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ABSTRACT

Currently, most crowd counting methods have outstanding performance under nor-
mal weather conditions. However, they often struggle to maintain their perfor-
mance in extreme and adverse weather conditions due to significant differences in
the domain and a lack of adverse weather images for training. To address this issue
and enhance the model’s robustness in adverse weather, we propose a two-stage
crowd counting method. In the first stage, we introduce a multi-queue MoCo con-
trastive learning strategy to tackle the problem of weather class imbalance. This
strategy facilitates the learning of weather-aware representations by the model.
In the second stage, we employ the supervised contrastive loss to guide the re-
finement process, enabling the conversion of the weather-aware representations to
the normal weather domain. In addition, we also create a new synthetic adverse
weather dataset. Extensive experimental results show that our method achieves
competitive performance.

1 INTRODUCTION

Crowd counting has attracted much attention recently due to its wide range of applications such as
public safety, video surveillance, and traffic control. Currently, most of the crowd counting meth-
ods (Zhang et al., 2016; Li et al., 2018; Lin et al., 2022) are able to estimate the number of crowds
well on the images recorded under normal weather conditions. However, when it comes to adverse
weather conditions such as rain, haze, and snow, these methods face challenges in maintaining their
performance due to domain differences and the limited availability of adverse weather images (as
depicted in Fig. 1(c)).

To mitigate the negative influence of adverse weather, an intuitive remedy is to pre-process the
images using image restoration modules before counting. Unfortunately, even when restoration
modules can mitigate the obscuration caused by adverse weather, the restored images still exhibit
significant domain differences from normal weather images. Moreover, the additionally introduced
classification and enhancement modules significantly increase the computational burden. Huang
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Figure 1: Trade-off of model weight and accuracy between our proposed method and state-of-the-art
methods under adverse weather (a) and normal weather (b) conditions on the JHU-Crowd++ dataset.
The radius of the circle is proportional to the number of parameters of the model. Under adverse
conditions, the MAE performance of the state-of-the-art methods degrades by an average of 105.9%.
The proportion of different weather in JHU-Crowd++ is shown in (c).
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et al. (2023) introduced a transformer-based approach that addresses the issue of generating com-
plementary information from image-specific degradation without the need for customized image
enhancement modules. However, this transformer-based approach not only poses a heavy computa-
tional burden but also ignores the issue of weather class imbalance in the dataset.

The aim of this study is to enhance the robustness of crowd counting models in unknown adverse
weather conditions while maintaining their performance under normal weather conditions without
significantly increasing model complexity. To achieve this objective, we approach the problem of
crowd counting, which includes both normal and adverse weather conditions, as an imbalanced
multi-domain learning task. The key prerequisite for a model to tackle multi-domain learning is to
have perception capabilities across different domains, meaning that the extracted information from
each domain should possess discriminative characteristics. This aligns with the objective of con-
trastive learning (Chen et al., 2020; He et al., 2020; Oord et al., 2018). Therefore, in this paper,
we propose a two-stage method called Multi-queue Contrastive Learning (MQCL). This approach
enables the backbone model to directly extract weather-aware representations, which are further
refined by a refiner module. In the first stage, we use unsupervised contrastive learning to dis-
tinguish the characteristics of different weather. However, since the class imbalance mentioned
above, the gradient of the loss function of the vanilla contrastive method would be dominated by
normal weather images, resulting in poor performance of representations and difficulty in refining
and counting. To tackle such an imbalance problem, we design a simple yet effective contrastive
learning method called multi-queue MoCo, which replaces the standard single queue in MoCo (He
et al., 2020) with multiple queues, providing class-balanced key vectors. In the second stage, the
supervised contrastive learning method (Khosla et al., 2020) is used to guide the refiner to convert
the representations of adverse weather images to the domain of normal images. Benefiting from the
effective representation learning, the refiner and the decoder can be designed to be light to meet our
target of not significantly increasing the weight. Compared to the backbone model ConvNeXt (Liu
et al., 2022; Ling et al., 2023) used in this paper, our method only introduces 15.3% of the extra
FLOPs and 12.7% parameters. Comparison of weight and accuracy of MQCL and state-of-the-art
methods is shown in Fig. 1(a/b).

