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ABSTRACT

Large language models (LLMs) are increasingly described as acquiring “reasoning” skills after
reinforcement learning from human feedback (RLHF) or related alignment methods. Bench-
mark improvements are widely celebrated as progress toward higher-order reasoning. However,
whether these gains reflect genuine structural reasoning or more superficial adaptations remains
underexplored. In this work, we probe LLMs trained in a finite and exhaustively analyzable logi-
cal domain, namely Tic-Tac-Toe, and trace how internal representations evolve across reinforce-
ment learning with Group Relative Policy Optimization (GRPO). Quantitatively, reinforcement
learning improves models far more than supervised fine-tuning (SFT), yielding higher accuracy
and robustness across prompt variations. Mechanistic interpretability, however, paints a different
picture: features extracted with sparse autoencoders (SAEs) reveal that models primarily adapt
to better extract and exploit information already explicit in the prompt, such as whose turn it is,
game progression and board occupancy. By contrast, high-level concepts like board symmetries,
strategic forks and guaranteed wins remain weakly represented, echoing concerns that reasoning
benchmarks risk overstating abstraction. This tension between surface-level performance and
deeper representational change suggests that RLHF-driven “reasoning” may be conflating task-
specific updates with structural reasoning ability. Our contribution is three-fold: (i) a systematic
interpretability pipeline tracing representation dynamics for the first time across RL training
in LLMs; (ii) an extension of SAE-based feature discovery to hypothesis-driven testing in a fi-
nite logical domain; and (iii) the first interpretability based demonstration that reinforcement
learning amplifies prompt-level feature use rather than developing higher-order (game) reason-
ing. These findings argue for interpretability-first evaluation of reasoning claims, aligning with
broader calls to ground reasoning in mechanistic analysis.

1 INTRODUCTION

Large language models (LLMs) are frequently described as acquiring reasoning abilities once trained with rein-
forcement learning from human or AI feedback (RLHF, GRPO) (Guo et al., 2025; Tang et al., 2024b; Liao et al.,
2025; Wang et al., 2025a). Gains on reasoning benchmarks are widely celebrated as evidence of higher-order
cognitive skills (Li et al., 2025; Liu et al., 2025; Xu et al., 2025; Sun et al., 2025; Topsakal et al., 2024; Xie et al.,
2025). However, whether these improvements correspond to genuine reasoning or instead reflect more superficial
adaptations remains an open question. A growing body of work warns that LLM reasoning may be overstated:
models can exploit shallow patterns, perform reward hacking, overfit to training data, or depend on distributional
cues (Hua et al., 2024; Xie et al., 2024; Zhao et al., 2025; Wu et al., 2025). Paradoxes expose inconsistent behavior
(Tang et al., 2024a), and empirical probes suggest that abstraction is fragile (Hazra et al., 2025; Toh et al., 2025;
Cosentino & Shekkizhar, 2024).

For systematically evaluating reasoning capabilities, games can provide a structured domain. From Othello and
Checkers to Go, grid-worlds and adversarial arenas, board games have long served as testbeds for reasoning
(Nanda, 2022; He et al., 2024; Joshi et al., 2024; Todd et al., 2024; Gallotta et al., 2024; Spies et al., 2024; Dao
& Vu, 2025; Chen et al., 2024). Studies of LLMs in these domains reveal a tension: models can track state
and generate legal moves or actions, but often fail to capture higher-order concepts such as symmetries, forks or
long-horizon threats (Yang et al., 2024; Wu et al., 2024; Zhang et al., 2024). This raises the question of whether
reinforcement learning agents in games are really learning to reason, or simply extracting and recombining surface-
level features.

Mechanistic interpretability offers a way to answer this question. Sparse autoencoders (SAEs) and related meth-
ods make it possible to identify feature circuits, track representation dynamics and gauge abstraction in models
(Cunningham et al., 2023; Templeton et al., 2024; Marks et al., 2024; Galichin et al., 2025; Demircan et al., 2024;
Guan et al., 2025; Paulo et al., 2024; Molinari et al., 2024; Muhamed et al., 2024; Karvonen et al., 2024). Prior
work has shown both the promise of monosemantic feature identification and the challenges of superposition,
suppression, and compositionality (Elhage et al., 2023; Nanda et al., 2022; Foote & Bricken, 2024; Foote, 2023;
Bricken, 2023; Marks, 2024). Empirical studies of model world representations suggest that LLMs do encode
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structured features (Li et al., 2023; Hendel et al., 2023; Todd et al., 2023; Gurnee & Tegmark, 2023; Belrose,
2023; Engels et al., 2024; Burns et al., 2022; Kadavath et al., 2022), but whether these support genuine reasoning
remains debated (Venhoff et al., 2025; Wang et al., 2025b; Ma et al., 2025).

In this work, we combine reinforcement learning with interpretability to investigate reasoning in small LLMs on
the closed logical domain of Tic-Tac-Toe, also known as Noughts and Crosses. This simplicity of the game allows
us to fully enumerate game states, rigorously control for symmetry, and distinguish between shallow features (turn
order, board occupancy) and higher-order abstractions (strategic threats, forks, symmetries). We train models
using supervised fine-tuning and GRPO, and probe their internal representations with SAEs trained on generic
corpora. By analyzing activations across training checkpoints, we trace how reinforcement learning changes the
internal representations.

Our findings are that reinforcement learning dramatically improves quantitative performance compared to super-
vised fine-tuning, consistent with prior reports (Dang & Ngo, 2025; Srivastava et al., 2025). However, mechanistic
analysis shows that the improvements arise from stronger encoding of prompt-level features, not the development
of strategic reasoning. In other words, models become better at exploiting what is already present in the input,
rather than reasoning beyond it. This echoes broader critiques of benchmark-driven reasoning evaluation (Shipps,
2024; Anthropic Interpretability Team, 2024; Language Model Interpretability team, 2024; Hubinger, 2024; Reuel
& Ma, 2024). Our study highlights the need for interpretability-first approaches to evaluating reasoning in lan-
guage models.

