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Abstract

Large Language Models (LLMs) have the capacity to store and recall facts.1

Through experimentation with open-source models, we observe that this abil-2

ity to retrieve facts can be easily manipulated by changing contexts, even without3

altering their factual meanings. These findings highlight that LLMs might behave4

like an associative memory model where certain tokens in the contexts serve as5

clues to retrieving facts. We mathematically explore this property by studying how6

transformers, the building blocks of LLMs, can complete such memory tasks. We7

study a simple latent concept association problem with a one-layer transformer8

and we show theoretically and empirically that the transformer gathers information9

using self-attention and uses the value matrix for associative memory.10

1 Introduction11

What is the first thing that would come to mind if you were asked not to think of an elephant? Chances12

are, you would be thinking about elephants. What if we ask the same thing to Large Language Models13

(LLMs)? Obviously, one would expect the outputs of LLMs to be heavily influenced by tokens in the14

context [Bro+20]. Could such influence potentially prime LLMs into changing outputs in a nontrivial15

way? To gain a deeper understanding, we focus on one specific task called fact retrieval [Men+22;16

Men+23] where expected output answers are given. LLMs, which are trained on vast amounts of17

data, are known to have the capability to store and recall facts [Men+22; Men+23; DCAT21; Mit+21;18

Mit+22; Dai+21]. This ability raises natural questions: How robust is fact retrieval, and to what extent19

does it depend on semantic meanings within contexts? What does it reveal about memory in LLMs?20

In this paper, we first demonstrate that fact retrieval is not robust and LLMs can be easily fooled by21

varying contexts. For example, when asked to complete “The Eiffel Tower is in the city of”, GPT-222

[Rad+19] answers with “Paris”. However, when prompted with “The Eiffel Tower is not in Chicago.23

The Eiffel Tower is in the city of”, GPT-2 responds with “Chicago”. See Figure 1 for more examples,24

including Gemma and LLaMA. On the other hand, humans do not find the two sentences factually25

confusing and would answer “Paris” in both cases. We call this phenomenon context hijacking.26

Importantly, these findings suggest that LLMs might behave like an associative memory model. In27

which, tokens in contexts guide the retrieval of memories, even if such associations formed are not28

inherently semantically meaningful.29

This associative memory perspective raises further interpretability questions about how LLMs form30

such associations. Answering these questions can facilitate the development of more robust LLMs.31

Unlike classical models of associative memory in which distance between memory patterns are32

measured directly and the associations between inputs and outputs are well-specified, fact retrieval33

relies on a more nuanced notion of similarity measured by latent (unobserved) semantic concepts.34
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Figure 1: Examples of context hijacking for various LLMs, showcasing that fact retrieval is not robust.

To model this, we propose a synthetic task called latent concept association where the output token is35

closely related to sampled tokens in the context but wherein similarity is measured via a latent space36

of semantic concepts. We then investigate how a one-layer transformer [Vas+17], a fundamental37

component of LLMs, can tackle this memory retrieval task in which various context distributions38

correspond to distinct memory patterns. We demonstrate that the transformer accomplishes the39

task in two stages: The self-attention layer gathers information, while the value matrix functions40

as associative memory. Moreover, low-rank structure also emerges in the embedding space of trained41

transformers. These findings provide additional theoretical validation for numerous existing low-rank42

editing and fine-tuning techniques [Men+22; Hu+21].43

Contributions Specifically, we make the following contributions:44

1. We systematically demonstrate context hijacking for various open source LLM models45

including GPT-2 [Rad+19], LLaMA-2 [Tou+23] and Gemma [Tea+24], which show46

that fact retrieval can be misled by contexts (Appendix B), reaffirming that LLMs lack47

robustness to context changes [Shi+23; Pet+20; CSH22; Yor+23; PE21].48

2. We propose a synthetic memory retrieval task termed latent concept association, allowing49

us to analyze how transformers can accomplish memory recall (Section 3). Unlike50

classical models of associative memory, our task creates associations in a latent, semantic51

concept space as opposed to directly between observed tokens. This perspective is crucial52

to understanding how transformers can solve fact retrieval problems by implementing53

associative memory based on similarity in the latent space.54

3. We theoretically (Section 4) and empirically (Appendix D) study trained transformers on55

this latent concept association problem, showing that self-attention is used to aggregate56

information while the value matrix serves as associative memory. And moreover, we57

discover that the embedding space can exhibit a low-rank structure, offering additional58

support for existing editing and fine-tuning methods [Men+22; Hu+21].59

2 Context hijacking in LLMs60

We systematically examine the phenomenon of context hijacking with the COUNTERFACT dataset61

[Men+22]. Due to the page limit, more details can be found in Appendix B. Overall, the experimental62

results show that even prepending contexts with factually correct sentences can cause LLMs to output63

incorrect tokens.64

Context hijacking indicates that fact retrieval in LLMs is not robust and that accurate fact recall65

does not necessarily depend on the semantics of the context. As a result, one hypothesis is to view66

LLMs as an associative memory model where special tokens in contexts, associated with the fact,67

provide partial information or clues to facilitate memory retrieval [Zha23]. To better understand68

this perspective, we design a synthetic memory retrieval task to evaluate how the building blocks of69

LLMs, transformers, can solve it.70
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3 Problem setup71

In the context of LLMs, fact or memory retrieval, can be modeled as a next token prediction problem.72

Given a context (e.g., “The capital of France is”), the objective is to accurately predict the next token73

(e.g., “Paris”) based on the factual relation between context and the following token.74

Previous papers [Ram+20; Mil+22; BP21; Zha23] have studied the connection between attention and75

autoassociative and heteroassociative memory. For autoassociative memory, contexts are modeled as76

a set of existing memories and the goal of self-attention is to select the closest one or approximations77

to it. On top of this, heteroassociative memory [Mil+22; BP21] has an additional projection to remap78

each output to a different one, whether within the same space or otherwise. In both scenarios, the79

goal is to locate the closest pattern within the context when provided with a query (up to a remapping80

if it’s heteroassociative).81

Fact retrieval, on the other hand, does not strictly follow this framework. The crux of the issue82

is that the output token is not necessarily close to any particular token in the context but rather a83

combination of them and the “closeness” is intuitively measured by latent semantic concepts. For84

example, consider context sentence “The capital of France is” with the output “Paris”. Here, none of85

the tokens in the context directly corresponds to the word “Paris”. Yet some tokens contain partial86

information about “Paris”. Intuitively, “capital” aligns with the “isCapital” concept of “Paris”, while87

“France” corresponds to the “isFrench” concept linked to “Paris” where all the concepts are latent. To88

model such phenomenon, we propose a synthetic task called latent concept association where the89

output token is closely related to tokens in the context and similarity is measured via the latent space.90

3.1 Latent concept association91

We propose a synthetic prediction task where for each output token y, tokens in the context (denoted92

by x) are sampled from a conditional distribution given y. Tokens that are similar to y will be93

favored to appear more in the context, except for y itself. The task of latent concept association is to94

successfully retrieve the token y given samples from p(x|y). The synthetic setup simplifies by not95

accounting for the sequential nature of language, a choice supported by previous experiments on96

context hijacking (Appendix B). We formalize this task below.97

To measure similarity, we define a latent space. Here, the latent space is a collection of m binary98

latent variables Zi. These could be viewed as semantic concept variables. Let Z = (Z1, ..., Zm) be99

the corresponding random vector, z be its realization, and Z be the collection of all latent binary100

vectors. For each latent vector z, there’s one associated token t ∈ [V ] = {0, ..., V − 1} where V is101

the total number of tokens. Here we represent the tokenizer as ι where ι(z) = t. In this paper, we102

assume that ι is the standard tokenizer where each binary vector is mapped to its decimal number. In103

other words, there’s a one to one map between latent vectors and tokens. Because the map is one to104

one, we sometimes use latent vectors and tokens interchangeably. We also assume that every latent105

binary vector has a unique corresponding token, therefore V = 2m.106

Under the latent concept association model, the goal is to retrieve specific output tokens given partial107

information in the contexts. This is modeled by the latent conditional distribution:108

p(z|z∗) = ωπ(z|z∗) + (1− ω)Unif(Z)

where109

π(z|z∗) ∝
{
exp(−DH(z, z∗)/β) z ∈ N (z∗),

0 z /∈ N (z∗).

