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Abstract

This paper investigates the subjective dimen-
sions of window view impressions by compar-
ing human participants’ verbal responses with
image descriptions generated by seven state-of-
the-art vision-language models (VLMs). We
analyze a dataset (Cho et al., 2023b, 2025a,b)
of transcribed impressions—2100 utterances
collected in two separate virtual reality (VR)
experiments—and compare it against synthetic
texts from several high-performing VLMs.
Using the combined dataset, we compare hu-
man and machine responses based on three key
criteria: (1) most frequent N-grams, (2) cluster-
ing structure, and (3) sentiment. Our findings
reveal significant differences across all three
dimensions and highlight distinctive patterns in
human perceptions of window views.

1 Introduction

Access to a window view strongly shapes occupant
comfort, satisfaction, well-being, and spatial per-
ception (Markus, 1967; van Esch et al., 2019; Ger-
hardsson and Laike, 2021). Consequently, assess-
ing perceived view quality has become an impor-
tant goal in applied architectural research. Most ex-
isting studies pursue this goal by manually record-
ing participants’ subjective impressions, typically
through questionnaires, image and VR-based rat-
ing scales, interviews, or physiological assessments
(Abd-Alhamid et al., 2023; Cho et al., 2023a; Matu-
siak and Klockner, 2016; Aries et al., 2010). These
protocols are time consuming and susceptible to
inconsistency and human error, since each response
requires manual annotation. As a result, there is
growing interest in automating the estimation of
perceived window view quality. Recent computer
vision studies already extract key view metrics:
(Xia et al., 2021) predict sky view factor as a proxy
for openness; (Ranftl et al., 2021) estimate monoc-
ular depth to recover viewing distance; and (Gong
et al., 2018) use attention-based segmentation to

map a scene’s semantic composition. While these
pipelines quantify visual features, they still do not
generate a direct textual appraisal of perceived view
quality.

Vision-language models, on the other hand, can
process an image and generate concise, factually
accurate textual description (Cheng et al., 2025).
Thus, VLMs offer a promising route for predicting
the textual impression of the window view. Yet it
remains unclear how closely their outputs capture
the many facets of human window view perception.
This gap motivates our guiding question:

Q. How do human participants’ impres-
sions of window views compare with the
descriptions produced by state-of-the-art
vision-language models?

In this study, we focus on office-window views
evaluated by university students and staff (Cho
et al., 2023b, 2025a,b). Cho et al. collected
2100 transcribed descriptions covering 50 scene-
condition combinations. These scenes were
captured on a university campus and were pre-
sented to participants in VR in either an image or a
video format. Building on this dataset, we conduct
an in-depth exploratory comparison between
human descriptions and captions generated by
seven state-of-the-art vision-language models.

Contributions.
contributions:

Our study makes two key

* Dataset extension: For each of the 35
scene-condition images, we added captions
from seven state-of-the-art VLMs: 6 cap-
tions per baseline model and 20 from the
best-performing model, yielding 910 machine-
generated descriptions that sit alongside the
2100 human descriptions and can be queried
by scene, condition, or model.



* Comparative analysis: To our knowledge, this
is the first systematic comparison of human-
and machine-generated descriptions of win-
dow views that jointly evaluates sentiment,
lexical choice, and content saliency.

2 Related Work

In recent years, Large Language Models (LLMs)
have gained significant popularity, with several
studies validating machine-generated responses
against human texts (Guo et al., 2023; Herbold
et al., 2023; Ha and O’Donoghue, 2024). Notably,
(Guo et al., 2023) proposes a RoBERTa-based Chat-
GPT detector that distinguishes between human an-
swers and responses from GPT-3.5 with an F1 score
of 98.78 across a variety of knowledge domains.
When analyzing the linguistic differences between
humans and GPT-3.5, (Guo et al., 2023) reports that
GPT-3.5 tends to produce longer answers but with a
smaller vocabulary. Further, they note that GPT-3.5
generations exhibit a more formal style, greater ob-
jectivity, and less emotion. (Ha and O’Donoghue,
2024) notes a similar trend in Llama-2 genera-
tions; the authors report that machine-generated
text tends to have a more positive sentiment than
the human-authored equivalent. Meanwhile, (Her-
bold et al., 2023) investigated the output of a more
modern GPT-4 and reported greater lexical diver-
sity in the model’s essays when compared to human
texts. However, several linguistic characteristics
still distinguish GPT-4, including fewer discourse
markers, more nominalizations, and higher syntac-
tic complexity.

A parallel line of research compares the output of
vision-enabled LLLMs with human image descrip-
tions. (Cheng et al., 2025) reports that OpenAl’s
GPT-40 reaches or even surpasses human perfor-
mance in terms of precision and level of detail.
However, the authors explicitly consider only the
factual correctness of the captions, not their style
or linguistic characteristics.

In this study, we compare the responses of vision-
enabled LLMs with human impressions of window
views collected in (Cho et al., 2023b, 2025a,b). In
these studies, the authors conducted two indepen-
dent VR experiments, each with 42 participants
and identical hardware and protocol. The first ex-
periment presented 15 campus views twice (once
as a static image and once as a matched video),
yielding 30 scene—format combinations and 1260
verbal impressions. The second experiment revis-

ited 10 of those locations under clear and overcast
skies, producing 20 scene-sky combinations and a
further 840 impressions from a new cohort. Each
of the aforementioned campus views is shown in
Tables 2, 3, and 4. The present paper pools all 2100
transcribed utterances from these studies; analysis
of machine-generated impressions for on-campus
videos is deferred to future work.

3 Dataset Construction

To obtain synthetic window view impressions in
the form of textual descriptors for each image, we
used commercially available vision-language mod-
els through their web APIs. The model settings
and generation hyperparameters are documented
in Appendix A. We used the same prompt shown
to human participants, enabling a direct, side-by-
side comparison between machine- and human-
generated responses.