2 RELATED WORK

Reasoning in language models. Surveys consolidate the growing literature on reasoning in LLMs, ranging
from symbolic logic and mathematics to multi-agent interaction and games (Li et al., 2025; Liu et al., 2025; Xu
et al., 2025; Patil & Jadon, 2025; Sun et al., 2025; Hu et al., 2024; Gallotta et al., 2024; Zhang et al., 2024).
Reinforcement learning, particularly GRPO and RLHF, is frequently credited for unlocking reasoning behaviors
beyond supervised fine-tuning (Guo et al., 2025; Tang et al., 2024b; Dang & Ngo, 2025; Srivastava et al., 2025;
Liao et al., 2025; Wang et al., 2025a). Empirical studies report improved benchmark scores on structured tasks
such as grid worlds (Topsakal et al., 2024), mathematical reasoning (Shin, 2025), and game play (Xie et al.,
2025; Wu et al., 2024; Yang et al., 2024). Yet critics emphasize that these benchmarks often reward task-specific
shortcuts rather than structural reasoning (Hua et al., 2024; Xie et al., 2024; Zhao et al., 2025; Wu et al., 2025;
Stechly et al., 2024). Failures in self-verification (Stechly et al., 2024), paradoxical responses (Tang et al., 2024a),
and inconsistent abstraction (Hazra et al., 2025; Toh et al., 2025; Cosentino & Shekkizhar, 2024) highlight the
fragility of reasoning claims.

Games as reasoning benchmarks. Games provide structured and interpretable testbeds where reasoning can
be precisely defined. Early work on OthelloGPT demonstrated that transformer models can track state and legal
moves while failing to generalize abstractions like board symmetries (Nanda, 2022; He et al., 2024). Similar
tensions are observed in checkers (Joshi et al., 2024), Gomoku (Todd et al., 2024), and maze-solving tasks (Spies
et al., 2024; Dao & Vu, 2025). Larger multi-agent environments, such as LLM-Arena (Chen et al., 2024), show
that models adapt quickly to surface cues but lack deeper planning. Benchmark-driven studies suggest that LLMs
are effective at tracking local features (turns, legalities, short-horizon tactics) but remain brittle when faced with
higher-order logic such as forks, forced wins, or symmetry invariance (Zhang et al., 2024; Liao et al., 2025). This
motivates mechanistic approaches that go beyond surface evaluation.

Mechanistic interpretability. Sparse autoencoders (SAEs) have become a central method for opening the black
box of LLMs. They allow the discovery of monosemantic features (Cunningham et al., 2023; Templeton et al.,
2024; Marks et al., 2024; Galichin et al., 2025; Demircan et al., 2024; Guan et al., 2025; Paulo et al., 2024; Molinari
et al., 2024; Muhamed et al., 2024), provide insight into compositionality and superposition (Nanda et al., 2022;
Elhage et al., 2023; Foote & Bricken, 2024; Foote, 2023; Bricken, 2023; Marks, 2024), and make it possible to
trace how circuits evolve with training. These tools build on broader interpretability frameworks (Hubinger, 2024;
Anthropic Interpretability Team, 2024; Language Model Interpretability team, 2024) and dictionary-learning ap-
proaches (Zhang et al., 2019; Faruqui et al., 2015; Karvonen et al., 2024). Applied to reasoning domains, SAEs
reveal that LLMs often encode shallow patterns more readily than abstract structures (He et al., 2024; Spies et al.,
2024). This raises the possibility that reinforcement learning amplifies prompt-level features without inducing
genuine reasoning.

Model world representations. Beyond games, studies show that LLMs can learn structured internal models of
text and environment. Context vectors, task vectors, and emergent representations highlight the ability of models
to organize knowledge in ways resembling world models (Li et al., 2023; Hendel et al., 2023; Todd et al., 2023;
Gurnee & Tegmark, 2023; Belrose, 2023; Engels et al., 2024; Burns et al., 2022; Kadavath et al., 2022; Liu et al.,
2022; The AI Guide, 2023). Yet whether these representations enable reasoning or simply encode correlations is
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Figure 1: Overview of our experimental setup

actively debated (Venhoff et al., 2025; Wang et al., 2025b; Ma et al., 2025; Wu et al., 2025). Our work contributes
to this debate by tracing how reinforcement learning reshapes world representations in a controlled logical setting.

Efficiency, ethics, and broader context. Scaling and efficiency advances (Wolf et al., 2019; Rasley et al., 2020;
Dao, 2023; Hillier et al., 2024; Eldan & Li, 2023; Wang et al., 2025c) have made large-scale interpretability and
RLHF experiments possible, while fairness and safety considerations (Reuel & Ma, 2024; Shipps, 2024) under-
score the need for transparent reasoning evaluation. Our study builds on these insights by situating benchmark
gains within mechanistic explanations, aligning with recent calls to ground reasoning claims in interpretable fea-
tures rather than surface metrics (Anthropic Interpretability Team, 2024; Language Model Interpretability team,
2024).

3 METHODOLOGY

We study reasoning development under reinforcement learning in small LLMs using a controlled, fully inter-
pretable environment: Tic-Tac-Toe. The methodology is designed to capture both surface-level task performance
and the internal feature representations that emerge across training checkpoints.

3.1 MODELS AND TRAINING

Experiments used three models: Qwen2.5 0.5B Instruct, Qwen2.5 1.5B Instruct, and Llama3.2 1B Instruct. Mod-
els were trained with Group Relative Policy Optimization (GRPO) (Tang et al., 2024b; Guo et al., 2025). Super-
vised fine-tuning (SFT) was attempted as a baseline but failed, with models repeating the input prompt rather than
learning valid continuations (Dang & Ngo, 2025; Srivastava et al., 2025).

Training was performed on 2×H100 GPUs with Transformers reinforcement learning library (von
Werra et al., 2020), flashattention-2 (Dao, 2023) and DeepSpeed (Rasley et al., 2020). Hyperparameters:
learning rate 1× 10−6, cosine scheduler, bf16 precision, gradient accumulation 8. Checkpoints were saved every
300 steps up to 2240 steps (3 epochs).

3.2 DATASETS

Two datasets were constructed:

• Random split: 80-10-10 train/validation/test partition over all legal Tic-Tac-Toe states.

