
Importance of Tuning Hyperparameters of Machine Learning
Algorithms

Hilde J.P. Weerts∗
Eindhoven University of Technology

The Netherlands

Andreas C. Müller
Columbia University
New York, U.S.A.

Joaquin Vanschoren
Eindhoven University of Technology

The Netherlands

ABSTRACT
The performance of many machine learning algorithms depends
on their hyperparameter settings. The goal of this study is to deter-
mine whether it is important to tune a hyperparameter or whether
it can be safely set to a default value. We present a methodology
to determine the importance of tuning a hyperparameter based on
a non-inferiority test and tuning risk: the performance loss that is
incurred when a hyperparameter is not tuned, but set to a default
value. Because our methods require the notion of a default parame-
ter, we present a simple procedure that can be used to determine
reasonable default parameters. We apply our methods in a bench-
mark study using 59 datasets from OpenML. Our results show that
leaving particular hyperparameters at their default value is non-
inferior to tuning these hyperparameters. In some cases, leaving
the hyperparameter at its default value even outperforms tuning it
using a search procedure with a limited number of iterations.

KEYWORDS
machine learning, hyperparameter tuning, meta learning

1 INTRODUCTION
Many parameters ofmachine learning algorithms are derived through
training. Additionally, most modern machine learning algorithms
have parameters that need to be fixed before running them. Such
parameters are referred to as hyperparameters [7, 8, 12, 15]. In many
cases, the performance of an algorithm on a given learning task
depends on its hyperparameter settings. In order to obtain the best
performance, machine learning practitioners can tune the hyperpa-
rameters. Methods for tuning hyperparameters for the problem at
hand require the definition of a search space: the set of hyperpa-
rameters and ranges that need to be considered. Additionally, one
needs to define the search heuristic that is used to search for good
hyperparameters within the search space. Tuning is generally a
computationally expensive procedure that becomes more expensive
as the search space increases. Currently, there does not exist em-
pirical evidence on which hyperparameters are important to tune
and which hyperparameters result in similar performance when
set to a reasonable default value. Hyperparameters that fall into the
latter category might be eliminated from the search space entirely
when computational resources are limited. In this work we study
the importance of tuning hyperparameters and aim to provide em-
pirical evidence of hyperparameters that might be eliminated from
the search space.

We present a methodology to determine which hyperparameters
are important to tune, based on empirical performance data derived

∗Work done while intern at Columbia University in 2018.

from experiments across multiple datasets. Because our methodol-
ogy requires the notion of a default parameter setting, we introduce
a simple procedure to deduce reasonable default parameters from
performance data. We apply our approach in a benchmark study
of two popular classification algorithms: random forests and sup-
port vector machines. In particular, we analyze the importance of
hyperparameter tuning based on the performance of these algo-
rithms across 59 datasets that were taken from the OpenML-CC18
benchmark suite.

Our results suggest that leaving particular hyperparameters
at our computed default value leads to non-inferior performance.
Moreover, given a random search approach with a limited number
of iterations, fixing the hyperparameter to our default value some-
times outperforms tuning all hyperparameters at once. Machine
learning practitioners might want to leave these hyperparameters
at their default value, rather than invoking an expensive random
search procedure. For other hyperparameters, we observed a dif-
ference between the fixed and non-fixed conditions. This indicates
that these hyperparameters should not be left at our computed
default value.

The remainder of this work is structured as follows. In Section 2,
we provide a short overview of related work. In Section 3, we
present our default parameter determination procedure as well as
a methodology for determining the importance of tuning. Section 4
covers details of our benchmark experiments, including the used
datasets, algorithms, hyperparameters, performance measures, and
search strategy. In Section 5, the results of the experiments are
presented. Finally, the conclusions and limitations are discussed in
Section 6.

2 RELATEDWORK
2.1 Hyperparameter Default Values
In the work of Probst et al. [12], default values are determined
using surrogate models as follows. First, for each of the 38 binary
classification tasks in the study, a surrogate model that predicts the
performance of the algorithm based on hyperparameter settings is
learned from empirical performance data. Second, a large number of
hyperparameter configurations are sampled and their performance
is estimated using the surrogate models. Finally, the default param-
eters are determined by minimizing the average risk. In contrast to
this method, we will use a simple, intuitive heuristic to determine
default parameters directly from the performance data.

2.2 Hyperparameter Importance
The importance of hyperparameter tuning has been studied in the
work of Mantovani et al. [8]. The authors use properties of the

1

ar
X

iv
:2

00
7.

07
58

8v
1 

 [
cs

.L
G

] 
 1

5 
Ju

l 2
02

0



Weerts et al.

learning task, known as meta-features, to predict whether hyperpa-
rameter tuningwill lead to better results thanmodels obtained using
default parameter settings. Additionally, Lavesson and Davidsson
[7] show that tuning hyperparameters is often more important than
the choice of the machine learning algorithm. In contrast to these
works, we study the importance of tuning particular hyperparame-
ters, rather than the importance of tuning at all.

Van Rijn and Hutter [15] study the importance of particular hy-
perparameters as well as interactions between hyperparameters.
The authors define important hyperparameters as parameters that
explain most variance in performance across multiple datasets. The
explained variance is determined through a functional ANOVA
framework. A limitation of this approach is that the results do not
directly translate into guidelines on which particular hyperparam-
eters are important to tune. For example, a hyperparameter for
which one specific setting always performs well is considered im-
portant, as it explains variance in performance. However, such a
parameter does not require extensive tuning. Instead, it can simply
be set to the setting that always results in good performance.

This issue is alleviated by Probst et al. [12], who introduce the
tunability of a hyperparameter: the performance gain that can be
achieved by tuning the hyperparameter. The authors compare the
performance of leaving all hyperparameters at their default values
to tuning the hyperparameter of interest while leaving all other
hyperparameters at their defaults. Their approach can be used
directly to determine the importance of tuning a hyperparameter.

The approach taken in this work is similar to the work of Probst
et al. [12]. As opposed to the aforementioned work, we are inter-
ested in the tuning risk of a hyperparameter: the performance loss
that is incurred when a hyperparameter is set to a default value
instead of being tuned, while all other hyperparameters are tuned.
Probst et al. [12] describe the method used in this work and men-
tion that “the two alternatives can be seen as similar to forward
and backward selection of variables in stepwise regression” (p. 7).
The difference between the two approaches is reflected in the way
default parameters are chosen. The default parameters determined
by Probst et al. [12] are chosen in a joint fashion, while the default
parameters used in this work are determined univariately. That is,
Probst et al. [12] determine a specific set of default hyperparameter
values at the same time, whereas we determine the default setting
of a hyperparameter irrespective of the values of other hyperpa-
rameters. Consequently, the approach of Probst et al. [12] takes
into account possible interaction effects between hyperparameters.
This is beneficial in their forward selection approach, as most of
the hyperparameters are left at their default value. In our back-
ward selection approach, however, potential interaction effects are
optimized by tuning the interacting hyperparameter, allowing us
to choose the default parameters using a univariate approach. In
future research, these interaction effects can be investigated further.

3 METHODS
3.1 Notation
Let A be an algorithm with H hyperparameters with domains
Θ1, ...,Θh and configuration space Θ = Θ1 × ... × Θh . Let θ =
⟨θ1, ...,θh⟩ with θi ∈ Θi denote a setting of all hyperparameters of
A.