4 Model Selection

We used the CapArena (Cheng et al., 2025)
benchmark to select top-performing vision-enabled
LLMs accessible via web APIs. Our selection
includes both reasoning models (Gemini 2.5 Pro,
Claude Sonnet 4, 04-mini) and non-reasoning mod-
els (Gemini 2.5 Flash, Claude 3.5 Haiku, Qwen
72B VL, and GPT-4.1). Exact model IDs can be
found in Appendix B. We then used BERTScore
(F1) (Zhang et al., 2019) to compute the semantic
similarity between the model-generated texts and
the transcribed human impressions. Furthermore,
we computed intragroup BERTScore (F1) to
assess internal consistency among human and
VLM responses. A detailed description of the
procedure for computing BERT scores is outlined
in Appendix C.

Figure 1 shows that, for all evaluated VLMs,
model/human similarity is lower than hu-
man/human similarity. The strongest alignment
with the human texts is achieved by GPT-4.1.
This finding motivated us to further investigate
its image descriptions. To this end, we sampled
20 generations for each scene-condition pair,
as a compromise between output diversity and
computational cost (Theodoropoulos et al.,
2025). The resulting GPT-4.1 generations have a
significantly higher intragroup BERTScore (F1)
than human impressions (0.6168 vs. 0.3500). This
indicates that human responses are more variable
than GPT-4.1 texts.
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Figure 1: BERTScore (F1) similarity for pairs of human-
human and human-GPT-4.1 texts.

5 GPT Detection

Having observed a significant difference in both
intra- and inter-group BERTScore similarity be-
tween human impressions and GPT-4.1 outputs,
we set out to test whether a BERT-style classifier
could distinguish between the two.

Using the ChatGPT detector proposed by (Guo
et al., 2023), we achieved an out-of-the-box F1
score of 0.947 on a sample of 206 human impres-
sions and 70 GPT-4.1 responses. In the follow-
ing sections, we will investigate the exact differ-
ences between the human and GPT texts that could
explain such strong separation between the two
groups.

6 N-Grams

To obtain a high-level overview of both the tran-
scribed verbal responses and the GPT-generated
text, we identified the most frequent N-grams (con-
tiguous sequences of N words). N-grams were
extracted by sliding a window of size N over the
input sequence to form tuples of N consecutive
words. We analyzed bigrams (N = 2) and trigrams
(N = 3), which capture the most common two- and
three-word sequences in the corpus. Among the
50 highest-frequency combinations (full list in Ap-
pendix D), four broad semantic classes emerged:
(1) sentiment, (2) content, (3) grammatical fillers,
and (4) location. The five most frequent bigrams in
each class are shown in Table 1. We use color cod-
ing to depict the frequency of each bigram; higher

color intensity reflects a more commonly occurring
word sequence.

Several differences stand out. In the sentiment
class, GPT-4.1 adopts more formal and less emo-
tionally polarized descriptors, favoring terms such
as calm and scenic, whereas human respondents
rely on informal adjectives like nice. In the con-
tent class, model outputs gravitate toward abstract
qualities like modern, and urban, and explicitly
mention seasons (autumn). Participants, on the
other hand, mention concrete elements visible in
the scene, e.g., construction site, mountains, and
lake. Synthetic responses also reference sky far
more often than human comments. Finally, fewer
location-related bigrams appear in the model’s top-
50 list. In contrast, participants frequently situate
features with spatial adverbs, such as left, right,
and front. Location-oriented trigrams are likewise
scarce in GPT output, confirming this pattern.

To test whether N-grams can summarize partici-
pant impressions scene by scene, we extracted the
ten most frequent content-related N-grams for each
of the window views (Tables 2, 3, and 4). When
these phrases are read alongside the corresponding
images, they capture many of the scenes’ salient
visual details, indicating strong representational
power for a simple frequency analysis. This ob-
servation motivated the subsequent use of N-gram
features in our text-clustering workflow.

7 Text Clustering

The strong correspondence between the most
salient visual elements in the window views and the
highest-frequency N-grams prompted us to base
our explainable clustering on content-related bi-
grams. The full procedure is summarized in Algo-
rithm 1.

Figure 2 shows that this N-gram approach yields
a moderate clustering structure (a silhouette score
of 0.475 with 0.315 to 0.535 95% empirical confi-
dence interval(CI) for participant impressions, and
0.442 score with 0.257 to 0.539 95% empirical CI
for machine-generated responses). The empirical
confidence intervals were constructed by running
single-stage bootstrap resampling with replace-
ment. More details on the bootstrapping methodol-
ogy along with the resulting co-occurrence matrix
are given in Appendix E.

In the human transcripts, bigram frequency sepa-
rates the data into two main clusters: one domi-
nated by building descriptors, the other by moun-



Bigram Study GPT-4.1
type participants
Sentiment is nice calm and
don’t like a scenic
nice to and inviting
like that a lively
not nice a vibrant
nice and
Content construction site a modern
the construction modern urban
the mountains urban or
mountains and late autumn
the lake autumn or
Grammatical alot This image
lot of image depicts
the view depicts a
is not
- The overall
like the
overall atmosphere
Location in front the background,
the left along the
the right either side
front of side of
the back foreground, there

Table 1: Five most frequent bigrams by category for
study participants vs. GPT-4.1

tain references, plus an outlier (Scene 9) charac-
terized by the word construction. Interestingly,
within the building cluster, participants frequently
mention site-specific entities, such as Rolex and
Point Vélo. These terms do not appear in the GPT-
4.1 completions, presumably because they reflect
campus-specific jargon familiar to the participants
but underrepresented in the model’s training corpus.
Additionally, the building cluster includes Scene
5, whose dominant bigram is the mountains. How-
ever, because the frequency of this bigram is very
low, Scene 5 lies near the border yet remains in the
building cluster.

