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Abstract001

This paper investigates the subjective dimen-002
sions of window view impressions by compar-003
ing human participants’ verbal responses with004
image descriptions generated by seven state-of-005
the-art vision-language models (VLMs). We006
analyze a dataset (Cho et al., 2023b, 2025a,b)007
of transcribed impressions—2100 utterances008
collected in two separate virtual reality (VR)009
experiments—and compare it against synthetic010
texts from several high-performing VLMs.011
Using the combined dataset, we compare hu-012
man and machine responses based on three key013
criteria: (1) most frequent N-grams, (2) cluster-014
ing structure, and (3) sentiment. Our findings015
reveal significant differences across all three016
dimensions and highlight distinctive patterns in017
human perceptions of window views.018

1 Introduction019

Access to a window view strongly shapes occupant020

comfort, satisfaction, well-being, and spatial per-021

ception (Markus, 1967; van Esch et al., 2019; Ger-022

hardsson and Laike, 2021). Consequently, assess-023

ing perceived view quality has become an impor-024

tant goal in applied architectural research. Most ex-025

isting studies pursue this goal by manually record-026

ing participants’ subjective impressions, typically027

through questionnaires, image and VR-based rat-028

ing scales, interviews, or physiological assessments029

(Abd-Alhamid et al., 2023; Cho et al., 2023a; Matu-030

siak and Klöckner, 2016; Aries et al., 2010). These031

protocols are time consuming and susceptible to032

inconsistency and human error, since each response033

requires manual annotation. As a result, there is034

growing interest in automating the estimation of035

perceived window view quality. Recent computer036

vision studies already extract key view metrics:037

(Xia et al., 2021) predict sky view factor as a proxy038

for openness; (Ranftl et al., 2021) estimate monoc-039

ular depth to recover viewing distance; and (Gong040

et al., 2018) use attention-based segmentation to041

map a scene’s semantic composition. While these 042

pipelines quantify visual features, they still do not 043

generate a direct textual appraisal of perceived view 044

quality. 045

Vision-language models, on the other hand, can 046

process an image and generate concise, factually 047

accurate textual description (Cheng et al., 2025). 048

Thus, VLMs offer a promising route for predicting 049

the textual impression of the window view. Yet it 050

remains unclear how closely their outputs capture 051

the many facets of human window view perception. 052

This gap motivates our guiding question: 053

Q. How do human participants’ impres- 054

sions of window views compare with the 055

descriptions produced by state-of-the-art 056

vision-language models? 057

In this study, we focus on office-window views 058

evaluated by university students and staff (Cho 059

et al., 2023b, 2025a,b). Cho et al. collected 060

2100 transcribed descriptions covering 50 scene- 061

condition combinations. These scenes were 062

captured on a university campus and were pre- 063

sented to participants in VR in either an image or a 064

video format. Building on this dataset, we conduct 065

an in-depth exploratory comparison between 066

human descriptions and captions generated by 067

seven state-of-the-art vision-language models. 068

069

Contributions. Our study makes two key 070

contributions: 071

• Dataset extension: For each of the 35 072

scene-condition images, we added captions 073

from seven state-of-the-art VLMs: 6 cap- 074

tions per baseline model and 20 from the 075

best-performing model, yielding 910 machine- 076

generated descriptions that sit alongside the 077

2100 human descriptions and can be queried 078

by scene, condition, or model. 079
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• Comparative analysis: To our knowledge, this080

