

deviation from the Code of Ethics.1029
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-1030

eration due to laws or regulations in their jurisdiction).1031

10. Broader impacts1032

Question: Does the paper discuss both potential positive societal impacts and negative1033

societal impacts of the work performed?1034

Answer: [Yes]1035

Justification: The paper provides discussion on broader impacts at the beginning of the1036

appendix.1037

Guidelines:1038

• The answer NA means that there is no societal impact of the work performed.1039

• If the authors answer NA or No, they should explain why their work has no societal1040

impact or why the paper does not address societal impact.1041

• Examples of negative societal impacts include potential malicious or unintended uses1042

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations1043

(e.g., deployment of technologies that could make decisions that unfairly impact specific1044

groups), privacy considerations, and security considerations.1045

• The conference expects that many papers will be foundational research and not tied1046

to particular applications, let alone deployments. However, if there is a direct path to1047

any negative applications, the authors should point it out. For example, it is legitimate1048

to point out that an improvement in the quality of generative models could be used to1049

generate deepfakes for disinformation. On the other hand, it is not needed to point out1050

that a generic algorithm for optimizing neural networks could enable people to train1051

models that generate Deepfakes faster.1052

• The authors should consider possible harms that could arise when the technology is1053

being used as intended and functioning correctly, harms that could arise when the1054

technology is being used as intended but gives incorrect results, and harms following1055

from (intentional or unintentional) misuse of the technology.1056

• If there are negative societal impacts, the authors could also discuss possible mitigation1057

strategies (e.g., gated release of models, providing defenses in addition to attacks,1058

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1059

feedback over time, improving the efficiency and accessibility of ML).1060

11. Safeguards1061

Question: Does the paper describe safeguards that have been put in place for responsible1062

release of data or models that have a high risk for misuse (e.g., pretrained language models,1063

image generators, or scraped datasets)?1064

Answer: [Yes]1065

Justification: The paper proposes a new attack method exposing safety concerns on diffusion1066

models, which has potential misuse risks. However, inspired by the interpretability of the1067

attack method, the paper has made efforts to in turn design a defense strategy to improve the1068

safe use of diffusion models.1069

Guidelines:1070

• The answer NA means that the paper poses no such risks.1071

• Released models that have a high risk for misuse or dual-use should be released with1072

necessary safeguards to allow for controlled use of the model, for example by requiring1073

that users adhere to usage guidelines or restrictions to access the model or implementing1074

safety filters.1075

• Datasets that have been scraped from the Internet could pose safety risks. The authors1076

should describe how they avoided releasing unsafe images.1077

• We recognize that providing effective safeguards is challenging, and many papers do1078

not require this, but we encourage authors to take this into account and make a best1079

faith effort.1080

12. Licenses for existing assets1081
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in1082

the paper, properly credited and are the license and terms of use explicitly mentioned and1083

properly respected?1084

Answer: [Yes]1085

Justification: The paper has cited papers and models properly, which are under the CC-BY1086

4.0 license.1087

Guidelines:1088

• The answer NA means that the paper does not use existing assets.1089

• The authors should cite the original paper that produced the code package or dataset.1090

• The authors should state which version of the asset is used and, if possible, include a1091

URL.1092

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1093

• For scraped data from a particular source (e.g., website), the copyright and terms of1094

service of that source should be provided.1095

• If assets are released, the license, copyright information, and terms of use in the1096

package should be provided. For popular datasets, paperswithcode.com/datasets1097

has curated licenses for some datasets. Their licensing guide can help determine the1098

license of a dataset.1099

• For existing datasets that are re-packaged, both the original license and the license of1100

the derived asset (if it has changed) should be provided.1101

• If this information is not available online, the authors are encouraged to reach out to1102

the asset’s creators.1103

13. New assets1104

Question: Are new assets introduced in the paper well documented and is the documentation1105

provided alongside the assets?1106

Answer: [NA]1107

Justification: The paper has not released the assets, but provided details on reproducing the1108

results. The paper will release the assets with proper documentation at least upon acceptance.1109

Guidelines:1110

• The answer NA means that the paper does not release new assets.1111

• Researchers should communicate the details of the dataset/code/model as part of their1112

submissions via structured templates. This includes details about training, license,1113

limitations, etc.1114

• The paper should discuss whether and how consent was obtained from people whose1115

asset is used.1116

• At submission time, remember to anonymize your assets (if applicable). You can either1117

create an anonymized URL or include an anonymized zip file.1118

14. Crowdsourcing and research with human subjects1119

Question: For crowdsourcing experiments and research with human subjects, does the paper1120

include the full text of instructions given to participants and screenshots, if applicable, as1121

well as details about compensation (if any)?1122

Answer: [NA]1123

Justification: The paper does not involve crowdsourcing nor research with human subjects.1124

Guidelines:1125

• The answer NA means that the paper does not involve crowdsourcing nor research with1126

human subjects.1127

• Including this information in the supplemental material is fine, but if the main contribu-1128

tion of the paper involves human subjects, then as much detail as possible should be1129

included in the main paper.1130

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1131

or other labor should be paid at least the minimum wage in the country of the data1132

collector.1133
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15. Institutional review board (IRB) approvals or equivalent for research with human1134

subjects1135

Question: Does the paper describe potential risks incurred by study participants, whether1136

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1137

approvals (or an equivalent approval/review based on the requirements of your country or1138

institution) were obtained?1139

Answer: [NA]1140

Justification: The paper does not involve crowdsourcing nor research with human subjects.1141

Guidelines:1142

• The answer NA means that the paper does not involve crowdsourcing nor research with1143

human subjects.1144

• Depending on the country in which research is conducted, IRB approval (or equivalent)1145

may be required for any human subjects research. If you obtained IRB approval, you1146

should clearly state this in the paper.1147

• We recognize that the procedures for this may vary significantly between institutions1148

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1149

guidelines for their institution.1150

• For initial submissions, do not include any information that would break anonymity (if1151

applicable), such as the institution conducting the review.1152

16. Declaration of LLM usage1153

Question: Does the paper describe the usage of LLMs if it is an important, original, or1154

non-standard component of the core methods in this research? Note that if the LLM is used1155

only for writing, editing, or formatting purposes and does not impact the core methodology,1156

scientific rigorousness, or originality of the research, declaration is not required.1157

Answer: [NA]1158

Justification: The core method development in this research does not involve LLMs as any1159

important, original, or non-standard components.1160

Guidelines:1161

• The answer NA means that the core method development in this research does not1162

involve LLMs as any important, original, or non-standard components.1163

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1164

for what should or should not be described.1165
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