GPT-4.1, by contrast, sorts its responses into three
groups: (1) a cluster centered on the bigram with
the adjective modern, (2) a heterogeneous miscel-
laneous cluster, and (3) a single outlier, Scene 9,
characterized by the word scaffolding. The domi-
nant bigrams in these clusters differ markedly from
those in the human text, indicating that the model
foregrounds visual features other than the ones par-
ticipants find most noteworthy. This divergence
underscores a distinct pattern in human perception
of window views that is not fully captured by the
language model. At the same time, Scene 9 appears
as an outlier for both study participants and GPT-

No. Scene Study parfticipants GPT-4.1
the trees late autumn
the buildings autumn or
the road or winter.
and cars a modern
2 - trees and winter. The
! buildings are or office
B people and The buildings
and buildings few cars
nature and theroady
and trees urban or
the building The sky
buildings and sky is
the trees an urban
the buildings modern buildings
) the road autumn or
trees and a fisheye
grey buildings late autumn
and trees urban scene
people walking few people
with people urban or
the mountains or research
mountains and Polytechnique Fédérale
the building Fédérale de
building in few people
big building a modern,
} building is a modern
of cars urban campus
cars and concrete and
and people university or
people and modern urban
the mountains a modern,
n the trees campus or
E' i! = ‘a the buildings or business
s trees and The sky
D b buildings are sky is
4 ~ ,—: to work business park
— the sky open campus
people walking The area
S of people a wide-angle
the tree wide-angle or
the mountains a modern
the building CEMIS G
buildings and modern campus
the buildings or institutional
5 mountains in Ry
front of sky is
the window windows and
to work The area
open space contemporary buildings
of people buildings with
the mountains DG
mountains and glmoders
the lake contemporary buildings
the buildings modern campus
. lake and iy ik
mountains in The sky
and mountains or institutional
to work with contemporary
and lake few people
open space people walking

Table 2: Ten most frequent content-bearing bigrams
extracted from participants’ descriptions of each win-
dow view and GPT-4.1 generations. Scenes 1-6 under
three sky conditions: (a) any sky, (b) clear sky, and (c)
overcast sky.



No. Scene Study participants GPT-4.1

No. Scene Study parfticipants GPT-4.1

the mountains modern campus

mountains and campus or
the building few people
the rolex a clear
buildings and a bright,

mountains in or institutional

the road mountains under
trees and and outdoor
building on buildings on
colors and trees and
the building a modern

buildings and modern urban
the buildings urban or
the road or campus
s 5 and cars lines and
%; buildings are few people
to work The sky
is grey sky is
the cars is overcast,

cars passing clean lines

construction site scaffolding and
the construction o Gl
the building modern urban
the road a curved
9 a construction a parked
buildings are with scaffolding
very grey under construction
grey and a person
site and a crane
of noises urban or
the mountains amodern
the building campus or
the rolex modern campus
buildings and The sky
10 the buildings sky is
buildings are or research
roof of contemporary buildings
the roof or business
open space The buildings
anopen lines and
the building amodern
N the trees building with
% the buildings a wide-angle
T front of wide-angle or
1 building in a rooftop
trees and modern building
building is trees and
the window The sky
to work or fisheye
greeneries and panels and
the building amodern
buildings and or office
the trees The sky
the buildings sky is
12 trees and trees and

buildings are university or

the colors a university
to work windows and

the bridge The buildings
the sun campus or

Table 3: Ten most frequent content-bearing bigrams
extracted from participants’ descriptions of each win-
dow view and GPT-4.1 generations. Scenes 7-12 under
three sky conditions: (a) any sky, (b) clear sky, and (c)
overcast sky.

the mountains a modern

mountains and vertical stripes

%‘ the lake stripes in
the building orange, red
the buildings red, and

mountains in modern urban

building on campus or
buildings on buildings with
the colors building with

grey buildings construction or

the building a modern,
point velo a fenced
the trees green trees
front of trees and
trees and building with

buildings are wide-angle or

to work a wide-angle
and trees white vehicles
trees are concrete building
trees in or institutional
the building a modern
the trees a university
the buildings university or
trees and or office
15 of trees covered walkway
the window modern architectural
to work trees and
nature and wide-angle or
the sun a covered
the red greenery and

Table 4: Ten most frequent content-bearing bigrams
extracted from participants’ descriptions of each win-
dow view and GPT-4.1 generations. Scenes 13-15 under
three sky conditions: (a) any sky, (b) clear sky, and (c)
overcast sky.

4.1, and both use construction-related terminology
at high frequency.

8 Sentiment analysis

Next, we examine how scene content and sky con-
dition shape the sentiment in both human transcrip-
tions and GPT-4.1 responses. Sentiment is quanti-
fied as a continuous Average Sentiment Score score
derived from a RoBERTa-based tripolar classifier
(Loureiro et al., 2022) with (positive, negative, and
neutral classes (see Appendix F.1 for details).

8.1 Effect of scene content

We first compare the Average Sentiment Score
across the N-gram clusters (Figure 2). Sentiment is
regressed on cluster ID, using buildings as the base-
line for humans and miscellaneous for GPT-4.1.
Ordinary Least Squares (OLS) coefficients show
that, relative to the baseline, human texts are signif-
icantly more negative for the construction cluster
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Figure 2: Bigram-based clustering of GPT-4.1 responses
(top) vs. transcribed participant utterances (bottom)

(p < 0.001, ¢ = —0.885). GPT-4.1 completions
for the same cluster show a similar negative shift
(p < 0.001, ¢ = —0.341). Captions that frequently
include the adjective modern exhibit a small but
significant positive offset in GPT-4.1 (p = 0.022,
c = 0.044). Full coefficients are reported in Ap-
pendix G.

For a finer view-by-view analysis, we fit an OLS
regression of the Average Sentiment Score on scene
number (Appendix G), taking Scene 12, whose
median sentiment approximates the overall me-
dian in both corpora, as the reference. Human and
GPT outputs align on eleven of the thirteen scenes
with significant coefficients. Both rate Scenes 4-7
(characterized by trees, open spaces, or mountains)
above Scene 12, and Scenes 1-3, 9, and 14 (dom-
inated by cars and/or limited openness) below it.

