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Abstract001

Large language models (LLMs) have demon-002
strated impressive performance on reasoning-003
intensive tasks, but enhancing their reasoning004
abilities typically relies on either reinforcement005
learning (RL) with verifiable signals or super-006
vised fine-tuning (SFT) with high-quality long007
chain-of-thought (CoT) demonstrations, both008
of which are expensive. In this paper, we009
study a novel problem of incentivizing the rea-010
soning capacity of LLMs without expensive011
high-quality demonstrations and reinforcement012
learning. We investigate whether the reason-013
ing capabilities of LLMs can be effectively in-014
centivized via supervision from significantly015
weaker models. We further analyze when and016
why such weak supervision succeeds in elicit-017
ing reasoning abilities in stronger models. Our018
findings show that supervision from signifi-019
cantly weaker reasoners can substantially im-020
prove student reasoning performance, recover-021
ing close to 94% of the gains of expensive RL022
at a fraction of the cost. Experiments across023
diverse benchmarks and model architectures024
demonstrate that weak reasoners can effec-025
tively incentivize reasoning in stronger student026
models, consistently improving performance027
across a wide range of reasoning tasks. Our028
results suggest that this simple weak-to-strong029
paradigm is a promising and generalizable al-030
ternative to costly methods for incentivizing031
strong reasoning capabilities at inference-time032
in LLMs. Code is publicly available at this link.033

1 Introduction034

Large language models (LLMs) have demonstrated035

strong performance across a variety of reasoning-036

intensive tasks, such as mathematical problem solv-037

ing (Guo et al., 2025; Yang et al., 2024b), sym-038

bolic computation (Fang et al., 2024), and code039

generation (Jiang et al., 2024), often achieving re-040

sults competitive with or even surpassing human-041

level capabilities (Xiao et al., 2025a, 2024b, 2025b,042

2024a). A key technique for enabling such reason- 043

ing abilities is to scale up inference compute via 044

long chain-of-thought (CoT), that encourages mod- 045

els to explicitly generate intermediate reasoning 046

steps before arriving at a final answer (Guo et al., 047

2025; Team et al., 2025; Wei et al., 2022). This 048

approach has proven effective in improving answer 049

accuracy and enabling the decomposition of com- 050

plex problems into more manageable subproblems. 051

A mainstream way to incentivize the reason- 052

ing ability of LLMs is reinforcement learning 053

(RL) with verifiable reward signals, which shows 054

strongest empirical gains but at the price of substan- 055

tial compute and data engineering (Guo et al., 2025; 056

Team et al., 2025). In addition to the high compu- 057

tational cost of thousands of GPU-hours per run, 058

RL is effective only when the base model can dis- 059

cover correct trajectories during roll-outs, yet many 060

open-source models fail to meet this assumption. 061

Recent studies further indicate that while RL with 062

verifiable reward can boost sampling efficiency, it 063

may simultaneously limit the exploration capacity, 064

resulting in a narrower reasoning capability bound- 065

ary compared to base models (Shao et al., 2024; 066

Yue et al., 2025). A more compute-friendly alter- 067

native strategy is supervised fine-tuning (SFT) on 068

high-quality chain-of-thought (CoT) data distilled 069

from a teacher model (Yeo et al., 2025; Ye et al., 070

2025; Muennighoff et al., 2025). However, col- 071

lecting high-quality CoT data remains challenging 072

in specialized domains, where human evaluation 073

is time-consuming or costly. Obtaining reasoning 074

demonstrations from frontier (i.e., extremely large) 075

teacher models can also be prohibitively expen- 076

sive, especially at scale. Moreover, the assumption 077

of high-quality supervision from stronger models, 078

may not hold for superhuman models (Burns et al.). 079

This persistent trade-off remains unsolved and calls 080

for a fresh perspective for incentivizing reasoning. 081

As an alternative, in this work, we ask a funda- 082

mental yet unexplored question: can we incentivize 083
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Figure 1: Benchmark performance of W2SR across student scales (Qwen2.5-Math-7B, Qwen2.5-14B, and Qwen2.5-32B). Each
student model is trained with weak teachers: 7B uses 0.5B/1.5B teachers, 14B uses 1.5B/7B teachers, and 32B uses 7B/14B
teachers. We compare W2SR to GRPO and vanilla models on five reasoning benchmarks. Weak supervision consistently yields
strong reasoning, rivaling RL with far lower cost.

the reasoning capacity of LLMs without expensive084

strong teacher models and reinforcement learning?085

To address this question, we investigate whether086

the reasoning capacities of LLMs can be effec-087

tively incentivized through supervision from signif-088

icantly weaker models. Specifically, we propose a089

lightweight and scalable Weak-to-Strong Reason-090

ing paradigm (W2SR), where a strong student model091

is trained on CoT trajectories generated by much092

weaker teacher models.Our hypothesis is that, even093

if a weak reasoner underperforms relative to the094

student or is considerably smaller in size, it can still095

provide imperfect yet informative reasoning traces096

that help elicit the student’s reasoning abilities.097

To investigate our hypothesis, we conduct exten-098

sive empirical studies using supervised fine-tuning099

(SFT) on strong student models with long CoTs100

distilled from weak teachers. As shown in Fig-101

ure 1, our analysis across multiple reasoning bench-102

marks reveals that weak supervision can incentivize103

strong reasoning abilities. For example, distilling104

reasoning traces from a 0.5B–1.5B teacher enables105

a 7B–32B student to recover up to 94.34% of the106

reasoning gains from reinforcement learning (e.g.,107

+18.8 Pass@1 on MATH), outperforming both the108

teacher and, in some cases, high-cost RL baselines.109

We further investigate when weak supervision is110

most effective. Results show that teacher reasoning111

ability, such as producing structurally well-formed112

CoTs, is more important than model size or final113

accuracy. Surprisingly, even imperfect or partially114

incorrect traces can incentivize reasoning in the115

student, while increasing teacher strength beyond116

a moderate level yields diminishing returns.117

Our findings advocate a lightweight and scal-118

able paradigm for incentivizing reasoning LLMs.119

Instead of collecting high-quality CoTs form expen- 120

sive strong teachers or running costly RL, we dis- 121

till coarse yet structured CoTs from much weaker 122

supervision, which is sufficient to unlock the stu- 123

dent’s latent reasoning circuits. To sum up, our con- 124

tributions are three-fold: (i) We formulate and vali- 125

date weak-to-strong reasoning distillation, demon- 126

strating that strong reasoning abilities can be in- 127

centivized from weak supervision to 4× smaller 128

and less accurate. (ii) Through Extensive abla- 129

tions and analysis, we reveal the surprisingly key 130

to effective supervision: the teacher’s reasoning 131

ability rather than the model size or performance. 132

(iii) We demonstrate practical benefits: The new 133

paradigm achieves drastic cost reduction compared 134

to both SFT and RL, while outperforming the 135

teacher model and even high-cost RL baselines 136

in some cases, providing a privacy-friendly path 137

for domain experts to refine frontier models using 138

lightweight local teachers. Together, these con- 139

tributions position weak-to-strong distillation as a 140

promising paradigm for the lightweight and widely 141

accessible reasoning LLMs. 142

2 Related Work 143

2.1 Large Reasoning Models 144

Large language models (LLMs) have demonstrated 145

profound capabilities in many domains. A re- 146

cent line of research aims to enhance reason- 147

ing capabilities through inference-time scaling, 148

as demonstrated by OpenAI’s o1(Jaech et al., 149

2024), DeepSeek’s R1(Guo et al., 2025), and Kimi 150

K1.5 (Team et al., 2025). These methods typi- 151

cally prompt models to generate ultra-long rea- 152

soning traces to solve complex problems. At the 153

training stage, reasoning abilities are generally im- 154
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proved using two main strategies: (1) reinforce-155