In addition, as currently only one publicly available dataset, JHU-Crowd++ (Sindagi et al., 2020),
contains adverse weather images and annotations, we synthesized a new dataset called NWPU-
Weather based on the NWPU-Crowd dataset (Wang et al., 2020b) with rainy and hazy scenes. This
dataset aims to facilitate research on crowd counting in adverse weather conditions. Several repre-
sentative counting networks are benchmarked to provide an overview of the state-of-the-art perfor-
mance. Codes and the NWPU-Weather dataset are available at: https://anonymous.4open.
science/r/MQCL-B46E/.

The main contributions of our paper are concluded as follows.

• To boost the robustness of the model under adverse weather conditions while maintain-
ing normal-weather performance, we propose a lightweight two-stage method, achieving
significant improvement compared to the baseline.

• To tackle the problem of class imbalance in contrastive learning, we propose a new method
called multi-queue MoCo, achieving better performance than vanilla single-queue MoCo.

• To realize the conversion of representations from the adverse weather domain to the normal
weather domain, we propose a refining module guided by supervised contrastive learning,
enabling the decoder to focus on a single domain.

• To provide the crowd counting field with more experimental samples in adverse weather,
we synthesize a new adverse weather crowd counting dataset called NWPU-Weather. Ex-
tensive experimental results show that our method achieves competitive results.

2 RELATED WORK

2.1 CROWD COUNTING UNDER NORMAL CONDITIONS

Up to now, most single image crowd counting methods can be divided into two categories:
regression-based and detection-based crowd counting. Regression-based methods mostly aim to
generate a density map, and the sum of pixel values of which is the estimated total number.
MCNN (Zhang et al., 2016) is a pioneer in employing such a method. Benefiting from the multi-
column design, MCNN can handle input images of arbitrary size or resolution. CSRNet (Li et al.,
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2018) employs dilated CNN for the back end to deliver larger reception fields and to avoid pooling
operations. More recently, Lin et al. (2022) proposed a multifaceted attention network to improve
transformer models in local spatial relation encoding. Du et al. (2023) redesigned the multi-scale
neural network by introducing a hierarchical mixture of density experts.

In addition to model architecture, loss function designing (Ma et al., 2019; Wan et al., 2021) is also
a focused area of regression-based crowd counting, which enables the models to effectively learn
from ground truth.

2.2 CROWD COUNTING UNDER ADVERSE CONDITIONS

Existing deep-learning-based methods have achieved unprecedented success with crowd counting,
but their performance degraded severely under adverse conditions (e.g., adverse weather) due to the
disturbance to the brightness and gradient consistency. However, few research efforts have been
made into this problem. Additional class conditioning blocks are utilized by Sindagi et al. (2020)
to augment the backbone module, which is trained via cross-entropy error using labels available
in the dataset. Huang et al. (2023) enabled the model to extract weather information according to
the degradation via learning adaptive query vectors, but the weight of the model is significantly
increased due to the introduction of a Transformer-based module. Kong et al. (2023) proposed a
single-stage hazy-weather crowd counting method based on direction-aware attention aggregation.
However, their method only focuses on the performance in hazy scenes and cannot handle various
unknown weather conditions.

2.3 CONTRASTIVE LEARNING

Contrastive learning (Oord et al., 2018; Chen et al., 2020) has attracted much attention due to its
success in unsupervised representation learning. The target of it is to maximize the similarity of the
representations between positive pairs while minimizing that of negative pairs. In recent years, there
has been a lot of work to tap the potential of contrastive learning. For example, He et al. (2020) built
a dynamic dictionary with a queue and a moving-averaged encoder to enable large-scale contrastive
learning with dramatically low demand for memory. Khosla et al. (2020) investigated the contrastive
loss and adapted contrastive learning to the field of supervised learning.

3 PROPOSED METHOD

In this work, we aim to improve the robustness of the model under multiple adverse weather condi-
tions and maintain good performance under normal weather. Each sample in the training set consists
of three components: the input image, the ground truth points of the human heads and a class label
representing the class of the weather. Noting that the weather label is not available to the model
in the inferencing phase, which requires the model to be able to deal with unknown corruptions.
Images under adverse weather represent only a small part of the dataset. Thus, we formulate our
problem as an imbalanced multi-domain learning problem.