Algorithm 1 N-gram-based Clustering

Require: A set of scenes S = {s1,82,...,515},
Word2Vec model W2V

Ensure: Embeddings {v}scs and their clusters
1: for each scene s € S do
2:  // 1. Group impressions for s

T + concatenate all responses for s

/1 2. Extract bigrams

B < extract all bigrams from 7T’

Compute frequency f(b) for each b € B

/1 3. Get the most frequent content bigram

* f
b* + arg max req(b)

® >R

content-related(b)
9: /I 4. Compute bigram embedding
10:  Let Wy T non-stopwords in bigram b*
11: epr W ZwEWb* W2V(w)
12:  //'5. Scene vector is frequency-normalized
embedding of the most frequent bigram

f(o") ,
13:  Fyp» «— —=——— // relative frequency
> ven f(0)
14: Vg < Fp« - eps
15: end for

16: /* 5. Cluster scene vectors */

17: Apply agglomerative clustering to {vs}scg
18: /* 6. Visualization */

19: Reduce {v;} to 2D with PCA

Divergence occurs on Scenes 8 and 11, which fea-
ture a road and limited open space. Participants
rate them below Scene 12, whereas GPT-4.1 rates
them above, revealing a human-specific aversion to
vehicle roads absent in GPT output.

Figure 3 presents violin plots of the Average Sen-
timent Score by scene, colored by N-gram cluster
and ordered by increasing median sentiment. Two
clear patterns emerge. First, human responses are
much more polarized: they span the full —1 to 41
range, and Scenes 1-3 and 8-10 all have negative
medians. Second, GPT-4.1 captions are skewed to-
ward the positive; while they occasionally register
negative values, the lowest score is only —0.092,
whereas the most negative human score reaches
—0.953. Together, these patterns indicate that GPT-
4.1 is far less inclined than human observers to
voice strongly negative impressions of the window
views.

8.2 Effect of sky condition

We also examined whether the Average Sentiment
Score varies with weather, comparing the clear ver-
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4.1 responses (top) and study-participant impressions
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sus overcast skies visible in the captured window
scenes. The violin plots for both GPT completions
and participant texts show lower sentiment scores
for overcast scenes (Figure 4). This pattern is con-
firmed by a statistically significant negative coeffi-
cient for the overcast indicator in GPT-generated
descriptions (p < 0.001, ¢ = —0.281) and an even
larger negative coefficient in the human responses
(p < 0.001, ¢ = —0.326); see Appendix G for full
results. Thus, sky condition accounts for additional
variance in sentiment beyond scene identity, with
a markedly stronger impact on human language
than on GPT output. Additionally, the R? statistic
is higher for GPT-4.1 generations than in human
responses (0.513 vs. 0.190), indicating that scene
number and scene type explain a larger proportion
of variance in text sentiment for machine-generated
texts.

8.3 Word-level sentiment extraction

Finally, to reveal how both study participants and
the GPT-4.1 model encode sentiment, we applied
an ablation-based word-level sentiment identifica-
tion method (see Appendix F.2.2 for details on
the ablation procedure and performance compar-
ison against DecompX (Modarressi et al., 2023)
and Randomized Path-Integrations (Barkan et al.,
2024)). Tables 5 and 6 list the top 10 most in-

Average Score

Scene

Average Score
°
g

> N Q @ © N
Scene

Figure 4: Sentiment by scene number and type for GPT-
4.1 responses (top) and transcribed participant utter-
ances (bottom)

fluential words for the sentiment classification.
The analysis spans all scenes and weather condi-
tions, spotlighting the terms that contribute most
strongly—positively or negatively—to overall text
sentiment.

For positively rated scenes, GPT-4.1 adopts a rel-
atively formal style, emphasizing striking archi-
tecture and a peaceful atmosphere in Scenes 13
and 5. The absolute word-level importance scores
(Appendix F.2.1) are roughly three times smaller
than those in participants’ texts, indicating milder
phrasing. By contrast, human participants favor
plainly positive adjectives, such as nice, beautiful,
and great.

For the negatively rated scenes, human texts con-
tinue to use strongly charged adjectives, with bor-
ing, ugly, and ruining contributing the most to neg-
ative sentiment. Participants also negate otherwise
positive descriptors, for instance, describing Scene
2 as less pleasant and mentioning that Scene 8
wouldn’t be an ideal place to work. GPT-4.1, how-
ever, tends to choose intrinsically negative adjec-
tives, such as (muted and subdued).

Figure 5 highlights the difference in the distribution
of word importance between human texts and GPT-
4.1 responses. Removing up to five words with
the strongest sentiment from the transcribed human



Study participants GPT-4.1
- striking
peaceful peaceful
nice pleasant
beautiful lush
interesting spacious
shining calm
love greenery
like [this view] well-maintained
really [like the mountains] innovative
great day

Table 5: Words with strongest impact on sentiment in
positively rated scenes

Study participants GPT-4.1
contrast
overcast
muted
obscuring
distorted
nothing [particularly interesting] istorte

subdued
uncomfortable

overall
depressing arey
special el
wouldnt [be an ideal place] cloudy
grey

Table 6: Words with strongest impact on sentiment in
negatively rated scenes

utterances causes a larger drop in accuracy than
for GPT-4.1-generated text, implying that GPT-4.1
spreads sentiment more evenly across its generated
tokens.

—e— GPT 4.1 abl
Human abl

5 6
Number of words removed

Figure 5: The average sentiment classification accu-
racy after removing the top 1-10 most impactful words,
as identified by the ablative token attribution method.
Shaded regions indicate 95% confidence intervals. The
blue line represents GPT-4.1 generations, and the orange
line denotes human-written texts.

9 Discussion and Conclusion

This work analyzed the open-ended descriptions
collected in (Cho et al., 2023b, 2025a,b), and com-
pared them with GPT-4.1 completions for the same
window-view scenes. The goal was to isolate as-

pects of view-out perception that are genuinely
human and currently absent from a state-of-the-art
multimodal transformer.