Here DH is the Hamming distance, N (z∗) is a subset of Z\{z∗} and β > 0 is the temperature parame-110

ter. The use of Hamming distance draws a parallel with the notion of distributional semantics in natural111

language: “a word is characterized by the company it keeps” [Fir57]. In words, p(z|z∗) says that with112

probability 1−ω, the conditional distribution uniformly generate random latent vectors and with prob-113

ability ω, the latent vector is generated from the informative conditional distribution π(z|z∗) where114

the support of the conditional distribution is N (z∗). Here, π represents the informative conditional dis-115

tribution that depends on z∗ whereas the uniform distribution is uninformative and can be considered116

as noise. The mixture model parameter ω determines the signal to noise ratio of the contexts.117

Therefore, for any latent vector z∗ and its associated token, one can generate L context token words118

with the aforementioned latent conditional distribution:119
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• Uniformly sample a latent vector z∗120

• For l = 1, ..., L− 1, sample zl ∼ p(z|z∗) and tl = ι(zl).121

• For l = L, sample z ∼ π(z|z∗) and tL = ι(z).122

Consequently, we have x = (t1, .., tL) and y = ι(z∗). The last token in the context is generated123

specifically to make sure that it is not from the uniform distribution. This ensures that the last token124

can use attention to look for clues, relevant to the output, in the context. Let DL be the sampling125

distribution to generate (x, y) pairs. The conditional probability of y given x is given by p(y|x).126

With slight abuse of notation, given a token t ∈ [V ], we define N (t) = N (ι−1(t)). we also define127

DH(t, t′) = DH(ι−1(t), ι−1(t′)) for any pair of tokens t and t′.128

For any function f that maps the context to estimated logits of output labels, the training objective129

is to minimize this loss of the last position:E(x,y)∈DL [ℓ(f(x), y)] where ℓ is the cross entropy loss130

with softmax. The error rate of latent concept association is defined by the following: RDL(f) =131

P(x,y)∼DL [argmax f(x) ̸= y] And the accuracy is 1−RDL(f).132

3.2 Transformer network architecture133

Given a context x = (t1, .., tL) which consists of L tokens, we define X ∈ {0, 1}V×L to be its134

one-hot encoding where V is the vocabulary size. Here we use χ to represent the one-hot encoding135

function (i.e., χ(x) = X). Similar to [LLR23; Tar+23a; Li+24], we also consider a simplified136

one-layer transformer model without residual connections and normalization:137

fL(x) =

[
WE

TWV attn(WEχ(x))

]
:L

(3.1)

where138

attn(U) = Uσ
( (WKU)T (WQU)√

da

)
,

WK ∈ Rda×d is the key matrix, and WQ ∈ Rda×d is the query matrix and da is the attention head139

size. σ : RL×L → (0, 1)L×L is the column-wise softmax operation. WV ∈ Rd×d is the value140

matrix and WE ∈ Rd×V is the embedding matrix. Here, we adopt the weight tie-in implementation141

which is used for Gemma [Tea+24]. We focus solely on the prediction of the last position, as it is142

the only one relevant for latent concept association. For convenience, we also use h(x) to mean143 [
attn(WEχ(x))

]
:L

, which is the hidden representation after attention for the last position, and fL
t (x)144

to represent the logit for output token t.145

4 Theoretical analysis146

In this section, we theoretically investigate how a single-layer transformer can solve the latent147

concept association problem. We first introduce a hypothetical associative memory model that utilizes148

self-attention for information aggregation and employs the value matrix for memory retrieval. This149

hypothetical model turns out to mirror trained transformers in experiments. We also examine the150

role of each individual component of the network: the value matrix, embeddings, and the attention151

mechanism. We validate our theoretical claims in Appendix D.152

4.1 Hypothetical associative memory model153

In this section, we show that a simple single-layer transformer network can solve the latent concept154

association problem. The formal result is presented below in Theorem 1; first we require a few more155

definitions. Let WE(t) be the t-th column of the embedding matrix WE . In other words, this is the156

embedding for token t. Given a token t, define N1(t) to be the subset of tokens whose latent vectors157

are only 1 Hamming distance away from t’s latent vector: N1(t) = {t′ : DH(t′, t)) = 1} ∩ N (t).158

For any output token t, N1(t) contains tokens with the highest probabilities to appear in the context.159

The following theorem formalizes the intuition that a one-layer transformer that uses self-attention160

to summarize statistics about the context distributions and whose value matrix uses aggregated161

representations to retrieve output tokens can solve the latent concept association problem defined in162

Section 3.1.163
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Theorem 1 (informal). Suppose the data generating process follows Section 3.1 where m ≥ 3,164

ω = 1, and N (t) = V \ {t}. Then for any ε > 0, there exists a transformer model given by (3.1)165

that achieves error ε, i.e. RDL(fL) < ε given sufficiently large context length L.166

More precisely, for the transformer in Theorem 1, we will have WK = 0 and WQ = 0. Each row of167

WE is orthogonal to each other and normalized. And WV is given by168

WV =
∑
t∈[V ]

WE(t)(
∑

t′∈N1(t)

WE(t
′)T ) (4.1)

A more formal statement of the theorem and its proof is given in Appendix E (Theorem 7).169

Intuitively, Theorem 1 suggests having more samples from p(x|y) can lead to a better recall rate. On170

the other hand, if contexts are modified to contain more samples from p(x|ỹ) where ỹ ̸= y, then it is171

likely for transformer to output the wrong token. This is similar to context hijacking (see Section 4.4).172

The construction of the value matrix is similar to the associative memory model used in [Bie+24;173

CSB24], but in our case, there is no explicit one-to-one input and output pairs stored as memories.174

Rather, a combination of inputs are mapped to a single output.175

While the construction in Theorem 1 is just one way that a single-layer transformer can tackle this task,176

it turns out empirically this construction of WV is close to the trained WV , even in the noisy case (ω ̸=177

1). In Appendix D.1, we will demonstrate that substituting trained value matrices with constructed178

ones can retain accuracy, and the constructed and trained value matrices even share close low-rank179

approximations. Moreover, in this hypothetical model, a simple uniform attention mechanism is180

deployed to allow self-attention to count occurrences of each individual tokens. Since the embeddings181

are orthonormal vectors, there is no interference. Hence, the self-attention layer can be viewed as182

aggregating information of contexts. It is worth noting that, in different settings, more sophisticated183

embedding structures and attention patterns are needed. This is discussed in the following sections.184

4.2 On the role of the value matrix185

The construction in Theorem 1 relies on the value matrix acting as associative memory. But is it186

necessary? Could we integrate the functionality of the value matrix into the self-attention module to187

solve the latent concept association problem? Empirically, the answer seems to be negative as will be188

shown in Appendix D.1. In particular, when the context length is small, setting the value matrix to be189

the identity would lead to subpar memory recall accuracy.190

This is because if the value matrix is the identity, the transformer would be more susceptible to the191

noise in the context. To see this, notice that given any pair of context and output token (x, y), the192

latent representation after self-attention h(x) must live in the polyhedron Sy to be classified correctly193

where Sy is defined as:194

Sy = {v : (WE(y)−WE(t))
T v > 0 where t ̸∈ [V ] \ {y}}

Note that, by definition, for any two tokens y and ỹ, Sy ∩ Sỹ = ∅. On the other hand, because of the195

self-attention mechanism, h(x) must also live in the convex hull of all the embedding vectors:196

CV = Conv(WE(0), ...,WE(|V | − 1))

In other words, for any pair (x, y) to be classified correctly, h(x) must live in the intersection of Sy197

and CV . Due to the stochastic nature of x, it is likely for h(x) to be outside of this intersection. The198

remapping effect of the value matrix can help with this problem. The following lemma explains this199

intuition.200

Lemma 2. Suppose the data generating process follows Section 3.1 where m ≥ 3, ω = 1 and201

N (t) = {t′ : DH(t, t′)) = 1}. For any single layer transformer given by (3.1) where each row of202

WE is orthogonal to each other and normalized, if WV is constructed as in (4.1), then the error rate203

is 0. If WV is the identity matrix, then the error rate is strictly larger than 0.204

Another intriguing phenomenon occurs when the value matrix is the identity matrix. In this case, the205

inner product between embeddings and their corresponding Hamming distance varies linearly. This206

relationship can be formalized by the following theorem.207
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Theorem 3. Suppose the data generating process follows Section 3.1 where m ≥ 3, ω = 1 and208