is the first systematic comparison of human-081

and machine-generated descriptions of win-082

dow views that jointly evaluates sentiment,083

lexical choice, and content saliency.084

2 Related Work085

In recent years, Large Language Models (LLMs)086

have gained significant popularity, with several087

studies validating machine-generated responses088

against human texts (Guo et al., 2023; Herbold089

et al., 2023; Ha and O’Donoghue, 2024). Notably,090

(Guo et al., 2023) proposes a RoBERTa-based Chat-091

GPT detector that distinguishes between human an-092

swers and responses from GPT-3.5 with an F1 score093

of 98.78 across a variety of knowledge domains.094

When analyzing the linguistic differences between095

humans and GPT-3.5, (Guo et al., 2023) reports that096

GPT-3.5 tends to produce longer answers but with a097

smaller vocabulary. Further, they note that GPT-3.5098

generations exhibit a more formal style, greater ob-099

jectivity, and less emotion. (Ha and O’Donoghue,100

2024) notes a similar trend in Llama-2 genera-101

tions; the authors report that machine-generated102

text tends to have a more positive sentiment than103

the human-authored equivalent. Meanwhile, (Her-104

bold et al., 2023) investigated the output of a more105

modern GPT-4 and reported greater lexical diver-106

sity in the model’s essays when compared to human107

texts. However, several linguistic characteristics108

still distinguish GPT-4, including fewer discourse109

markers, more nominalizations, and higher syntac-110

tic complexity.111

A parallel line of research compares the output of112

vision-enabled LLMs with human image descrip-113

tions. (Cheng et al., 2025) reports that OpenAI’s114

GPT-4o reaches or even surpasses human perfor-115

mance in terms of precision and level of detail.116

However, the authors explicitly consider only the117

factual correctness of the captions, not their style118

or linguistic characteristics.119

In this study, we compare the responses of vision-120

enabled LLMs with human impressions of window121

views collected in (Cho et al., 2023b, 2025a,b). In122

these studies, the authors conducted two indepen-123

dent VR experiments, each with 42 participants124

and identical hardware and protocol. The first ex-125

periment presented 15 campus views twice (once126

as a static image and once as a matched video),127

yielding 30 scene–format combinations and 1260128

verbal impressions. The second experiment revis-129

ited 10 of those locations under clear and overcast 130

skies, producing 20 scene-sky combinations and a 131

further 840 impressions from a new cohort. Each 132

of the aforementioned campus views is shown in 133

Tables 2, 3, and 4. The present paper pools all 2100 134

transcribed utterances from these studies; analysis 135

of machine-generated impressions for on-campus 136

videos is deferred to future work. 137

3 Dataset Construction 138

To obtain synthetic window view impressions in 139

the form of textual descriptors for each image, we 140

used commercially available vision-language mod- 141

els through their web APIs. The model settings 142

and generation hyperparameters are documented 143

in Appendix A. We used the same prompt shown 144

to human participants, enabling a direct, side-by- 145

side comparison between machine- and human- 146

generated responses. 147

4 Model Selection 148

We used the CapArena (Cheng et al., 2025) 149

benchmark to select top-performing vision-enabled 150

LLMs accessible via web APIs. Our selection 151

includes both reasoning models (Gemini 2.5 Pro, 152

Claude Sonnet 4, o4-mini) and non-reasoning mod- 153

els (Gemini 2.5 Flash, Claude 3.5 Haiku, Qwen 154

72B VL, and GPT-4.1). Exact model IDs can be 155

found in Appendix B. We then used BERTScore 156

(F1) (Zhang et al., 2019) to compute the semantic 157

similarity between the model-generated texts and 158

the transcribed human impressions. Furthermore, 159

we computed intragroup BERTScore (F1) to 160

assess internal consistency among human and 161

VLM responses. A detailed description of the 162

procedure for computing BERT scores is outlined 163

in Appendix C. 164

Figure 1 shows that, for all evaluated VLMs, 165

model/human similarity is lower than hu- 166

man/human similarity. The strongest alignment 167

with the human texts is achieved by GPT-4.1. 168

This finding motivated us to further investigate 169

its image descriptions. To this end, we sampled 170

20 generations for each scene-condition pair, 171

as a compromise between output diversity and 172

computational cost (Theodoropoulos et al., 173

2025). The resulting GPT-4.1 generations have a 174

significantly higher intragroup BERTScore (F1) 175

than human impressions (0.6168 vs. 0.3500). This 176

indicates that human responses are more variable 177

than GPT-4.1 texts. 178
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Figure 1: BERTScore (F1) similarity for pairs of human-
human and human-GPT-4.1 texts.

5 GPT Detection179

Having observed a significant difference in both180

intra- and inter-group BERTScore similarity be-181

tween human impressions and GPT-4.1 outputs,182

we set out to test whether a BERT-style classifier183

could distinguish between the two.184

Using the ChatGPT detector proposed by (Guo185

et al., 2023), we achieved an out-of-the-box F1186

score of 0.947 on a sample of 206 human impres-187

sions and 70 GPT-4.1 responses. In the follow-188

ing sections, we will investigate the exact differ-189

ences between the human and GPT texts that could190

explain such strong separation between the two191

groups.192

6 N-Grams193

To obtain a high-level overview of both the tran-194

scribed verbal responses and the GPT-generated195

text, we identified the most frequent N-grams (con-196

tiguous sequences of N words). N-grams were197

extracted by sliding a window of size N over the198

input sequence to form tuples of N consecutive199

words. We analyzed bigrams (N = 2) and trigrams200

(N = 3), which capture the most common two- and201

three-word sequences in the corpus. Among the202

50 highest-frequency combinations (full list in Ap-203

pendix D), four broad semantic classes emerged:204

(1) sentiment, (2) content, (3) grammatical fillers,205

and (4) location. The five most frequent bigrams in206

each class are shown in Table 1. We use color cod-207

ing to depict the frequency of each bigram; higher208

color intensity reflects a more commonly occurring 209

word sequence. 210

Several differences stand out. In the sentiment 211

class, GPT-4.1 adopts more formal and less emo- 212

tionally polarized descriptors, favoring terms such 213

as calm and scenic, whereas human respondents 214

rely on informal adjectives like nice. In the con- 215

tent class, model outputs gravitate toward abstract 216

qualities like modern, and urban, and explicitly 217

mention seasons (autumn). Participants, on the 218

other hand, mention concrete elements visible in 219

the scene, e.g., construction site, mountains, and 220

lake. Synthetic responses also reference sky far 221

more often than human comments. Finally, fewer 222

location-related bigrams appear in the model’s top- 223

50 list. In contrast, participants frequently situate 224

features with spatial adverbs, such as left, right, 225

and front. Location-oriented trigrams are likewise 226

scarce in GPT output, confirming this pattern. 227

To test whether N-grams can summarize partici- 228

pant impressions scene by scene, we extracted the 229

ten most frequent content-related N-grams for each 230

of the window views (Tables 2, 3, and 4). When 231

these phrases are read alongside the corresponding 232

images, they capture many of the scenes’ salient 233

visual details, indicating strong representational 234

power for a simple frequency analysis. This ob- 235

servation motivated the subsequent use of N-gram 236

features in our text-clustering workflow. 237

7 Text Clustering 238

The strong correspondence between the most 239

salient visual elements in the window views and the 240

highest-frequency N-grams prompted us to base 241

our explainable clustering on content-related bi- 242

grams. The full procedure is summarized in Algo- 243

rithm 1. 244

Figure 2 shows that this N-gram approach yields 245

a moderate clustering structure (a silhouette score 246

of 0.475 with 0.315 to 0.535 95% empirical confi- 247

dence interval(CI) for participant impressions, and 248

0.442 score with 0.257 to 0.539 95% empirical CI 249

for machine-generated responses). The empirical 250

confidence intervals were constructed by running 251

single-stage bootstrap resampling with replace- 252

ment. More details on the bootstrapping methodol- 253

ogy along with the resulting co-occurrence matrix 254

are given in Appendix E. 255

In the human transcripts, bigram frequency sepa- 256

rates the data into two main clusters: one domi- 257

nated by building descriptors, the other by moun- 258
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Bigram
type

Study
participants

GPT-4.1

Sentiment is nice
don’t like
nice to
like that
not nice
nice and

calm and
a scenic
and inviting

a lively

a vibrant

Content construction site
the construction
the mountains
mountains and
the lake

a modern
modern urban
urban or
late autumn
autumn or

Grammatical a lot
lot of
the view
is not
like the

This image

image depicts

depicts a

The overall
overall atmosphere

Location in front
the left
the right

front of
the back

the background,

along the

either side
side of
foreground, there

Table 1: Five most frequent bigrams by category for
study participants vs. GPT-4.1

tain references, plus an outlier (Scene 9) charac-259

terized by the word construction. Interestingly,260

within the building cluster, participants frequently261

mention site-specific entities, such as Rolex and262

Point Vélo. These terms do not appear in the GPT-263

4.1 completions, presumably because they reflect264

campus-specific jargon familiar to the participants265

but underrepresented in the model’s training corpus.266

Additionally, the building cluster includes Scene267

5, whose dominant bigram is the mountains. How-268

ever, because the frequency of this bigram is very269

low, Scene 5 lies near the border yet remains in the270

building cluster.271

GPT-4.1, by contrast, sorts its responses into three272

groups: (1) a cluster centered on the bigram with273

the adjective modern, (2) a heterogeneous miscel-274

laneous cluster, and (3) a single outlier, Scene 9,275

characterized by the word scaffolding. The domi-276

nant bigrams in these clusters differ markedly from277

those in the human text, indicating that the model278

foregrounds visual features other than the ones par-279

ticipants find most noteworthy. This divergence280

underscores a distinct pattern in human perception281

of window views that is not fully captured by the282

language model. At the same time, Scene 9 appears283

as an outlier for both study participants and GPT-284

No. Scene Study participants GPT-4.1

1

a

the trees

the buildings

the road

and cars

trees and

buildings are

people and

and buildings

nature and

and trees

late autumn

autumn or

or winter.