3.1 FRAMEWORK OVERVIEW

The architecture of our method is illustrated in Fig. 2. As discussed earlier, we aim to directly enable
the crowd counting backbone model to learn weather-aware feature representations and then refine it
with a light-weight refiner. Thus, the decoder can focus on a single domain and generate high-quality
density map, the sum of which is the estimated number. Since the refiner is premised on stable and
consistent representation while it keeps evolving and is not stable during the representation learning
stage, we divide the training into two stages to separate these two targets, namely Weather-aware
Representation Learning (WRL) stage and Supcon-guided Representation Refining (SRR) stage,
respectively. In the WRL stage, we use unsupervised contrastive learning to enable the encoder to
learn weather-aware representations. The weights of the encoder and the decoder obtained during
the WRL stage will be retained for the SRR stage. In the SRR stage, the supervised contrastive
learning is utilized to refine the representations. Finally, high-quality density map can be generated
to realize precise counting.
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Figure 2: The architecture of MQCL. The target of the WRL stage is to learn weather-aware rep-
resentations via unsupervised contrastive learning. After the WRL stage, the supervised contrastive
learning is utilized in the SRR stage to realize the refinement of the representations.

3.2 WEATHER-AWARE REPRESENTATION LEARNING

The model architecture of the WRL stage is illustrated in the upper half of Fig. 2. The unsupervised
contrastive learning method (Oord et al., 2018; Chen et al., 2020) is utilized to train the encoders
and endow it with the capability to extract weather-aware representations, i.e., images with similar
weather conditions correspond to similar representations, whereas those with dissimilar conditions
correspond to more distant representations.

To save memory space, the contrastive learning strategy in our method is based on MoCo (He et al.,
2020), which consists of an encoder EQ, a momentum-updated encoder EK and a decoder. The
encoder EQ extracts representation RQ from the image IQ. RQ subsequently serves as the anchor in
contrastive learning. To ensure that the representation simultaneously contains crowd information,
the target of the decoder is set as generating a density map under the supervision of the Bayesian
loss (Ma et al., 2019) according to the representation. The representation RK is extracted by the
encoder EK from the image IK and will be pushed into the queues which are subsequently utilized
in the calculation of the contrastive loss. Note that IQ and IK are different augmentations from the
same image. Additionally, to tackle the problem of class imbalance, we propose multi-queue MoCo,
the details of which will be elaborated in section 3.3. The total loss of the WRL stage is:

Lwrl = Lcontra + λ1Lbayesian, (1)

where Lcontra is the contrastive loss based on the multi-queue MoCo and Lbayesian is the Bayesian
loss.

3.3 MULTI-QUEUE MOCO

Theoretical reasoning and experimental evidence in (Assran et al., 2022) suggest that contrastive
learning has an overlooked prior-to-learn feature that enables uniform clustering of the data and it
can hamper performance when training on class-imbalanced data. In the vanilla contrastive learning
strategy, positive and negative samples are entirely obtained through random sampling. This strategy
can work perfectly under class-balanced conditions but may struggle if the data is imbalanced due
to the mismatch between the actual distribution and the model’s prior.
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Figure 3: The architecture of multi-queue MoCo. The projection heads project the representations
to 1-D vectors. In the multiple queues, each sub queue is of equal length and corresponds to one
weather class.

To tackle the problem, we propose multi-queue MoCo, the architecture of which is illustrated in
Fig. 3. Similar to most of the contrastive methods, each image undergoes data augmentation multiple
times, and the representations originating from the same image as the anchor are treated as positive
samples while those from different images are treated as negative samples. However, this strategy
may lead to a situation where scenes with the same weather conditions from different images are
mistakenly treated as negatives. Fortunately, research conducted by Wang & Liu (2021) indicates
that contrastive learning has the tolerance to semantically similar negative samples. In light of this,
we conducted extensive experiments and the results indicate that such a strategy outperforms the
positive/negative partitioning strategy based on weather labels.