Unstructured texts were first explored through the
most frequent bi- and trigrams, which fell naturally
into four semantic categories. With a simple, ex-
plainable bigram-based clustering, we identified
the objects that most shaped each account. Human
responders referred most often to mountains, lake,
and construction, whereas GPT-4.1 emphasized the
sky and abstract architectural qualities like modern
and urban. Further, GPT-4.1’s descriptions never
singled out mountains, and they omitted several
named entities that appeared regularly in human
speech.

Sentiment analysis with a RoBERTa classifier re-
vealed far stronger polarity in the human texts. Par-
ticipants expressed clear dislike for scenes contain-
ing construction sites, cars, or limited open space,
and clear preference for those with nature or open
spaces. GPT-4.1, in contrast, produced only mildly
positive sentiment across all scenes. Deviations
from the baseline Scene 12 were nevertheless di-
rectionally similar between the two corpora, except
for Scenes 8 and 11, whose lower human sentiment
was not matched by the GPT model. When senti-
ment was regressed on the weather, both corpora
showed lower scores for overcast images, but the
effect size was over 16% larger in the human data.
Word-level ablation confirmed these stylistic differ-
ences: GPT-4.1 relied on formal adjectives such as
spacious or well-planned, with very small attribu-
tion weights; whereas participants injected emotion
through everyday adjectives (nice, great) and espe-
cially through the negation of positive terms (less
pleasant, nothing interesting). Together, the find-
ings show that open space and natural elements
(mountains, trees, lake) drive a positive affect,
while construction, roads, and visual clutter depress
it, and that the transformer model captures this pat-
tern only partially. Therefore, while GPT-4.1 can
capture the broad directional trends observed here,
its muted tone and key omissions expose clear lim-
its. At present, it cannot replace human judgment
when nuanced appraisal of window-view quality is
required.

10 Limitations

The present analysis is based on a relatively small
corpus—fifteen distinct window-view locations
and 2100 verbal responses collected across two VR



experiments (Cho et al., 2023b, 2025a,b). Repli-
cating the workflow on a larger, demographically
broader sample and on more varied scenery (e.g.,
different climates, building typologies, and degrees
of familiarity) will be essential before generalizing
the findings.

In addition, our text-clustering pipeline has scala-
bility issues. It still depends on manual labeling of
salient N-grams; with hundreds of scenes, this step
would become labor-intensive and susceptible to
coder drift. Moreover, the current frequency-based
clustering is sensitive to outlier strings: a partici-
pant who copies the same sentence repeatedly, or
injects unrelated content, can distort the cluster
geometry and bias sentiment estimates. Future ver-
sions should incorporate automated noise filtering
and topic-modeling techniques that are less vulner-
able to adversarial or low-effort inputs.
Furthermore, we have not yet explored varying
the system and user prompts to better align the
VLMs’ responses with human window-view im-
pressions. We hypothesize that prompt optimiza-
tion techniques, such as TextGrad (Yuksekgonul
et al., 2024), could yield more human-like comple-
tions, e.g., by prompting for “use colloquial lan-
guage”. This could reduce the divergence between
model and human responses.

Finally, we note that the introduced ablative word-
level sentiment attribution approach perturbs the
syntax and can inflate the importance of function
words.
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A Text Generation

To produce machine-generated impressions for
each of the scene-condition combinations, we used
the following user prompt.

Prompt: “In a few sentences, could you
describe your overall impressions of this
image?”

No system prompt was provided. As for the text
generation parameters, we set the default tempera-
ture setting of 1.0. For Gemini 2.5 Pro, we set the
thinking budget to 1024 tokens. Meanwhile, for
the OpenAl models, the output length was capped
at 512 tokens. We obtained multiple synthetic im-
pressions per view-out scene by repeating the same
request 20 times for GPT-4.1. For the other mod-
els, a single response was collected for each input
image.
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B Model IDs

In this section, we report the model identifiers, sta-
ble release dates, or API call dates, depending on
the information available for each model. When
a stable release date was not explicitly listed, we
provided the most relevant alternative.

To avoid conflating identifiers with dates, we report
for each model:

(1) The exact API model ID we used (when avail-
able),

(i) The reference type indicating what the date
represents (stable release vs. usage),

(iii) The ISO date itself (YYYY-MM-DD).

If the provider exposes a dated API model ID
(i.e., the ID includes a YYYY-MM-DD suffix), we
list that full ID and take the suffix as the reference
date. If no dated ID is available but a stable re-
lease date is published, we report the stable release
date. If neither is available, we report the first date
we used the model in our experiments. Table 7
summarizes these details.

Model (family) Exact API model ID Reference Date
type

Claude 3.5 Haiku claude-3-5-haiku-20241022 Dated model 2024-10-22
D

Claude Sonnet 4 claude-sonnet-4-20250514 Dated model 2025-05-14
ID

GPT-4.1 gpt-4.1-2025-04-14 Dated model 2025-04-14
ID

04-mini 04-mini-2025-04-16 Dated model 2025-04-16
ID

Gemini 2.5 Pro gemini-2.5-pro Stable release 2025-06-17

Gemini 2.5 Flash gemini-2.5-flash Stable release 2025-06-17

Qwen2.5-VL- Qwen/Qwen2.5-VL-72B-Instruct Usage date 2025-07-13

72B-Instruct

Table 7: Models, exact API IDs, and the date associated
with each entry. “Dated model ID”” means the ID itself
carries the YYYY-MM-DD suffix, which we use as the
reference date.

C BERT Score Calculation

In this study, we calculate intragroup similarity
for human/human and GPT-4.1 / GPT-4.1 texts,
along with inter-group similarity for VLM/human
texts using BERTScore (F1). We use the latest
version of HuggingFace’s distilbert-base-uncased
model available as of July 23, 2025, as the back-
bone. When computing intragroup similarity, we
exclude pairs of identical texts. For instance, for
a given human impression of scene 7 with a clear
sky, we compute the similarity with every other
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human impression for this scene-condition combi-
nation. The full procedure for computing BERT
Score similarity is outlined in Algorithm 2.