• Canonical symmetry split: all eight symmetry variants of a board (rotations and reflections) were
grouped by canonical ID. Each symmetry class was placed entirely in train or test, preventing symmetry
leakage.

Generation. States were produced via exhaustive depth-first traversal from the empty board. Each state records:
current player, legal moves, terminality, minimax-computed best moves, and canonical symmetry ID. Player
moves were encoded as integers: 1–9 for X, 10–18 for O. Illegal boards (5,000) for hypothesis testing were
added by enumerating all 39 possible states and discarding unreachable ones.

Dataset fields. Each entry includes: board (numeric and ASCII), natural language descriptions, move sequences,
outcome labels, legal moves, best moves, and symmetry identifiers.
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3.3 OBJECTIVES AND REWARDS

We trained models under two objectives:

1. Predict a legal move.
2. Predict a minimax-optimal move.

GRPO rewards combined: (i) legality, (ii) format compliance (<think>...</think><answer>...</answer>),
(iii) single-tag correctness. Rewards were equally weighted. Best-move training was initialized either from
scratch or from the best legal-move checkpoint.

3.4 EVALUATION

At each checkpoint, we evaluated on both natural language and ASCII board formats, with robustness tested by
substituting X/O with random characters. Metrics included:

• Accuracy.
• Outcome score (minimax evaluation from current perspective).
• Game phase accuracy (early, mid, late).
• Branching factor (legal move count).
• Best-move multiplicity.

Baseline models used structured generation: a chain-of-thought reasoning string followed by a move prediction.

3.5 MECHANISTIC INTERPRETABILITY

To analyze internal representations, we used sparse autoencoders (SAEs) (Cunningham et al., 2023; Templeton
et al., 2024; Marks et al., 2024; Galichin et al., 2025; Demircan et al., 2024; Guan et al., 2025). We adopt a
similar approach to (Engels et al., 2024) for automated feature discovery. We train SAEs on a large-scale generic
dataset (NeelNanda/c4-10k) to extract general-purpose features, and then applying hypothesis-driven testing
in a controlled logical domain. The algorithm used can be found in the Appendix (Algo. 1). This design leverages
the interpretability advantages of Tic-Tac-Toe, where hypotheses about symmetry, strategy, and game dynamics
can be rigorously defined and tested.

For each layer of each model, we trained SAEs on activations (resid post) using the configuration in Engels
et al. (2024). Reconstructed activations were projected using PCA and t-SNE for visualization (Algo. 2). Board
states in the projections were labeled along multiple axes: player turn, game stage, outcome, strategic situation
(Algo. 3), symmetry group, legality, and correctness of model predictions. To test the models’ capabilities on
general board and game understanding, the representations of the illegal boards were compared with those of the
legal boards used for training and testing. Similarly to quantitative evaluation, model representations were also
tested for robustness using token invariance. The player tokens (X,Y) were replaced with another set of tokens (P
and Q) to check if the models can generalize their developed representations to variances in prompt input without
changes in the task setting. The complete set of algorithms for hypothesis testing can be found in the Appendix
section A.

Then, hypothesis-based evaluations were conducted. This involved comparing the same projections across mul-
tiple hypotheses to identify potential concepts emerging in the model which were consistent with the updates of
board representations across training. Clustering with k-means and hierarchical agglomeration was performed
to automatically identify the feature groups, and statistical tests (F -tests, χ2) evaluated the dependence between
clusters and the previously defined game hypotheses. Manual analysis of the concepts and boards was done to
identify higher level patterns.

4 RESULTS

This study was designed to be broad in scope. Rather than relying on a handful of checkpoints or a single training
split, we ran a wide set of experiments: three models (Qwen2.5 0.5B Instruct, Qwen2.5 1.5B Instruct, Llama3.2
1B Instruct), two training objectives (legal vs. best move), multiple input modalities (natural language, ASCII,
random XY swaps, and their combinations), and dense checkpointing across full GRPO training runs. Each setting
was evaluated quantitatively—tracking accuracy, robustness, and outcome-aware metrics—and mechanistically,
through sparse autoencoder (SAE) reconstructions trained across all layers and checkpoints. On top of this,
we ran a set of hypothesis-driven probes that are only possible in a controlled logical domain: turn identity,
game progression, strategic situations, symmetry classes, legality, correctness, and automatically mined line-purity
templates.
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Figure 2: Best performance of each model and training setting for the legal move and best move prediction
tasks on the random-split dataset. Complete performance plots for all settings (different board and move token
representations) and datasets can be found in Appendix Figure 7.

Figure 3: Progression of model performance across model checkpoints for the two datasets. Complete progression
plots for all settings (different board and move token representations) can be found in Appendix Figure 6.

The result is a dataset of unusual granularity: millions of activations mapped, thousands of cluster-level tests, and
dozens of full training-dynamics curves. What we report here are not isolated observations but patterns that hold
consistently across models, scales, input formats, and interpretability probes.

Because of the sheer amount of material, we highlight here the clearest macroscopic findings: (i) scaling helps
within limits, (ii) legal move prediction is far easier than best-move play, (iii) input modality strongly shapes
generalization, (iv) symmetry remains unused, (v) checkpoint dynamics show preference for shallow cues, (vi)
impact of rewards, and (vii) illegal boards expose pattern-matching over reasoning. The appendix contains the
full training-dynamics maps, per-layer representational probes, and complete evaluation reports. We encourage
readers to explore those figures: the richness of the dynamics is one of the main contributions of this work.

We begin with the quantitative results: performance curves across objectives, scales, and modalities, which sets the
stage for how much reinforcement learning improves over supervised fine-tuning, and where it falls short. We then
dive deeper with mechanistic analysis, showing how internal representations change under GRPO, which features
are strengthened, and which never emerge. Together, these perspectives form a coherent picture: reinforcement
learning amplifies prompt-level cues but leaves higher-order abstractions largely untouched.

4.1 QUANTITATIVE RESULTS

Summary. Across three models, two objectives, two dataset splits, and four input modalities, GRPO post-
training improves performance relative to off-the-shelf and SFT baselines. Gains are largest when inputs remain
natural-language prompts. Performance drops with ASCII boards and degrades further when ASCII is combined
with random XY remapping (analysis provided in Appendix section B). Symmetry-controlled curves closely track
random-split curves (Fig. 3), indicating limited use of symmetry-aware structure.