ment learning with verifiable rewards (RLVR) (Guo156

et al., 2025; Lambert et al., 2024), and (2) su-157

pervised fine-tuning (SFT) on human-curated or158

model-distilled data(Guo et al., 2025; Ye et al.,159

2025; Muennighoff et al., 2025). While both ap-160

proaches have shown promise, each comes with161

notable limitations. In particular, RL-based fine-162

tuning is significantly more computationally inten-163

sive, often requiring thousands of GPU-hours per164

run. A more compute-efficient alternative is to ap-165

ply SFT on high-quality chain-of-thought (CoT)166

data distilled from a stronger teacher model (Ye167

et al., 2025; Muennighoff et al., 2025; Guo et al.,168

2025). However, collecting such data remains chal-169

lenging, especially in specialized domains where170

human annotation is costly and time-consuming.171

Moreover, extracting reasoning traces from fron-172

tier (extremely strong) teacher models incurs sub-173

stantial computational overhead, especially when174

scaling to large datasets, and may be infeasible if175

the model is already highly capable. In contrast176

to prior work, we shift focus to a novel and under-177

explored direction: understanding and leveraging178

the reasoning patterns of weaker models within a179

weak-to-strong generalization paradigm. Our work180

investigates whether and how weak supervision can181

incentivize strong reasoning capabilities.182

2.2 Weak to Strong Generalization183

Weak-to-strong generalization refers to scenarios184

where stronger models surpass their weaker su-185

pervisors after fine-tuning (Burns et al.). This186

paradigm has emerged as a promising framework187

for addressing the challenges of AI alignment, par-188

ticularly in the context of superalignment (Leike189

et al., 2018), where future AI systems may exceed190

human capabilities, rendering human supervision191

inherently weak or insufficient. The weak-to-strong192

approach leverages weaker models to guide the193

training of stronger models, with the potential to194

unlock advanced capabilities while maintaining195

alignment with human values. This framework196

has been extensively explored through algorithmic197

innovations (Liu and Alahi, 2024; Guo and Yang,198

2024a), empirical studies (Tao and Li, 2024; Yang199

et al., 2024c; Ye et al., 2024), and theoretical analy-200

ses (Lang et al., 2024). (Yang et al., 2024c) studies201

reasoning tasks within the weak-to-strong learning202

framework. However, their approach still relies203

on supervised fine-tuning using a selectively cu-204

rated high-quality dataset. Moreover, prior work205

has largely focused on relatively simple tasks with- 206

out requiring long CoT, leaving open the question 207

of whether and how strong reasoning with long 208

CoT can be effectively induced through weak su- 209

pervision. In this paper, we present the first study 210

that fine-tunes LLMs using long CoT trajectories 211

generated by significantly weaker reasoners, and 212

demonstrate that such weak supervision can sub- 213

stantially enhance general reasoning abilities. Our 214

approach is orthogonal to existing strategies, pro- 215

viding a compute-efficient and scalable alternative 216

for incentivizing strong reasoning capabilities with 217

inference-time scaling. 218

Due to space constraints, we provide additional 219

related works and discussions in Appendix F. 220

3 Incentivizing Strong Reasoning 221

Capacity from Weak Supervision 222

3.1 Weak-to-Strong Reasoning Paradigm 223

Let x = {xi}Ni=1 denote a set of N input ques- 224

tions, where each question xi = (x1, x2, . . . , xT ) 225

is represented as a sequence of T input tokens. The 226

corresponding ground-truth answers are given by 227

a = {ai}Ni=1. LLM policy πθ generates output se- 228

quences y = {yi}Ni=1. For each output sequence 229

yi, the model defines a conditional probability dis- 230

tribution over tokens πθ(yt | x,y<t), where yt is 231

the token at position t, and y<t denotes the preced- 232

ing tokens. From each yi, we extract a substring 233

âi ⊆ yi as the predicted answer for question i. We 234

define the CoT as a subsequence of yi that con- 235

tains intermediate reasoning steps (i.e., reasoning 236

trajectories) leading to the final answer âi. 237

In this work, we propose a simple weak-to- 238

strong reasoning (W2SR) paradigm. For each input 239

question xi, a weak reasoner (the teacher) gener- 240

ates a long CoT trajectory yi, which we use as weak 241

supervision to fine-tune a stronger student model 242

πθs that initially lacks explicit incentivization for 243

reasoning. The student is trained via simple SFT to 244

imitate the teacher’s reasoning trajectories, despite 245

their potential imperfections. The goal of the W2SR 246

paradigm is to incentivize stronger reasoning capa- 247

bilities in the student through weak yet structured 248

supervision provided by the teacher. 249

Note that we define a weak reasoner as a teacher 250

model with explicitly incentivized but limited rea- 251

soning abilities, typically due to smaller model 252

size, lower answer accuracy, or both. Conversely, 253

a strong student is a model with greater capacity 254

or better performance relative to its teacher. We 255
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refer to teacher models with explicitly incentivized256

reasoning capabilities as -Reasoner or (R), and257

those without such capabilities as -Non-Reasoner.258

To evaluate the effectiveness of our W2SR paradigm,259

we investigate three weak-to-strong variants based260

on the correctness of the teacher’s final answer:261

• W2SR: Uses all CoT trajectories from the weak262

teacher, regardless of answer correctness:263

D = {(xi,yi)}Ni=1, where yi = πθt(xi). (1)264

• W2SR-P: Uses only CoT trajectories that yield265

the correct final answer from the weak teacher:266

Dp = {(xi,yi) | âi = ai}. (2)267

• W2SR-N: Uses only trajectories with incorrect268

final answers from the weak teacher:269

Dn = {(xi,yi) | âi ̸= ai}. (3)270

The student model πθs is fine-tuned on the above271

CoT data via simple SFT, which updates its pa-272

rameters θs by minimizing the following negative273

log-likelihood (NLL) loss.274

LSFT(θs) = −
∑

(x,y)∈D

|y|∑
t=1

log πθs(y
t | x,y<t)

(4)275

3.2 Evaluation via Reasoning Gap Recovered276

To evaluate the effectiveness of the W2SR paradigm,277

we introduce a metric called Reasoning Gap Re-278

covered (RGR). RGR measures how much of the279

reasoning improvement achieved through RL can280

be recovered by supervising a strong student with281

a weak reasoner. It quantifies the extent to which282

weak-to-strong training closes the performance gap283

relative to a student whose reasoning capabilities284

are incentivized via computationally intensive RL.285

Specifically, we define RGR based on:286

• Weak Reasoner: The weak teacher model with287

reasoning capability incentivized via RL.288

• Weak-to-Strong Reasoner (W2SR): Stronger289

student model trained via SFT on noisy or im-290

perfect CoT traces produced by weak reasoner.291

• Strong Reasoner: The same strong student292

trained with RL, serving as performance ceiling.293

The following RGR metric quantifies the perfor- 294

mance gap of the Pass@1 score between a weak 295

reasoner and two strong reasoners that are trained 296

with weak supervision and reinforcement learning 297

(RL), respectively. Higher RGR indicates that weak 298

supervision from the weak reasoner effectively re- 299

covers or even exceeds the performance of the RL- 300

trained strong reasoner. In contrast, lower RGR 301

suggests that weak-to-strong training provides only 302

limited improvement over the weak reasoner. 303

RGR =
Weak-to-Strong Reasoner − Weak Reasoner

Strong Reasoner − Weak Reasoner
.