N (t) = V \ {t}. For any single layer transformer given by (3.1) with WV being the identity matrix,209

if the cross entropy loss is minimized so that for any sampled pair (x, y),210

p(y|x) = p̂(y|x) = softmax(fL
y (x))

there exists a > 0 and b such that for two tokens t ̸= t′,211

⟨WE(t),WE(t
′)⟩ = −aDH(t, t′) + b

4.3 Embedding training and geometry212

The hypothetical model in Section 4.1 requires embeddings to form an orthonormal basis. In213

the overparameterization regime where the embedding dimension d is larger than the number of214

tokens V , this can be approximately achieved by Gaussian initialization. However, in practice, the215

embedding dimension is typically smaller than the vocabulary size, in which case it is impossible216

for the embeddings to constitute such a basis. Empirically, in Appendix D.2, we observe that with217

overparameterization (d > V ), embeddings can be frozen at their Gaussian initialization, whereas in218

the underparameterized regime, embedding training is required to achieve better recall accuracy.219

This raises the question: What kind of embedding geometry is learned in the underparameterized220

regime? Experiments reveal a close relationship between the inner product of embeddings for two221

tokens and the Hamming distance of these tokens (see Figure 3b and Figure G.5 in Appendix G.2).222

Approximately, we have the following relationship:223

⟨WE(t),WE(t
′)⟩ =

{
b0 t = t′

−aDH(t, t′) + b t ̸= t′
(4.2)

for any two tokens t and t′ where b0 > b and a > 0. One can view this as a combination of the224

embedding geometry under Gaussian initialization and the geometry when WV is the identity matrix225

(Theorem 3). Importantly, this structure demonstrates that trained embeddings inherently capture226

similarity within the latent space. Theoretically, this embedding structure (4.2) can also lead to low227

error rate under specific conditions on b0, b and a, which is articulated by the following theorem.228

Theorem 4 (Informal). Following the same setup as in Theorem 1, but embeddings obey (4.2), then229

under certain conditions on a, b and if b0 and context length L are sufficiently large, the error rate230

can be arbitrarily small, i.e. RDL(fL) < ε for any 0 < ε < 1.231

The formal statement of the theorem and its proof is given in Appendix E (Theorem 8).232

Notably, this embedding geometry also implies a low-rank structure. Let’s first consider the special233

case when b0 = b. In other words, the inner product between embeddings and their corresponding234

Hamming distance varies linearly.235

Lemma 5. If embeddings follow (4.2) and b = b0 and N (t) = V \ {t}, then rank(WE) ≤ m+ 2.236

When b0 > b, the embedding matrix will not be strictly low rank. However, it can still exhibit237

approximate low-rank behavior, characterized by an eigengap between the top and bottom singular238

values. This is verified empirically (see Figure G.9-G.12 in Appendix G.4).239

4.4 Context hijacking and the misclassification of memory recall240

In light of the theoretical results on latent concept association, a natural question arises: How do these241

results connect to context hijacking in LLMs? In essence, for the latent concept association problem,242

the differentiation of output tokens is achieved by distinguishing between the various conditional243

distributions p(x|y). Thus, adding or changing tokens in the context x so that it resembles a different244

conditional distribution can result in misclassification. In Appendix G.5, we present experiments245

showing that mixing different contexts can cause transformers to misclassify. This partially explains246

context hijacking in LLMs (Appendix B). On the other hand, it is well-known that the error rate247

is related to the KL divergence between conditional distributions of contexts [Cov99]. The closer248

the distributions are, the easier it is for the model to misclassify. Here, longer contexts, primarily249

composed of i.i.d samples, suggest larger divergences, thus higher memory recall rate. This is250

theoretically implied by Theorem 1 and Theorem 4 and empirically verified in Appendix G.6. Such251

result is also related to reverse context hijacking (Appendix F) where prepending sentences including252

true target words can improve fact recall rate.253
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A Literature review517

Associative memory Associative memory has been explored within the field of neuroscience518

[Hop82; Seu96; BYBOS95; Ska+94; SS22]. The most popular models among them is the Hopfield519

network [Hop82] and its modern successors [Ram+20; Mil+22; Zha23] are closely related to the520

attention layer used in transformers [Vas+17]. In addition, the attention mechanism has also been521

shown to approximate another associative memory model known as sparse distributed memory522

[BP21]. Beyond attention, Radhakrishnan et al. [RBU20] and Jiang and Pehlevan [JP20] show523

that overparameterzed autoencoders can implement associative memory as well. This paper studies524

fact retrieval as a form of associative memory. Another closely related area of research focuses on525

memorization in deep neural networks. Henighan et al. [Hen+23] shows that a simple neural network526

trained on toy model will store data points in the overfitting regime while storing features in the527

underfitting regime. Feldman [Fel20] and Feldman and Zhang [FZ20] study the interplay between528

memorization and long tail distributions while Kim et al. [KKM22] and Mahdavi et al. [MLT23]529

study the memorization capacity of transformers.530

Interpreting transformers and LLMs There’s a growing body of work on understanding how531

transformers and LLMs work [LLR23; AZL23a; AZL23b; AZL24; EI+24; Tar+23b; Tar+23a; Li+24],532

including training dynamics [Tia+23a; Tia+23b; She+24] and in-context learning [Xie+21; Gar+22;533

Bai+24; Bai+24]. Recent papers have introduced synthetic tasks to better understand the mechanisms534

of transformers [Cha22; Liu+22; Nan+23; Zha+22; Zho+24], such as those focused on Markov535

chains [Bie+24; Ede+24; NDL24; Mak+24]. Most notably, Bietti et al. [Bie+24] and subsequent536

works [CDB23; CSB24] study weights in transformers as associative memory but their focus is537

on understanding induction head [Ols+22b] and one-to-one map between input query and output538

memory. An increasing amount of research is dedicated to understanding the internals of pre-trained539

LLMs, broadly categorized under the term “mechanistic interpretability” [Elh+21; Ols+22a; Gev+23;540

Men+22; Men+23; Jia+24; Raj+24; Has+24; Wan+22; McG+23; Gei+21; Gei+22; Gei+24; Wu+24].541

Knowledge editing and adversarial attacks on LLMs Fact recall and knowledge editing have542

been extensively studied [Men+22; Men+23; Has+24; Sak+23; DCAT21; Mit+21; Mit+22; Dai+21;543

Zha+23; Tia+24; Jin+23], including the use of in-context learning to edit facts [Zhe+23]. This544

paper aims to explore a different aspect by examining the robustness of fact recall to variation in545

prompts. A closely related line of work focuses on adversarial attacks on LLMs [see Cho+24, for a546

review]. Specifically, prompt-based adversarial attacks [Xu+23; Zhu+23; Wan+23b] focus on the547

manipulation of answers within specific classification tasks while other works concentrate on safety548

issues [Liu+23a; PR22; Zou+23; Apr+22; Wan+23a; Si+22; Rao+23; SMR23; Liu+23b]. There549

are also works showing LLMs can be distracted by irrelevant contexts in problem solving [Shi+23],550

question answering [Pet+20; CSH22; Yor+23] and factual reasoning [PE21]. Although phenomena551

akin to context hijacking have been reported in different instances, the goals of this paper are to give552

a systematic robustness study for fact retrieval, offer a framework for interpreting it in the context of553

associative memory, and deepen our understanding of LLMs.554

B Context hijacking in LLMs555

In this section, we run experiments on LLMs including GPT-2 [Rad+19], Gemma [Tea+24] (both556

base and instruct models) and LLaMA-2-7B [Tou+23] to explore the effects of context hijacking557

on manipulating LLM outputs. As an example, consider Figure 1. When we prompt the LLMs558

with the context “The Eiffel Tower is in the city of”, all 4 LLMs output the correct answer (“Paris”).559

However, as we see in the example, we can actually manipulate the output of the LLMs simply by560

modifying the context with additional factual information that would not confuse a human. We call561

this context-hijacking. Due to the different capacities and capabilties of each model, the examples in562

Figure 1 use different hijacking techniques. This is most notable on LLaMA-2-7B, which is a much563

larger model than the others. Of course, as expected, the more sophisticated attack on LLaMA also564

works on GPT-2 and Gemma. Additionally, the instruction-tuned version of Gemma can understand565

special words like “not” to some extent. Nevertheless, it is still possible to systematically hijack566

these LLMs, as demonstrated below.567

We explore this phenomenon at scale with the COUNTERFACT dataset introduced in [Men+22], a568

dataset of difficult counterfactual assertions containing a diverse set of subjects, relations, and linguis-569
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(a) Hijacking generically (b) Hijacking based on Relation ID P190