Algorithm 2 BERT Score Calculation

Require: * [: set of human responses
¢ G: set of GPT-4.1 responses
o V = {1, Va,...,Vk}: sets of responses
from K other VLMs
» (': set of scene-conditions
«M: (HUuGUUE, V) — C, a map-
ping which assigns each response its scene-
condition
* Pretrained function BERT Score(rq, 7p)
Ensure: A dictionary S of BERT scores for se-
lected group pairs

1: Initialize empty dictionary S

2: for all group pairs (X,Y) €
{(H,H),(G,G),(G,H)} U {(Vi,H) |
i=1,...,K}do

3:  Initialize S[X, Y] + 0

4:  for all responses r € X do

5: for all responses s € Y with s # r do

6: if M (r) = M(s) then

7: S[X,Y] — S[X,Y] U

{BERTScore(r, s)}

8: end if

9: end for

10:  end for

11: end for

12: return S

D Top 50 Bi- and Trigrams

In Tables 8, and 9 we present the full set of 50
most common bi- and trigrams extracted from both
human window view impressions and GPT texts.
Each N-gram is color-coded to depict its frequency,
with a higher saturation implying a more commonly
occurring word sequence.

E Cluster Stability Estimation

To evaluate the robustness of the clustering pat-
terns, we generated 1,000 bootstrap samples—each
consisting of utterances or completions selected
with replacement—from both human and GPT re-
sponses. Figure 6 presents a co-occurrence matrix
whose entry M(; ;) stores the number of samples
in which scenes i, j such that ¢ < j occurred in the
same cluster.

Looking at the results for human texts, we can see
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Trigram type Study participants GPT-4.1
Sentiment which is nice -
it is nice
Content the construction site a modern urban
the mountains and late autumn or
mountains in the modern urban or
and the lake urban or campus
mountains and the The sky is
the lake and depicts a modern
the point velo
modern campus or
building in front .
s scaffolding and a
building on the
a modern campus
lot of cars
a few people
buildings on the X o
Polytechnique Fédérale de
the roof of .
. . autumn or winter.
a construction site X .
L vertical stripes in
the mountains in
a university or
of the rolex Y
the building on with scaffolding and
roof of the sky is overcast,
see the mountains campus or institutional
construction site and campus or business
construction site which building with a
lot of trees clean lines and
lake and mountains parked along the
mountains and lake
a modern, open
cars and people .
university or research
the big building
shows a modern
and the mountains
and a person
a person walking
a curved road,
or winter. The
or campus setting
a modern architectural
modern urban campus
a modern building
a wide-angle or
or business park
mountains under a
a business or
and a crane
Grammatical alot of This image depicts
Ican see image depicts a
to look at The overall atmosphere
it is not
atmosphere. In the
the view is .
This image shows
are a lot
" image shows a
with a lot 8
EmEEie suggesting it is
of the view There are several
there is not The scene is
I don’t like
is not much
with not much
as well as
like I am
Location on the right In the background,
on the left In the foreground,
in front of along the street,
building in front On the left,
in the back
front of the
the left and
in front and

Table 8: 50 most frequent trigrams for study participants
and GPT-4.1



the construction
the mountains
mountains and
the lake

the building
the rolex
buildings and
point velo

the trees

the buildings
lake and
mountains in
the road

and cars

the point
building in

a construction
big building
trees and

buildings are

[ Bigram type Study parficipants GPT-4.1
Sentiment is nice -
don’t like
nice to
like that
not nice
nice and
Content construction site modern urban

urban or
late autumn
autumn or
or campus

lines and
scaffolding and
The sky
modern campus
campus or

sky is

or research

or winter.

a curved

or office
vertical stripes
few people
building with
stripes in
contemporary buildings

Polytechnique Fédérale

building on Fédérale de
or business
a parked
a university
university or
with scaffolding
under construction
a person
winter. The
orange, red,
red, and
is overcast,
a clear
a bright,
or institutional
Grammatical alot This image
lot of image depicts
the view depicts a
15 not The overall
(Lo overall atmosphere
can see
1ot much atmosphere. In
abit image shows
see the shows a
to see The scene
view is
to look
look at
it feels
are not
this view
1 feel
Location in front the background,
the left along the
the right
front of
the back

Table 9: 50 most frequent bigrams for study participants

and GPT-4.1

12

that scene 9 doesn’t co-occur with any other scene
in over 60% of the bootstrap samples, highlighting
the fact that the construction taking place in it sets
this scene apart. Meanwhile, the pair of scenes 7
and 13 is the most frequently co-occurring, due to
their shared references to mountains and their phys-
ical proximity. Similarly, scenes 11 and 12 often
co-occutr, as both are characterized by the presence
of buildings and trees.

For GPT-generated responses, scenes 4 and 14 co-
occur in 997 out of 1,000 bootstrap samples, re-
flecting their emphasis on the modern qualities of
the university campus. The next most frequent pair
is scenes 5 and 10, as their descriptions often refer
to modern architectural styles.

Scene number
=y

1 2 3 4 5 6 7 8 9 10 M 12 13 14 15

Scene number
=

1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
Scene number

Figure 6: Bootstrap-based co-occurrence matrices for
GPT-4.1 texts (top) and human impressions (bottom)



F Sentiment Analysis

F.1 Text-Level Sentiment

To provide a comprehensive assessment of the sen-
timent of a given text, we define the Average Senti-
ment Score as follows. Let x denote the input text
and let fent(z) be the tripolar ROBERTa sentiment
classifier (Loureiro et al., 2022). We used the latest
version (cardiffnlp/twitter-roberta-base-sentiment-
latest) available on HuggingFace as of July 13,
2023. This classifier outputs a probability distribu-
tion over the positive, neutral, and negative senti-
ment labels. Specifically, let ppos(x) and ppeg ()
denote the probabilities assigned to the positive
and negative classes, respectively. The Average
Sentiment Score, S(x), is then defined as:

S(JU) = ppos(x) - pneg(m)

This score captures the net polarity of the text, rang-
ing from —1 (maximally negative) to 1 (maximally
positive), thus providing a holistic measure of over-
all sentiment.