(5) 304

Note that RGR can exceed 1 when the student 305

trained under weak supervision outperforms its RL- 306

trained counterpart, demonstrating that structured 307

but imperfect traces from weaker models can some- 308

times elicit superior reasoning. Compared to raw 309

accuracy, RGR normalizes performance gains rel- 310

ative to the RL upper bound, offering a faithful 311

measure of reasoning-specific transfer. 312

3.3 Experimental Setups 313

Full experimental details are provided in Ap- 314

pendix B, all prompts are included in Appendix G. 315

316Dataset We use the MATH dataset (Hendrycks 317

et al.) with difficulty levels 3–5 as the training 318

data, following (Zeng et al., 2025). This dataset 319

encompasses seven math topics such as advanced 320

calculus, geometry, and linear algebra. 321

Models The student models include three pa- 322

rameter sizes from the Qwen-2.5 family (Yang 323

et al., 2024a): Qwen2.5-Math-7B, Qwen2.5-14B, 324

and Qwen2.5-32B. The teacher models are from 325

Qwen-2.5 (0.5B, 1.5B, 7B, 14B, 32B), for each we 326

evaluate both the base version and its reinforce- 327

ment learning fine-tuned counterpart. All rein- 328

forcement learning fine-tuned models are sourced 329

from SimpleRL-Zoo (Zeng et al., 2025), where 330

GRPO (Shao et al., 2024) is the training algorithm. 331

Training Our knowledge distillation framework 332

involves two stages: (1) data distillation with 333

teacher models using vLLM (Kwon et al., 2023) 334

(greedy decoding, temperature 0, top-p 1, max 335

length 4096 tokens, one sample per input); and 336

(2) supervised fine-tuning (SFT) of student models 337

using LLaMA-Factory (Zheng et al., 2024) with 338

batch size 128, learning rate 10−5, for 5 epochs. 339

Evaluation We evaluate on five reasoning bench- 340

marks, including three standard math datasets, 341
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Table 1: Weak-to-Strong Reasoning Performance Comparison. Evaluation of three student models (7B–32B) trained with
supervision from four weaker reasoner teachers (0.5B–14B) across five reasoning benchmarks. Reports Metrics of Pass@1 (%)
and Reasoning Gap Recovered (RGR %) for (1) base teacher, (2) base student, as well as student trained with (3) GRPO, (4)
LIMO and (5) our Weak-to-Strong Reasoning (W2SR, W2SR-P). “-” indicates RGR is inapplicable. Best performance is marked
with boldface, second best of our method is marked with underline. (R) denotes the teacher possesses reasoning capabilities.

Datasets (→) Metrics (→) Math Olympic Minera AMC GPQA Average

Student (↓) Teacher / Method (↓) Pass@1 RGR Pass@1 RGR Pass@1 RGR Pass@1 RGR Pass@1 RGR Pass@1 RGR

Qwen2.5-0.5B (R) 32.20 – 9.78 – 9.93 – 22.50 – 31.82 21.25 –
Qwen2.5-1.5B (R) 59.00 – 20.74 – 21.32 – 27.50 – 25.76 – 30.86 –

Qwen2.5
Math-7B

Student only Vanilla 60.20 – 25.63 – 13.60 – 40.00 – 14.14 – 30.71 –
Student only GRPO 80.20 – 42.37 – 38.24 – 57.50 – 28.28 – 49.32 –
LIMO SFT 70.40 – 34.07 – 30.88 – 47.50 – 17.17 – 40.00 –
Qwen2.5-0.5B (R) W2SR 52.00 41.25 16.30 20.01 26.84 59.73 35.00 35.71 28.79 85.59 31.79 48.46
Qwen2.5-0.5B (R) W2SR-P 69.20 77.08 29.33 59.99 36.40 93.50 42.50 57.14 30.81 28.53 41.65 63.25
Qwen2.5-1.5B (R) W2SR 71.20 57.55 34.81 65.05 37.50 95.63 52.50 83.33 31.82 240.48 45.57 108.41
Qwen2.5-1.5B (R) W2SR-P 79.00 94.34 39.26 85.62 39.71 108.69 62.50 116.67 33.33 300.40 50.76 141.14

Qwen2.5-1.5B (R) 59.00 – 20.74 – 21.32 – 27.50 – 25.76 – 30.86 –
Qwen2.5-7B (R) 77.80 – 41.78 – 38.97 – 65.00 – 28.79 – 50.47 –

Qwen2.5
14B

Student only Vanilla 62.20 – 25.78 – 28.31 – 35.00 – 28.28 – 35.91 –
Student only GRPO 80.60 – 44.74 – 47.79 – 60.00 – 40.40 – 54.71 –
LIMO SFT 75.60 – 43.85 – 31.25 – 52.50 – 26.26 – 45.89 –
Qwen2.5-1.5B (R) W2SR 70.20 51.85 32.89 50.63 32.72 43.07 47.50 61.54 29.80 27.60 42.62 46.94
Qwen2.5-1.5B (R) W2SR-P 76.00 78.70 36.15 64.21 38.24 63.92 45.00 53.85 39.90 96.58 47.06 71.45
Qwen2.5-7B (R) W2SR 80.00 78.57 42.07 9.80 41.54 29.14 57.50 150.00 28.28 -4.39 49.88 52.62
Qwen2.5-7B (R) W2SR-P 80.80 107.14 43.56 60.14 45.22 70.86 62.50 50.00 33.84 43.50 53.18 66.33

Qwen2.5-1.5B (R) 59.00 – 20.74 – 21.32 – 27.50 – 25.76 – 30.86 –
Qwen2.5-7B (R) 77.80 – 41.78 – 38.97 – 65.00 – 28.79 – 50.47 –
Qwen2.5-14B (R) 80.60 – 44.74 – 47.79 – 60.00 – 40.40 – 54.71 –