Scaling helps within limits. Qwen2.5 1.5B achieves the strongest results, surpassing Llama3.2 1B and Qwen2.5
0.5B on both objectives at their best checkpoints (Fig. 2). The weaker models hover near smart baselines on best-
move prediction, consistent with observations that small LMs often require targeted signals to form task circuits
(Hillier et al., 2024; Eldan & Li, 2023; Wang et al., 2025c). Even the strongest model plateaus short of perfect best-
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move play (legal: up to 100%; best move: 71% under symmetry split and 74% under random split), foreshadowing
the representational limits seen mechanistically. Differences between the 0.5B Qwen and 1B Llama also suggest
pretraining quality matters for downstream “reasoning” (Wang et al., 2025d).

Objective difficulty: accuracy on legal≫ best. Legal-move prediction is substantially easier than best-move
selection (Fig. 2), matching reports that models master surface constraints before long-horizon structure (Topsakal
et al., 2024; Chen et al., 2024; Wu et al., 2024; Zhang et al., 2024). Outcome-aware analysis (full reports pro-
vided in appendix Fig. 8) show peaks on tactically imminent positions (large |score|) and dips on low-magnitude,
ambiguous states where lookahead or symmetry reasoning should matter (Spies et al., 2024; Dao & Vu, 2025).

Input condition ablations reveal modality dependence. Overall results show that performance is not consis-
tent across input modalities (See Appendix Fig. 7 for detailed results):

• ASCII board representations induce the largest accuracy drop for both legal and best-move objectives
across all models, with the best performing Qwen2.5 1.5B model experiencing a relative 40% reduction
in performance compared to natural language representations from 73 % to 44%. (We provide the full
reports for all settings in appendix Fig. 7).

• Random XY remapping (symbol swap in NL prompts) causes a smaller, consistent decrease relative
to the standard NL condition.

• The combined (ASCII + Random XY) setting yields the sharpest degradation, often approaching base-
line.

These asymmetries indicate that GRPO training improved robustness to superficial token perturbations (e.g., X↔Y
labels) but did not produce modality-invariant board understanding. The models rely on the natural-language scaf-
fold to parse state; when forced to construct an internal spatial map from ASCII, accuracy collapses. Mechanistic
findings in later sections support our findings. This pattern provides further evidence for reports that LLM “rea-
soning” is frequently entangled with input format and context cues rather than abstract structure (Hua et al., 2024;
Wu et al., 2025; Stechly et al., 2024; Tang et al., 2024a; Cosentino & Shekkizhar, 2024).

Symmetry split has minimal impact on learning curves. Learning curves under symmetry-controlled splitting
remain close to random-split curves (Fig. 3). If models learned symmetry-aware abstractions, canonicalization
should change performance. Instead, results align with prior evidence that transformers often rely on surface
regularities rather than equivariant structure in games (Nanda, 2022; He et al., 2024) and with reports that world-
model features can remain local without explicit biases for invariances (Li et al., 2023; Gurnee & Tegmark, 2023;
Liu et al., 2022).

Checkpoint dynamics. Over training, accuracy rises first on states with (i) few legal moves (low branching
factor) and (ii) extreme outcome scores (forced wins/blocks). Gains arrive later and remain smaller on mid-game,
high-branching states with multiple optimal continuations. (Detailed results can be found in Appendix Fig. 10).
This is consistent with RL credit assignment favoring salient, short-horizon signals and with reports that many
RLHF/GRPO improvements reflect stronger exploitation of prompt-level regularities rather than discovery of
deep structure (Tang et al., 2024b; Guo et al., 2025; Xu et al., 2025; Li et al., 2025).

Format and control rewards work well. The format and tag-count rewards reliably enforce structured outputs
(reasoning and answer blocks), but we see instances where a model produces fluent rationales while choosing
suboptimal moves—another case of decoupled “explanation” from decision quality (Stechly et al., 2024; Shipps,
2024). This resonates with alignment results showing that preference optimization can shape surface behavior
(style, format) more readily than internal competence (Tang et al., 2024b; Guo et al., 2025).

Legal-vs-illegal generalization and shallow cues. When evaluated on unreachable (illegal) boards, models
frequently propose legal continuations that are locally sensible but globally incoherent, placing these states near
legal clusters matched by simple line patterns rather than legality constraints (details can be found in Appendix
Figs. 8, 15). This failure mode supports the thesis that the learned policies privilege pattern exploitation over
game-theoretic consistency, a distinction also emphasized in recent small-model reasoning studies (Dang & Ngo,
2025; Srivastava et al., 2025; Shin, 2025).

4.2 MECHANISTIC ANALYSIS

We group hypotheses into two classes: Prompt-level features explicitly available from the input (H1 turn identity;
H2 game progression), and high-level game abstractions (H3 strategic situation: must-block, guaranteed win, etc.;
H4 symmetry class; H5 legality; H6 best-move correctness; H7 line-purity templates). Game progression bins
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Figure 4: Model representations dynamics of Qwen2.5 1.5B (layer 12) through reasoning (GRPO) training. The
figure represents the same projections colored based on three hypotheses: (H1) whose turn it is (Game Turn),
(H2) which stage of the game it is (Game Progression) and (H3) what is the logical play for the given board
(Strategic Situation). It is evident that while the base model only clearly represents the game turn, during the
course of training, the model evolves to represents the boards based on game progression in addition to game turn,
leading to improvement in performance. However, logic for strategic situations does not play a big role in model
representations and no clear patterns emerge over the course of training. Full training dynamics across all layers
and over all hypotheses tested are provided in Appendix Section C.

use move counts: early = 0−3, mid = 4−6, late = 7−9. The controlled domain allows hypothesis-driven tests
that are hard to do in open-ended corpora (Nanda, 2022; He et al., 2024).