The performance of an algorithm with hyperparameter settings
θ on a specific learning task can be expressed as a loss function
L(Y , f̂ (X ,θ ). Here, Y is the target variable, X a vector of features
and f (.,θ ) the predictive model resulting from training algorithm
A with hyperparameter settings θ . For example, classification accu-
racy can be expressed as the mean of a 0/1 loss function defined as
follows:

L(y, f̂ (x ,θ )) =
{
0, if y = f̂ (x ,θ )
1, otherwise

(1)

Usually, one is interested in estimating the expected loss [12]. Let
Let Rj (θ ) denote the expected loss (risk) of a model trained with
hyperparameter settings θ on dataset j. Let θ ji denote the default
setting of hyperparameter i for dataset j . Moreover, letRj (θ ji ) denote
the risk for dataset j of fixing hyperparameter i to θ ji while tuning
all other H − 1 hyperparameters. Finally, let θ∗ji denote the best
setting for parameter i for dataset j, i.e.:

θ
∗j
i = argmin

θi ∈Θi
Rj (θi ) (2)

Given an algorithm A and hyperparameter i , we aim to determine
1) a reasonable default setting θ

j
i , for i = 1, ...,h and j = 1, ...,m,

and 2) whether Rj (θ ji ) is non-inferior to Rj (θ
∗j
i ) across datasets.

3.2 Hyperparameter Default Values
The default setting problem can be formalized as follows. Given

• an algorithm A with configuration space Θ
• a hyperparameter i with domain Θi
• M datasets D(1), ...,D(m)

• for each dataset j, a set of K empirical risk measurements
with different hyperparameter settings ⟨Rj (θk )⟩Kk=1, where
θk ∈ Θ

we aim to determine a default setting θ ji for hyperparameter i , for
dataset j.

3.2.1 Approach. We use a simple heuristic procedure to determine
default values. The intuition behind our method is to find a setting
that, across many datasets, most often results in good performance.

It is important to note that if we were to use a single default value
in the hyperparameter importance experiment, we leak information
on the best hyperparameter value of a specific dataset. Therefore,
we determine a default setting using a leave-one-out approach.
That is, we determine θ ji using only performance data related to
the otherM − 1 datasets.

First, we take a subset of all empirical performance measure-
ments that represent good performance. That is, for each dataset,
we pick the n hyperparameter settings that resulted in the best
performance, i.e. lowest risk. Note that the top n performance data
consists ofM · n empirical performance measurements. This is sim-
ilar to the first step of the prior distribution estimation method
proposed by Van Rijn and Hutter [15]. The choice of n is potentially
important. On the one hand, picking n too small might give a large
weight to outliers. On the other hand, picking n too large could
result in the inclusion of bad performance measurements in the
subset.

2



Importance of Tuning Hyperparameters of Machine Learning Algorithms

Second, we determine which parameter setting occurs most
frequently within this subset. The intuition is that a setting that
worked well on most datasets is a good candidate for a default
value. Moreover, if there exists a single setting that works best
for most datasets, our approach is certain to find it. Note that this
would not be the case when using, for example, the median. For
hyperparameters with a nominal or boolean domain, the setting that
worked well most often is simply the mode. Since hyperparameter
settings are picked randomly across the domain, parameters with
a continuous domain or large integer domain, e.g. more than 50
possible values, must first be discretized. In this work, we will
determine the bin size b using the Freedman-Diaconis rule [3],
presented in Equation 3.

b = 2
IQR
3√
N

(3)

where IQR is the interquartile range of the data andN is the number
of observations. The Freedman-Diaconis rule is known to be re-
silient to outliers. An alternative of this rule is Sturges formula [14].
The automatic histogram binning, as implemented in the python
library numpy [10], uses the maximum of the Freedman-Diaconis
rule and Sturges formula. However, Sturges formula assumes that
the data follows a Gaussian distribution. Since we have no reason
to assume that this holds for our data, we only use the Freedman-
Diaconis rule.

The advantage of our method is that it is very simple and in-
tuitive. In future work, it would be interesting to compare our
simple, univariate heuristic with more sophisticated methods, such
as default parameter estimation through surrogate models [12].

3.2.2 Meta-feature dependent default values. In the open source
machine learning library scikit-learn [11], the default values of
some hyperparameters depend on properties (or meta-features) of
the dataset. In particular, max_features of the random forest and
gamma of the support vector machine depend on the number of fea-
tures in the dataset. The default values of all other hyperparameters
in scikit-learn that are involved in this study are not meta-feature
dependent. As there is no indication of what functions might be
reasonable for these hyperparameters, we will only apply a meta-
feature dependent approach for max_features and gamma. Let p
denote the number of features of a dataset. Then, the default pa-
rameters are √p and 1/p for max_features and gamma respectively.
For these hyperparameters, we investigate an alternative default
parameter estimation approach. Rather than choosing the value
that occurs most frequently, we use non-linear least squares to fit
several functions to the top 10 performance data, as implemented
in the curve_fit function of the python library scipy [5].

3.3 Tuning Risk of Hyperparameters
In this section, we explain the experiment design and methods that
are used to determine the importance of tuning a hyperparameter.

3.3.1 Experiment Design. We adhere to a repeated measures exper-
iment design, where the unit of analysis is a dataset. The dependent
variable in our study is the cross validated performance of an in-
stantiation of an algorithm. The two independent variables in our
study are condition and random search seed. The condition variable

indicates whether a hyperparameter is fixed or non-fixed. That is,
for some algorithm A, hyperparameter i , and dataset j, we have:

• Fixed: fix hyperparameter i to default setting θ ji and tune all
other H − 1 hyperparameters;

• Non-fixed: tune hyperparameter i as well as all other H − 1
hyperparameters.

The hyperparameters will be tuned using a random search strategy
[1] within a nested cross validation procedure. In the outer cross
validation loop, we split the data into training and test sets. In the
inner cross validation loop, we split each training set further into
training and validation sets. In each iteration of the random search,
the average validation set performance is determined to assess the
performance of a hyperparameter setting. The best hyperparameter
setting is used to determine the test set performance. The final
performance of the algorithm is the average test set performance
over all outer folds.

Although the random seeds are the same for fixed and non-fixed
conditions, they are not shared among datasets. For example, the
first random seed of task 1 is not necessarily identical to the first
random seed of task 2.

3.3.2 Approach. We evaluate the results of the experiment through
both an absolute measure (tuning risk) and a statistical measure
(non-inferiority).

Tuning Risk - To understand to what extent the condition affects
the performance of the algorithm, we compute the difference in
risk between the fixed and non-fixed conditions. Analogous to the
tunability measure introduced by Probst et al. [12], we define tuning
risk of hyperparameter i for dataset j and seed s as follows:

di, j,s = R(θ ji ) − R(θ∗j,si ) (4)
The tuning risk quantifies the risk of not tuning a particular hy-
perparameter. Larger values of di, j,s indicate that the risk of the
fixed condition is higher than the risk of the non-fixed condition.
To summarize the differences over all M datasets and seeds, we
need an aggregating function. An obvious function is to compute
the simple average. Other examples would be to use the median
or some weighting scheme, e.g. based on properties of the dataset.
Note that using the median would give more weight to intermediate
risk values. Because we do not have evidence for the justification
of a particular weighting scheme, we compute the simple average
tuning risk of hyperparameter i:

di =
1

S ·M

S∑
s=1

M∑
j=1

di, j,s (5)

We also investigate the standard deviation ofdi, j,s , which is denoted
by si .