Qwen2.5
32B

Student only Vanilla 60.40 – 26.81 – 29.04 – 42.50 – 35.86 – 38.92 –
Student only GRPO 82.20 – 46.96 – 46.69 – 72.50 – 49.49 – 59.57 –
LIMO SFT 75.40 – 47.11 – 30.51 – 62.50 – 32.32 – 49.57 –
Qwen2.5-1.5B (R) W2SR 70.20 48.28 31.85 42.37 37.13 62.32 52.50 55.56 35.35 40.41 45.41 49.79
Qwen2.5-1.5B (R) W2SR-P 76.00 73.28 37.19 62.74 40.07 73.91 62.50 77.78 38.89 55.33 50.93 68.61
Qwen2.5-7B (R) W2SR 81.60 86.36 47.41 108.69 42.28 42.88 75.00 133.33 35.86 34.15 56.43 81.08
Qwen2.5-7B (R) W2SR-P 82.40 104.55 46.96 100.00 40.81 23.83 77.50 166.67 44.44 75.60 58.42 94.13
Qwen2.5-14B (R) W2SR 83.60 187.50 48.00 146.85 45.59 200.00 72.50 100.00 43.94 38.94 58.73 134.66
Qwen2.5-14B (R) W2SR-P 83.80 200.00 50.07 240.09 44.85 267.27 77.50 140.00 42.93 27.83 59.83 175.04

W2SR Teacher Student W2SR-P GRPO
Figure 2: Using W2SR with Qwen2.5-Math-7B as the strong student and Qwen2.5-1.5B-Reasoner as the weak teacher, the four
bars represent: (1) the weak teacher’s standalone performance, (2) the strong student’s standalone performance, (3) the student’s
performance after W2SR, and (4) the student’s performance after W2SR-P. More results are provided in Appendix C.

MATH500 (Hendrycks et al.), OlympiaBench (He342

et al., 2024), MinervaMath (Lewkowycz et al.,343

2022a), plus the competition-level AMC2023 (Art344

of Problem Solving Foundation, 2023) and the non-345

mathematical GPQA (Rein et al., 2024). Evalua-346

tion uses the codebase from (Li et al., 2025), with347

sampling temperature 0.6, top-p 0.95, 1 sample per348

input, and max generation length 32,768 tokens.349

4 Experiments350

The remainder of paper analyzes weak-to-strong351

reasoning paradigm from three key perspectives:352

(RQ1) Can weak supervision incentivize reasoning 353

in stronger models? (RQ2) What aspects of teacher 354

supervision are most critical for incentivizing rea- 355

soning? (RQ3) What practical benefits and broader 356

impacts arise from weak-to-strong reasoning? 357

4.1 RQ1: Can Weak Supervision Incentivize 358

Reasoning in Stronger Models? 359

In this section, we examine whether high-capacity 360

student models can improve their reasoning capa- 361

bilities when trained on reasoning trajectories pro- 362

duced by significantly smaller and less capable 363
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teacher models. We also assess how effectively364

such weak-to-strong supervision can narrow the365

performance gap relative to models fine-tuned with366

RL). As illustrated in Table 1 and Figure 2, we eval-367

uate three student models ranging from 7B to 32B368

parameters, each trained using supervision from369

multiple weaker teachers, whose sizes range from370

0.5B to 14B parameters.371

Based on the results in Table 1, we evaluate the372

effectiveness of weak-to-strong reasoning for each373

strong student model with respect to its correspond-374

ing weak teacher(s), where the teacher possesses375

reasoning capabilities (denoted as “R”). For each376

teacher-student pair, we report both Pass@1 and377

Relative Gain in Reasoning (RGR) metrics under378

both W2SR and W2SR-P. To ensure a comprehensive379

evaluation, we additionally assess model perfor-380

mance on LIMO (Ye et al., 2025), a benchmark381

constructed from high-quality CoT data.382

As shown in Figure 2, we analyze the train-383

ing of the Qwen2.5-Math-7B student with the384

Qwen2.5-1.5B-Reasoner as the teacher, compar-385

ing five settings: (1) the standalone weak teacher,386

(2) the standalone student, (3) the student trained387

via W2SR, (4) the student trained via W2SR-P, and388

(5) the student trained via RL. These comparisons389

reveal a striking effect, where combining a weak390

teacher with a strong student results in performance391

far exceeding that of either model alone. For in-392

stance, on MATH and AMC, the original student393

achieves Pass@1 of 60.20% and 40.00%, while the394

teacher scores 59.00% and 27.50%, respectively,395

both considerably lower. However, after W2SR-P396

training, despite the teacher being 4.7× smaller and397

performing 1.99% and 31.25% relatively worse398

than the student, it enables the student to reach399

Pass@1 of 79.00% and 62.50%, corresponding to400

relative improvements of 31.22% and 56.25%, re-401

flected in RGR of 94.34% and 116.67%. Notably,402

on AMC, this improvement even surpasses the per-403

formance ceiling established by RL training.404

Our findings reveal that teachers with structured405

reasoning abilities, regardless of model scale or406

final-answer accuracy, can effectively elicit and407

enhance reasoning capabilities in more powerful408

student models. This knowledge transfer enables409

students to not only surpass their teachers’ perfor-410

mance but also exceed results from direct reinforce-411

ment learning on the student models themselves,412

aligning with the insight shown in Takeaway 1.413

Table 2: Pass@1 Performance for three variants of Weak-to-
Strong Reasoning: (1) All: Unfiltered reasoning trajectories
(W2SR), (2) Correct Only: Reasoning trajectories filtered by
correct answers (W2SR-P), and (3) Incorrect Only: Reasoning
trajectories filtered by incorrect answers (W2SR-N).

Student Teacher Math Olympic Minera AMC GPQA Average

Qwen2.5-
Math-7B

Student only Vanilla 60.20 25.63 13.60 40.00 14.14 30.71

Qwen2.5-
1.5B (R)

W2SR (✓ + ✗ ) 71.20 34.81 37.50 52.50 31.82 45.57
W2SR-P (✓) 79.00 39.26 39.71 62.50 33.33 50.76

W2SR-N (✗ ) 70.20 32.44 37.87 42.50 35.86 43.77

Qwen2.5
14B

Student only Vanilla 62.20 25.78 28.31 35.00 28.28 35.91

Qwen2.5-
7B (R)

W2SR (✓ + ✗ ) 78.80 42.96 40.07 60.00 28.28 50.02
W2SR-P (✓) 80.80 43.56 45.22 62.50 33.84 53.18

W2SR-N (✗ ) 78.20 41.04 40.81 55.00 36.36 50.28

Qwen2.5
32B

Student only Vanilla 60.40 26.81 29.04 42.50 35.86 38.92

Qwen2.5-
14B (R)

W2SR (✓ + ✗ ) 83.60 48.00 45.59 72.50 43.94 58.73
W2SR-P (✓) 83.80 50.07 44.85 77.50 42.93 59.83

W2SR-N (✗ ) 83.20 47.41 46.69 62.50 39.90 55.94

Takeaway 1: Weak Yet Incentivizable

Weak Supervision Can Incentivize Rea-
soning in Stronger Models: Reasoning tra-
jectories from weaker teachers can effec-
tively incentivize reasoning in stronger stu-
dents and reach comparable/superior perfor-
mance compared to expensive RL methods.