F.2 Word-Level Sentiment

In this study, we investigate which words have
the greatest impact on sentiment classification
of human texts and GPT-4.1 responses. To this
end, we evaluate two existing state-of-the-art
token attribution methods, namely Randomized
Path-Integrations (Barkan et al., 2024) and De-
compX (Modarressi et al., 2023), as well as an
ablative sentiment attribution approach. To ensure
the relevance of our analysis, we exclude English
stop words as defined by the NLTK library (Loper
and Bird, 2002).

F.2.1 Ablative Sentiment Attribution

To compute a context-aware sentiment attribution
score for each word in a verbal response, we can
use an ablation-based approach. For each word
wj in the response R = (w1, wa, ..., wy,), we first
compute the Average Sentiment Score of the full
response, denoted S(R). Then, we compute the
Average Sentiment Score of the response with w; re-
moved, denoted S(R\;), where R\; is the response
with the i-th word omitted. We define the sentiment
attribution score for w; as the difference:

A(w;)

S(R) = S(Ry),

where A(w;) quantifies the contribution of w; to
the overall sentiment of the response, in the con-
text of the surrounding words. This attribution
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score reflects the extent to which each word in-
fluences the sentiment prediction, leveraging the
contextual sensitivity of self-attention mechanisms
(as in RoBERTa). The described ablative attribu-
tion method is closely related to the perturbation
idea introduced in the Local Interpretable Model-
agnostic Explanations (LIME) framework (Ribeiro
et al., 2016).

As aresult of applying the ablative sentiment attri-
bution method, we obtain the per-word scores in
human and GPT texts presented in Tables 10, and
11.

Study participants GPT-4.1
Word Score Word Score
pleasant +1.54 striking +0.39
peaceful +1.38 peaceful +0.35
nice +1.31 pleasant +0.34
beautiful +1.29 lush +0.34
interesting +1.26 spacious +0.34
shining +1.16 calm +0.31
love +1.15 greenery +0.30
like [this view] +1.09 well-maintained +0.25
really [like the +1.04 innovative +0.25

mountains]

great +1.04 lush +0.24

Table 10: Words with the strongest impact on sentiment
in positively rated scenes.

Study participants GPT-4.1
Word Score Word Score
boring -1.62 contrast -0.35

ugly -1.59 overcast -0.25

less [pleasant] -1.52 muted -0.23
ruining -1.51 overcast -0.20
nothing -1.44 obscuring -0.19

[particularly

interesting]
uncomfortable -1.30 distorted -0.19
depressing -1.27 subdued -0.18
special -1.23 overall -0.18
wouldnt [be an -1.22 grey -0.17

ideal place]
grey -1.20 metal -0.17

Table 11: Words with the strongest impact on sentiment
in negatively rated scenes.

F.2.2 Comparison with other token
attribution methods

To evaluate the different token attribution methods,
we assess sentiment classification accuracy after



sequentially removing the top 1-10 most impact-
ful words as identified by each method. For each
removal step, we report both the mean accuracy
and the 95% confidence interval. Lower accuracy
after the word removal suggests that the correspond-
ing attribution method more effectively pinpoints
words that are crucial for sentiment classification.
Panels (E) and (F) in Figure 7 demonstrate that the
ablative sentiment attribution approach consistently
yields lower classification accuracy than all other
methods for the removal of the first five words.
DecompX ranks second, while the Randomized
Path-Integration (RPI) methods perform consider-
ably worse: comprehensiveness-based RPI occu-
pies third place and sufficiency-based RPI fourth.
This ranking is observed for both human responses
and GPT-4.1 outputs.

Moreover, panels (A) to (D) reveal that, across all
four token attribution methods, classification accu-
racy declines more rapidly for human texts than for
GPT-4.1 responses during the removal of the first
five words. This observation suggests that human-
written texts tend to concentrate sentiment within a
few key words, whereas GPT-4.1 distributes senti-
ment more evenly across the text.

G Regression Analysis

To investigate the relationship between Average
Sentiment Score and various categorical predictors,
we conduct a series of Ordinary Least Squares
(OLS) regression analyses. The categorical pre-
dictors are one-hot encoded. We consider three
different predictor combinations:

¢ Cluster ID: Each unique scene-condition pair
corresponds to one of three clusters.

Scene Number: Analysis restricted to scene-
condition combinations with condition fixed
to any sky and human responses collected dur-
ing the first experimental session reported in
(Cho et al., 2023b, 2025a,b).

Scene Number and Scene Type: Regression
restricted to scene-condition pairs with con-
dition limited to clear or overcast and hu-
man responses collected during the second
experimental session conducted by (Cho et al.,
2023b, 2025a,b).

The estimated coefficients and corresponding
significance levels for each regression model are
summarized in Tables 12, 13, and 14. Results are
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reported separately for human participants and the
GPT-4.1 generations.

H Licensing

We use the dataset of human impressions of
office-window views collected by (Cho et al,
2023b, 2025a,b), which is distributed under the
Creative Commons Attribution 3.0 Unported (CC
BY 3.0) license.! Consistent with this license, we
credit the creators, link to the license, and note all
modifications we make to the data. We will release
our augmented dataset under CC BY 3.0, accom-
panied by a LICENSE file and an explicit TASL
attribution (Title, Author, Source, License). Our
code will be released under the MIT License to
facilitate reuse.’

I Computing Infrastructure

All experiments reported in this work were per-
formed on a single laptop machine. We used an
Apple MacBook Pro equipped with the Apple M4
system-on-chip, and an integrated GPU. The ma-
chine has 16 GB of unified memory and a 512 GB
solid-state drive. Further, we used Python 3.10. On
this setup we ran:

1. GPT detection via the BERT-style classifier
of Guo et al. (Guo et al., 2023).

2. Similarity scoring using BERTScore (Zhang
et al., 2019).

. Sentiment analysis with a RoBERTa-based
classifier following Loureiro and Chen
(Loureiro et al., 2022).