Figure 2: Context hijacking can cause LLMs to output false target. The figure shows efficacy score versus
the number of prepends for various LLMs on the COUNTERFACT dataset under two hijacking schemes.

tic variations. COUNTERFACT has 21, 919 samples, each of which are given by a tuple (p, o∗, o_, s, r).570

From each sample, we have a context prompt p with a true target answer o∗ (target_true) and a571

false target answer o_ (target_false), e.g. the prompt p = “Eiffel Tower can be found in” has true572

target o∗ = “Paris” and false target o_ = “Guam”. Additionally, the main entity in p is the subject573

s (s = “Eiffel Tower”) and the prompt is categorized into relations r (for instance, other samples574

with the same relation ID as the example above could be of the form “The location of {subject} is”,575

“{subject} can be found in”, “Where is {subject}? It is in”). For additional details on how the dataset576

was collected, see [Men+22].577

For a hijacking scheme, we report the Efficacy Score (ES) [Men+22], which is the proportion of578

samples for which the token probabilities satisfy Pr[o_] > Pr[o∗] after modifying the context,579

that is, the proportion of the dataset that has been successfully manipulated. We experiment with580

two hijacking schemes for this dataset. We first hijack by prepending the text “Do not think of581

{target_false}” to each context. For instance, the prompt “The Eiffel Tower is in” gets changed to582

“Do not think of Guam. The Eiffel Tower is in”. In Figure 2a, we see that the efficacy score drops583

significantly after hijacking. Here, we prepend the hijacking sentence k times for k = 0, . . . , 5 where584

k = 0 yields the original prompt. We see that additional prepends decrease the score further.585

In the second scheme, we make use of the relation ID r to prepend factually correct sentences. For586

instance, one can hijack the example above to “The Eiffel Tower is not located in Guam. The Eiffel587

Tower is in”. We test this hijacking philosophy on different relation IDs. In particular, Figure 2b588

reports hijacking based on relation ID P190 (“twin city”). And we see similar patterns that with589

more prepends, the ES score gets lower. It is also worth noting that one can even hijack by only590

including words that are semantically close to the false target (e.g., “France” for false target “French”).591

This suggests that context hijacking is more than simply the LLM copying tokens from contexts.592

Additional details and experiments for both hijacking schemes and for other relation IDs are in593

Appendix F.594

These experiments show that context hijacking changes the behavior of LLMs, leading them to595

output incorrect tokens, without altering the factual meaning of the context. It is worth noting that596

similar fragile behaviors of LLMs have been observed in the literature in different contexts [Shi+23;597

Pet+20; CSH22; Yor+23; PE21]. See Appendix A for more details.598

Context hijacking indicates that fact retrieval in LLMs is not robust and that accurate fact recall599

does not necessarily depend on the semantics of the context. As a result, one hypothesis is to view600

LLMs as an associative memory model where special tokens in contexts, associated with the fact,601

provide partial information or clues to facilitate memory retrieval [Zha23]. To better understand602

this perspective, we design a synthetic memory retrieval task to evaluate how the building blocks of603

LLMs, transformers, can solve it.604
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(a) Value matrix training (b) Embedding structure (c) Attention Pattern

Figure 3: Key components of the single-layer transformer working together on the latent concept association
problem. (a) Fixing the value matrix WV as the identity matrix results in lower accuracy compared to training
WV . The figure reports average accuracy for both fixed and trained WV with L = 64. (b) When training
in the underparameterized regime, the embedding structure is approximated by (4.2). The graph displays
the average inner product between embeddings of two tokens against the corresponding Hamming distance
between these tokens when m = 8. (c) The self-attention layer can select tokens within the same cluster. The
figure shows average attention score heat map with m = 8 and the cluster structure from Appendix C.1.

C Additioal theoretical results605

C.1 The role of attention selection606

As of now, attention does not play a significant role in the analysis. But perhaps unsurprisingly, the607

attention mechanism is useful in selecting relevant information. To see this, let’s consider a specific608

setting where for any latent vector z∗, N (z∗) = {z : z∗1 = z1} \ {z∗}.609

Essentially, latent vectors are partitioned into two clusters based on the value of the first latent variable,610

and the informative conditional distribution π only samples latent vectors that are in the same cluster611

as the output latent vector. Empirically, when trained under this setting, the attention mechanism612

will pay more attention to tokens within the same cluster (Appendix D.3). This implies that the613

self-attention layer can mitigate noise and concentrate on the informative conditional distribution π.614

To understand this more intuitively, we will study the gradient of unnormalized attention scores. In615

particular, the unnormalized attention score is defined as:616

ut,t′ = (WKWE(t))
T (WQWE(t

′))/
√
da.

Lemma 6. Suppose the data generating process follows Section 3.1 and N (z∗) = {z : z∗1 =617

z1} \ {z∗}. Given the last token in the sequence tL, then618

∇ut,tL
ℓ(fL) = ∇ℓ(fL)T (WE)

TWV (αtp̂tWE(t)− p̂t

L∑
l=1

p̂tlWE(tl))

where for token t, αt =
∑L

l=1 1[tl = t] and p̂t is the normalized attention score for token t.619

Typically, αt is larger when token t and tL belong to the same cluster because tokens within the620

same cluster tend to co-occur frequently. As a result, the gradient contribution to the unnormalized621

attention score is usually larger for tokens within the same cluster.622

D Experiments623

The main implications of the theoretical results in the previous section are:624

1. The value matrix is important and has associative memory structure as in (4.1).625

2. Training embeddings is crucial in the underparameterized regime, where embeddings exhibit626

certain geometric structures.627

3. Attention mechanism is used to select the most relevant tokens.628

To evaluate these claims, we conduct several experiments on synthetic datasets. Additional experi-629

mental details and results can be found in Appendix G.630
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D.1 On the value matrix WV631

In this section, we study the necessity of the value matrix WV and its structure. First, we conduct ex-632

periments to compare the effects of training versus freezing WV as the identity matrix, with the context633

lengths L set to 64 and 128. Figure 3a and Figure G.1 show that when the context length is small, freez-634

ing WV can lead to a significant decline in accuracy. This is inline with Lemma 2 and validates it in a635

general setting, implying the significance of the value matrix in maintaining a high memory recall rate.636

Next, we investigate the degree of alignment between the trained value matrix WV and the con-637

struction in (4.1). The first set of experiments examines the similarity in functionality between the638

two matrices. We replace value matrices in trained transformers with the constructed ones like in639

(4.1) and then report accuracy with the new value matrix. As a baseline, we also consider randomly640

constructed value matrix, where the outer product pairs are chosen randomly (detailed construction641

can be found in Appendix G.1). Figure G.2 indicates that the accuracy does not significantly decrease642

when the value matrix is replaced with the constructed ones. Furthermore, not only are the constructed643

value matrix and the trained value matrix functionally alike, but they also share similar low-rank644

approximations. We use singular value decomposition to get the best low rank approximations of645

various value matrices where the rank is set to be the same as the number of latent variables (m). We646

then compute smallest principal angles between low-rank approximations of trained value matrices647

and those of constructed, randomly constructed, and Gaussian-initialized value matrices. Figure G.3648

shows that the constructed ones have, on average, smallest principal angles with the trained ones.649

D.2 On the embeddings650

In this section, we explore the significance of embedding training in the underparamerized regime651

and embedding structures. We conduct experiments to compare the effects of training versus freezing652

embeddings with different embedding dimensions. The learning rate is selected as the best option653

from {0.01, 0.001} depending on the dimensions. Figure G.4 clearly shows that when the dimension654

is smaller than the vocabulary size (d < V ), embedding training is required. It is not necessary in655

the overparameterized regime (d > V ), partially confirming Theorem 1 because if embeddings are656

initialized from a high-dimensional multi-variate Gaussian, they are approximately orthogonal to657

each other and have the same norms.658

The next question is what kind of embedding structures are formed for trained transformers in the659

underparamerized regime. From Figure 3b and Figure G.5, it is evident that the relationship between660

the average inner product of embeddings for two tokens and their corresponding Hamming distance661

roughly aligns with (4.2). Perhaps surprisingly, if we plot the same graph for trained transformers662

with a fixed identity value matrix, the relationship is mostly linear as shown in Figure G.6, confirming663

our theory (Theorem 3).664

As suggested in Section 4.3, such embedding geometry (4.2) can lead to low rank structures. We verify665

this claim by studying the spectrum of the embedding matrix WE . As illustrated in Appendix G.4,666

Figure G.9-G.12 demonstrate that there are eigengaps between top and bottom singular values,667

suggesting low-rank structures.668

D.3 On the attention selection mechanism669

In this section, we examine the role of attention pattern by considering a special class of latent670

concept association model as defined in Appendix C.1. Figure 3c and Figure G.7 clearly show671

that the self-attention select tokens in the same clusters. This suggests that attention can filter out672

noise and focus on the informative conditional distribution π. We extend experiments to consider673

cluster structures that depend on the first two latent variables (detailed construction can be found in674

Appendix G.3) and Figure G.8 shows attention pattern as expected.675

E Additional Theoretical Results and Proofs676

E.1 Proofs for Section 4.1677

Theorem 1 can be stated more formally as follows:678
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Theorem 7. Suppose the data generating process follows Section 3.1 where m ≥ 3, ω = 1, and679

N (t) = V \ {t}. Assume there exists a single layer transformer given by (3.1) such that a) WK = 0680

and WQ = 0, b) Each row of WE is orthogonal to each other and normalized, and c) WV is given by681

WV =
∑
i∈[V ]

WE(i)(
∑

j∈N1(i)

WE(j)
T ).