414

4.2 RQ2: Key Aspects of Teacher Supervision 415

for Incentivizing Reasoning? 416

We ask what makes weak supervision effective for 417

transferring reasoning to stronger students. Specifi- 418

cally: (1) Which attributes, reasoning ability, model 419

scale, or task accuracy, are most critical for super- 420

vision? (2) Must supervision trajectories yield cor- 421

rect answers, or can incorrect ones still be useful? 422

4.2.1 What Makes a Good Teacher for 423

Incentivizing Reasoning? 424

This section provides empirical evidence that the 425

capability of a teacher model’s explicit inference- 426

time scaling plays a more critical role than parame- 427

ter scaling or overall task accuracy. 428

(1) Reasoning Ability vs. Model Scale. As 429

shown in the upper part of Figure 3, across four 430

benchmarks, students trained with Reasoner teach- 431

ers consistently outperform those trained with Non- 432

Reasoner teachers, regardless of the teacher’s pa- 433

rameter count. Notably, increasing the size of 434

Non-Reasoner teachers from 1.5B to 32B yields no 435

meaningful improvement in student performance. 436

In most cases, students trained with the smallest 437

Reasoner teacher (1.5B) surpass those trained with 438

even the largest Non-Reasoner teacher (32B), de- 439

spite the latter being 21× larger in model size. 440

These results indicate that scaling model size alone 441

is insufficient for effective supervision, what mat- 442

6



1.5B-Reasoner-Teacher32B-Non-Reasoner-Teacher

Teacher Scale Teacher Scale Teacher Scale Teacher Scale

Figure 3: Comparison of Weak-to-Strong Reasoning (W2SR) between Reasoner and Non-Reasoner Teachers using
Qwen2.5-Math-7B as the student. Upper: The x-axis represents teacher model scale, with two lines indicating the W2SR
student performance trained with Reasoner vs. Non-Reasoner teachers of corresponding scales. Lower: The first two bars show
initial performance of Qwen2.5-1.5B-Reasoner and Qwen2.5-32B-Non-Reasoner teacher, while the last two bars show the
resulting W2SR student performance. More results are in Appendix C.

Teacher Scale Teacher Scale Teacher Scale 

Figure 4: Diminishing marginal returns from increasing reasoner-teacher scale on student performance. The x-axis represents
model sizes/scale of the reasoner teacher, increasing from 1.5B, 7B, 14B to 32. The y-axis shows the Pass@1 performance.

ters more is the presence of explicit reasoning tra-443

jectories in the teacher’s outputs.444

(2) Reasoning Ability vs. Task Perfor-445

mance. The lower part of Figure 3 high-446

lights a direct comparison between two447

extreme cases: the small reasoner teacher448

(Qwen2.5-1.5B-Reasoner) and the large Non-449

Reasoner teacher (Qwen2.5-32B-Non-Reasoner).450

While the 1.5B Reasoner teacher performs worse in451

isolation, e.g., on AMC it scores 27.5%, compared452

to 32B’s 42.5%, it still leads to significantly453

better student models across all four benchmarks.454

For example, the student trained with the 1.5B455

Reasoner teacher achieves a Math Pass@1 of456

71.2%, compared to 67.2% for the one trained457

with the 32B Non-Reasoner as teacher. The458

effect is even more pronounced on Minerva and459

AMC, where using the 32B Non-Reasoner teacher460

actually results in student performance worse than461

the teacher by 2.41% and 5.88% relatively, the 462

1.5B Reasoner improves it by 76.06% and 90.91%. 463

These findings underscore that reasoning super- 464

vision, enabled by inference-time scaling through 465

explicit CoT traces, is fundamentally more effec- 466

tive than simply increasing model size. Overall, our 467

results affirm that inference scaling is more criti- 468

cal than parameter scaling in fostering reasoning 469

capabilities in student models, echoing the insight 470

summarized in Takeaway 2. 471

Takeaway 2: Reasoning > Size + Acc

Reasoning Capability Matters More
Than Model Size or Accuracy: A teacher’s
explicit reasoning capability plays a more
critical role than its parameter scale or over-
all task accuracy for effectively incentiviz-
ing student reasoning ability.

472
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4.2.2 Is Correctness a Necessary Condition473

for Useful Reasoning Supervision?474

We investigate whether effective reasoning supervi-475

sion requires correct final answers or if reasoning476

traces with incorrect outcomes can still provide477

useful learning signals in weak-to-strong training.478

As shown in Table 2, student models trained479

with W2SR-N consistently outperform vanilla stu-480

dents (trained without teacher supervision) across481

all benchmarks and model scales. For example,482

the Qwen2.5-Math-7B student distilled with in-483

correct traces from the Qwen2.5-1.5B-Reasoner484

teacher improves its average Pass@1 from 30.71%485

to 43.77%, even surpassing W2SR. Similarly,486

the Qwen2.5-14B student distilled from the487

Qwen2.5-7B-Reasoner teacher achieves Pass@1488

scores of 50.02% with All, 53.53% with Correct489

Only, and still a strong 50.28% with Incorrect Only.490

These results demonstrate that intermediate reason-491

ing steps can remain pedagogically valuable even492

when the final answers are incorrect.493

Our findings support Takeaway 3, showing that494

the correctness of final answer alone is an insuffi-495

cient criterion for high-quality supervision. Instead,496

structurally sound reasoning traces, even when497

yielding incorrect final answers, can effectively498

activate reasoning capabilities in student models.499

Takeaway 3: Wrong Yet Helpful

Incorrect Answers Can Still Teach Cor-
rect Reasoning: Incorrect reasoning tra-
jectories can still effectively incentivize the
reasoning capability of the student model,
showing that correctness is not essential for
effective supervision.

500

4.3 RQ3: What Practical Benefits Arise from501

Weak-to-Strong Reasoning?502

This section investigates the benefits of W2SR503

through the perspectives of effectiveness, efficiency504

and further analysis of cognitive behaviors and505

inference-time scaling (See Appendices C.1 and H)506

4.3.1 Effectiveness: Beyond Strong507

Supervision and Base Model Constraints508

Existing methods like SFT and RL face limitations:509

strong supervision becomes scarce as models im-510

prove, and RL mainly amplifies existing abilities511

without fostering novel reasoning (Yue et al., 2025).512

W2SR uses weak supervision to elicit reasoning be-513

yond base model priors, enabling knowledge ac-514

W2SRGRPO W2SR-P
RunTime Performance

10x faster

25x faster
Figure 5: Comparison of efficiency (left bars) and performance
(right bars) among GRPO, W2SR, and W2SR-P.

quisition without relying on rare expert labels and 515

overcoming SFT and RL constraints. 516

4.3.2 Efficiency: Weaker Teachers are 517

Sufficient for Incentivization 518

Compared to costly, unstable RL and expert- 519

dependent SFT, W2SR offers a more efficient alter- 520

native with strong performance. Scaling teachers 521

yields diminishing returns, e.g., on Math with a 522

Qwen2.5-32B student, increasing teacher size from 523

7B to 32B adds just 0.4%. In Figure 5, W2SR-P out- 524

performs GRPO by 2.92% while reducing training 525

time 25×. These results (Takeaway 4) highlight that 526

weak teachers can effectively incentivize reasoning 527

with better efficiency–performance trade-offs. 528

Takeaway 4: Weak Is Sufficient

Weaker Teachers Offer Better Effi-
ciency–Performance Trade-off: Scaling
teacher strength provides diminishing re-
turns; notably, weak teachers often suffice
for effectively incentivizing reasoning, sig-
nificantly reducing computational cost.