a modern

winter. The

or office

The buildings

few cars

the road,

urban or

2

a

b

c

the building

buildings and

the trees

the buildings

the road

trees and

grey buildings

and trees

people walking

with people

The sky

sky is

an urban

modern buildings

autumn or

a fisheye

late autumn

urban scene

few people

urban or

3

a

the mountains

mountains and

the building

building in

big building

building is

of cars

cars and

and people

people and

or research

Polytechnique Fédérale

Fédérale de

few people

a modern,

a modern

urban campus

concrete and

university or

modern urban

4

a

b

c

the mountains

the trees

the buildings

trees and

buildings are

to work

the sky

people walking

of people

the tree

a modern,

campus or

or business

The sky

sky is

business park

open campus

The area

a wide-angle

wide-angle or

5

a

b

c

the mountains

the building

buildings and

the buildings

mountains in

front of

the window

to work
open space

of people

a modern
campus or

modern campus

or institutional

The sky

sky is

windows and

The area

contemporary buildings

buildings with

6

a

b

c

the mountains

mountains and

the lake

the buildings

lake and

mountains in

and mountains

to work

and lake
open space

campus or

a modern

contemporary buildings

modern campus

sky is

The sky

or institutional

with contemporary

few people

people walking

Table 2: Ten most frequent content-bearing bigrams
extracted from participants’ descriptions of each win-
dow view and GPT-4.1 generations. Scenes 1-6 under
three sky conditions: (a) any sky, (b) clear sky, and (c)
overcast sky.
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No. Scene Study participants GPT-4.1

7

a

the mountains

mountains and

the building

the rolex

buildings and

mountains in

the road

trees and

building on

colors and

modern campus

campus or

few people

a clear

a bright,

or institutional

mountains under

and outdoor

buildings on

trees and

8

a

the building

buildings and

the buildings

the road

and cars

buildings are

to work

is grey

the cars

cars passing

a modern

modern urban

urban or
or campus

lines and

few people

The sky

sky is

is overcast,

clean lines

9

a

construction site

the construction

the building

the road

a construction

buildings are

very grey

grey and

site and

of noises

scaffolding and

a modern

modern urban

a curved

a parked

with scaffolding

under construction
a person

a crane

urban or

10

a

b

c

the mountains

the building

the rolex

buildings and

the buildings

buildings are

roof of

the roof
open space

an open

a modern
campus or

modern campus

The sky

sky is

or research

contemporary buildings

or business

The buildings

lines and

11

a

b

c

the building

the trees

the buildings

front of

building in

trees and

building is

the window

to work

greeneries and

a modern

building with

a wide-angle

wide-angle or

a rooftop

modern building

trees and

The sky

or fisheye

panels and

12

a

b

c

the building

buildings and

the trees

the buildings

trees and

buildings are

the colors

to work

the bridge

the sun

a modern

or office

The sky

sky is

trees and

university or

a university

windows and

The buildings

campus or

Table 3: Ten most frequent content-bearing bigrams
extracted from participants’ descriptions of each win-
dow view and GPT-4.1 generations. Scenes 7-12 under
three sky conditions: (a) any sky, (b) clear sky, and (c)
overcast sky.

No. Scene Study participants GPT-4.1

13

a

b

c

the mountains

mountains and

the lake

the building

the buildings

mountains in

building on

buildings on

the colors

grey buildings

a modern

vertical stripes

stripes in

orange, red,

red, and

modern urban
campus or

buildings with

building with

construction or

14

a

b

c

the building

point velo

the trees

front of

trees and

buildings are

to work

and trees

trees are

trees in

a modern,

a fenced

green trees

trees and

building with

wide-angle or

a wide-angle

white vehicles

concrete building

or institutional

15

a

b

c

the building

the trees

the buildings

trees and

of trees

the window

to work

nature and

the sun

the red

a modern

a university

university or

or office

covered walkway

modern architectural

trees and

wide-angle or

a covered

greenery and

Table 4: Ten most frequent content-bearing bigrams
extracted from participants’ descriptions of each win-
dow view and GPT-4.1 generations. Scenes 13-15 under
three sky conditions: (a) any sky, (b) clear sky, and (c)
overcast sky.

4.1, and both use construction-related terminology 285

at high frequency. 286

8 Sentiment analysis 287

Next, we examine how scene content and sky con- 288

dition shape the sentiment in both human transcrip- 289

tions and GPT-4.1 responses. Sentiment is quanti- 290

fied as a continuous Average Sentiment Score score 291

derived from a RoBERTa-based tripolar classifier 292

(Loureiro et al., 2022) with (positive, negative, and 293

neutral classes (see Appendix F.1 for details). 294

8.1 Effect of scene content 295

We first compare the Average Sentiment Score 296

across the N-gram clusters (Figure 2). Sentiment is 297

regressed on cluster ID, using buildings as the base- 298

line for humans and miscellaneous for GPT-4.1. 299

Ordinary Least Squares (OLS) coefficients show 300

that, relative to the baseline, human texts are signif- 301

icantly more negative for the construction cluster 302
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Figure 2: Bigram-based clustering of GPT-4.1 responses
(top) vs. transcribed participant utterances (bottom)