4. Token attribution methods, including the dis-
cussed ablative approach, DecompX (Modar-
ressi et al., 2023) and Randomized Path Inte-
grations (Barkan et al., 2024).

Because the M4 SoC does not support CUDA,
all computations were run on the CPU. Typical
end-to-end processing of the combined dataset
completed within 24 hours per experiment.

1https: //creativecommons.org/licenses/by/3.0/
2ht’cps: //opensource.org/license/MIT
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Term Coefficient  p-value
Intercept 0.2101 < 0.001
Cluster 1 (vs. 0) -0.0596 0.069
Cluster 2 (vs. 0) -0.8854 < 0.001

Term Coefficient  p-value
Intercept 0.4881 < 0.001
Cluster 1 (vs. 0) 0.0439 0.022
Cluster 2 (vs. 0) -0.3413 < 0.001

Table 12: Estimated coefficients and significance levels from regressing Average Sentiment Score on cluster ID, for

human responses (left) and GPT-4.1 generations (right).

Term Coefficient  p-value
Intercept 0.1260 0.016
Scene 1 (vs. 12) -0.2121 0.020
Scene 2 (vs. 12) -0.2240 0.002
Scene 3 (vs. 12) -0.1765 0.052
Scene 4 (vs. 12) 0.3444 < 0.001
Scene 5 (vs. 12) 0.3857 < 0.001
Scene 6 (vs. 12) 0.5295 < 0.001
Scene 7 (vs. 12) 0.5925 < 0.001
Scene 8 (vs. 12) -0.1887 0.038
Scene 9 (vs. 12) -0.8014 < 0.001
Scene 10 (vs. 12) -0.1146 0.121
Scene 11 (vs. 12) -0.2486 0.001
Scene 13 (vs. 12) 0.0824 0.266
Scene 14 (vs. 12) -0.2886 < 0.001
Scene 15 (vs. 12) 0.1469 0.047

Term Coefficient  p-value
Intercept 0.3541 < 0.001
Scene 1 (vs. 12) -0.2255 < 0.001
Scene 2 (vs. 12) -0.2795 < 0.001
Scene 3 (vs. 12) 0.0347 0.466
Scene 4 (vs. 12) 0.2931 < 0.001
Scene 5 (vs. 12) 0.3586 < 0.001
Scene 6 (vs. 12) 0.2248 < 0.001
Scene 7 (vs. 12) 0.4012 < 0.001
Scene 8 (vs. 12) 0.1125 0.019
Scene 9 (vs. 12) -0.2073 < 0.001
Scene 10 (vs. 12) 0.1215 0.011
Scene 11 (vs. 12) 0.2084 < 0.001
Scene 13 (vs. 12) -0.0236 0.619
Scene 14 (vs. 12) -0.1641 0.001
Scene 15 (vs. 12) 0.0538 0.258

Table 13: Regression coefficients and significance levels for predicting Average Sentiment Score by scene number,
based on human responses (left) and GPT-4.1 generations (right). Analyses are restricted to impressions of images

with any sky condition.

Term Coefficient  p-value
Intercept 0.4437 < 0.001
Overcast (vs. Clear) -0.3261 < 0.001
Scene 2 (vs. 15) -0.3689 < 0.001
Scene 4 (vs. 15) 0.0330 0.747
Scene 5 (vs. 15) 0.1431 0.162
Scene 6 (vs. 15) 0.3559 0.001
Scene 10 (vs. 15) -0.0668 0.514
Scene 11 (vs. 15) -0.4963 < 0.001
Scene 12 (vs. 15) -0.3042 0.003
Scene 13 (vs. 15) -0.0775 0.448
Scene 14 (vs. 15) -0.5399 < 0.001

Term Coefficient  p-value
Intercept 0.6623 < 0.001
Overcast (vs. Clear) -0.2813 < 0.001
Scene 2 (vs. 15) -0.0056 0.881
Scene 4 (vs. 15) 0.1209 0.001
Scene 5 (vs. 15) 0.0759 0.042
Scene 6 (vs. 15) 0.1550 < 0.001
Scene 10 (vs. 15) 0.2274 < 0.001
Scene 11 (vs. 15) 0.0374 0.316
Scene 12 (vs. 15) -0.0180 0.630
Scene 13 (vs. 15) -0.0537 0.150
Scene 14 (vs. 15) -0.0782 0.036

Table 14: Regression coefficients and significance levels for predicting Average Sentiment Score by scene number
and type, based on human responses (left) and GPT-4.1 generations (right). Analyses are restricted to impressions
of images with clear and overcast sky conditions.
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Figure 7: Comparison of token attribution methods for sentiment analysis in human and GPT-4.1 texts. Each
panel shows the average sentiment classification accuracy after sequentially removing the top 1-10 most impactful
words, as identified by four attribution methods: (A) Ablative, (B) DecompX, (C) Randomized Path-Integrations
(Comprehensiveness), and (D) Randomized Path-Integrations (Sufficiency). Shaded regions indicate 95% confidence
intervals. In panels (A)—(D), blue lines represent GPT-4.1 generations and orange lines represent human-written
texts. Panels (E) and (F) summarize all four attribution methods for human and GPT-4.1 datasets, respectively.

16



	Introduction
	Related Work
	Dataset Construction
	Model Selection
	GPT Detection
	N-Grams
	Text Clustering
	Sentiment analysis
	Effect of scene content
	Effect of sky condition
	Word-level sentiment extraction

	Discussion and Conclusion
	Limitations
	Text Generation
	Model IDs
	BERT Score Calculation
	Top 50 Bi- and Trigrams
	Cluster Stability Estimation
	Sentiment Analysis
	Text-Level Sentiment
	Word-Level Sentiment
	Ablative Sentiment Attribution
	Comparison with other token attribution methods


	Regression Analysis
	Licensing
	Computing Infrastructure