529

5 Conclusion 530

We propose W2SR, a simple yet effective approach 531

to enhance LLM reasoning by training with weak, 532

structured reasoning trajectories instead of costly 533

reinforcement learning or expert demonstrations. 534

Despite relying on weaker supervision, models 535

trained with W2SR outperform their teachers and 536

rival RL-based methods with significantly less com- 537

putation. This paradigm opens several directions 538

for future research. We hope this work encourages 539

further exploration into scalable and cost-efficient 540

approaches for reasoning incentivization in large 541

language models, paving the way toward scalable 542

oversight that enables strong reasoning capabilities 543

to be widely attainable. 544
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B Experimental Details785

B.1 The Details of Datasets786

MATH (Lightman et al., 2023) contains 500787

high-school math competition problems, which are788

of higher difficulty and complexity, requiring more789

in-depth mathematical reasoning ability.790

OlympiadBench (He et al., 2024) is a bilingual,791

multimodal scientific benchmark at the Olympiad792

level, comprising 8,476 problems from advanced793

mathematics and physics competitions, including794

the Chinese college entrance examination. Each795

problem is accompanied by expert-level annota-796

tions that provide step-by-step reasoning. The stan-797

dard test benchmark contains 675 problems.798

Minerva (Lewkowycz et al., 2022b) is a dataset799

of undergraduate-level questions in science and800

mathematics from MIT’s OpenCourseWare.801

AMC is a 2023 middle school math competition802

covering arithmetic, algebra, geometry, and more.803

It consists of 40 questions.804

GPQA (Rein et al., 2024) is a challenging 805

dataset of 448 multiple-choice questions written 806

by domain experts in biology, physics, and chem- 807

istry. We use GPQA Diamond, the highest quality 808

subset consisting of 198 questions, including only 809

questions that both experts answer correctly and 810

the majority of non-experts answer incorrectly. 811

B.2 The Details of Evaluation Metrics 812

Pass@k Given a total of N problems, for each 813

problem i, we sample k responses. Let Ci be the 814

number of correct responses among the k samples 815

for problem i, and let ni be the total number of 816

possible distinct completions considered for that 817

problem. Then the Passk accuracy is defined as: 818

Pass@k =
1

N

N∑
i=1

[
1−

(
ni−Ci

k

)(
ni
k

) ]
(6) 819

B.3 The Details of Models 820

Qwen-2.5 (Yang et al., 2024b) is the next- 821

generation open-source large language model se- 822

ries developed by the Qwen team. It includes mod- 823

els ranging from 0.5B to 72B parameters, trained 824

on high-quality multilingual corpora. Qwen2.5 825

models demonstrate strong performance across 826

a wide range of benchmarks, such as MMLU, 827

GSM8K, and HumanEval, and are particularly ef- 828

fective in Chinese language understanding and gen- 829

eration. We utilize Qwen2.5-Math-7B, Qwen2.5- 830

14B, and Qwen2.5-32B. 831

SimpleRL-Zoo (Zeng et al., 2025) is a model 832

family fine-tuned using the zero RL training al- 833

gorithm on MATH training datasets, spanning a 834

diverse range of model series and sizes, including 835

Mistral-7B, Mistral-24B, LLaMA3-8B, DeepSeek- 836

Math-7B, Qwen2.5-0.5B/1.5B/7B/14B/32B, and 837

Qwen2.5-Math-7B. 838

B.4 The Details of Implementation 839

We conduct model training using LLaMA- 840

Factory (Zheng et al., 2024), applying full- 841

parameter fine-tuning to all student models, rang- 842

ing from 7B to 32B. The hyperparameters used are 843

summarized in Table 3. Although the global batch 844

size is fixed at 128 for all models, the per-device 845

batch size, gradient accumulation steps, and num- 846

ber of GPUs vary across model scales. Specifically, 847

for the 7B model, we use 4 GPUs with a per-device 848

batch size of 2 and a gradient accumulation step of 849

16 (4GPU * 2PBS * 16GA); for the 14B model, we 850
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use 4 GPUs with a per-device batch size of 1 and a851

gradient accumulation step of 32 (4GPU * 1PBS *852

32GA); and for the 32B model, we adopt 8 GPUs853

with a per-device batch size of 1 and a gradient854

accumulation step of 16 (8GPU * 1PBS * 16GA).855

Table 3: Hyperparameters used for full-parameter fine-tuning.

Hyper-parameter Value

Learning Rate 1× 10−5

Number of Epochs 10
Global Batch Size 128
Optimizer Adamw
Learning Rate Scheduler cosine
Max Sequence Length 4096