Both representations RQ and RK can be regarded as tensors of RH×W×C1 , where H , W and C1

are the height, the width and the number of channels of the representation, respectively. To avoid
information loss introduced by the contrastive loss and reduce computational complexity, nonlinear
projection heads are introduced after encoders to project the representations to 1-D vectors. The
projection head first pools the representations to vectors of RC1 and then project them to vectors Q
or K of RC2 by introducing a multi-layer perceptron. C2 is the dimension of the vectors. We refer
to the projection heads following encoder EQ and encoder EK as projection head PQ and projection
head PK, respectively. They have the same structure but do not share parameters with each other.

In contrast to MoCo, to achieve a uniform distribution of classes within vectors in the memory,
we improve the original single queue to a multi-queue structure. The number of sub queues in the
multiple queues is equal to the number of classes, with each sub queue having an equal length and
exclusively storing vectors Q that match its corresponding class. The multi-queue structure can be
considered as a tensor of RB×L×C2 , where B is the number of classes and L is the length of each
sub queue. Immediately when the computation of vector Q is completed, it will be pushed into the
corresponding sub queue. With this design, the number of samples of each weather class in the
memory becomes equal, aligning perfectly with the uniform prior of the contrastive loss. Moreover,
due to the limited number of images from adverse weather in the dataset, multiple samples from
the same image may coexist within a sub queue. To avoid treating the above samples as negative
examples, we propose to assign a unique index value to each image in the dataset and treat the
samples corresponding to the same index as positive. The loss function of our multi-queue MoCo
can be calculated as follows:

Lcontra =
∑
i∈I

−1

|P (i)|
∑

p∈P (i)

log
exp(Qi ·Kp/τ)∑

a∈A exp(Qi ·Ka/τ)
, (2)

where I is the batch size, Qi is the anchor vector, P (i) is the set of indices of the vectors K origi-
nating from the same image with Qi, A is the set of the indices of all of the vectors in the multiple
queues and τ is the temperature.

3.4 SUPCON-GUIDED REPRESENTATION REFINING

After the WRL stage, we can assume that the encoder is “mature” enough to effectively extract the
weather and crowd information from images. The task of the SRR stage is to train a refiner which can
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convert the weather-aware representations to the normal weather domain, generating representations
of the same size of RH×W×C1 and enabling the decoder to focus on a single domain.

The multiple queues obtained during the WRL stage have stored a sufficient number of vectors from
various weather conditions. In this paper, we propose to preserve and freeze these multiple queues
and employ supervised contrastive learning to guide the refiner to convert the representation. In this
stage, all the vectors in the normal-weather sub queue are treated as positive samples and those in
other sub queues are treated as negatives. Since there is no longer a need to generate vectors K, the
encoder EK and projection head PK are discarded. In order to maintain stable representations, the
parameters of encoder EQ are fixed at this stage. The projection head PQ is preserved, fixed, and
moved behind the refiner. The model structure of the SRR stage is shown in the lower half of Fig. 2.
The loss function of supervised contrastive learning in this stage is calculated as follows:

Lsupcon =
∑
i∈I

−1

|N|
∑
p∈N

log
exp(R(Qi) ·Kp/τ)∑

a∈A exp(R(Qi) ·Ka/τ)
, (3)

where R(·) is the refiner and N is the set of the indices of the vectors K in the normal-weather sub
queue. Similar to the WRL stage, the SRR stage continues to utilize the Bayesian loss to supervise
the density map. The overall loss function Lsrr for this stage is calculated as follows:

Lsrr = Lsupcon + λ2Lbayesian, (4)

where Lsupcon is the supervised contrastive loss and Lbayesian is the Bayesian loss.

4 EXPERIMENTS AND DISCUSSIONS

4.1 NWPU-WEATHER DATASET

Considering the current scarcity of crowd counting datasets containing adverse weather scenarios
and labels, we synthesize an adverse weather crowd counting dataset named NWPU-Weather. The
specific synthetic method and the experiment setups are illustrated in the appendix.