GRPO based ”reasoning” strengthens separability for H1/H2 (turn identity and progression) but yields weak,
unstable representations for H3/H4/H6 (strategic situation, symmetry, optimality) (Fig. 4). This matches our
quantitative findings: large performance gains with GRPO arise predominantly from improved extraction and
reuse of prompt-level information rather than from the formation of higher-order abstractions.

4.3 MACROSCOPIC REPRESENTATION CHANGES UNDER GRPO

Fig. 4 shows how the internal representation changes over the course of training the best-performing model
(Qwen2.5 1.5B), specifically for layer 12. The top, middle and bottom rows show different colorings of all the
possible legal board states, with each coloring representing a hypothesis. For the top row, the boards are colored
by H1: red and blue depending on whose turn it is, and grey when the game has ended. The middle rows colors
boards by the H2 (game progression: current turn number, out of the max possible 9 turns in a game). The bottom
row colors boards by H3 (strategic situation, e.g. whether a player has won already, is guaranteed a win no matter
what, must block in order not to lose, etc.)

Turn and progression are the first-class axes. At initialization, clusters align most with H1 (whose turn),
which is a strong axis already present in base models. With GRPO, a second macroscopic axis for H2 (game
progression) emerges and stretches across the manifold (Fig. 4, middle row). This is consistent with reports that
small LLMs first acquire representations tied to immediately accessible, local features (Spies et al., 2024; Li et al.,
2023; Gurnee & Tegmark, 2023).

Strategic abstractions do not emerge. Coloring by H3 (strategic situation, e.g. must block, guaranteed win,
etc.) yields scattered speckles with no clean-colored clusters even late in training (Fig. 4, bottom row) when the
model reaches peak performance. We see occasional micro-islands for immediate tactics (e.g., one-move wins) but
these may correlate with structural organizations of the boards rather than true logical abstractions. There are no
larger coherent sheets that would indicate a compact basis for long-horizon strategy or symmetry invariance. This
mirrors Othello-style observations that legal tracking emerges before abstract invariances (Nanda, 2022; He et al.,

7



406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463

Under review as a conference paper at ICLR 2026

2024) and relates to geometric accounts of reasoning that distinguish shallow separators from global structure
(Cosentino & Shekkizhar, 2024).

Input Structure matters: ASCII vs. natural language. The quantitative drop under ASCII boards is reflected
mechanistically: SAE features for tokenized NL boards contain many crisp detectors aligned to lexical markers
(“Row 1”, “empty”) and ordinal positions, cleanly supporting H1/H2 as seen in Figures 5 and 4 (middle row).
When switched to ASCII, activations rotate; turn/progression axes remain but are noisier, and tactical micro-
islands thin out. Interestingly, the macro patterns present even in the base model (such as game turn) for natural
language representation of the boards are absent when the model is presented with the same boards but in ASCII
representation (details are shown in Appendix Fig. 13. This suggests that reasoning training does not make the
models robust to true “reasoning”. The model does not develop true input-agnostic general reasoning for the
task of playing Tic-Tac-Toe, but rather updates its internal representations to adapt to the input patterns which
can help it achieve the highest reward for the training setting. This asymmetry aligns with context-dependence
findings (Hua et al., 2024) and data-distribution sensitivity (Zhao et al., 2025), and helps explain why random XY
remappings hurt slightly while ASCII hurts substantially in the overall plots.

4.4 LOCAL CLUSTERS IN MODEL REPRESENTATIONS

Using k-means followed by agglomerative refinement over SAE-PCA space, we automatically mine subclusters
with high line-purity (dominant row/column/diagonal templates). We find sharp local pockets capturing structural
patterns in the board such as “late-game, exactly one empty in R0” or “mid-game R0: X . ., center taken”. Such
board structure representations are inherent to the base model, and are retained in the trained models while the
macroscopic arrangement of the boards evolves to include other prompt level features such as game progression.

Cluster-level statistical tests (ANOVA and χ2) for each hypothesis on each cluster of each layer of each model
checkpoint indicate a consistent pattern: strong dependence on piece count / openness / simple control features
(center, corners), weak or no dependence on strategic classes and symmetry.

Mapping the boards by their symmetry group reveals that the model does not account or represent board symme-
tries in its latent representations (detailed results in Appendix Fig. 17). The ratio of boards belonging to unique
symmetries to the total number of boards in each cluster (canonical symmetry ratio) drops below 0.7 in only 4
clusters (out of a total of 792 clusters) across both text and ASCII representations, all of which belong to end
game clusters, which correlates more with the game progression based clustering of the boards rather than based
on symmetries.

4.5 LAYERWISE LOCUS OF REPRESENTATIONAL CHANGE

An important dimension of our findings is that the most substantial representational reorganization occurs in the
middle layers, particularly around layer 12 in Qwen2.5-1.5B. Early layers (closer to embeddings) and later layers
(closer to the output head) remain relatively stable across GRPO training: their representation geometries for
hypotheses such as turn identity or game progression do not change appreciably compared to the base model. This
is evident in the layerwise map of training dynamics provided in Appendix C. By contrast, middle layers show
clear sharpening of prompt-level axes (turn, progression) and the emergence of local structural subclusters (line
purity templates as seen in Fig. 5).

This aligns with prior work that early layers often specialize in lexical or surface encoding, while middle layers
form reusable abstractions, and later layers map abstractions to task-specific outputs (Nanda, 2022; ?; Elhage
et al., 2023). In reinforcement learning fine-tuning, middle layers are also where preference-aligned features
tend to emerge, with output layers primarily adjusting stylistic or formatting control (Tang et al., 2024b; Stechly
et al., 2024). Sparse autoencoder studies likewise find that mid-layer dictionaries yield the most interpretable,
monosemantic features (Cunningham et al., 2023; Templeton et al., 2024; Marks et al., 2024), whereas later layers
contain highly entangled, task-specific mixtures that are harder to disentangle (Marks, 2024; Foote & Bricken,
2024).

Our results thus fit neatly into this emerging picture: GRPO updates primarily reshape mid-layer manifolds to
better capture prompt-level structure (whose turn, how far along), while leaving early encoding and late decision
mapping comparatively untouched. This helps explain why models gain robustness to prompt variation without
forming new higher-order abstractions: the learning signal sharpens already-accessible mid-layer features rather
than rewriting the global representational pipeline.