B.5 The Details of Compute Resources856

All the training experiments in this paper were con-857

ducted on 4 × NVIDIA A100 (80G) GPUs.858

C Additional Experiments859

C.1 Inference-time Scaling860

This section examines the impact of our method861

on inference-time behavior (Yuan et al., 2024),862

with a particular focus on response length. We863

investigate whether W2SR leads to an increase864

in generation length during inference, similar865

to trends observed with reinforcement learning.866

As shown in Table 4, using Qwen2.5-Math-7B,867

Qwen2.5-14B and Qwen2.5-32B as student and868

Qwen2.5-1.5B-Reasoner as teacher on AMC, the869

generation length increases steadily throughout870

training, indicative of longer CoT and suggesting871

the emergence of inference-time scaling effects.872

C.2 Additional Results for Takeaway 1873

This section presents supplementary results sup-874

porting Takeaway 1: weak supervision can incen-875

tivize reasoning in stronger models. Specifically,876

we show that reasoning trajectories derived from877

weaker teacher models can effectively encourage878

stronger student models to engage in reasoning,879

achieving performance comparable to or exceed-880

ing that of more costly reinforcement learning ap-881

proaches. Figure 6 presents five additional configu-882

rations, each illustrating a distinct teacher–student883

pairing. Across all settings, student models demon-884

strate substantial gains when supervised by weaker885

reasoners. Notably, the performance improvements886

achieved by our proposed method (W2SR) and its en-887

hanced variant (W2SR-P) consistently surpass those888

of baseline standalone students, and in some cases,889

even outperform students trained with expensive 890

reinforcement learning. 891

C.3 Additional Results for Takeaway 2 892

This section provides supplementary results sup- 893

porting Takeaway 2: reasoning capability is more 894

important than model size or overall accuracy. We 895

observe that a teacher’s ability to perform explicit 896

reasoning plays a more critical role than its pa- 897

rameter count or average task accuracy in fos- 898

tering reasoning skills in student models. Fig- 899

ure 7 presents additional configurations where 900

Qwen2.5-14B serves as the student model. Across 901

these settings, students consistently benefit more 902

from teachers with explicit reasoning abilities, even 903

when those teachers are smaller or less accurate, 904

compared to larger teachers lacking such abilities. 905

C.4 Additional Results for Takeaway 4 906

This section provides supplementary results 907

supporting Takeaway 4, which suggests that 908

weaker teachers offer a more favorable effi- 909

ciency–performance trade-off. As shown in Fig- 910

ure 8, weaker teachers can achieve performance 911

comparable to reinforcement learning-based meth- 912

ods while substantially reducing training costs. 913

This demonstrates their practicality in resource- 914

constrained settings. 915

D Limitations and Broader Impacts 916

This work focuses on mathematical reasoning, and 917

the effectiveness of W2SR in broader domains such 918

as commonsense reasoning, scientific QA, or legal 919

analysis remains to be verified. The approach as- 920

sumes that weak teacher models can produce struc- 921

tured reasoning traces, which may not hold in low- 922

resource or complex domains. Additionally, while 923

imperfect reasoning trajectories are often helpful, 924

unfiltered or low-quality supervision may introduce 925

noise and reduce robustness. Current method also 926

relies on SFT and may benefit from more adaptive 927

training strategies in future work. 928

W2SR provides a practical and efficient approach 929

to improving reasoning abilities in language mod- 930

els without relying on expensive data collection or 931

RL. This can enhance access to powerful models 932

in academic and low-resource settings. However, 933

enabling stronger reasoning capabilities may also 934

increase the risk of models producing convincing 935

but flawed outputs, especially when trained on im- 936

perfect supervision. Applications in high-risk do- 937

mains should be accompanied by safeguards such 938
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Table 4: Average Response Length.

Teacher Method Qwen2.5-Math-7B Qwen2.5-14B Qwen2.5-32B

Student only Vanilla 882.78 643.90 600.20
Student only GRPO 1122.27 1003.05 1120.56
Qwen2.5-1.5B(R) W2SR 1545.92 1559.47 1373.55

as rigorous evaluation, interpretability tools, and939

human oversight to mitigate potential harms.940

E Insights and Future Directions941

Our work shows that structured but imperfect rea-942

soning traces from significantly weaker models943

can effectively incentivize reasoning in stronger944

LLMs, rivaling reinforcement learning at a fraction945

of the cost. Notably, reasoning structure, rather946

than teacher size or accuracy, plays a pivotal role.947

Incorrect traces remain pedagogically valuable, and948

increasing teacher scale yields diminishing returns.949

Future work includes adaptive filtering of rea-950

soning trajectories to prioritize useful supervision,951

leveraging ensembles of weak teachers to provide952

richer signals, extending W2SR to multi-modal and953

tool-augmented settings, and developing theoreti-954

cal frameworks to understand when weak-to-strong955

succeeds. These directions highlight W2SR as a956

scalable and practical approach for eliciting strong957

reasoning capabilities in large language models.958

F More Related Works959

F.1 Chain-of-Thought Distillation960

Chain-of-thought (CoT) distillation has emerged961

as an effective technique for transferring reason-962

ing abilities from large language models to smaller963

ones. Early work, such as Symbolic CoT Distilla-964

tion (SCoTD)(Li et al., 2023), showed that small965

models can benefit from CoT supervision generated966

by significantly larger teachers. Subsequent studies967

introduced methods like Keypoint-based Progres-968

sive CoT Distillation (KPOD)(Feng et al., 2024),969

which incorporates token-level weighting and pro-970

gressive learning to improve distillation. Other ap-971

proaches, including CODI (Shen et al., 2025) and972

DLCoT (Luo et al., 2025), aim to compress CoT973

into continuous representations or deconstruct long974

reasoning trajectories for more efficient learning.975

These methods typically rely on high-quality976

CoT traces from strong teacher models. In contrast,977

our work investigates the potential of leveraging978

structurally coherent but imperfect CoT traces from979

significantly weaker teachers to elicit strong rea- 980

soning capabilities in student models. 981

F.2 Imperfect or Noisy Supervision 982

Learning from imperfect or noisy supervision is 983

a longstanding challenge in machine learning. In 984

the context of LLMs, recent studies have examined 985

the impact of noisy rationales on reasoning perfor- 986

mance. For instance, Zhou et al. (Zhou et al., 2024) 987

proposed contrastive denoising methods to enhance 988

robustness against noisy CoT prompts. Guo et 989

al. (Guo and Yang, 2024b) introduced reliability- 990

aware alignment techniques to improve weak-to- 991

strong generalization by assessing the trustworthi- 992

ness of weak supervision signals. 993

Our work complements these efforts by demon- 994

strating that even structurally flawed CoT traces 995

from weaker models can effectively supervise 996

stronger student models, highlighting the underex- 997

plored potential of leveraging imperfect yet struc- 998

turally informative reasoning traces. 999

G Prompt Details 1000

Following (Zeng et al., 2025), for models with 1001

weaker instruction-following capabilities, such as 1002

Qwen-2.5-0.5B/1.5B, we adopt simpler prompts 1003

in previous work (Chern et al., 2023), which re- 1004

quire only step-by-step reasoning. In contrast, for 1005

models with stronger instruction-following abili- 1006

ties, we employ more complex prompts as pro- 1007

posed by (Yang et al., 2024a), where final answers 1008

must be explicitly placed within boxes. 1009

H Case Study 1010

As shown in Table 7, the weak teacher produces 1011

a structurally valid but numerically incorrect so- 1012

lution. The W2SR student retains this structured 1013

reasoning while correcting the computational er- 1014

rors, ultimately arriving at the correct answer. Its 1015

reasoning depth increases significantly, from 307 1016

tokens (base student) to 984 tokens, approaching 1017

the length and quality of the RL-trained student 1018

(1038 tokens). These findings suggest that W2SR 1019

effectively leverages flawed yet structured supervi- 1020

sion to elicit strong reasoning capabilities. 1021
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W2SR Teacher Student W2SR-P GRPO

W2SR Teacher Student W2SR-P GRPO

Qwen2.5-14B-Student   &  Qwen2.5-1.5B-Reasoner-Teacher

Qwen2.5-14B-Student   &  Qwen2.5-7B-Reasoner-Teacher

W2SR Teacher Student W2SR-P GRPO

Qwen2.5-32B-Student   &  Qwen2.5-1.5B-Reasoner-Teacher

W2SR Teacher Student W2SR-P GRPO

Qwen2.5-32B-Student   &  Qwen2.5-7B-Reasoner-Teacher

W2SR Teacher Student W2SR-P GRPO

Qwen2.5-32B-Student   &  Qwen2.5-14B-Reasoner-Teacher

Figure 6: From top to bottom: Using (1) Qwen2.5-14B as the strong student and Qwen2.5-1.5B-Reasoner as the weak teacher.
(2) Qwen2.5-14B as the strong student and Qwen2.5-7B-Reasoner as the weak teacher. (3) Qwen2.5-32B as the strong student
and Qwen2.5-1.5B-Reasoner as the weak teacher. (4) Qwen2.5-32B as the strong student and Qwen2.5-7B-Reasoner as the
weak teacher. (5) Qwen2.5-32B as strong student and Qwen2.5-14B-Reasoner as weak teacher. Four bars represent: teacher’s
standalone performance, student’s standalone performance, student performance after W2SR, student performance after W2SR-P.
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1.5B-Reasoner-Teacher32B-Non-Reasoner-Teacher

Teacher Scale Teacher Scale Teacher Scale Teacher Scale

Figure 7: Comparison of Weak-to-Strong Reasoning (W2SR) between Reasoner and Non-Reasoner Teachers using Qwen2.5-14B
as the student. Upper: The x-axis represents teacher model scale, with two lines indicating the W2SR student performance
trained with Reasoner vs. Non-Reasoner teachers of corresponding scales. Lower: first two bars show initial performance of
Qwen2.5-1.5B-Reasoner and Qwen2.5-32B-Non-Reasoner teacher, last two bars show the resulting W2SR student performance.