(p < 0.001, c = −0.885). GPT-4.1 completions303

for the same cluster show a similar negative shift304

(p < 0.001, c = −0.341). Captions that frequently305

include the adjective modern exhibit a small but306

significant positive offset in GPT-4.1 (p = 0.022,307

c = 0.044). Full coefficients are reported in Ap-308

pendix G.309

For a finer view-by-view analysis, we fit an OLS310

regression of the Average Sentiment Score on scene311

number (Appendix G), taking Scene 12, whose312

median sentiment approximates the overall me-313

dian in both corpora, as the reference. Human and314

GPT outputs align on eleven of the thirteen scenes315

with significant coefficients. Both rate Scenes 4-7316

(characterized by trees, open spaces, or mountains)317

above Scene 12, and Scenes 1-3, 9, and 14 (dom-318

inated by cars and/or limited openness) below it.319

Algorithm 1 N-gram-based Clustering

Require: A set of scenes S = {s1, s2, . . . , s15},
Word2Vec model W2V

Ensure: Embeddings {vs}s∈S and their clusters
1: for each scene s ∈ S do
2: // 1. Group impressions for s
3: T ← concatenate all responses for s
4: // 2. Extract bigrams
5: B ← extract all bigrams from T
6: Compute frequency f(b) for each b ∈ B
7: // 3. Get the most frequent content bigram
8: b∗ ← arg max

b∈B
content-related(b)

freq(b)

9: // 4. Compute bigram embedding
10: Let Wb∗ ← non-stopwords in bigram b∗

11: eb∗ ←
1

|Wb∗ |
∑

w∈Wb∗
W2V(w)

12: // 5. Scene vector is frequency-normalized
embedding of the most frequent bigram

13: Fb∗ ←
f(b∗)∑
b∈B f(b)

// relative frequency

14: vs ← Fb∗ · eb∗
15: end for
16: /* 5. Cluster scene vectors */
17: Apply agglomerative clustering to {vs}s∈S
18: /* 6. Visualization */
19: Reduce {vs} to 2D with PCA

Divergence occurs on Scenes 8 and 11, which fea- 320

ture a road and limited open space. Participants 321

rate them below Scene 12, whereas GPT-4.1 rates 322

them above, revealing a human-specific aversion to 323

vehicle roads absent in GPT output. 324

Figure 3 presents violin plots of the Average Sen- 325

timent Score by scene, colored by N-gram cluster 326

and ordered by increasing median sentiment. Two 327

clear patterns emerge. First, human responses are 328

much more polarized: they span the full −1 to +1 329

range, and Scenes 1-3 and 8-10 all have negative 330

medians. Second, GPT-4.1 captions are skewed to- 331

ward the positive; while they occasionally register 332

negative values, the lowest score is only −0.092, 333

whereas the most negative human score reaches 334

−0.953. Together, these patterns indicate that GPT- 335

4.1 is far less inclined than human observers to 336

voice strongly negative impressions of the window 337

views. 338

8.2 Effect of sky condition 339

We also examined whether the Average Sentiment 340

Score varies with weather, comparing the clear ver- 341
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Figure 3: Sentiment score per scene number for GPT-
4.1 responses (top) and study-participant impressions
(bottom)

sus overcast skies visible in the captured window342

scenes. The violin plots for both GPT completions343

and participant texts show lower sentiment scores344

for overcast scenes (Figure 4). This pattern is con-345

firmed by a statistically significant negative coeffi-346

cient for the overcast indicator in GPT-generated347

descriptions (p < 0.001, c = −0.281) and an even348

larger negative coefficient in the human responses349

(p < 0.001, c = −0.326); see Appendix G for full350

results. Thus, sky condition accounts for additional351

variance in sentiment beyond scene identity, with352

a markedly stronger impact on human language353

than on GPT output. Additionally, the R2 statistic354

is higher for GPT-4.1 generations than in human355

responses (0.513 vs. 0.190), indicating that scene356

number and scene type explain a larger proportion357

of variance in text sentiment for machine-generated358

texts.359

8.3 Word-level sentiment extraction360

Finally, to reveal how both study participants and361

the GPT-4.1 model encode sentiment, we applied362

an ablation-based word-level sentiment identifica-363

tion method (see Appendix F.2.2 for details on364

the ablation procedure and performance compar-365

ison against DecompX (Modarressi et al., 2023)366

and Randomized Path-Integrations (Barkan et al.,367

2024)). Tables 5 and 6 list the top 10 most in-368

Figure 4: Sentiment by scene number and type for GPT-
4.1 responses (top) and transcribed participant utter-
ances (bottom)

fluential words for the sentiment classification. 369

The analysis spans all scenes and weather condi- 370

tions, spotlighting the terms that contribute most 371

strongly—positively or negatively—to overall text 372

sentiment. 373

For positively rated scenes, GPT-4.1 adopts a rel- 374

atively formal style, emphasizing striking archi- 375

tecture and a peaceful atmosphere in Scenes 13 376

and 5. The absolute word-level importance scores 377

(Appendix F.2.1) are roughly three times smaller 378

than those in participants’ texts, indicating milder 379

phrasing. By contrast, human participants favor 380

plainly positive adjectives, such as nice, beautiful, 381

and great. 382

For the negatively rated scenes, human texts con- 383

tinue to use strongly charged adjectives, with bor- 384

ing, ugly, and ruining contributing the most to neg- 385

ative sentiment. Participants also negate otherwise 386

positive descriptors, for instance, describing Scene 387

2 as less pleasant and mentioning that Scene 8 388

wouldn’t be an ideal place to work. GPT-4.1, how- 389

ever, tends to choose intrinsically negative adjec- 390

tives, such as (muted and subdued). 391

Figure 5 highlights the difference in the distribution 392

of word importance between human texts and GPT- 393

4.1 responses. Removing up to five words with 394

the strongest sentiment from the transcribed human 395
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Study participants GPT-4.1

pleasant

peaceful

nice

beautiful

interesting

shining

love

like [this view]

really [like the mountains]

great

striking

peaceful

pleasant

lush

spacious

calm
greenery

well-maintained

innovative

day

Table 5: Words with strongest impact on sentiment in
positively rated scenes

Study participants GPT-4.1

boring

ugly

less [pleasant]

ruining

nothing [particularly interesting]

uncomfortable

depressing

special

wouldnt [be an ideal place]

grey

contrast
overcast

muted

obscuring

distorted

subdued

overall
grey

metal

cloudy

Table 6: Words with strongest impact on sentiment in
negatively rated scenes

utterances causes a larger drop in accuracy than396

for GPT-4.1-generated text, implying that GPT-4.1397

spreads sentiment more evenly across its generated398

tokens.399

Figure 5: The average sentiment classification accu-
racy after removing the top 1–10 most impactful words,
as identified by the ablative token attribution method.
Shaded regions indicate 95% confidence intervals. The
blue line represents GPT-4.1 generations, and the orange
line denotes human-written texts.