Except for the MQCL, we also benchmark several representative counting networks, providing an
overview of the state-of-the-art performance, including CSRNet (Li et al., 2018), DM-Count (Wang
et al., 2020a), KDMG (Wan et al., 2020), ConvNeXt (Liu et al., 2022) and MAN (Lin et al., 2022).
Note that since the model structure of AWCC-Net (Huang et al., 2023) is not fully elucidated and the
code is not available at present, we do not provide the performance. Following the convention of ex-
isting works (Li et al., 2018; Lin et al., 2022), we adopt Mean Absolute Error (MAE) and Root Mean
Squared Error (RMSE) as the metrics to evaluate the methods. The quantitative results of counting
accuracy are listed in Table 1. Compared with the baseline ConvNeXt, MQCL exhibits a signifi-
cant performance improvement under adverse weather conditions. MAE and RMSE are decreased
by 13.8% and 12.6%, suggesting that the proposed representation learning and refining strategy do
indeed boost the robustness of the model under adverse weather conditions. Moreover, MQCL can
also improve the performance under normal conditions, decreasing MAE and RMSE by 11.1% and
7.0%, respectively. We believe that this can be attributed to the contrastive learning strategy em-
ployed in this paper, which considers augmentations from the same image as positive examples.
This strategy not only assists the model in weather perception but also strengthens the model’s abil-
ity to recognize different scenes. Sampling from the same image ensures that the positive examples

Method Normal Adverse
MAE ↓ RMSE ↓ MAE ↓ RMSE ↓

CSRNet (Li et al., 2018) (CVPR 18) 74.8 200.7 175.3 730.2
BL (Ma et al., 2019) (ICCV 19) 69.9 248.1 137.1 339.4

DM-Count (Wang et al., 2020a) (NeurIPS 20) 80.6 319.1 153.6 338.2
KDMG (Wan et al., 2020) (PAMI 20) 108.0 318.6 151.9 328.4
MAN (Lin et al., 2022) (CVPR 22) 64.1 259.1 105.9 264.1

ConvNeXt (Liu et al., 2022) (CVPR 22) 69.3 264.0 108.2 286.3
MQCL (Ours) 61.6 (1) 245.5 (2) 93.3 (1) 250.1 (1)

Table 1: Quantitative results comparing with the state-of-the-art methods on the NWPU-Weather
dataset. The numbers in parentheses represent the rankings of our method.
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Method Normal Adverse
MAE ↓ RMSE ↓ MAE ↓ RMSE ↓

SFCN (Wang et al., 2019) (CVPR 19) 71.4 225.3 122.8 606.3
BL (Ma et al., 2019) (ICCV 19) 66.2 200.6 140.1 675.7

LSCCNN (Sam et al., 2020) (PAMI 20) 103.8 399.2 178.0 744.3
CG-DRCN-V (Sindagi et al., 2020) (PAMI 20) 74.7 253.4 138.6 654.0
CG-DRCN-R (Sindagi et al., 2020) (PAMI 20) 64.4 205.9 120.0 580.8

UOT (Ma et al., 2021) (AAAI 21) 53.1 148.2 114.9 610.7
GL (Wan et al., 2021) (CVPR 21) 54.2 159.8 115.9 602.1

CLTR (Liang et al., 2022) (ECCV 22) 52.7 148.1 109.5 568.5
MAN (Lin et al., 2022) (CVPR 22) 46.5 137.9 105.3 478.4

AWCC-Net (Huang et al., 2023) (ICCV 23) 47.6 153.9 87.3 430.1

ConvNeXt (Liu et al., 2022) (CVPR 22) 52.7 154.9 105.1 561.4
MQCL (Ours) 50.5 (3) 152.0 (4) 96.5 (2) 522.8 (3)

Table 2: Quantitative results comparing with the state-of-the-art methods on the JHU-Crowd++
dataset. The numbers in parentheses represent the rankings of our method.

Method FLOPs #param

CLTR (Liang et al., 2022) (ECCV 22) 37.0G 43M
MAN (Lin et al., 2022) (CVPR 22) 58.2G 31M

AWCC-Net (Huang et al., 2023) (ICCV 23) 58.0G+ 30M+

ConvNeXt (Liu et al., 2022) (CVPR 22) 27.0G 29M
MQCL (Ours) 31.2G 32M

Table 3: Comparison of computational complexity and the number of parameters. The computa-
tional complexity is measured by FLOPs when inferencing images with the size of 384 × 384.

not only share the same weather conditions but also possess similar scene characteristics. Compared
with the previously best method MAN, MQCL has also achieved significant performance improve-
ment. The MAE/RMSE under normal and adverse weather conditions have reduced by 3.9%/5.2%
and 11.9%/5.3%, respectively.