Then if L > max{ 100m2 log(3/ε)

(exp(− 1
β )−exp(− 2

β ))2
, 80m2|N (y)|
(exp(− 1

β )−exp(− 2
β ))2

} for any y, then682

RDL(fL) ≤ ε,

where 0 < ε < 1.683

Proof. First of all, the error is defined to be:684

RDL(fL) = P(x,y)∼DL [argmax fL(x) ̸= y]

= PyPx|y[argmax fL(x) ̸= y]

Let’s focus on the conditional probability Px|y[argmax fL(x) ̸= y].685

By construction, the single layer transformer model has uniform attention. Therefore,686

h(x) =
∑

i∈N (y)

αiWE(i)

where αi =
1
L

∑L
k=1 1{tk = i} which is the number of occurrence of token i in the sequence.687

By the latent concept association model, we know that688

p(i|y) = exp(−DH(i, y)/β)

Z

where Z =
∑

i∈N (y) exp(−DH(i, y)/β).689

Thus, the logit for token y is690

fL
y (x) =

∑
i∈N1(y)

αi

And the logit for any other token ỹ is691

fL
ỹ (x) =

∑
i∈N1(ỹ)

αi

For the prediction to be correct, we need692

max
ỹ

fL
y (x)− fL

ỹ (x) > 0

By Lemma 3 of [Dev83], we know that for all ∆ ∈ (0, 1), if |N (y)|
L ≤ ∆2

20 , we have693

P
(

max
i∈N (y)

|αi − p(i|y)| > ∆
)
≤ P

( ∑
i∈N (y)

|αi − p(i|y)| > ∆
)
≤ 3 exp(−L∆2/25)

Therefore, if L ≥ max{ 25 log(3/ε)
∆2 , 20|N (y)|

∆2 }, then with probability at least 1− ε, we have,694

max
i∈N (y)

|αi − p(i|y)| ≤ ∆
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fL
y (x)− fL

ỹ (x) =
∑

i∈N1(y)

αi −
∑

j∈N1(ỹ)

αj

=
∑

i∈N1(y)

αi −
∑

i∈N1(y)

p(i|y) +
∑

i∈N1(y)

p(i|y)

−
∑

j∈N1(ỹ)

p(j|y) +
∑

j∈N1(ỹ)

p(j|y)−
∑

j∈N1(ỹ)

αj

≥
∑

i∈N1(y)

p(i|y)−
∑

j∈N1(ỹ)

p(j|y)− 2m∆

≥ exp(− 1

β
)− exp(− 2

β
)− 2m∆

Note that because of Lemma 10, there’s no neighboring set that is the superset of another.695

Therefore as long as ∆ <
exp(− 1

β )−exp(− 2
β )

2m ,696

fL
y (x)− fL

ỹ (x) > 0

for any ỹ.697

Finally, if L > max{ 100m2 log(3/ε)

(exp(− 1
β )−exp(− 2

β ))2
, 80m2|N (y)|
(exp(− 1

β )−exp(− 2
β ))2

} for any y, then698

Px|y[argmax fL(x) ̸= y] ≤ ε

And699

RDL(fL) = P(x,y)∼DL [argmax fL(x) ̸= y]

= PyPx|y[argmax fL(x) ̸= y] ≤ ε

700

E.2 Proofs for Section 4.2701

Lemma 2. Suppose the data generating process follows Section 3.1 where m ≥ 3, ω = 1 and702

N (t) = {t′ : DH(t, t′)) = 1}. For any single layer transformer given by (3.1) where each row of703

WE is orthogonal to each other and normalized, if WV is constructed as in (4.1), then the error rate704

is 0. If WV is the identity matrix, then the error rate is strictly larger than 0.705

Proof. Following the proof for Theorem 7, let’s focus on the conditional probability:706

Px|y[argmax fL(x) ̸= y]

By construction, we have707

h(x) =
∑

i∈N1(y)

αiWE(i)

where αi =
1
L

∑L
k=1 1{tk = i} which is the number of occurrence of token i in the sequence.708

Let’s consider the first case where WV is constructed as in (4.1). Then we know that for some other709

token ỹ ̸= y,710

fL
y (x)− fL

ỹ (x) =
∑

i∈N1(y)

αi −
∑

i∈N1(ỹ)

αi = 1−
∑

i∈N1(ỹ)

αi

By Lemma 10, we have that for any token ỹ ̸= y,711

fL
y (x)− fL

ỹ (x) > 0

Therefore, the error rate is always 0.712
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Now let’s consider the second case where WV is the identity matrix. Let j be a token in the set N1(y).713

Then there is a non-zero probability that context x contains only j. In that case,714

h(x) = WE(j)

However, we know that by the assumption on the embedding matrix,715

fL
y (x)− fL

j (x) = (WE(y)−WE(j))
Th(x) = −∥WE(j)∥2 < 0

This implies that there’s non zero probability that y is misclassified. Therefore, when WV is the716

identity matrix, the error rate is strictly larger than 0.717

Theorem 3. Suppose the data generating process follows Section 3.1 where m ≥ 3, ω = 1 and718

N (t) = V \ {t}. For any single layer transformer given by (3.1) with WV being the identity matrix,719

if the cross entropy loss is minimized so that for any sampled pair (x, y),720

p(y|x) = p̂(y|x) = softmax(fL
y (x))

there exists a > 0 and b such that for two tokens t ̸= t′,721

⟨WE(t),WE(t
′)⟩ = −aDH(t, t′) + b

Proof. Because for any pair of (x, y), the estimated conditional probability matches the true condi-722

tional probability. In particular, let’s consider two target tokens y1, y2 and context x = (ti, ..., ti) for723

some token ti such that p(x|y1) > 0 and p(x|y2) > 0, then724

p(y1|x)
p(y2|x)

=
p(x|y1)p(y1)
p(x|y2)p(y2)

=
p(x|y1)
p(x|y2)

=
p̂(x|y1)
p̂(x|y2)

= exp((WE(y1)−WE(y2))
Th(x))

The second equality is because p(y) is the uniform distribution. By our construction,725

p(x|y1)
p(x|y2)

=
p(ti|y1)L

p(ti|y2)L
= exp((WE(y2)−WE(y1))

Th(x)) = exp((WE(y1)−WE(y2))
TWE(ti))

By the data generating process, we have that726

L

β
(DH(ti, y2)−DH(ti, y1)) = (WE(y1)−WE(y2))

TWE(ti)

Let ti = y3 such that y3 ̸= y1, y3 ̸= y2, then727

L

β
DH(y3, y1)−WE(y1)

TWE(y3) =
L

β
DH(y3, y2)−WE(y2)

TWE(y3)

For simplicity, let’s define728

Ψ(y1, y2) =
L

β
DH(y1, y2)−WE(y1)

TWE(y2)

Therefore,729

Ψ(y3, y1) = Ψ(y3, y2)

Now consider five distinct labels: y1, y2, y3, y4, y5. We have,730

Ψ(y3, y1) = Ψ(y3, y2) = Ψ(y4, y2) = Ψ(y4, y5)

In other words, Ψ(y3, y1) = Ψ(y4, y5) for arbitrarily chosen distinct labels y1, y3, y4, y5. Therefore,731