9 Discussion and Conclusion400

This work analyzed the open-ended descriptions401

collected in (Cho et al., 2023b, 2025a,b), and com-402

pared them with GPT-4.1 completions for the same403

window-view scenes. The goal was to isolate as-404

pects of view-out perception that are genuinely 405

human and currently absent from a state-of-the-art 406

multimodal transformer. 407

Unstructured texts were first explored through the 408

most frequent bi- and trigrams, which fell naturally 409

into four semantic categories. With a simple, ex- 410

plainable bigram-based clustering, we identified 411

the objects that most shaped each account. Human 412

responders referred most often to mountains, lake, 413

and construction, whereas GPT-4.1 emphasized the 414

sky and abstract architectural qualities like modern 415

and urban. Further, GPT-4.1’s descriptions never 416

singled out mountains, and they omitted several 417

named entities that appeared regularly in human 418

speech. 419

Sentiment analysis with a RoBERTa classifier re- 420

vealed far stronger polarity in the human texts. Par- 421

ticipants expressed clear dislike for scenes contain- 422

ing construction sites, cars, or limited open space, 423

and clear preference for those with nature or open 424

spaces. GPT-4.1, in contrast, produced only mildly 425

positive sentiment across all scenes. Deviations 426

from the baseline Scene 12 were nevertheless di- 427

rectionally similar between the two corpora, except 428

for Scenes 8 and 11, whose lower human sentiment 429

was not matched by the GPT model. When senti- 430

ment was regressed on the weather, both corpora 431

showed lower scores for overcast images, but the 432

effect size was over 16% larger in the human data. 433

Word-level ablation confirmed these stylistic differ- 434

ences: GPT-4.1 relied on formal adjectives such as 435

spacious or well-planned, with very small attribu- 436

tion weights; whereas participants injected emotion 437

through everyday adjectives (nice, great) and espe- 438

cially through the negation of positive terms (less 439

pleasant, nothing interesting). Together, the find- 440

ings show that open space and natural elements 441

(mountains, trees, lake) drive a positive affect, 442

while construction, roads, and visual clutter depress 443

it, and that the transformer model captures this pat- 444

tern only partially. Therefore, while GPT-4.1 can 445

capture the broad directional trends observed here, 446

its muted tone and key omissions expose clear lim- 447

its. At present, it cannot replace human judgment 448

when nuanced appraisal of window-view quality is 449

required. 450

10 Limitations 451

The present analysis is based on a relatively small 452

corpus—fifteen distinct window-view locations 453

and 2100 verbal responses collected across two VR 454
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experiments (Cho et al., 2023b, 2025a,b). Repli-455

cating the workflow on a larger, demographically456

broader sample and on more varied scenery (e.g.,457

different climates, building typologies, and degrees458

of familiarity) will be essential before generalizing459

the findings.460

In addition, our text-clustering pipeline has scala-461

bility issues. It still depends on manual labeling of462

salient N-grams; with hundreds of scenes, this step463

would become labor-intensive and susceptible to464

coder drift. Moreover, the current frequency-based465

clustering is sensitive to outlier strings: a partici-466

pant who copies the same sentence repeatedly, or467

injects unrelated content, can distort the cluster468

geometry and bias sentiment estimates. Future ver-469

sions should incorporate automated noise filtering470

and topic-modeling techniques that are less vulner-471

able to adversarial or low-effort inputs.472

Furthermore, we have not yet explored varying473

the system and user prompts to better align the474

VLMs’ responses with human window-view im-475

pressions. We hypothesize that prompt optimiza-476

tion techniques, such as TextGrad (Yuksekgonul477

et al., 2024), could yield more human-like comple-478

tions, e.g., by prompting for “use colloquial lan-479

guage”. This could reduce the divergence between480

model and human responses.481

Finally, we note that the introduced ablative word-482

level sentiment attribution approach perturbs the483

syntax and can inflate the importance of function484

words.485
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A Text Generation592

To produce machine-generated impressions for593

each of the scene-condition combinations, we used594

the following user prompt.595

Prompt: “In a few sentences, could you596

describe your overall impressions of this597

image?”598

No system prompt was provided. As for the text599

generation parameters, we set the default tempera-600

ture setting of 1.0. For Gemini 2.5 Pro, we set the601

thinking budget to 1024 tokens. Meanwhile, for602

the OpenAI models, the output length was capped603

at 512 tokens. We obtained multiple synthetic im-604

pressions per view-out scene by repeating the same605

request 20 times for GPT-4.1. For the other mod-606

els, a single response was collected for each input607

image.608

B Model IDs 609

In this section, we report the model identifiers, sta- 610

ble release dates, or API call dates, depending on 611

the information available for each model. When 612

a stable release date was not explicitly listed, we 613

provided the most relevant alternative. 614

To avoid conflating identifiers with dates, we report 615

for each model: 616

(i) The exact API model ID we used (when avail- 617

able), 618

(ii) The reference type indicating what the date 619

represents (stable release vs. usage), 620

(iii) The ISO date itself (YYYY-MM-DD). 621

If the provider exposes a dated API model ID 622

(i.e., the ID includes a YYYY-MM-DD suffix), we 623

list that full ID and take the suffix as the reference 624

date. If no dated ID is available but a stable re- 625

lease date is published, we report the stable release 626

date. If neither is available, we report the first date 627

we used the model in our experiments. Table 7 628

summarizes these details. 629

Model (family) Exact API model ID Reference
type

Date

Claude 3.5 Haiku claude-3-5-haiku-20241022 Dated model
ID

2024-10-22

Claude Sonnet 4 claude-sonnet-4-20250514 Dated model
ID

2025-05-14

GPT-4.1 gpt-4.1-2025-04-14 Dated model
ID

2025-04-14

o4-mini o4-mini-2025-04-16 Dated model
ID

2025-04-16

Gemini 2.5 Pro gemini-2.5-pro Stable release 2025-06-17
Gemini 2.5 Flash gemini-2.5-flash Stable release 2025-06-17
Qwen2.5-VL-
72B-Instruct

Qwen/Qwen2.5-VL-72B-Instruct Usage date 2025-07-13

Table 7: Models, exact API IDs, and the date associated
with each entry. “Dated model ID” means the ID itself
carries the YYYY-MM-DD suffix, which we use as the
reference date.