5 CONCLUSION

Methodologically, the contribution of this work is an interpretability-first pipeline that combines dense RL check-
pointing with SAE feature discovery and hypothesis-driven testing. This work offers a tightly controlled look at
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Figure 5: Clustering of board state representations based on structural line purity for Qwen2.5 1.5B (layer 12)
on text representations of the boards. The labels represent the dominant line purity sub-clusters or the common
line pattern across the board states. The smaller labels represent the automatically mined line subclusters within
k-means clusters found through agglomerative clustering. For clarity, we include manually annotated clusters
which combine automatically mined subclusters across different k-means clusters. This shows how common
structural patterns are represented in local subclusters while the general representation of the boards follows the
game progression as found in Figure 4. For example, late game board states which contain exactly one empty
cell in the top row are all clustered together. In the labels, R, C and D represent rows, columns and diagonals
respectively. O and X represent player tokens, “.” represents empty, T represents taken (by either X or O) and A
represents any of X, O or empty. The complete map of automatically mined line purity clusters for all layers and
models across all representation modes and training checkpoints can be found in Appendix Figure 22.

what current “reasoning” focused reinforcement learning actually changes inside small LLMs. In Tic-Tac-Toe,
GRPO training raises legal- and best-move accuracy relative to SFT and off-the-shelf baselines (Figs. 2 & 3). The
largest gains arise when the input is represented in natural language; accuracy drops sharply with ASCII boards
(Fig. 2). The symmetry-controlled dataset gave rise to similar results as the random split dataset, indicating that
the models do not learn equivariant structure.

Mechanistic analysis explains these outcomes. SAE-based probes (Cunningham et al., 2023; Templeton et al.,
2024; Marks et al., 2024; Galichin et al., 2025; Demircan et al., 2024; Guan et al., 2025) trained following auto-
mated discovery principles show that GRPO sharpens prompt-level representations (e.g. whose turn it is and game
progression), but not high-level abstractions such as strategic situation (Fig. 4). The most substantial representa-
tional reorganization occurs in middle layers (e.g., layer 12), with early and late layers comparatively unchanged,
consistent with reports that the most interpretable, reusable features often reside in mid-network dictionaries
(Cunningham et al., 2023; Templeton et al., 2024). Local clusters reliably capture line-purity templates and other
shallow geometric regularities (Fig. 5). These findings are consistent with prior work arguing that benchmark
gains can overstate abstraction (Li et al., 2025; Liu et al., 2025; Xu et al., 2025; Shipps, 2024; Hua et al., 2024;
Xie et al., 2024; Zhao et al., 2025; Stechly et al., 2024; Tang et al., 2024a; Hazra et al., 2025; Toh et al., 2025;
Cosentino & Shekkizhar, 2024).
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6 REPRODUCIBILITY STATEMENT.

We take reproducibility seriously and provide all ingredients to replicate our results. Models, training, and
hyperparameters are specified in Sec. §3 (Models and Training), including the full GRPO configuration and
compute setup (2×H100), with checkpointing frequency and evaluation protocol; per-setting learning curves and
best-checkpoint summaries are reported in Figs. 3 and 2, with full curves in Appendix Fig. 6 and comprehensive
modality results in Appendix Fig. 7. Datasets and preprocessing are described in Sec. §3 (Datasets), covering
state-space enumeration, terminal detection, symmetry canonicalization, random vs. symmetry splits, and illegal-
board generation; dataset fields and token mappings are enumerated in the same section. Evaluation metrics and
robustness settings (NL/ASCII, random XY) are defined in Sec. §3 (Evaluation) with outcome-aware analyses
summarized in Appendix Figs. 8–10. Mechanistic interpretability methodology—SAE training setup, layer
hooks, and projection/cluster pipelines—is detailed in Sec. §3 (Mechanistic Interpretability) and the Appendix
§C, with pseudocode-style algorithms in §A (Algorithms 1–7) and full hypothesis panels in Appendix Figs. 11–
24. Supplemental submission contains: (i) scripts to regenerate datasets and splits, (ii) GRPO training/evaluation
code and exact configs, (iii) SAE training configs and visualization scripts. The repository includes fixed random
seeds, environment files, and instructions to reproduce the entire set of experiments. A polished repository with
the complete code will be released upon acceptance for open source usage.
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Huang, Kashif Rasul, and Quentin Gallouédec. Trl: Transformer reinforcement learning. https://github.
com/huggingface/trl, 2020.

Haozhe Wang, Qixin Xu, Che Liu, Junhong Wu, Fangzhen Lin, and Wenhu Chen. Emergent hierarchical reasoning
in llms through reinforcement learning. arXiv preprint arXiv:2509.03646, 2025a.
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A ALGORITHMS FOR HYPOTHESIS TESTING

This section details the algorithms used for Sparse Autoencoder (SAE) feature discovery, board state analysis, and
hypothesis testing.

Algorithm 1 SAE Feature Discovery and Clustering

Require: Language ModelM, Target Layer L
Ensure: Trained SAE S, Feature Clusters C

1: Spath ← Path to cached SAE forM, L
2: if Spath exists then
3: S ← LoadSAE(Spath)
4: else
5: Dtrain ← Load text corpus (e.g., C4-10k)
6: Atrain ← Extract activations fromM at layer L on Dtrain

7: S ← TrainSAE(Atrain)
8: SaveSAE(S,Spath)
9: Wdec ← S.decoder weights

10: Wnorm ←Wdec/∥Wdec∥2 ▷ Normalize feature vectors
11: Labels← SpectralClustering(Wnorm)
12: C ← Group feature indices by Labels
13: return S, C
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Algorithm 2 t-SNE Dimensionality Reduction and Caching

Require: ModelM, SAE S, Tic-Tac-Toe Dataset D, Target Cluster Indices Icluster
Ensure: 2D Reduced Activations R, Associated Board Metadata Bmeta

1: Cachepath ← Path to cached t-SNE results forM, layer, style
2: if Cachepath exists then
3: R,Bmeta ← LoadFromCache(Cachepath)
4: return R,Bmeta