Ψ(t, t′) is a constant for t ̸= t′.732

For any two tokens t ̸= t′,733

L

β
DH(t, t′)−WE(t)

TWE(t
′) = C

Thus,734

WE(t)
TWE(t

′) = −L

β
DH(t, t′) + C

735
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E.3 Proofs for Section 4.3736

Theorem 4 can be formalized as the following theorem.737

Theorem 8. Following the same setup as in Theorem 7, but embeddings follow (4.2) then if b > 0,738

∆1 > 0, 0 < ∆ <
exp(− 1

β )−exp(− 2
β )

2m , L ≥ max{ 25 log(3/ε)
∆2 , 20|N (y)|

∆2 } for any y, and739

0 < a <
2 exp( 1β )

(|V | − 2)m2

and740

b0 > max{ a(m− 2)m+∆1

exp(− 1
β )− exp(− 2

β )− 2m∆
+b,

(b− a)∆1 − |V |−2
2 abm2 exp(− 1

β ) +
|V |−2

2 a2(m− 2)m2

1− |V |−2
2 am2 exp(− 1

β )
}

we have741

RDL(fL) ≤ ε

where 0 < ε < 1.742

Proof. Following the proof of Theorem 7, let’s also focus on the conditional probability743

Px|y[argmax fL(x) ̸= y]

By construction, the single layer transformer model has uniform attention. Therefore,744

h(x) =
∑

i∈N (y)

αiWE(i)

where αi =
1
L

∑L
k=1 1{tk = i} which is the number of occurrence of token i in the sequence. For745

simplicity, let’s define αy = 0 such that746

h(x) =
∑
i∈[V ]

αiWE(i)

Similarly, we also have that if L ≥ max{ 25 log(3/ε)
∆2 , 20|N (y)|

∆2 }, then with probability at least 1− ε,747

we have,748

max
i∈[V ]

|αi − p(i|y)| ≤ ∆

Also define the following:749

ϕk(x) =
∑

j∈N1(k)

WE(j)
T
( ∑
i∈[V ]

αiWE(i)
)

vk(y) = WE(y)
TWE(k)

Thus, the logit for token y is750

fL
y (x) =

|V |−1∑
k=0

vk(y)ϕk(x)

Let’s investigate ϕk(x). By Lemma 9,751

ϕk(x) =
∑
i∈[V ]

αi(
∑

j∈N1(k)

WE(j)
TWE(i))

= (b0 − b)
∑

j∈N1(k)

αj +
∑
i∈[V ]

αi(−a(m− 2)DH(k, i) + (b− a)m)

19



Thus, for any k1, k2 ∈ [V ],752

ϕk1(x)− ϕk2(x) = (b0 − b)(
∑

j1∈N1(k1)

αj1 −
∑

j2∈N1(k2)

αj2)

+
∑
i∈[V ]

αia(m− 2)(DH(k2, i)−DH(k1, i))

Because −m ≤ DH(k2, i)−DH(k1, i) ≤ m, we have753

(b0 − b)(
∑

j1∈N1(k1)

αj1 −
∑

j2∈N1(k2)

αj2)− a(m− 2)m

≤ ϕk1
(x)− ϕk2

(x) ≤

(b0 − b)(
∑

j1∈N1(k1)

αj1 −
∑

j2∈N1(k2)

αj2) + a(m− 2)m

For prediction to be correct, we need754

max
ỹ

fL
y (x)− fL

ỹ (x) > 0

This also means that755

max
ỹ

|V |−1∑
k=0

(
vk(y)− vk(ỹ)

)
ϕk(x) > 0

One can show that for any k, if ι−1(k̃) = ι−1(y)⊗ ι−1(ỹ)⊗ ι−1(k) where ⊗ means bitwise XOR,756

then757

vk(y)− vk(ỹ) = vk̃(ỹ)− vk̃(y) (E.1)

First of all, if k = y, then k̃ = ỹ, which means758

vk(y)− vk(ỹ) = vk̃(ỹ)− vk̃(y) = b0 + aDH(y, ỹ)− b

If k ̸= y, ỹ, then (E.1) implies that759

DH(k, y)−DH(k, ỹ) = DH(k̃, ỹ)−DH(k̃, y)

We know that DH(k, y) is the number of 1s in ι−1(k)⊗ ι−1(y) and,760

ι−1(k̃)⊗ ι−1(y) = ι−1(y)⊗ ι−1(ỹ)⊗ ι−1(k)⊗ ι−1(y) = ι−1(ỹ)⊗ ι−1(k)

Similarly,761

ι−1(k̃)⊗ ι−1(ỹ) = ι−1(y)⊗ ι−1(k)

Therefore, (E.1) holds and we can rewrite fL
y (x)− fL

ỹ (x) as762

fL
y (x)− fL

ỹ (x) =

|V |−1∑
k=0

(
vk(y)− vk(ỹ)

)
ϕk(x)

= (b0 − b+ aDH(y, ỹ))(ϕy(x)− ϕỹ(x))

+
∑

k ̸=y,ỹ,DH(k,y)≥DH(k,ỹ)

a(DH(k, y)−DH(k, ỹ))(ϕk(x)− ϕk̃(x))

We already know that b0 > b > 0 and a > 0, thus, b0 − b+ aDH(y, ỹ) > 0 for any pair y, ỹ.763

We also want ϕy(x)− ϕỹ(x) to be positive. Note that764

ϕy(x)− ϕỹ(x) ≥ (b0 − b)(exp(− 1

β
)− exp(− 2

β
)− 2m∆)− a(m− 2)m
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We need ∆ <
exp(− 1

β )−exp(− 2
β )

2m and for some positive ∆1 > 0, b0 needs to be large enough such that765

ϕy(x)− ϕỹ(x) > ∆1

which implies that766

b0 >
a(m− 2)m+∆1

exp(− 1
β )− exp(− 2

β )− 2m∆
+ b (E.2)

On the other hand, for k ̸= y, ỹ, we have767

ϕk(x)− ϕk̃(x) ≥ (b0 − b)(
∑

j1∈N1(k)

αj1 −
∑

j2∈N1(k̃)

αj2)− a(m− 2)m

≥ (b0 − b)(−(m− 1) exp(− 1

β
)− exp(− 2

β
)− 2m∆)− a(m− 2)m

≥ (b0 − b)(−(m− 1) exp(− 1

β
)− exp(− 2

β
) + exp(− 2

β
)− exp(− 1

β
))− a(m− 2)m

≥ −(b0 − b)m exp(− 1

β
)− a(m− 2)m

Then, we have768

fL
y (x)− fL

ỹ (x) ≥ (b0 − b+ a)∆1 −
|V | − 2

2

(
(b0 − b)am2 exp(− 1

β
) + a2(m− 2)m2

)
≥

(
1− |V | − 2

2
am2 exp(− 1

β
)

)
b0 − (b− a)∆1 +

|V | − 2

2
abm2 exp(− 1

β
)− |V | − 2

2
a2(m− 2)m2

The lower bound is independent of ỹ, therefore, we need it to be positive to ensure the prediction is769

correct. To achieve this, we want770

1− |V | − 2

2
am2 exp(− 1

β
) > 0

which implies that771

a <
2 exp( 1β )

(|V | − 2)m2
(E.3)

And finally we need772

b0 >
(b− a)∆1 − |V |−2

2 abm2 exp(− 1
β ) +

|V |−2
2 a2(m− 2)m2

1− |V |−2
2 am2 exp(− 1

β )
(E.4)

To summarize, if b > 0, ∆1 > 0, 0 < ∆ <
exp(− 1

β )−exp(− 2
β )

2m , L ≥ max{ 25 log(3/ε)
∆2 , 20|N (y)|

∆2 } for773

any y, and774

0 < a <
2 exp( 1β )

(|V | − 2)m2

and775

b0 > max{ a(m− 2)m+∆1

exp(− 1
β )− exp(− 2

β )− 2m∆
+b,

(b− a)∆1 − |V |−2
2 abm2 exp(− 1

β ) +
|V |−2

2 a2(m− 2)m2

1− |V |−2
2 am2 exp(− 1

β )
}

we have776

RDL(fL) ≤ ε

where 0 < ε < 1.777

778

Lemma 5. If embeddings follow (4.2) and b = b0 and N (t) = V \ {t}, then rank(WE) ≤ m+ 2.779
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Proof. By (4.2), we have that780