4.2 JHU-CROWD++ DATASET

As shown in Table 2, despite the challenges posed by the diverse scenes, complex and variable
weather conditions and weather class imbalance in the JHU-Crowd++ dataset, MQCL achieves an
improvement of 8.6% in MAE and 6.9% in RMSE under adverse weather conditions compared to the
baseline ConvNeXt. This indicates that MQCL not only performs well on synthetic datasets but also
effectively boosts the model’s robustness in real-world datasets. However, while MQCL achieved
significant improvements over the baseline model ConvNeXt, its performance still slightly lags be-
hind the current state-of-the-art algorithms. We summarize the reasons as follows: 1) as shown in
Table 2, all methods outperforming MQCL, including CLRT, MAN, and AWCC-Net, have intro-
duced Transformer-based modules, the computational complexity of which is significantly higher
than MQCL. The MAE of AWCC-Net under adverse weather conditions is 9.5% lower than our
method, but it incurs over 85.9% more FLOPs; 2) MQCL focuses on the design of learning strate-
gies. It only introduces a lightweight refiner module without significantly altering the architecture
of the backbone network.

4.3 DISCUSSIONS ABOUT CONTRASTIVE LEARNING

The significance of contrastive learning. As discussed earlier, the prerequisite for addressing the
multi-domain learning problem is that the model can perceive different domains. If the encoder fails
to extract distinctive weather information, the refiner will lack the target for conversion and struggle
to fulfill its intended purpose. As shown in Table 4, if contrastive learning is not employed in
the first stage to enable the model to learn weather information with discriminative characteristics,
and the refiner module is directly introduced afterwards, the performance of the model actually
decreases significantly under both normal and adverse weather conditions. We believe this is because
the refiner module, trained from scratch without clear targets, may disrupt the crowd information
extracted by the original encoder.
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Method Normal Adverse
MAE ↓ RMSE ↓ MAE ↓ RMSE ↓

Encoder and decoder only 52.7 154.9 105.1 561.4
Refine w/o CL 56.2 163.1 107.1 585.6
MQCL (Ours) 50.5 152.0 96.5 522.8

Table 4: The significance of contrastive learning in our method. “Refine w/o CL” adopts a similar
approach to MQCL, except that Lcontra and Lsupcon are removed from the loss functions, respec-
tively.

Method Normal Adverse
MAE ↓ RMSE ↓ MAE ↓ RMSE ↓

Strategy 1 51.4 153.0 99.7 540.4
Strategy 2 (Ours) 50.5 152.0 96.5 522.8

Table 5: Performance comparison of the two optional strategies on the JHU-Crowd++ dataset. Strat-
egy 1 treats samples with the same weather label as positive examples and strategy 2 treats samples
originating from the same image as positive examples.

Strategy of positive/negative selection. As mentioned above, there are two optional strategies in
the WRL stage: 1) treating samples with the same weather label as positive examples; 2) treating
samples originating from the same image as positive examples; We conduct experiments on the
JHU-Crowd++ dataset to compare these two strategies. The model performance after the WRL
stage using these two strategies is shown in Table 5. Strategy 2 outperforms Strategy 1 in both
normal and adverse conditions. We attribute this to the following reasons: 1) even if two samples
share the same weather label, their weather conditions may still vary significantly. The practice of
minimizing all the representations with the same label is not in line with the target of us; 2) samples
from the same image not only share the same weather conditions but also the same scene. Strategy
2 has the potential to enhance the model’s scene recognition capabilities.