5: Bmeta ← Get unique boards from D
6: Prompts← {GeneratePrompt(b) for b ∈ Bmeta}
7: Aorig ← Get activations fromM for Prompts
8: facts ← S.encode(Aorig)
9: mask← Zeros like facts

10: mask[:, Icluster]← 1
11: Arecon ← S.decode(facts ⊙mask) ▷ Filter with cluster features
12: R← t-SNE(Arecon, n components = 2)
13: SaveToCache(Cachepath, R,Bmeta)
14: return R,Bmeta

Algorithm 3 Game-Theoretic Strategic Situation Analysis

Require: Reduced Activations R, Board Metadata Bmeta

Ensure: Saved plot colored by game-theoretic state
1: function EVALUATE(board, player) ▷ Memoized function
2: winner, terminal← CheckTerminal(board)
3: if terminal then
4: return 1 if winner = player, 0 if draw, −1 if loss
5: best outcome← −2 ▷ Losing is the default
6: for move in LegalMoves(board) do
7: next board← ApplyMove(board,move, player)
8: outcome← Evaluate(next board, opponent(player))
9: if outcome = −1 then return 1

▷ Opponent loss is a win for me
10: best outcome← max(best outcome,−outcome)

11: return best outcome
12: Categories← []
13: for board b in Bmeta do
14: winner, terminal← CheckTerminal(b)
15: if terminal then
16: Append ”Player Won” or ”Draw” to Categories
17: else
18: gt eval← Evaluate(b,CurrentPlayer(b))
19: has threat← OpponentHasImmediateWin(b,CurrentPlayer(b))
20: if gt eval = 1 then
21: Append ”Guaranteed Win”
22: else if has threat then
23: Append ”Must Block”
24: else if gt eval = 0 then
25: Append ”Draw”
26: else
27: Append ”To Play” ▷ Forced loss, no immediate threat
28: Plot R, coloring points by Categories. Save figure.
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Algorithm 4 Cluster-Based Statistical Analysis

Require: Clustered Boards Cboards (map from cluster ID to board lists)
Ensure: Printed statistical test results

1: ClusterFeatures← {}
2: for cluster cid in Cboards do
3: Featurescid ← []
4: for board b in Cboards[cid] do
5: Append {’piece count’ : CountPieces(b), ’center’ : GetCenter(b), . . . } to Featurescid
6: ClusterFeatures[cid]← Featurescid
7: ▷ Example for a continuous feature
8: Dataanova ← [[f[’piece count’] for f in ClusterFeatures[cid]] for cid in Cboards]
9: F, p← ANOVA(Dataanova)

10: Print(”Piece Count”, F, p)
11: ▷ Example for a categorical feature
12: Tablechi2 ← BuildContingencyTable(’center’, ClusterFeatures)
13: χ2, p← ChiSquaredTest(Tablechi2)
14: Print(”Center Control”, χ2, p)

Algorithm 5 Hybrid Hierarchical-Agglomerative Analysis

Require: Reduced Activations R, Board Metadata Bmeta

Ensure: Saved hybrid plot visualization
1: L0labels ← KMeans(R,n clusters = 18)
2: L0analysis ← AnalyzeClusters(L0labels) ▷ For L0 properties
3: MapL0 to Sub ← {}
4: for cluster cid from 0 to 17 do
5: L0indices ← Indices where L0labels = cid
6: Rsub ← R[L0indices]
7: kmicro ← max(5, ⌊|L0indices|/10⌋)
8: Microlabels ← KMeans(Rsub, n clusters = kmicro)
9: PatternMap← {} ▷ Map pattern key to list of global indices

10: for micro-cluster mcid in kmicro do
11: MCindices ← Global indices for micro-cluster mcid
12: purity, pattern key← CalculateDominantLinePattern(Bmeta[MCindices])
13: if purity ≥ THRESHOLD then
14: Append MCindices to PatternMap[pattern key]
15: MapL0 to Sub[cid]← {MergeIndicesByPattern(PatternMap)}
16: Visualize: For each L0 cluster, draw its convex hull. Inside, color and annotate each discovered pure sub-

cluster from MapL0 to Sub based on its defining line pattern.

Algorithm 6 Illegal vs. Legal Board Contrastive Analysis

Require: ModelM, SAE S, Legal Dataset DL, Illegal Dataset DI

Ensure: Saved contrastive visualizations
1: BL ← Sample(DL, Nlegal)
2: BI ← Sample(DI , Nillegal)
3: Bcombined ← []
4: for b in BL do
5: Append {′board′ : b,′ type′ :′ legal′} to Bcombined

6: for b in BI do
7: Append {′board′ : b,′ type′ :′ illegal′,′ reasons′ : b.reasons} to Bcombined

8: R← Run t-SNE on SAE-reconstructed activations for Bcombined ▷ As in Alg. 2
9: Plot 1: Legality View

10: Plot R, coloring points blue if ’legal’ and red if ’illegal’. Save figure.
11: Plot 2: Pattern Agglomeration View
12: Labelskmeans ← KMeans(R,n clusters = k)
13: for cluster cid from 0 to k − 1 do
14: Clusterindices ← Indices where Labelskmeans = cid
15: PatternStats← FindDominantLinePatterns(Bcombined[Clusterindices])
16: Annotate cluster centroid with top patterns, showing their legal/illegal counts.
17: Plot R colored by legality. Overlay cluster annotations and convex hulls. Save figure.
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Algorithm 7 Causal Intervention via Activation Patching

Require: ModelM, SAE S, Dataset D, Target Cluster Indices Icluster
Ensure: Printed intervention success/failure reports

1: for square i from 0 to 8 do
2: bdirty, bclean ← FindBoardPair(i,D) ▷ Boards differ only at square i
3: if no pair found then continue
4: pdirty, pclean ← Prompt(bdirty), Prompt(bclean)
5: aclean ← GetActivation(M, pclean)
6: fclean ← S.encode(aclean)
7: function PATCHHOOK(adirty runtime)
8: fdirty ← S.encode(adirty runtime)
9: fdirty[Icluster]← fclean[Icluster] ▷ The patch

10: return S.decode(fdirty)
11: logitsorig ←M(pdirty)
12: logitspatched ←M.run with hooks(pdirty, hook = PatchHook)
13: moveorig ← GetMove(logitsorig)
14: movepatched ← GetMove(logitspatched)
15: moveexpected ← GetBestMove(bclean)
16: Print results comparing moveorig,movepatched,moveexpected.