⟨WE(i),WE(j)⟩ = −aDH(i, j) + b

Therefore,781

(WE)
TWE = −aDH + b11T

Let’s first look at DH which has rank at most m+ 1. To see this, let’s consider a set of m+ 1 tokens:782

{e0, e1, ..., em} ⊆ V where ek = 2k. Here e0 is associated with the latent vector of all zeroes and783

the latent vector associated with ek has only the k-th latent variable being 1.784

On the other hand, for any token i, we have that,785

i =
∑

k:ι−1(i)k=1

ek

In fact,786

DH(i) =
∑

k:ι−1(i)k=1

(
DH(ek)−DH(e0)

)
+DH(e0)

where DH(i) is the i-th row of DH , and for each entry j of DH(i), we have that787

DH(i, j) =
∑

k:ι−1(i)k=1

(
DH(ek, j)−DH(e0, j)

)
+DH(e0, j)

This is because788

DH(ek, j)−DH(e0, j) =

{
+1 if ι−1(j)k = 0

−1 if ι−1(j)k = 1

Thus, we can rewrite DH(i, j) as789

DH(i, j) =
∑

k:ι−1(i)k=1

(
1[ι−1(i)k = 1, ι−1(j)k = 0]− 1[ι−1(i)k = 1, ι−1(j)k = 1)]

)
+DH(e0, j)

=

m∑
k=1

(
1[ι−1(i)k = 1, ι−1(j)k = 0]− 1[ι−1(i)k = 1, ι−1(j)k = 1)]

)

+

m∑
k=1

(
1[ι−1(i)k = 0, ι−1(j)k = 1] + 1[ι−1(i)k = 1, ι−1(j)k = 1)]

)

=

m∑
k=1

1[ι−1(i)k = 1, ι−1(j)k = 0] + 1[ι−1(i)k = 0, ι−1(j)k = 1]

= DH(i, j)

Therefore, every row of DH can be written as a linear combination of790

{DH(e0), DH(e1), ..., DH(em)}. In other words, DH has rank at most m+ 1.791

Therefore,792

rank((WE)
TWE) = rank(WE) ≤ m+ 2.

793

Lemma 9. Let z(0) and z(1) be two binary vectors of size m where m ≥ 2. Then,794 ∑
z:DH(z(0),z)=1

DH(z, z(1)) = (m− 2)DH(z(0), z(1)) +m

Proof. For z such that DH(z, z(0)) = 1, we know that there are two cases. Either z differs with z(0)795

on a entry but agrees with z(1) on that entry or z differs with both z(0) and z(1).796

For the first case, we know that there are DH(z(0), z(1)) such entries. In this case, DH(z, z(1)) =797

DH(z(0), z(1))− 1. For the second case, DH(z, z(1)) = DH(z(0), z(1)) + 1.798
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Therefore,799 ∑
z:DH(z,z(0))=1

DH(z, z(1))

= DH(z(0), z(1))(DH(z(0), z(1))− 1) + (m−DH(z(0), z(1)))(DH(z(0), z(1)) + 1)

= (m− 2)DH(z(0), z(1)) +m

800

Lemma 10. If m ≥ 3 and N (t) = V \ {t}, then N1(t) ̸⊆ N1(t
′) for any t, t′ ∈ [V ].801

Proof. For any token t, N1(t) contains any token t′ such that DH(t, t′) = 1 by the conditions. Then802

given a set N1(t), one can uniquely determine token t. This is because for the set of latent vectors803

associated with N1(t), at each index, there could only be one possible change.804

E.4 Proofs for Appendix C.1805

Lemma 6. Suppose the data generating process follows Section 3.1 and N (z∗) = {z : z∗1 =806

z1} \ {z∗}. Given the last token in the sequence tL, then807

∇ut,tL
ℓ(fL) = ∇ℓ(fL)T (WE)

TWV (αtp̂tWE(t)− p̂t

L∑
l=1

p̂tlWE(tl))

where for token t, αt =
∑L

l=1 1[tl = t] and p̂t is the normalized attention score for token t.808

Proof. Recall that,809

fL(x) =

[
WE

TWV attn(WEχ(x))

]
:L

= WE
TWV

L∑
l=1

exp(utl,tL)

Z
WE(tl)

where Z is a normalizing constant.810

Define p̂tl =
exp(utl,tL

)

Z . Then we have811

fL(x) = WE
TWV

L∑
l=1

p̂tlWE(tl)

Note that if tl = t then,812

∂p̂tl
∂ut,tL

= p̂tl(1− p̂tl)

Otherwise,813

∂p̂tl
∂ut,tL

= −p̂tl p̂t

By the chain rule, we know that814

∇ut,tL
ℓ(fL) = ∇ℓ(fL)T (WE)

TWV (

L∑
l=1

1[tl = t]p̂tlWE(t)−
L∑

l=1

p̂tl p̂tWE(tl))

Therefore,815

∇ut,tL
ℓ(fL) = ∇ℓ(fL)T (WE)

TWV (αtp̂tWE(t)− p̂t

L∑
l=1

p̂tlWE(tl))

where αt =
∑L

l=1 1[tl = t].816
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F Additional experiments – context hijacking817

In this section, we show the results of additional context hijacking experiments on the COUNTERFACT818

dataset [Men+22].819

Reverse context hijacking In Figure 2a, we saw the effects of hijacking by adding in “Do not think820

of {target_false}.” to each context. Now, we measure the effect of the reverse: What if we prepend821

“Do not think of {target_true}.” ?822

Based on the study in this paper on how associative memory works in LLMs, we should expect the823

efficacy score to increase. Indeed, this is what happens, as we see in Figure F.1.824

Figure F.1: Prepending ‘Do not think of {target_true}.’ can increase the chance of LLMs to output
correct tokens. This figure shows efficacy score versus the number of prepends for various LLMs on the
COUNTERFACT dataset with the reverse context hijacking scheme.

Hijacking based on relation IDs We first give an example of each of the 4 relation IDs we hijack825

in Table 1.826

Table 1: Examples of contexts in Relation IDs from COUNTERFACT

RELATION ID r CONTEXT p TRUE TARGET o∗ FALSE TARGET o_

P190 Kharkiv is a twin city of Warsaw Athens
P103 The native language of Anatole France is French English
P641 Hank Aaron professionally plays the sport baseball basketball
P131 Kalamazoo County can be found in Michigan Indiana

Table 2: Examples of hijack and reverse hijack formats based on Relation IDs

RELATION ID r CONTEXT HIJACK SENTENCE REVERSE CONTEXT HIJACK SENTENCE

P190 The twin city of {subject} is not {target_false} The twin city of {subject} is {target_true}
P103 {subject} cannot speak {target_false} {subject} can speak {target_true}
P641 {subject} does not play {target_false} {subject} plays {target_true}
P131 {subject} is not located in {target_false} {subject} is located in {target_true}

Similar to Figure 2b, we repeat the hijacking experiments where we prepend factual sentences827

generated from the relation ID. We use the format illustrated in Table 2 for the prepended sentences.828
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(a) Relation P103 (b) Relation P132

(c) Relation P190 (d) Relation P641

Figure F.2: Context hijacking based on relation IDs can result in LLMs output incorrect tokens. This figure
shows efficacy score versus the number of prepends for various LLMs on the COUNTERFACT dataset with
hijacking scheme presented in Table 2.

We experiment with 3 other relation IDs and we see similar trends for all the LLMs in Figure F.2a,829

F.2b, and F.2d. That is, the efficacy score drops for the first prepend and as we increase the number of830

prepends, the trend of ES dropping continues. Therefore, this confirms our intuition that LLMs can831

be hijacked by contexts without changing the factual meaning.832

Similar to Figure F.1, we experiment with reverse context hijacking where we give the answers based833

on relation IDs, as shown in Table 2. We again experiment with the same 4 relation IDs and the834

results are in Figure F.3a - F.3d. We see that the efficacy score increases when we prepend the answer835

sentence, thereby verifying the observations of this study.836

Hijacking without exact target words So far, the experiments use prompts that either contain837

true or false target words. It turns out, the inclusion of exact target words are not necessary. To see838

this, we experiment a variant of the generic hijacking and reverse hijacking experiments. But instead839

of saying “Do not think of {target_false}” or “Do not think of {target_true}”. We replace target840

words with words that are semantically close. In particular, for relation P1412, we replace words841

representing language (e.g., “French”) with their associated country name (e.g., “France”). As shown842

in Figure F.4, context hijacking and reverse hijacing still work in this case.843
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(a) Relation P103 (b) Relation P132

(c) Relation P190 (d) Relation P641

Figure F.3: Reverse context hijacking based on relation IDs can result in LLMs to be more likely to be correct.
This figure shows efficacy score versus the number of prepends for various LLMs on the COUNTERFACT
dataset with the reverse hijacking scheme presented in Table 2.