An assumption of this definition of tuning risk is that every
unit of risk is equally relevant. In practice, however, this is often
not the case. For example, when considering the missclassification
rate, an increase from 0.01 to 0.02, might be considered worse than
an increase from 0.49 to 0.50, as in the former case the number of
misclassified instances is doubled. Hence, it depends on the learning
task whether the absolute tuning risk is a relevant improvement
or not. To alleviate this issue, we define the relative tuning risk

3



Weerts et al.

as the relative difference in risk between the fixed and non-fixed
conditions. The measure is formalized as follows:

dRi, j,s =
R(θ ji ) − R(θ∗j,si )

R(θ∗j,si )
(6)

Again, we aggregate the relative tuning risk by computing the
average:

dRi =
1

S ·M

S∑
s=1

M∑
j=1

dRi, j,s (7)

Additionally, we compute the standard deviation of dRi, j,s , which
we will denote by sRi .

Non-inferiority -We use the statistical measure of non-inferiority
to determine whether the performance of the fixed condition is
comparable to the performance of the non-fixed condition. This
measure differs from traditional hypothesis testing, where the goal
is to show that one group is different from another group with
respect to some variable. Instead, we wish to determine whether an
effect observed in one group is non-inferior to the effect in another
group. Two one-sided non-inferiority tests can be combined into
a method referred to as equivalence testing. This method is often
applied in clinical and psychological research [6, 17]. For example,
one might want to determine whether some new treatment has
similar benefits compared to an existing treatment.

An important consideration in non-inferiority studies is the non-
inferiority margin: the maximum difference in effect size that is
considered to be irrelevant in practice. The non-inferiority margin
is also known as smallest effect size of interest. It is more meaning-
ful to define relevant improvements in performance on a relative
scale than on an absolute scale. Therefore, we will only investigate
the relative tuning risk in a non-inferiority test. We are mostly
interested in the case where the observed risk in the fixed condition
is higher than the risk observed in the non-fixed condition. We
formulate our research question as follows:

Is the observed risk in the fixed condition non-inferior
to the risk observed in the non-fixed condition?

To answer our research question, we perform a non-parametric one
sided test of non-inferiority for paired samples. We use a one-sided
version of the Two One-Sided Tests (TOST) procedure described
in the work of Mara and Cribbie [9]. The authors show that the
non-parametric TOST procedure is more powerful for non-normal
distributions than the TOST procedure that uses a paired t-test,
because the former is less sensitive to outliers. Since we have no
reason to assume that our data follows a normal distribution, we
use the non-parametric alternative. The procedure is very similar
to the Wilcoxon signed ranks tests, the biggest difference being the
inversion of the null and alternative hypotheses. In the remainder
of this section, we describe the procedure in more detail.

We define the relative risk of observations as xf −xnf
xnf

, where xf
denotes an observation of the fixed condition and xnf an observa-
tion of the non-fixed condition. Let δ be the non-inferiority margin
for the relative risk. Additionally, letMr r be the population median

of the relative risk. Then the null and alternative hypotheses are as
follows:

H0 : Mr r ≥ δ (8)
H1 : Mr r < δ (9)

We compute signed ranks for observations xf −xnf
xnf

− δ . Let snr
denote the absolute value of the sum of the negative ranks and N
the number of observations. Then the test statistic z is defined as
follows:

z =
snr −

(
N (N+1)

4

)
√

N (N+1)(2N+1)
24

(10)

For a single test, H0 is rejected if z ≥ z1−α , where z1−α is the value
of the standard normal distribution at significance level α . The
experiment will be performed multiple times in this study, each
time for a different hyperparameter. We use the Holm-Bonferroni
method [4] to control the family-wise error.

4 EXPERIMENT DETAILS
In this section we give an overview of the datasets, algorithms,
performance measures, and experiment setups. All experiments
are executed using dockerized Python applications1 on the Azure
Cloud Computing platform.

4.1 Datasets
We use data from the open machine learning environment OpenML
[16]. In particular, we use datasets from the OpenML-CC18, a cu-
ratedmachine learning benchmark suite of 73 classification datasets.
A description of these datasets can be found in Appendix A.1. In
this study, we used 59 of these 73 datasets. One dataset was not
included in this study because of technical issues arising from the
large number of nominal features in this dataset. Additionally, due
to time constraints, we limited the training time of a single algo-
rithm run on a dataset to 3 hours. Datasets for which more than 10%
of the default value experiment runs lasted more than 3 hours are
left out of the analysis. The 14 datasets that are excluded from the
study are listed in Appendix A.2. It is important to note that all ex-
cluded datasets had a relatively high number of features, instances,
or both. This might bias our results towards smaller datasets when
considering meta-feature dependent default values.

4.2 Algorithms and Hyperparameters
In this work we consider two algorithms as implemented in scikit-
learn. We consider a Support Vector Machine (SVM) with a Radial
Basis Function (RBF) kernel and the Random Forest. The parameter
ranges that are considered are taken from the automatic machine
learning package auto-sklearn [2]. The ranges for SVM and random
forest can be found in Table 1 and Table 2 respectively.

The complete pipeline consists of simple pre-processing steps
and the algorithm. The pre-processing pipeline includes missing
value imputation by the mean (continuous features) or mode (cat-
egorical features), one hot encoding for categorical features, and
removal of features with zero variance. Because SVM’s are known
1See https://github.com/hildeweerts/hyperimp.

4

https://github.com/hildeweerts/hyperimp


Importance of Tuning Hyperparameters of Machine Learning Algorithms

Table 1: Hyperparameter ranges for SVC.

Hyperparameter Type Range

gamma continuous [2−15, 23] (log-scale)
C continuous [2−5, 215] (log-scale)
tol continuous 10−5, 10−1] (log-scale)
shrinking boolean {True, False}
kernel discrete rbf

Table 2: Hyperparameter ranges for RandomForestClassi-
fier. Parameters annotated with * are fixed to a value dif-
ferent than the default of scikit-learn.

Hyperparameter Type Range

bootstrap boolean {True, False}
criterion nominal {gini, entropy}
max_features continuous [0,1]
min_samples_leaf integer [1, 20]
min_samples_split integer [2, 20]
n_estimators* integer 500

to be sensitive to different feature scales, a scaling step is added to
the SVM pre-processing pipeline.

4.3 Performance Measures
We compare two performancemeasures, as implemented inOpenML,
at the default parameter determination stage: accuracy and macro-
averaged Area under the ROC Curve (AUC). In macro-averaging,
the measure is computed locally over each category first, then the
average over all categories is taken, weighted by the number of
instances of that class. The macro-averaged AUC is computed using
the approach of Provost and Domingos [13]. In this approach, the
ROC curve of each class is constructed by comparing the class of
interest to the union of all other classes. Note that these curves
can be sensitive to changes in prevalence of the classes within
the union. At this point, multi-class AUC is not yet implemented
in scikit-learn. Therefore, we will use accuracy as a performance
measure in the random search procedure of the hyperparameter
importance experiment.