Algorithm 8 Depth-Sensitive Minimax Evaluation

Require: Board state B, current player P , current depth d
Ensure: Game-theoretic score s, best move index m

1: function MINIMAXGETSCORE(B,P, d)
2: winner, is terminal← CheckWinner(B)
3: if is terminal then
4: if winner = 1 then return 10− d,None ▷ Faster wins are better
5: else if winner = 2 then return −10 + d,None ▷ Slower losses are better
6: elsereturn 0,None ▷ Draw
7: EmptyCells← FindEmptyCells(B)
8: if P = 1 (Maximizing) then
9: max eval← −∞, best move← None

10: for move in EmptyCells do
11: Bnew ← ApplyMove(B,move, P )
12: evaluation, ← MinimaxGetScore(Bnew, Player 2, d+ 1)
13: if evaluation > max eval then
14: max eval← evaluation, best move← move
15: return max eval, best move
16: else(P = 2, Minimizing)
17: min eval←∞, best move← None
18: for move in EmptyCells do
19: Bnew ← ApplyMove(B,move, P )
20: evaluation, ← MinimaxGetScore(Bnew, Player 1, d+ 1)
21: if evaluation < min eval then
22: min eval← evaluation, best move← move
23: return min eval, best move
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Algorithm 9 Strategic Threat Detection and Fork Analysis

Require: Board state B, player P
Ensure: Count of immediate threats for player P

1: function COUNTLINETHREATS(B,P )
2: threats← 0
3: L ← All 8 winning lines of the board
4: for line in L do
5: pieces← GetPiecesOnLine(B, line)
6: if count(pieces, P ) = 2 and count(pieces, empty) = 1 then
7: threats← threats+ 1
8: return threats

Require: Board state B, player P
Ensure: Boolean indicating if a fork opportunity exists for player P

9: function HASFORK(B,P )
10: OpenSquares← FindEmptyCells(B)
11: for square in OpenSquares do
12: Btemp ← ApplyMove(B, square, P )
13: if CountLineThreats(Btemp, P ) ≥ 2 then
14: return true
15: return false

Algorithm 10 Board Canonical Form Generation

Require: A 3× 3 board matrix B
Ensure: The lexicographically smallest (canonical) representation of the board

1: function GETCANONICALFORM(B)
2: Symmetries← []
3: Bcurrent ← B
4: for i = 1 to 4 do
5: Append Flatten(Bcurrent) to Symmetries
6: Bflipped ← FlipLeftRight(Bcurrent)
7: Append Flatten(Bflipped) to Symmetries
8: Bcurrent ← Rotate90Degrees(Bcurrent)

9: return min(Symmetries)
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B QUANTITATIVE ANALYSIS

This section provides the complete set of quantitative results for all settings. For both random and symmetry
datasets, we conducted evaluations for both text based natural language board representations as well as ascii based
board representations. These were done to evaluate both legal move and best move obectives across all trained
model checkpoints. Model’s robustness to the prompt variations was tested by chosing random alphanumeric
characters to replace the player tokens (X, Y) for the same board.
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Figure 6: Progression analysis across board representations and randomization.
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Figure 7: Overall performance across board representations and randomization.
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(g) Heatmap, legal move, ASCII board representation,
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Figure 8: Outcome score heatmaps across board representations and randomization.
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Figure 9: Open spaces analysis across board representations and randomization.
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Figure 10: Complexity analysis across board representations and randomization.
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C ADDITIONAL MECHANISTIC INTERPRETABILITY RESULTS

The plots below map the hypotheses from SAE probing across all layers and along training checkpoints for both
natural language and ascii representations. Due to size constraints on the main paper, the plots have been com-
pressed to allow the PDF to stay within 50MB. Complete plots have been provided with the supplemental submis-
sion for further investigation.
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(a) ASCII board representation (b) Natural language instruction representation

Figure 11: Hypothesis testing: Game progression.
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(a) ASCII board representation (b) Natural language instruction representation

Figure 12: Hypothesis testing: Game trajectories.
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(a) ASCII board representation (b) Natural language instruction representation

Figure 13: Hypothesis testing: Game turn.
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(a) ASCII board representation
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(b) Natural language instruction representation

Figure 14: Hypothesis testing: Prediction correctness.
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(a) ASCII board representation
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Figure 15: Hypothesis testing: Illegal vs Legal boards.
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(a) ASCII board representation (b) Natural language instruction representation

Figure 16: Hypothesis testing: Strategic situations.
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(a) ASCII board representation (b) Natural language instruction representation

Figure 17: Hypothesis testing: Symmetry.
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(a) ASCII board representation (b) Natural language instruction representation

Figure 18: Hypothesis testing: Threat detection.
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Figure 19: Hypothesis testing: Turn-by-turn paired analysis.
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(a) ASCII board representation (b) Natural language instruction representation

Figure 20: Hypothesis testing: Winner identification.
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(a) ASCII board representation (b) Natural language instruction representation

Figure 21: Hypothesis testing: Winner identification with best labels.
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(a) ASCII board representation (b) Natural language instruction representation

Figure 22: KMeans clustering: Dominant line patterns.
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(a) ASCII board representation (b) Natural language instruction representation

Figure 23: KMeans clustering: Global extremes (normalized).
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(a) ASCII board representation (b) Natural language instruction representation

Figure 24: KMeans clustering: Hypothesis summary (normalized).

38


	Introduction
	Related Work
	Methodology
	Models and Training
	Datasets
	Objectives and Rewards
	Evaluation
	Mechanistic Interpretability

	Results
	Quantitative Results
	Mechanistic Analysis
	Macroscopic Representation Changes under GRPO
	Local Clusters in Model Representations
	Layerwise locus of representational change

	Conclusion
	Reproducibility Statement.
	Algorithms for Hypothesis Testing
	Quantitative analysis
	Additional Mechanistic Interpretability Results