(a) Hijacking P1412 (b) Reverse hijacking P1412

Figure F.4: Hijacking and reverse hijacking experiments on relation P1412 show that context hijacking does
not require exact target word to appear in the context. This figure shows efficacy score versus the number of
prepends for various LLMs on the COUNTERFACT dataset.

G Additional experiments and figures – latent concept association844

In this appendix section, we present additional experimental details and results from the synthetic845

experiments on latent concept association.846

Experimental setup Synthetic data are generated following the model in Section 3.1. Unless847

otherwise stated, the default setup has ω = 0.5, β = 1 and N (i) = V \ {i} and L = 256. The848

default hidden dimension of the one-layer transformer is also set to be 256. The model is optimized849

using AdamW [LH17] where the learning rate is chosen from {0.01, 0.001}. The evaluation dataset850
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(a) L = 64 (b) L = 128

Figure G.1: Fixing the value matrix WV as the identity matrix results in lower accuracy compared to training
WV , especially for smaller context length L. The figure reports accuracy for both fixed and trained WV

settings, with standard errors calculated over 10 runs.

is drawn from the same distribution as the training dataset and consists of 1024 (x, y) pairs. Although851

theoretical results in Section 4 may freeze certain parts of the network for simplicity, in this section,852

unless otherwise specified, all layers of the transformers are trained jointly. Also, in this section, we853

typically report accuracy which is 1− error.854

G.1 On the value matrix WV855

In this section, we provide additional figures of Appendix D.1. Specifically, Figure G.1 shows that856

fixing the value matrix to be the identity will negatively impact accuracy. Figure G.2 indicates that re-857

placing trained value matrices with constructed ones can preserve accuracy to some extent. Figure G.3858

suggests that trained value matrices and constructed ones share similar low-rank approximations. For859

the last two sets of experiments, we consider randomly constructed value matrix, where the outer860

product pairs are chosen randomly, defined formally as follows:861

WV =
∑
i∈[V ]

WE(i)(
∑

{j}∼Unif([V ])|N1(i)|

WE(j)
T )

G.2 On the embeddings862

This section provides additional figures from Appendix D.2. Figure G.4 shows that in the under-863

parameterized regime, embedding training is required. Figure G.5 indicates that the embedding864

structure in the underparameterized regime roughly follows (4.2). Finally Figure G.6 shows that,865

when the value matrix is fixed to the identity, the relationship between inner product of embeddings866

and their corresponding Hamming distance is mostly linear.867

G.3 On the attention selection mechanism868

This section provides additional figures from Appendix D.3. Figure G.7-G.8 show that attention869

mechanism selects tokens in the same cluster as the last token. In particular, for Figure G.8, we870

extend experiments to consider cluster structures that depend on the first two latent variables. In other871

words, for any latent vector z∗, we have872

N (z∗) = {z : z∗1 = z1 and z∗2 = z2} \ {z∗}

G.4 Spectrum of embeddings873

We display several plots of embedding spectra (Figure G.9, Figure G.10, Figure G.11, Figure G.12)874

that exhibit eigengaps between the top and bottom eigenvalues, suggesting low-rank structures.875
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(a) m = 5 (b) m = 6

(c) m = 7 (d) m = 8

Figure G.2: When the value matrix is replaced with the constructed one in trained transformers, the accuracy
does not significantly decrease compared to replacing the value matrix with randomly constructed ones. The
graph reports accuracy under different embedding dimensions and standard errors are over 5 runs.

G.5 Context hijacking in latent concept association876

In this section, we want to simulate context hijacking in the latent concept association model. To877

achieve that, we first sample two output tokens y1 (true target) and y2 (false target) and then generate878

contexts x1 = (t11, ..., t
1
L) and x2 = (t21, ..., t

2
L) from p(x1|y1) and p(x2|y2). Then we mix the two879

contexts with rate pm. In other words, for the final mixed context x = (t1, ..., tL), tl has probability880

1 − pm to be t1l and pm probability to be t2l . Figure G.13 shows that, as the mixing rate increases881

from 0.0 to 1.0, the trained transformer tends to favor predicting false targets. This mirrors the882

phenomenon of context hijacking in LLMs.883

G.6 On the context lengths884

As alluded in Section 4.4, the memory recall rate is closely related to the KL divergences between885

context conditional distributions. Because contexts contain mostly i.i.d samples, longer contexts886

imply larger divergences. This is empirically verified in Figure G.14 which demonstrates that longer887

context lengths can lead to higher accuracy.888
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(a) m = 5 (b) m = 6

(c) m = 7 (d) m = 8

Figure G.3: The constructed value matrix WV has similar low rank approximation with the trained value
matrix. The figure displays average smallest principal angles between low-rank approximations of trained
value matrices and those of constructed, randomly constructed, and Gaussian-initialized value matrices.
Standard errors are over 5 runs.
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(a) m = 5 (b) m = 6

(c) m = 7 (d) m = 8

Figure G.4: In the underparameterized regime (d < V ), freezing embeddings to initializations causes a
significant decrease in performance. The graph reports accuracy with different embedding dimensions and
the standard errors are over 5 runs. Red lines indicate when d = V .

(a) m = 7 (b) m = 8

Figure G.5: The relationship between inner products of embeddings and corresponding Hamming distances
of tokens can be approximated by (4.2). The graph displays the average inner product between embeddings
of two tokens against the corresponding Hamming distance between these tokens. Standard errors are over 5
runs.
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(a) m = 5 (b) m = 6

(c) m = 7 (d) m = 8

Figure G.6: The relationship between inner products of embeddings and corresponding Hamming distances
of tokens is mostly linear when the value matrix WV is fixed to be the identity. The graph displays the average
inner product between embeddings of two tokens against the corresponding Hamming distance between these
tokens. Standard errors are over 10 runs.
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(a) m = 5 (b) m = 6

(c) m = 7 (d) m = 8

Figure G.7: The attention patterns show the underlying cluster structure of the data generating process. Here,
for any latent vector, we have N (z∗) = {z : z∗1 = z1} \ {z∗}. The figure shows attention score heat maps
that are averaged over 10 runs.
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(a) m = 5 (b) m = 6

(c) m = 7 (d) m = 8

Figure G.8: The attention patterns show the underlying cluster structure of the data generating process. Here,
for any latent vector, we have N (z∗) = {z : z∗1 = z1 and z∗2 = z2} \ {z∗}. The figure shows attention score
heat maps that are averaged over 10 runs.
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(a) Sample 1 (b) Sample 2

(c) Sample 3 (d) Sample 4

Figure G.9: The spectrum of embedding matrix WE has eigengaps between the top and bottom eigenvalues,
indicating low rank structures. The figure shows results from 4 experimental runs. Number of latent variable
m is 7 and the embedding dimension is 32.
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(a) Sample 1 (b) Sample 2

(c) Sample 3 (d) Sample 4

Figure G.10: The spectrum of embedding matrix WE has eigengaps between the top and bottom eigenvalues,
indicating low rank structures. The figure shows results from 4 experimental runs. Number of latent variable
m is 7 and the embedding dimension is 64.
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(a) Sample 1 (b) Sample 2

(c) Sample 3 (d) Sample 4

Figure G.11: The spectrum of embedding matrix WE has eigengaps between the top and bottom eigenvalues,
indicating low rank structures. The figure shows results from 4 experimental runs. Number of latent variable
m is 8 and the embedding dimension is 32.

36



(a) Sample 1 (b) Sample 2

(c) Sample 3 (d) Sample 4

Figure G.12: The spectrum of embedding matrix WE has eigengaps between the top and bottom eigenvalues,
indicating low rank structures. The figure shows results from 4 experimental runs. Number of latent variable
m is 8 and the embedding dimension is 64.
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(a) m = 5 (b) m = 6

(c) m = 7 (d) m = 8

Figure G.13: Mixing contexts can cause misclassification. The figure reports accuracy for true target and
false target under various context mixing rate. Standard errors are over 5 runs.
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(a) m = 5 (b) m = 6

(c) m = 7 (d) m = 8

Figure G.14: Increasing context lengths can improve accuracy. The figure reports accuracy across various
context lengths and dimensions. Standard errors are over 5 runs.
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