C BERT Score Calculation 630

In this study, we calculate intragroup similarity 631

for human/human and GPT-4.1 / GPT-4.1 texts, 632

along with inter-group similarity for VLM/human 633

texts using BERTScore (F1). We use the latest 634

version of HuggingFace’s distilbert-base-uncased 635

model available as of July 23, 2025, as the back- 636

bone. When computing intragroup similarity, we 637

exclude pairs of identical texts. For instance, for 638

a given human impression of scene 7 with a clear 639

sky, we compute the similarity with every other 640
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human impression for this scene-condition combi-641

nation. The full procedure for computing BERT642

Score similarity is outlined in Algorithm 2.643

Algorithm 2 BERT Score Calculation
Require: • H: set of human responses

• G: set of GPT-4.1 responses
• V = {V1, V2, . . . , VK}: sets of responses

from K other VLMs
• C: set of scene-conditions
• M :

(
H ∪ G ∪

⋃K
i=1 Vi

)
→ C, a map-

ping which assigns each response its scene-
condition

• Pretrained function BERTScore(ra, rb)
Ensure: A dictionary S of BERT scores for se-

lected group pairs
1: Initialize empty dictionary S
2: for all group pairs (X,Y ) ∈
{(H,H), (G,G), (G,H)} ∪ {(Vi, H) |
i = 1, . . . ,K} do

3: Initialize S[X,Y ]← ∅
4: for all responses r ∈ X do
5: for all responses s ∈ Y with s ̸= r do
6: if M (r) = M (s) then
7: S[X,Y ] ← S[X,Y ] ∪

{BERTScore(r, s)}
8: end if
9: end for

10: end for
11: end for
12: return S

D Top 50 Bi- and Trigrams644

In Tables 8, and 9 we present the full set of 50645

most common bi- and trigrams extracted from both646

human window view impressions and GPT texts.647

Each N-gram is color-coded to depict its frequency,648

with a higher saturation implying a more commonly649

occurring word sequence.650

E Cluster Stability Estimation651

To evaluate the robustness of the clustering pat-652

terns, we generated 1,000 bootstrap samples—each653

consisting of utterances or completions selected654

with replacement—from both human and GPT re-655

sponses. Figure 6 presents a co-occurrence matrix656

whose entry M(i,j) stores the number of samples657

in which scenes i, j such that i < j occurred in the658

same cluster.659

Looking at the results for human texts, we can see660

Trigram type Study participants GPT-4.1
Sentiment which is nice

it is nice

-

Content the construction site

the mountains and

mountains in the

and the lake

mountains and the

the lake and

the point velo

building in front

building on the

lot of cars

buildings on the

the roof of

a construction site

the mountains in

of the rolex

the building on

roof of the

see the mountains

construction site and

construction site which

lot of trees

lake and mountains

mountains and lake

cars and people

the big building

and the mountains

a modern urban

late autumn or

modern urban or

urban or campus

The sky is

depicts a modern

modern campus or

scaffolding and a

a modern campus

a few people

Polytechnique Fédérale de

autumn or winter.

vertical stripes in

a university or

with scaffolding and

sky is overcast,

campus or institutional

campus or business

building with a

clean lines and

parked along the

a modern, open

university or research

shows a modern

and a person

a person walking

a curved road,

or winter. The

or campus setting

a modern architectural

modern urban campus

a modern building

a wide-angle or

or business park

mountains under a

a business or

and a crane
Grammatical a lot of

I can see

to look at

it is not

the view is

are a lot

with a lot

can see the

of the view

there is not

I don’t like

is not much

with not much

as well as

like I am

This image depicts

image depicts a

The overall atmosphere

atmosphere. In the

This image shows

image shows a

suggesting it is

There are several

The scene is

Location on the right

on the left

in front of

building in front

in the back

front of the

the left and

in front and

In the background,

In the foreground,

along the street,

On the left,

Table 8: 50 most frequent trigrams for study participants
and GPT-4.1
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Bigram type Study participants GPT-4.1
Sentiment is nice

don’t like

nice to

like that

not nice

nice and

-

Content construction site

the construction

the mountains

mountains and

the lake

the building

the rolex

buildings and

point velo

the trees

the buildings

lake and

mountains in

the road

and cars

the point

building in

a construction

big building

trees and

buildings are

building on

modern urban

urban or

late autumn

autumn or
or campus

lines and

scaffolding and

The sky

modern campus

campus or

sky is

or research

or winter.

a curved

or office

vertical stripes

few people

building with

stripes in

contemporary buildings

Polytechnique Fédérale

Fédérale de

or business

a parked

a university

university or

with scaffolding

under construction
a person

winter. The

orange, red,

red, and

is overcast,

a clear

a bright,

or institutional
Grammatical a lot

lot of

the view

is not

like the
can see

not much

a bit

see the

to see

view is

to look

look at

it feels

are not

this view

I feel

This image

image depicts

depicts a

The overall

overall atmosphere

atmosphere. In

image shows

shows a

The scene

Location in front

the left

the right

front of

the back

the background,

along the

Table 9: 50 most frequent bigrams for study participants
and GPT-4.1

that scene 9 doesn’t co-occur with any other scene 661

in over 60% of the bootstrap samples, highlighting 662

the fact that the construction taking place in it sets 663

this scene apart. Meanwhile, the pair of scenes 7 664

and 13 is the most frequently co-occurring, due to 665

their shared references to mountains and their phys- 666

ical proximity. Similarly, scenes 11 and 12 often 667

co-occur, as both are characterized by the presence 668

of buildings and trees. 669

For GPT-generated responses, scenes 4 and 14 co- 670

occur in 997 out of 1,000 bootstrap samples, re- 671

flecting their emphasis on the modern qualities of 672

the university campus. The next most frequent pair 673

is scenes 5 and 10, as their descriptions often refer 674

to modern architectural styles. 675

Figure 6: Bootstrap-based co-occurrence matrices for
GPT-4.1 texts (top) and human impressions (bottom)
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F Sentiment Analysis676