4.4 Experiment 1: Default Values
In order to determine good default values, we need empirical risk
measurements ⟨R(θk )⟩Kk=1 for each of theM datasets. In this exper-
iment M = 59 and we choose K = 1000. In other words, for each
dataset, we evaluate 1,000 random configurations θi of each algo-
rithm, i.e. 59,000 evaluations per algorithm. Each hyperparameter
will be picked uniformly at random from the corresponding hy-
perparameter range and scale. The performance of a configuration
is calculated using 10-fold cross validation. Recall that we use the
best n settings for each task to determine the default parameters.
In accordance to the work of Van Rijn and Hutter [15], we pick
n = 10.

4.5 Experiment 2: Importance of Tuning
We use nested cross validation to determine the performance of
both the fixed and non-fixed conditions. In the outer loop, we use
10-fold cross validation to split the data in training and test sets. In
the inner loop, we use 5-fold cross validation to split the training
data further into training and validation sets. For each fold in the
inner loop, a random search strategy with 100 iterations is applied
to tune hyperparameters. Note that the hyperparameter settings
that are used to determine test set performance can be different
for each of the 10 folds in the outer cross validation. We repeat the
experiment S = 10 times, using a different seed for the random
search each time.

5 RESULTS
In this section we discuss the results of our experiments. First, we
discuss the results of the default value experiment. Second, we
discuss the results from the hyperparameter tuning importance
experiments. All performance data that was used in this study is
publicly available on OpenML2.

5.1 Experiment 1: Default Values
In this section, we first discuss the collected performance data.
Subsequently, we discuss the computed default values. In particular,
we compare our computations with the default values computed by
Probst et al. [12] and the default values used in scikit-learn. Finally,
we discuss the meta-feature dependent default parameters.

5.1.1 Performance data. After selecting the top 10 performance
data, we visualized the distributions of the hyperparameter settings
in a histogram, as illustrated in Figure 1. From the distribution de-
picted in Figure 1a, we can conclude that fixing min_samples_leaf
to 1 resulted in good performance most often. For most hyperpa-
rameters, the distribution of accuracy- and AUC-based data is very
similar. For others, one may arrive at a different default parameter
depending on the performance measure that was used. For instance,
consider the distribution of C shown in Figure 1b. An accuracy-
based default value for C would be in the order of magnitude 1,
whereas an AUC-based default value would be in the order of mag-
nitude 4. The histograms of all other hyperparameters can be found
in Appendix B.

5.1.2 Default values. Recall that the default values are computed
for each task separately, using a leave-one-out approach. The aver-
age and standard deviation of the computed default values across
all datasets are displayed in Table 3.

For most hyperparameters, the standard deviation of the com-
puted default values across datasets is zero or relatively small, con-
sidering the scaling. For example, the default values of C using an
accuracy-based approach range between 3 and 11, with a standard
deviation of 3.224. This is negligible on a logarithmic scale. The
distribution of default values with non-zero variance are displayed
in Appendix C.

The differences between defaults resulting from the accuracy and
AUC approach are in linewith the histograms shown in the previous
section. For bootstrap, criterion, min_samples_split, C, tol
we find different default parameters than the ones currently used in
2See https://www.openml.org/s/98/.

5

https://www.openml.org/s/98/


Weerts et al.

Table 3: Average/Mode (numerical/categorical) and standard deviation of our calculated defaults over all datasets, defaults of
scikit-learn, and defaults as calculated by Probst et al. [12]. Hyperparameters that are not computed in the work of Probst et al.
[12] (e.g. because they do not exist in the R implementation) are indicated with N/A. The standard deviation that is shown for
max_features, annotated with *, is the standard deviation of the exponent. The standard deviation that is shown for boolean
variables, annotatedwith **, is the standard deviationwhen considering True as 1 and False as 0. The standard deviation shown
for criterion, annotated with ***, is the standard deviation when considerint entropy as 1 and gini as 0.

Hyperparameter Average/Mode
(accuracy)

Standard
deviation
(accuracy)

Average/Mode
(AUC)

Standard
deviation
(AUC)

scikit-learn Probst et al. [12]

Random Forest

bootstrap False **0 False **0 True False
criterion entropy ***0 entropy ***0 gini N/A
max_features n^0.737 *0.009 n^0.714 *0.006 sqrt(n) 0.284
min_samples_leaf 1 0 1 0 1 0
min_samples_split 5 0 2.3 0.8 2 N/A

SVM

C 8.888 3.224 16646 63 1.000 475.504
gamma 1.2 e-02 1.5 e-04 8.1 e-03 1.5 e-03 1/n 5 e-03
shrinking True **0 True **0.36 True N/A
tol 4.6 e-05 8.8 e-08 5.4 e-02 1.3 e-02 1.0 e-03 N/A

scikit-learn, although it should be noted that the default parameter
of min_samples_split in scikit-learn was returned often by the
AUC-based approach. For bootstrap and gamma, we find similar
values as Probst et al. [12]. On the other hand, the default values
for C differ a lot between the accuracy-based defaults, AUC-based
defaults, the default used in scikit-learn, and the defaults computed
by Probst et al. [12].

5.1.3 Meta-feature dependent hyperparameters. As stated in Sec-
tion 3, we will determine the hyperparameters for max_features
and gamma using an approach that considers the number of features
of a dataset. Figure 2 shows a scatter plot of the hyperparameter
value versus the number of features, including the functions that
that were fitted. The Root Mean Squared Error (RMSE), R2, Root
Mean Squared Logarithmic Error (RMSLE), and logarithmic R2 (LR2)
for each of the functions can be found in TableZ4.

From Figure 2a, it becomes clear that for our datasets, the default
value in scikit-learn, √p, seems to underestimate max_features. In
fact, on a linear scale, it performs worse than all other functions that
we considered, whereasm = 0.16p performs best. However, RMSE
and R2 are slighty biased, because there are relatively few large
datasets. When we consider the RSMLE and LR2 instead,m = p0.74
performs best, followed bym = √

p. In Figure 2b, we do not observe
a clear pattern for gamma. Additionally, we observe negative values
for both R2 and LR2 for all functions in Table 4. The default value
in scikit-learn, 1/p, performs slightly better than the other two
functions.

In experiment 2, where we investigate the importance of tuning,
we will consider √p and p0.74 for max_features, and 1/p and 0.006
for gamma.

Table 4: RMSE, R2, RMSLE, and LR2 of several functions
that depend on the number of features of the dataset, fitted
on the accuracy-based top 10 performance data for max_fea-
tures and gamma.

function RMSE R2 RSMLE LR2

max_features

m = 0.16*p 21.64 0.77 0.90 0.13
m = p ^0.74 23.13 0.73 0.73 0.42
m = 1.15^sqrt(p) 24.33 0.70 1.24 -0.66
m = sqrt(p) 41.38 0.14 0.81 0.28

gamma

m = 0.00574*p 1.25 -0.07 0.46 -0.12
m = 1/p 1.24 -0.05 0.44 -0.04
m = 0.006 1.27 -0.09 0.46 -0.14

5.2 Experiment 2: Importance of Tuning
In order to investigate the tuning process, we visualize the average
accuracy and rank of the fixed and non-fixed conditions at each
iteration. As an example, Figure 3 depicts the maximum average
validation set accuracy observed up until a certain iteration of
the random search for gamma, using our computed default value.
Figure 4 depicts the average rank over the number of iterations for
max_features, using our computed default value. The ranks are
computed as follows. For each measurement, for each iteration, the
condition with the highest validation accuracy receives rank 1 and
the other rank 2. The visualizations of the other hyperparameter
experiments can be found in Appendix D and Appendix E.