The storage strategy for vectors K. There are three optional storage strategies for vectors K: 1)
memory bank (Wu et al., 2018); 2) single-queue MoCo (He et al., 2020); 3) multi-queue MoCo
(ours). Extensive experiments are conducted on the JHU-Crowd++ dataset to compare the above
strategies. The t-SNE (Van der Maaten & Hinton, 2008) visualization of the vectors Q after the
WRL stage on the JHU-Crowd++ dataset is shown in Fig. 4. The memory bank strategy suffers from
a severe lack of discriminative capacity. The representations learned by the single-queue strategy
are also not discriminative enough, especially near the rain weather representations in Fig. 4(b). The
multi-queue strategy does not suffer from the aforementioned issues. The performance comparison
shown in Table 6 also demonstrates that the proposed multi-queue MoCo can effectively address
the class imbalance problem. We attribute the phenomenon to the following reasons: 1) while the
memory bank can store a large number of samples with minimal memory consumption, it does not
employ a stable strategy to update the encoder, and the sample update frequency is too low, resulting
in poor sample consistency; 2) although single-queue MoCo addresses the issue of poor sample
consistency by introducing a queue and momentum update strategy, the class imbalance problem
in the dataset leads to inconsistencies between the data distribution in the queue and the uniform
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Figure 4: The t-SNE (Van der Maaten & Hinton, 2008) visualization of the vectors Q after the WRL
stage on the JHU-Crowd++ dataset using memory bank (a), single-queue MoCo (b) and multi-queue
MoCo (c), respectively.
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Method Normal Adverse
MAE ↓ RMSE ↓ MAE ↓ RMSE ↓

Memory Bank 53.7 157.6 104.9 531.1
Single-queue MoCo 54.6 166.5 107.9 589.7

Multi-queue MoCo (Ours) 50.5 152.0 96.5 522.8

Table 6: Performance comparison of the three storage strategies for vectors K on the JHU-Crowd++
dataset.

Method Normal Adverse
MAE ↓ RMSE ↓ MAE ↓ RMSE ↓

Encoder and decoder only 52.7 154.9 105.1 561.4
+ Multi-queue MoCo 51.2 152.6 97.2 524.6

+ Refiner 50.5 152.0 96.5 522.8

Table 7: Ablation study on the JHU-Crowd++ dataset.

distribution prior; 3) multi-queue MoCo not only retains the advantages of high sample consistency
but also greatly alleviates the problem of inconsistency between data distribution and the uniform
prior. Thus, it achieves the best performance.

4.4 ABLATION STUDY

Ablation studies are performed on the JHU-Crowd++ dataset and the quantitative results are shown
in Table 7. We start with the baseline of the end-to-end model, i.e., only the encoder and de-
coder. First, the effectiveness of multi-queue MoCo is tested. An improvement of 2.8%/1.5% and
7.5%/6.6% in MAE/RMSE under normal and adverse weather is achieved compared to the baseline.
From this, it can be seen that most of the performance improvements under adverse weather con-
ditions come from the representation learning in the WRL stage. This verifies the effectiveness of
the proposed multi-queue MoCo for enhancing robustness under adverse weather conditions. Ad-
ditionally, the performance improvement under normal weather conditions corroborates the earlier
analysis that the strategy that treats different augmentations from the same image as positive samples
can aid in strengthening the scene recognition capabilities of the model. Subsequently, the refiner
is added, and the best performance is achieved, with a reduction of 1.4%/0.4% in MAE/RMSE un-
der normal weather conditions and 0.7%/0.3% under adverse weather conditions, respectively. This
demonstrates that, under the guidance of supervised contrastive learning, the refiner is capable of
converting adverse weather representations to the normal domain, enabling the decoder to focus on
a single domain, resulting in performance improvements under both normal and adverse weather
conditions.

5 CONCLUSION AND LIMITATION

In this paper, we propose a contrastive learning-based method called MQCL to tackle the problem
of class-imbalanced adverse weather crowd counting and synthesize a new adverse weather crowd
counting dataset. To address the dual challenges of image degradation and class imbalance, the
multi-queue MoCo is employed to enable the model to learn weather-aware representations. Further-
more, supervised contrastive learning is utilized to guide the refiner on representation conversion.
Extensive experiments are conducted to compare and choose the strategy of contrastive learning. We
believe that this is not only applicable to the crowd counting task but also holds significant reference
value for other domains.