F.1 Text-Level Sentiment677

To provide a comprehensive assessment of the sen-678

timent of a given text, we define the Average Senti-679

ment Score as follows. Let x denote the input text680

and let fsent(x) be the tripolar RoBERTa sentiment681

classifier (Loureiro et al., 2022). We used the latest682

version (cardiffnlp/twitter-roberta-base-sentiment-683

latest) available on HuggingFace as of July 13,684

2023. This classifier outputs a probability distribu-685

tion over the positive, neutral, and negative senti-686

ment labels. Specifically, let ppos(x) and pneg(x)687

denote the probabilities assigned to the positive688

and negative classes, respectively. The Average689

Sentiment Score, S(x), is then defined as:690

S(x) = ppos(x)− pneg(x)691

This score captures the net polarity of the text, rang-692

ing from −1 (maximally negative) to 1 (maximally693

positive), thus providing a holistic measure of over-694

all sentiment.695

F.2 Word-Level Sentiment696

In this study, we investigate which words have697

the greatest impact on sentiment classification698

of human texts and GPT-4.1 responses. To this699

end, we evaluate two existing state-of-the-art700

token attribution methods, namely Randomized701

Path-Integrations (Barkan et al., 2024) and De-702

compX (Modarressi et al., 2023), as well as an703

ablative sentiment attribution approach. To ensure704

the relevance of our analysis, we exclude English705

stop words as defined by the NLTK library (Loper706

and Bird, 2002).707

F.2.1 Ablative Sentiment Attribution708

To compute a context-aware sentiment attribution709

score for each word in a verbal response, we can710

use an ablation-based approach. For each word711

wi in the response R = (w1, w2, . . . , wn), we first712

compute the Average Sentiment Score of the full713

response, denoted S(R). Then, we compute the714

Average Sentiment Score of the response with wi re-715

moved, denoted S(R\i), where R\i is the response716

with the i-th word omitted. We define the sentiment717

attribution score for wi as the difference:718

A(wi) = S(R)− S(R\i),719

where A(wi) quantifies the contribution of wi to720

the overall sentiment of the response, in the con-721

text of the surrounding words. This attribution722

score reflects the extent to which each word in- 723

fluences the sentiment prediction, leveraging the 724

contextual sensitivity of self-attention mechanisms 725

(as in RoBERTa). The described ablative attribu- 726

tion method is closely related to the perturbation 727

idea introduced in the Local Interpretable Model- 728

agnostic Explanations (LIME) framework (Ribeiro 729

et al., 2016). 730

As a result of applying the ablative sentiment attri- 731

bution method, we obtain the per-word scores in 732

human and GPT texts presented in Tables 10, and 733

11. 734

Study participants GPT-4.1
Word Score Word Score

pleasant +1.54 striking +0.39

peaceful +1.38 peaceful +0.35

nice +1.31 pleasant +0.34

beautiful +1.29 lush +0.34

interesting +1.26 spacious +0.34

shining +1.16 calm +0.31

love +1.15 greenery +0.30

like [this view] +1.09 well-maintained +0.25

really [like the
mountains]

+1.04 innovative +0.25

great +1.04 lush +0.24

Table 10: Words with the strongest impact on sentiment
in positively rated scenes.

Study participants GPT-4.1
Word Score Word Score

boring -1.62 contrast -0.35

ugly -1.59 overcast -0.25

less [pleasant] -1.52 muted -0.23

ruining -1.51 overcast -0.20

nothing
[particularly
interesting]

-1.44 obscuring -0.19

uncomfortable -1.30 distorted -0.19

depressing -1.27 subdued -0.18

special -1.23 overall -0.18

wouldnt [be an
ideal place]

-1.22 grey -0.17

grey -1.20 metal -0.17

Table 11: Words with the strongest impact on sentiment
in negatively rated scenes.

F.2.2 Comparison with other token 735

attribution methods 736

To evaluate the different token attribution methods, 737

we assess sentiment classification accuracy after 738
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sequentially removing the top 1–10 most impact-739