6



Importance of Tuning Hyperparameters of Machine Learning Algorithms

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

rf__min_samples_leaf

0

50

100

150

200

fre
qu

en
cy

AUC
accuracy

(a) Random Forest - min_samples_leaf

10
1

10
0

10
1

10
2

10
3

10
4

svm__C

0

10

20

30

40

50

60

fre
qu

en
cy

AUC
accuracy

(b) SVM - C

Figure 1: The distribution of min_samples_leaf and Cwithin
the top 10 highest performing hyperparameter settings per
dataset, derived from either accuracy or AUC-based perfor-
mance data.

For all hyperparameters except SVM’s shrinking, the average
rank of the fixed condition is lower than the average rank of the non-
fixed condition in the first iteration. For many hyperparameters, the
fixed condition, on average, outperforms the non-fixed condition
for all 100 iterations. This indicates that 100 iterations was not
enough to find the best possible hyperparameter settings of the
algorithm. For SVM’s shrinking and tol, we observe that the
average rank is consistently close to 1.5, which indicates that neither
the fixed nor the non-fixed condition was superior. For random
forest’s max_features (using the computed default value), SVM’s
C, SVM’s gamma (both computed default value and scikit-learn’s
default value), the non-fixed condition, on average, outperforms
the fixed condition after 15 to 30 iterations.

5.2.1 Tuning Risk. The average and standard deviation of both tun-
ing risk and relative tuning risk are shown in Table 5. Additionally,
Figure 5 shows the distribution of tuning risk for each of the hy-
perparameters. There exist three datasets for which the non-fixed
SVM almost always resulted in perfect accuracy: OpenML task 11,
49, and 10093. Because relative tuning risk is undefined when the
non-fixed risk is equal to 0, these tasks are left out of the tuning
risk analysis. Note that the tuning risk is often negative. A negative
tuning risk indicates that the hyperparameters in the non-fixed con-
dition have not been tuned to their optimal value. If they were, the
performance of the non-fixed condition should always be at least

10
1

10
2

10
3

Number of features

10
0

10
1

10
2

M
ax

. n
um

be
r o

f f
ea

tu
re
s

m = 0.16*p
m = p^0.74
m = 1.15^sqrt(p)
m = sqrt(p)
Max. number of features

(a) Random Forest - max_features

10
1

10
2

10
3

Number of features

10
−4

10
−3

10
−2

10
−1

10
0

10
1

G
am

m
a

m = 0.00*p
m = 1/p
m = 0.006
Gamma

(b) SVM - gamma

Figure 2: Meta-feature dependent parameter values of the
top 10 performance data (accuracy-based only) against the
number of features (p) of the corresponding dataset.

0 20 40 60 80 100
Nr. of iterations

0.6

0.7

0.8

0.9

1.0

A
ve

ra
ge

 a
cc

ur
ac

y

gamma (computed)

non-fixed
fixed

Figure 3: Average accuracy (+/- standard deviation) of the the
fixed and non-fixed conditions over number of iterations for
hyperparameter gamma (computed default setting).

as good as the performance of the fixed condition, as an exhaustive
search would include the default value of the fixed condition. This
is related to the length of our random search procedure, which
we limited to 100 iterations. In future research, this issue could be
alleviated by increasing the number of iterations or using a smarter
search procedure such as the prior based approach suggested by
[15].

From Table 5, we observe that for bootstrap, criterion, min_-
samples_leaf, min_samples_split, shrinking, and tol, both

7



Weerts et al.

0 20 40 60 80 100
Nr. of iterations

1.0

1.2

1.4

1.6

1.8

2.0

A
ve

ra
ge

 ra
nk

max_features (computed)

non-fixed
fixed

Figure 4: Average rank (+/- standard deviation) of the the
fixed and non-fixed conditions over number of iterations for
hyperparameter max_features (computed default setting).

Table 5: Average and standard deviation of tuning risk (di , si )
and relative tuning risk (dRi , s

R
i ).

Hyperparameter di si dRi sRi

Random Forest

bootstrap -0.0002 0.0053 -0.0053 0.0820
criterion -0.0002 0.0041 0.0035 0.0793
max_features 0.0011 0.0068 0.0742 0.2822
max_features
(scikit-learn) 0.0010 0.0134 0.0309 0.2037

min_samples_leaf -0.0030 0.0077 -0.0505 0.1280
min_samples_split -0.0009 0.0048 -0.0110 0.0829

SVM

C 0.0008 0.0062 0.0252 0.2415

gamma 0.0180 0.0599 0.4595 1.4687
gamma (scikit-learn) 0.0039 0.0115 0.0503 0.2498
shrinking 0.0000 0.0005 -0.0003 0.0057
tol -0.0001 0.0016 0.0006 0.0179

the tuning risk and relative tuning risk are close to or lower than
zero. This is in line with the average ranks shown in the previous
section.

In Figure 5a, we observe a few high tuning risk scores for gamma
(computed default) and max_features (scikit-learn default). This
indicates that there exist a few datasets for which the fixed condition
performed much worse than the non-fixed condition. This effect is
even larger for gamma (computed default) when considering relative
tuning risk. The tuning risk of gamma when using scikit-learn’s
default parameter is much better than the tuning risk of gamma
when using our non meta-feature dependent default setting. This
indicates that it is important to take into account the number of
features when optimizing gamma.

For max_features, our computed default value resulted in slightly
better tuning risk but worse relative tuning risk compared to using
scikit-learn’s default value. In particular, there are several outliers

with a relative tuning risk higher than 2. This is not as expected,
given the analysis on meta-feature dependent parameter values in
Section 5.1.3. It indicates that the top 10 performance data gives
a decent representation of absolute performance, but not neces-
sarily of relative performance. This might be caused by the fact
that all data points are weighted equally when determining the
default value, disregarding the fact that some learning tasks are
much easier than others.

5.2.2 Non-inferiority test. The test statistics and p-values associ-
ated with non-inferiority tests with a non-inferiority margin of
δ = 0.01 are shown in Table 6. To determine which null hypotheses
are rejected, we used the Holm-Bonferroni method with a signifi-
cance level of α = 0.05.

Table 6: Test statistics, p-values, and conclusions of non-
inferiority tests. Conclusions are obtained through the
Holm-Bonferroni method [4].

Hyperparameter z p H0

Random Forest

bootstrap 7.93 1.11 e-15 rejected
criterion 8.16 1.11 e-16 rejected
max_features -2.02 9.78 e-01 not rejected
max_features
(scikit-learn) 3.59 1.63 e-04 rejected

min_samples_leaf 15.04 0.00 e+00 rejected
min_samples_split 10.06 0.00 e+00 rejected

SVM

C 1.83 3.40 e-02 not rejected
gamma -8.24 1.00 e+00 not rejected
gamma (scikit-learn) -4.61 1.00 e+00 not rejected
shrinking 20.49 0.00 e+00 rejected
tol 16.32 0.00 e+00 rejected

The results show that for all hyperparameters, except for max_-
features (computed default), C, and gamma (both computed and
scikit-learn default) the relative risk is not more than 1% higher
in the fixed condition compared to the non-fixed condition. This
indicates that for these hyperparameters, setting the hyperparam-
eter to the default value is non-inferior to tuning the parameter
through a random search using 100 iterations. For C, gamma, and
max_features (computed default) this is not the case.