MQCL has achieved significant performance improvements compared to the baseline. However,
there are still some limitations. For example, we focus on the learning strategy and maintaining the
model’s lightweight nature, but its performance still falls slightly behind the state-of-the-art mod-
els based on Transformers. Secondly, we only utilized synthetic methods to construct the dataset,
leading to a certain domain gap between real-world scenes.
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A APPENDIX INTRODUCTION

In this appendix, we list more details of our paper: 1) The experiment setup, including the im-
plementation details, the method of data augmentation and the hyper-parameter settings; 2) The
introduction to the datasets, including the specific synthetic method for the NWPU-Weather dataset
and detailed information about the JHU-Crowd++ dataset (Sindagi et al., 2020).

B EXPERIMENT SETUP

The ConvNeXt (Liu et al., 2022) is employed as our backbone model and we use the ConvNeXt-T
version for simplicity. The structure of ConvNeXt-T is: C = (96, 192, 384, 768), B = (3, 3, 9,
3), where C stands for the number of channels and B is the number of ConvNeXt blocks in each
stage. Following Ling et al. (2023), we replace the linear layer at the end of the ConvNeXt by an
upsampling block to keep the downsampling rate at 8. The encoder EQ and encoder EK both have
the same structure as the first three stages of ConvNeXt and the decoder corresponds to the final
stage. The pre-trained weights of ImageNet-22K (Russakovsky et al., 2015) are loaded as the initial
parameters. Two-layer MLPs are employed in the projection heads, the output dimension of which
is 2048 and 128. The refiner consists of three ConvNeXt blocks with input and output dimensions
of 768, initialized with random parameters.

As mentioned above, each image in a batch undergoes augmentation twice. Specifically, we random
crop the image with a size of 256 × 256, and horizontal flipping is applied for a probability of 50%.
In the multi-queue structure, the number of the sub queues is equal to the number of weather classes,
and the length of each sub queue is set to 1024. The AdamW optimizer (Loshchilov & Hutter, 2017)
is adopted both in the WRL and SRR stage, the learning rate is scheduled by a cosine annealing
strategy and the initial learning rate is 10−4. The weight decay is set to 10−3 and the batch size is
16. λ1 and λ2 in the loss function are both set to 10 and the temperature τ is set to 0.05.

C INTRODUCTION TO THE DATASETS

C.1 NWPU-WEATHER DATASET

Considering the current scarcity of crowd counting datasets containing adverse weather scenarios
and labels, we synthesize an adverse weather crowd counting dataset containing hazy and rainy
scenes based on the NWPU-Crowd dataset (Wang et al., 2020b), namely NWPU-Weather. Since the
test set of the NWPU-Crowd dataset is not publicly available, we extract part of the original training
set as the test set. The first 1-2609 images from the original dataset are used as the training set, the
images from 2610 to 3109 are used as the test set, and the validation set still consists of images from
3110 to 3609.

Consistent with the JHU-Crowd++ dataset, our NWPU-Weather dataset keeps the imbalance of
weather types, the hazy and rainy scenes are synthesized by a probability of 5%, respectively. The
distribution of the weather conditions in the dataset is shown in Table 8. We follow the approach
outlined in (Li et al., 2019) to synthesize the weather scenarios. The intensity, density, and angle of
the rain are set as random values. The depth maps required during the haze synthesis process are
estimated by ZoeDepth (Bhat et al., 2023) and the intensity of the haze is also random.

Stage Normal Haze Rain

Train 2365 120 124
Val 446 31 23
Test 442 28 30
Total 3253 179 177

Table 8: The distribution of the number of images under different weather conditions in the NWPU-
Weather dataset.
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C.2 JHU-CROWD++ DATASET

There are 4372 images and 1.51 million labels contained in the JHU-Crowd++ dataset (Sindagi
et al., 2020). Out of these, 2272 images were used for training, 500 images for validation, and
the remaining 1600 images for testing. The advantage of JHU-Crowd++ is its inclusion of diverse
scenes and environmental conditions, such as rain, snow and haze. It also provides weather condition
labels for each image. Due to the rarity of adverse weather, the weather classes in JHU-Crowd++ are
imbalanced. As is shown in Fig. 1(c), the number of images under rain, snow, and haze conditions
accounts for only 3%, 5%, and 4% of the total dataset, respectively.
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