ful words as identified by each method. For each740

removal step, we report both the mean accuracy741

and the 95% confidence interval. Lower accuracy742

after the word removal suggests that the correspond-743

ing attribution method more effectively pinpoints744

words that are crucial for sentiment classification.745

Panels (E) and (F) in Figure 7 demonstrate that the746

ablative sentiment attribution approach consistently747

yields lower classification accuracy than all other748

methods for the removal of the first five words.749

DecompX ranks second, while the Randomized750

Path-Integration (RPI) methods perform consider-751

ably worse: comprehensiveness-based RPI occu-752

pies third place and sufficiency-based RPI fourth.753

This ranking is observed for both human responses754

and GPT-4.1 outputs.755

Moreover, panels (A) to (D) reveal that, across all756

four token attribution methods, classification accu-757

racy declines more rapidly for human texts than for758

GPT-4.1 responses during the removal of the first759

five words. This observation suggests that human-760

written texts tend to concentrate sentiment within a761

few key words, whereas GPT-4.1 distributes senti-762

ment more evenly across the text.763

G Regression Analysis764

To investigate the relationship between Average765

Sentiment Score and various categorical predictors,766

we conduct a series of Ordinary Least Squares767

(OLS) regression analyses. The categorical pre-768

dictors are one-hot encoded. We consider three769

different predictor combinations:770

• Cluster ID: Each unique scene-condition pair771

corresponds to one of three clusters.772

• Scene Number: Analysis restricted to scene-773

condition combinations with condition fixed774

to any sky and human responses collected dur-775

ing the first experimental session reported in776

(Cho et al., 2023b, 2025a,b).777

• Scene Number and Scene Type: Regression778

restricted to scene-condition pairs with con-779

dition limited to clear or overcast and hu-780

man responses collected during the second781

experimental session conducted by (Cho et al.,782

2023b, 2025a,b).783

The estimated coefficients and corresponding784

significance levels for each regression model are785

summarized in Tables 12, 13, and 14. Results are786

reported separately for human participants and the 787

GPT-4.1 generations. 788

H Licensing 789

We use the dataset of human impressions of 790

office-window views collected by (Cho et al., 791

2023b, 2025a,b), which is distributed under the 792

Creative Commons Attribution 3.0 Unported (CC 793

BY 3.0) license.1 Consistent with this license, we 794

credit the creators, link to the license, and note all 795

modifications we make to the data. We will release 796

our augmented dataset under CC BY 3.0, accom- 797

panied by a LICENSE file and an explicit TASL 798

attribution (Title, Author, Source, License). Our 799

code will be released under the MIT License to 800

facilitate reuse.2 801

I Computing Infrastructure 802

All experiments reported in this work were per- 803

formed on a single laptop machine. We used an 804

Apple MacBook Pro equipped with the Apple M4 805

system-on-chip, and an integrated GPU. The ma- 806

chine has 16 GB of unified memory and a 512 GB 807

solid-state drive. Further, we used Python 3.10. On 808

this setup we ran: 809

1. GPT detection via the BERT-style classifier 810

of Guo et al. (Guo et al., 2023). 811

2. Similarity scoring using BERTScore (Zhang 812

et al., 2019). 813

3. Sentiment analysis with a RoBERTa-based 814

classifier following Loureiro and Chen 815

(Loureiro et al., 2022). 816

4. Token attribution methods, including the dis- 817

cussed ablative approach, DecompX (Modar- 818

ressi et al., 2023) and Randomized Path Inte- 819

grations (Barkan et al., 2024). 820

Because the M4 SoC does not support CUDA, 821

all computations were run on the CPU. Typical 822

end-to-end processing of the combined dataset 823

completed within 24 hours per experiment. 824

1https://creativecommons.org/licenses/by/3.0/
2https://opensource.org/license/MIT
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Term Coefficient p-value

Intercept 0.2101 < 0.001
Cluster 1 (vs. 0) -0.0596 0.069
Cluster 2 (vs. 0) -0.8854 < 0.001

Term Coefficient p-value

Intercept 0.4881 < 0.001
Cluster 1 (vs. 0) 0.0439 0.022
Cluster 2 (vs. 0) -0.3413 < 0.001

Table 12: Estimated coefficients and significance levels from regressing Average Sentiment Score on cluster ID, for
human responses (left) and GPT-4.1 generations (right).

Term Coefficient p-value

Intercept 0.1260 0.016
Scene 1 (vs. 12) -0.2121 0.020
Scene 2 (vs. 12) -0.2240 0.002
Scene 3 (vs. 12) -0.1765 0.052
Scene 4 (vs. 12) 0.3444 < 0.001
Scene 5 (vs. 12) 0.3857 < 0.001
Scene 6 (vs. 12) 0.5295 < 0.001
Scene 7 (vs. 12) 0.5925 < 0.001
Scene 8 (vs. 12) -0.1887 0.038
Scene 9 (vs. 12) -0.8014 < 0.001
Scene 10 (vs. 12) -0.1146 0.121
Scene 11 (vs. 12) -0.2486 0.001
Scene 13 (vs. 12) 0.0824 0.266
Scene 14 (vs. 12) -0.2886 < 0.001
Scene 15 (vs. 12) 0.1469 0.047

Term Coefficient p-value

Intercept 0.3541 < 0.001
Scene 1 (vs. 12) -0.2255 < 0.001
Scene 2 (vs. 12) -0.2795 < 0.001
Scene 3 (vs. 12) 0.0347 0.466
Scene 4 (vs. 12) 0.2931 < 0.001
Scene 5 (vs. 12) 0.3586 < 0.001
Scene 6 (vs. 12) 0.2248 < 0.001
Scene 7 (vs. 12) 0.4012 < 0.001
Scene 8 (vs. 12) 0.1125 0.019
Scene 9 (vs. 12) -0.2073 < 0.001
Scene 10 (vs. 12) 0.1215 0.011
Scene 11 (vs. 12) 0.2084 < 0.001
Scene 13 (vs. 12) -0.0236 0.619
Scene 14 (vs. 12) -0.1641 0.001
Scene 15 (vs. 12) 0.0538 0.258

Table 13: Regression coefficients and significance levels for predicting Average Sentiment Score by scene number,
based on human responses (left) and GPT-4.1 generations (right). Analyses are restricted to impressions of images
with any sky condition.

Term Coefficient p-value

Intercept 0.4437 < 0.001
Overcast (vs. Clear) -0.3261 < 0.001
Scene 2 (vs. 15) -0.3689 < 0.001
Scene 4 (vs. 15) 0.0330 0.747
Scene 5 (vs. 15) 0.1431 0.162
Scene 6 (vs. 15) 0.3559 0.001
Scene 10 (vs. 15) -0.0668 0.514
Scene 11 (vs. 15) -0.4963 < 0.001
Scene 12 (vs. 15) -0.3042 0.003
Scene 13 (vs. 15) -0.0775 0.448
Scene 14 (vs. 15) -0.5399 < 0.001

Term Coefficient p-value

Intercept 0.6623 < 0.001
Overcast (vs. Clear) -0.2813 < 0.001
Scene 2 (vs. 15) -0.0056 0.881
Scene 4 (vs. 15) 0.1209 0.001
Scene 5 (vs. 15) 0.0759 0.042
Scene 6 (vs. 15) 0.1550 < 0.001
Scene 10 (vs. 15) 0.2274 < 0.001
Scene 11 (vs. 15) 0.0374 0.316
Scene 12 (vs. 15) -0.0180 0.630
Scene 13 (vs. 15) -0.0537 0.150
Scene 14 (vs. 15) -0.0782 0.036

Table 14: Regression coefficients and significance levels for predicting Average Sentiment Score by scene number
and type, based on human responses (left) and GPT-4.1 generations (right). Analyses are restricted to impressions
of images with clear and overcast sky conditions.
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(A) Ablative method (B) DecompX method

(C) RPI, maximizing Comprehensiveness (D) RPI, maximizing Sufficiency

E) Human texts: all methods F) GPT-4.1 texts: all methods

Figure 7: Comparison of token attribution methods for sentiment analysis in human and GPT-4.1 texts. Each
panel shows the average sentiment classification accuracy after sequentially removing the top 1–10 most impactful
words, as identified by four attribution methods: (A) Ablative, (B) DecompX, (C) Randomized Path-Integrations
(Comprehensiveness), and (D) Randomized Path-Integrations (Sufficiency). Shaded regions indicate 95% confidence
intervals. In panels (A)–(D), blue lines represent GPT-4.1 generations and orange lines represent human-written
texts. Panels (E) and (F) summarize all four attribution methods for human and GPT-4.1 datasets, respectively.
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