6 CONCLUSIONS
In this study, we have first presented a simple heuristic to find
default hyperparameters. In our experiments, we touched upon
determining meta-feature dependent default parameters. Addition-
ally, we presented a methodology for determining the importance
of tuning a hyperparameter empirically. In contrast to previous
work, our approach can be used to determine the loss incurred
when one of the hyperparameters is not tuned but set to a default
value. This is different from the study of Probst et al. [12], who
investigate the performance gain of leaving all hyperparameters to
a default value and tuning one hyperparameter. We have applied

8



Importance of Tuning Hyperparameters of Machine Learning Algorithms

0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
tunability

min_samples_split

criterion

max_features (sklearn)

max_features

min_samples_leaf

bootstrap

gamma (sklearn)

gamma

shrinking

tol

C

(a) Tuning risk

0 2 4 6 8
relative tunability

min_samples_split

criterion

max_features (sklearn)

max_features

min_samples_leaf

bootstrap

gamma (sklearn)

gamma

shrinking

tol

C

(b) Relative tuning risk

Figure 5: The distribution of tuning risk and relative tuning risk measurements (di, j,r ) per hyperparameter.

our methodology in a benchmark study using 59 different datasets.
In this way, we provide empirical evidence that can be consulted by
machine learning practitioners before they start a computationally
and time intensive tuning process.

Our results show that using our computed default value often
results in non-inferior performance compared to tuning the hyper-
parameter. It should be noted that the number of iterations turned
out to be too low to tune several configurations of the algorithms
to the best possible performance in the non-fixed condition. Al-
though this indicates that our default parameters were reasonable,
the number of iterations could be increased in future work. For
other hyperparameters, such as random forest’s max_features and
SVM’s gamma and C, we observed a high tuning risk and relative
tuning risk, which suggests that it is important to tune these hy-
perparameters.

A limitation of our work is that the default parameters are only
determined once and are not validated separately. As a result, it
is unclear how our simple default parameter estimation method
affects the results of the second experiment. In particular, it is

unclear whether our choice of n results in a good representation of
hyperparameters with good performance. This could be resolved
in future work by comparing different methods for finding default
parameters. Moreover, it would be interesting to compare the effect
of particular performance measures, e.g. accuracy and AUC, on
computed default values.

Another limitation is that we excluded several datasets from the
OpenML-CC18 that turned out to have a high number of instances
and/or features. It is unclear how this affects our conclusions, in
particular for the determination of meta-feature dependent default
values. A related issue is that it is unclear whether the OpenML-
CC18 is a good representation of datasets that machine learning
practitioners encounter in real life. Our conclusions might not hold
for datasets that are very different from the ones analyzed in this
work.

Finally, it is important to note that we have only considered
leaving a single hyperparameter at a default value. In future work,
interactions between hyperparameters could be further investi-
gated.

9



Weerts et al.

ACKNOWLEDGMENTS
We thank Microsoft Azure for providing the computational re-
sources for this study.

REFERENCES
[1] James Bergstra and Yoshua Bengio. 2012. Random Search for Hyper-Parameter

Optimization. Journal of Machine Learning Research 13 (2012), 281–305. http:
//dl.acm.org/citation.cfm?id=2188395

[2] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel
Blum, and Frank Hutter. 2015. Efficient and Robust Automated Machine Learn-
ing. In Advances in Neural Information Processing Systems 28, C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett (Eds.). Curran Associates, Inc.,
2962–2970. http://papers.nips.cc/paper/5872-efficient-and-robust-automated-
machine-learning.pdf

[3] David Freedman and Persi Diaconis. 1981. On the histogram as a density estima-
tor:L2 theory. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete
57, 4 (01 Dec 1981), 453–476. https://doi.org/10.1007/BF01025868

[4] Sture Holm. 1979. A Simple Sequentially Rejective Multiple Test Procedure.
Scandinavian Journal of Statistics 6, 2 (1979), 65–70. http://www.jstor.org/stable/
4615733

[5] Eric Jones, Travis Oliphant, Pearu Peterson, et al. 2001. SciPy: Open source
scientific tools for Python. (2001). http://www.scipy.org/ [Online; accessed June
25, 2018].

[6] DaniÃńl Lakens. 2017. Equivalence Tests. Social Psychological and Personality
Science 8, 4 (may 2017), 355–362. https://doi.org/10.1177/1948550617697177

[7] Niklas Lavesson and Paul Davidsson. 2006. Quantifying the Impact of Learning
Algorithm Parameter Tuning. In Proceedings of the 21st National Conference on
Artificial Intelligence - Volume 1 (AAAI’06). AAAI Press, 395–400. http://dl.acm.
org/citation.cfm?id=1597538.1597602

[8] Rafael G. Mantovani, Andre L. D. Rossi, Joaquin Vanschoren, Bernd Bischl, and
Andre C. P. L. F. Carvalho. 2015. To tune or not to tune: Recommending when
to adjust SVM hyper-parameters via meta-learning. In 2015 International Joint
Conference on Neural Networks (IJCNN). IEEE. https://doi.org/10.1109/ijcnn.2015.
7280644

[9] Constance A. Mara and Robert A. Cribbie. 2012. Paired-Samples Tests
of Equivalence. Communications in Statistics - Simulation and Computa-
tion 41, 10 (2012), 1928–1943. https://doi.org/10.1080/03610918.2011.626545
arXiv:https://doi.org/10.1080/03610918.2011.626545

[10] T.E. Oliphant. 2006. A Guide to NumPy. Trelgol Publishing.
[11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.

Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[12] Philipp Probst, Bernd Bischl, and Anne-Laure Boulesteix. 2018. Tunability:
Importance of Hyperparameters of Machine Learning Algorithms. (2018).
arXiv:arXiv:1802.09596 Preprint, https://arxiv.org/abs/1802.09596.

[13] Foster Provost and Pedro Domingos. 2000. Well-Trained PETs: Improving Prob-
ability Estimation Trees. (2000). CDER working paper #IS-00-04, Stern Shool of
Business, NYU, NY, NY, 10012.

[14] Herbert A. Sturges. 1926. The Choice of a Class Interval. J. Amer. Statist.
Assoc. 21, 153 (1926), 65–66. https://doi.org/10.1080/01621459.1926.10502161
arXiv:https://doi.org/10.1080/01621459.1926.10502161

[15] J. N. Van Rijn and F. Hutter. 2018. Hyperparameter Importance Across Datasets.
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (2018). Preprint, https://arxiv.org/abs/1802.09596.

[16] Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. 2014. OpenML.
ACM SIGKDD Explorations Newsletter 15, 2 (jun 2014), 49–60. https://doi.org/10.
1145/2641190.2641198

[17] Esteban Walker and Amy S. Nowacki. 2010. Understanding Equivalence and
Noninferiority Testing. Journal of General Internal Medicine 26, 2 (sep 2010),
192–196. https://doi.org/10.1007/s11606-010-1513-8

10

http://dl.acm.org/citation.cfm?id=2188395
http://dl.acm.org/citation.cfm?id=2188395
http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning.pdf
http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning.pdf
https://doi.org/10.1007/BF01025868
http://www.jstor.org/stable/4615733
http://www.jstor.org/stable/4615733
http://www.scipy.org/
https://doi.org/10.1177/1948550617697177
http://dl.acm.org/citation.cfm?id=1597538.1597602
http://dl.acm.org/citation.cfm?id=1597538.1597602
https://doi.org/10.1109/ijcnn.2015.7280644
https://doi.org/10.1109/ijcnn.2015.7280644
https://doi.org/10.1080/03610918.2011.626545
http://arxiv.org/abs/https://doi.org/10.1080/03610918.2011.626545
http://arxiv.org/abs/arXiv:1802.09596
https://arxiv.org/abs/1802.09596
https://doi.org/10.1080/01621459.1926.10502161
http://arxiv.org/abs/https://doi.org/10.1080/01621459.1926.10502161
https://arxiv.org/abs/1802.09596
https://doi.org/10.1145/2641190.2641198
https://doi.org/10.1145/2641190.2641198
https://doi.org/10.1007/s11606-010-1513-8


Importance of Tuning Hyperparameters of Machine Learning Algorithms

A DATASETS
A.1 Properties OpenML-CC18
The OpenML-CC18 is a curated benchmark suite consisting of 73 classification tasks. For each dataset, the following properties hold:

• The number of observations is larger than 500;
• The number of observations is smaller than 100,000;
• The ratio of the minority class and the majority class is larger than 0.05;
• The number of values for categorical features most not exceed 100;
• The classification problem is not trivial (a model based on 1 feature does not result in perfect performance);
• Each target class contains at least 20 instances;
• The dataset does not belong to one of the following categories:
– Artificial dataset
– Simulated dataset
– Time series dataset
– Text data
– Multilabel data
– Derived versions of another dataset
– Dataset where the intended classification target is unclear
– Binarized regression problem
– Dataset of unknown origin
– Grouped data

A.2 Excluded tasks
The tasks of OpenML-CC18 that were not included in this study, due to either time constraints or technical issues, are listed in Table 7.
Additionally, the number of features and number of instances of the datasets are shown in Figure 6. It is clear that the datasets that were
excluded are all datasets with relatively many features or instances.

Table 7: OpenML-CC18 tasks excluded from this study. Tasks for which only the random forest or SVM timed out too often
are annotated with respectively * and **.

OpenML task id Reason

167125 technical issue

219** time constraint

3481* time constraint

3573 time constraint

7592 time constraint

9977 time constraint

14965** time constraint

14970* time constraint

146195 time constraint

146825 time constraint

167119** time constraint

167120 time constraint

167121 time constraint

167124 time constraint

A.3 Datasets previous work
In Figure 7a we observe that both the study of Probst et al. [12] and Van Rijn and Hutter [15] contain more datasets with a large number
of features and instances. In Figure 7c we observe that the data of Probst et al. [12] and Van Rijn and Hutter [15] contain relatively more

11



Weerts et al.

10
1

10
2

10
3

Number of features

10
3

10
4

10
5

N
um

be
r o

f i
ns

ta
nc

es

included
excluded

Figure 6: Number of features against number of instances of datasets of the OpenML-CC18 that were included and excluded
from this study.

imbalanced dataset than ours. This makes sense, since these datasets are taken from the OpenML-100, for which the class imbalance was not
yet one of the criteria (as opposed to the OpenML-CC18).

10
1

10
2

10
3

Number of features

10
3

10
4

N
um

be
r o

f i
ns

ta
nc

es

Probst et al.
Weerts

(a) The number of features against number
of instances for this work and Probst et al.

[12].

10
1

10
2

10
3

Number of features

10
3

10
4

10
5

N
um

be
r o

f i
ns

ta
nc

es

Van Rijn and Hutter
Weerts

(b) The number of features against number
of instances for this work and Van Rijn

and Hutter [15].

0.2 0.4 0.6 0.8 1.0
ClassRatio

0

5

10

15

20

25

Fr
eq

ue
nc

y

Van Rijn and Hutter
Weerts
Probst et al.

(c) Distribution of the ratio of the number
of instances in the minority class
compared to the majority class.

Figure 7: Meta-features for the datasets included in the work of Probst et al. [12], Van Rijn and Hutter [15] and this study.

12



Importance of Tuning Hyperparameters of Machine Learning Algorithms

B DISTRIBUTION OF TOP 10 PERFORMANCE DATA
In Figure 8 histograms of the distribution of hyperparameters in the top 10 performance data are displayed for both accuracy and AUC.

Fa
ls

e

Tr
ue

rf__bootstrap

0

50

100

150

200

250

300

350

fre
qu

en
cy

AUC
accuracy

(a) Random Forest - bootstrap

en
tro

py gi
ni

rf__criterion

0

50

100

150

200

250

300

350

400

fre
qu

en
cy

AUC
accuracy

(b) Random Forest - criterion

0.0 0.2 0.4 0.6 0.8 1.0

rf__max_features

0

10

20

30

40

50

60

70

80

fre
qu

en
cy

AUC
accuracy

(c) Random Forest - max_features

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

rf__min_samples_leaf

0

50

100

150

200

fre
qu

en
cy

AUC
accuracy

(d) Random Forest - min_samples_leaf

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

rf__min_samples_split

0

10

20

30

40

50

60

70

fre
qu

en
cy

AUC
accuracy

(e) Random Forest - min_samples_split

10
1

10
0

10
1

10
2

10
3

10
4

svm__C

0

10

20

30

40

50

60

fre
qu

en
cy

AUC
accuracy

(f) SVM - C

10
4

10
3

10
2

10
1

10
0

10
1

svm__gamma

0

10

20

30

40

50

60

70

80

fre
qu

en
cy

AUC
accuracy

(g) SVM - gamma

Tr
ue

Fa
ls

e

svm__shrinking

0

50

100

150

200

250

300

fre
qu

en
cy

AUC
accuracy

(h) SVM - shrinking

10
5

10
4

10
3

10
2

10
1

svm__tol

0

5

10

15

20

25

30

35

40

fre
qu

en
cy

AUC
accuracy

(i) SVM - tol

Figure 8: The distribution of a hyperparameters within the top 10 highest performing hyperparameter settings per dataset,
measured by either accuracy or AUC.

13



Weerts et al.

C DISTRIBUTION OF DEFAULT VALUES ACROSS TASKS
The distributions of the computed default values for all hyperparameters for which the standard deviation of the default values is non-zero is
depicted in Figure 9 and Figure 10 derived from respectively accuracy and AUC-based performance data.

0.68 0.70 0.72 0.74 0.76
random_forest - max_features

10
0

10
1

Fr
eq

ue
nc

y

(a) Random Forest - max_features

3 4 5 6 7 8 9 10 11
svm - C

10
0

10
1

Fr
eq

ue
nc
y

(b) SVM - criterion

0.0104 0.0106 0.0108 0.0110 0.0112 0.0114 0.0116 0.0118
svm - gamma

10
0

10
1

Fr
eq

ue
nc

y

(c) SVM - gamma

0.0000462 0.0000464 0.0000466 0.0000468 0.0000470
svm - tol

10
0

10
1

Fr
eq

ue
nc

y

(d) SVM - tol

Figure 9: The distribution of the computed default values, using accuracy based performance data, across different tasks for
hyperparameters where the default values have a non-zero standard deviation.

14



Importance of Tuning Hyperparameters of Machine Learning Algorithms

0.67 0.68 0.69 0.70 0.71 0.72 0.73
random_forest - max_features

10
0

10
1

Fr
eq

ue
nc

y

(a) Random Forest - max_features

2.0 2.5 3.0 3.5 4.0 4.5 5.0
random_forest - min_samples_split

10
1

Fr
eq

ue
nc

y

(b) Random Forest - min_samples_split

16600 16700 16800 16900 17000 17100
svm - C

10
0

10
1

Fr
eq

ue
nc
y

(c) SVM - criterion

0.0065 0.0070 0.0075 0.0080 0.0085 0.0090 0.0095 0.0100
svm - gamma

10
0

10
1

Fr
eq

ue
nc

y

(d) SVM - gamma

Fa
ls
e

Tr
ue

svm - shrinking

0

10

20

30

40

50

(e) SVM - shrinking

0.00 0.01 0.02 0.03 0.04 0.05 0.06
svm - tol

10
1

Fr
eq

ue
nc

y

(f) SVM - tol

Figure 10: The distribution of the computed default values, using AUC based performance data, across different tasks for
hyperparameters where the default values have a non-zero standard deviation.

15



Weerts et al.

D AVERAGE ACCURACY
For each measurement, we computed the maximum average validation set accuracy up until a certain iteration. The average accuracy (+/-
standard deviation) for both the fixed and non-fixed conditions is shown in Figure 11.

0 20 40 60 80 100
Nr. of iterations

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
ve

ra
ge

 a
cc

ur
ac

y

bootstrap

non-fixed
fixed

(a) Random Forest - bootstrap

0 20 40 60 80 100
Nr. of iterations

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
ve

ra
ge

 a
cc

ur
ac

y

criterion

non-fixed
fixed

(b) Random Forest - criterion

0 20 40 60 80 100
Nr. of iterations

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
ve

ra
ge

 a
cc

ur
ac

y

max_features (computed)

non-fixed
fixed

(c) Random Forest - max_features
(computed default)

0 20 40 60 80 100
Nr. of iterations

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
ve

ra
ge

 a
cc

ur
ac

y

max_features (sklearn)

non-fixed
fixed

(d) Random Forest - max_features
(scikit-learn default)

0 20 40 60 80 100
Nr. of iterations

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
ve

ra
ge

 a
cc

ur
ac

y

min_samples_leaf

non-fixed
fixed

(e) Random Forest - min_samples_leaf

0 20 40 60 80 100
Nr. of iterations

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
ve

ra
ge

 a
cc

ur
ac

y

min_samples_split

non-fixed
fixed

(f) Random Forest - min_samples_split

0 20 40 60 80 100
Nr. of iterations

0.6

0.7

0.8

0.9

1.0

A
ve

ra
ge

 a
cc

ur
ac

y

C

non-fixed
fixed

(g) SVM - C

0 20 40 60 80 100
Nr. of iterations

0.6

0.7

0.8

0.9

1.0

A
ve

ra
ge

 a
cc

ur
ac

y

gamma (computed)

non-fixed
fixed

(h) SVM - gamma (computed default)

0 20 40 60 80 100
Nr. of iterations

0.6

0.7

0.8

0.9

1.0

A
ve

ra
ge

 a
cc

ur
ac

y
gamma (sklearn)

non-fixed
fixed

(i) SVM - gamma (scikit-learn default)

0 20 40 60 80 100
Nr. of iterations

0.6

0.7

0.8

0.9

1.0

A
ve

ra
ge

 a
cc

ur
ac

y

shrinking

non-fixed
fixed

(j) SVM - shrinking

0 20 40 60 80 100
Nr. of iterations

0.6

0.7

0.8

0.9

1.0

A
ve

ra
ge

 a
cc

ur
ac

y

tol

non-fixed
fixed

(k) SVM - tol

Figure 11: Average accuracy (+/- standard deviation) of the the fixed and non-fixed conditions across 59 datasets over number
of iterations.

16



Importance of Tuning Hyperparameters of Machine Learning Algorithms

E AVERAGE RANK
For each measurement, we computed the maximum average validation set accuracy up until a certain iteration. This data was used to rank
the fixed and non-fixed conditions. The average rank (+/- standard deviation) is shown in Figure 12.

0 20 40 60 80 100
Nr. of iterations

1.2

1.4

1.6

1.8

A
ve

ra
ge

 ra
nk

bootstrap

non-fixed
fixed

(a) Random Forest - bootstrap

0 20 40 60 80 100
Nr. of iterations

1.0

1.2

1.4

1.6

1.8

2.0

A
ve

ra
ge

 ra
nk

criterion

non-fixed
fixed

(b) Random Forest - criterion

0 20 40 60 80 100
Nr. of iterations

1.0

1.2

1.4

1.6

1.8

2.0

A
ve

ra
ge

 ra
nk

max_features (computed)

non-fixed
fixed

(c) Random Forest - max_features
(computed default)

0 20 40 60 80 100
Nr. of iterations

1.0

1.2

1.4

1.6

1.8

2.0

A
ve

ra
ge

 ra
nk

max_features (sklearn)

non-fixed
fixed

(d) Random Forest - max_features
(scikit-learn default)

0 20 40 60 80 100
Nr. of iterations

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

A
ve

ra
ge

 ra
nk

min_samples_leaf

non-fixed
fixed

(e) Random Forest - min_samples_leaf

0 20 40 60 80 100
Nr. of iterations

1.0

1.2

1.4

1.6

1.8

2.0

A
ve

ra
ge

 ra
nk

min_samples_split

non-fixed
fixed

(f) Random Forest - min_samples_split

0 20 40 60 80 100
Nr. of iterations

1.0

1.2

1.4

1.6

1.8

2.0

A
ve

ra
ge

 ra
nk

C

non-fixed
fixed

(g) SVM - C

0 20 40 60 80 100
Nr. of iterations

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

A
ve

ra
ge

 ra
nk

gamma (computed)

non-fixed
fixed

(h) SVM - gamma (computed default)

0 20 40 60 80 100
Nr. of iterations

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

A
ve

ra
ge

 ra
nk

gamma (sklearn)

non-fixed
fixed

(i) SVM - gamma (scikit-learn default)

0 20 40 60 80 100
Nr. of iterations

1.35

1.40

1.45

1.50

1.55

1.60

1.65

A
ve

ra
ge

 ra
nk

shrinking

non-fixed
fixed

(j) SVM - shrinking

0 20 40 60 80 100
Nr. of iterations

1.2

1.3

1.4

1.5

1.6

1.7

1.8

A
ve

ra
ge

 ra
nk

tol

non-fixed
fixed

(k) SVM - tol

Figure 12: Average rank (+/- standard deviation) of the the fixed and non-fixed conditions across 59 datasets over number
of iterations. Ranks are based on the maximum average validation set accuracy. Note that ranks are a relative measure of
performance and that smaller is better.

17


	Abstract
	1 Introduction
	2 Related Work
	2.1 Hyperparameter Default Values
	2.2 Hyperparameter Importance

	3 Methods
	3.1 Notation
	3.2 Hyperparameter Default Values
	3.3 Tuning Risk of Hyperparameters

	4 Experiment details
	4.1 Datasets
	4.2 Algorithms and Hyperparameters
	4.3 Performance Measures
	4.4 Experiment 1: Default Values
	4.5 Experiment 2: Importance of Tuning

	5 Results
	5.1 Experiment 1: Default Values
	5.2 Experiment 2: Importance of Tuning

	6 Conclusions
	Acknowledgments
	References
	A Datasets
	A.1 Properties OpenML-CC18
	A.2 Excluded tasks
	A.3 Datasets previous work

	B Distribution of top 10 performance data
	C Distribution of default values across tasks
	D Average accuracy
	E Average rank