W2SRGRPO W2SR-P
RunTime Performance

10x faster

25x faster

W2SRGRPO W2SR-P
RunTime Performance

13x faster

17x faster

Qwen2.5-Math-7B-Student Qwen2.5-14B-Student

Figure 8: Comparison of efficiency and performance among GRPO, W2SR, and W2SR-P. Left: Qwen2.5-Math-7B as the student
and Qwen2.5-1.5B-Reasoner as the teacher. Right: Qwen2.5-14B as the student and Qwen2.5-7B-Reasoner as the teacher.
For each, the left three bars represent the time cost of GRPO, W2SR, and W2SR-P respectively, the right three bars show the
corresponding performance outcomes.

Question:
{input}
Answer:
Let’s think step by step.

Table 5: Simple prompts template.

<|im_start|>system
You are a helpful assistant.<|im_end|>
<|im_start|>user
{input}
Please reason step by step, and put your final answer within \\boxed{}.<|im_end|>
<|im_start|>assistant
{output}

Table 6: Complex prompts template.
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Table 7: Case comparison of cognitive behaviors: weak teacher vs. base, RL, and W2SR students.

Question Let K be the number of sequences A1, A2, . . . , An such that n is a
positive integer less than or equal to 10, each Ai is a subset of {1, 2, 3,
. . . , 10}, and Ai−1 is a subset of Ai for each i between 2 and n, inclusive.
For example, {}, {5, 7}, {2, 5, 7}, {2, 5, 7}, {2, 5, 6, 7, 9} is one such
sequence, with n = 5.What is the remainder when K is divided by 10?

Weak Teacher To determine the number of sequences ( A1, A2, . . . , An ) where n is a
positive integer less than or equal to 10, each Ai is a subset of {1, 2,
3, dots, 10}, and Ai−1 is a subset of Ai for each i between 2 and n,
inclusive, we need to consider the properties of such sequences.
Each element in the set {1, 2, 3, dots, 10} can either be in Ai or not,
and the choice for each element is independent of the others. Moreover,
the condition Ai−1 ⊆ Ai means that if an element is in Ai, it must also
be in Ai−1 for all i.
This problem can be translated into a combinatorial one. For each of the
10 elements, we need to decide in how many ways we can include or exclude
it in the subsets A1, A2, . . . , An such that the subset relationship is
maintained. This is equivalent to choosing a non-decreasing sequence of
subsets, which can be thought of as choosing a subset of {1, 2, . . . , 10}
and then deciding how many times each element appears in the sequence.
For each element, there are n+1 choices (it can appear 0 times, 1 time, 2
times, ..., up to n times). Since there are 10 elements and each element’s
inclusion can be independently chosen, the total number of such sequences
is given by:
K = (n+ 1)10

We need to find the value of K for n ranging from 1 to 10 and then find the
remainder when the sum of these values is divided by 10. However, since n
can be any integer from 1 to 10, we need to sum n + 1)10 for n from 1 to
10:
K =

∑10
n=1(n+ 1)10

This simplifies to:
K = 210 + 310 + 410 + · · ·+ 1110

We need to find the remainder of this sum when divided by 10. We can do
this by finding the remainder of each term when divided by 10 and then
summing these remainders.
210 ≡ 24 ≡ 4 (mod 10)
310 ≡ 59049 ≡ 9 (mod 10)
410 ≡ (42)5 ≡ 165 ≡ 65 ≡ 7776 ≡ 6 (mod 10)
510 ≡ 0 (mod 10)
610 ≡ 6 (mod 10)
710 ≡ (72)5 ≡ 495 ≡ 95 ≡ 59049 ≡ 9 (mod 10)
810 ≡ (82)5 ≡ 645 ≡ 45 ≡ 1024 ≡ 4 (mod 10)
910 ≡ (92)5 ≡ 815 ≡ 15 ≡ 1 (mod 10)
1010 ≡ 0 (mod 10)
1110 ≡ 110 ≡ 1 (mod 10)
Summing these remainders:
4 + 9 + 6 + 0 + 6 + 9 + 4 + 1 + 0 + 1 = 40
The remainder when 40 is divided by 10 is:
40 ≡ 0 (mod 10)

Thus, the remainder when K is divided by 10 is: 0
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Base Student To solve this problem, we need to count the number of sequences of subsets
that satisfy the given conditions. Each subset Ai must be a subset of
Ai+1, and each subset must be a subset of {1, 2, 3, dots, 10}. This means
that we can think of each element in {1, 2, 3, dots, 10} as having three
possible states: it can be in none of the subsets, it can be in some of
the subsets but not in all of them, or it can be in all of the subsets. For
each element, there are 3 choices. Since there are 10 elements, there are
310 possible sequences of subsets. The remainder when K is divided by 10 is
the same as the remainder when 310 is divided by 10. We can calculate 310

using Python and then find the remainder when it is divided by 10. Let’s
do this calculation.
“‘python
# Calculate 310
K = 3**10
# Find the remainder when K is divided by 10
remainder = K % 10
print(remainder)
“‘
“‘output
9
“‘ The remainder when K is divided by 10 is 9 .

RL Student To find the number of sequences A1, A2, . . . , An such that n is a positive
integer less than or equal to 10, each Ai is a subset of {1, 2, 3, . . . ,
10}, and Ai−1 is a subset of Ai for each i between 2 and n , inclusive, we
need to count the number of ways to choose such sequences for each possible
value of n.
For a fixed n , we need to count the number of ways to choose a chain of
subsets A1 ⊆ A2 ⊆ cdots ⊆ An ⊆ {1, 2, . . . , 10}. Each element in {1, 2,
dots, 10} can independently choose to be in none of the sets, in exactly
one of the sets, in exactly two of the sets, and so on, up to being in
all n sets. Therefore, each element has n+1 choices (it can be in 0, 1, 2,
..., or n of the sets).
Since there are 10 elements, and each element has n+1 choices, the total
number of such sequences for a fixed n is (n+ 1)10.
We need to sum this over all possible values of n from 1 to 10:
K =

∑10
n=1(n+ 1)10

We are asked to find the remainder when K is divided by 10. Therefore, we
need to compute:
K mod 10 =

∑10
n=1(n+ 1)10 mod 10

We will compute each term (n+ 1)10 mod 10 for n from 1 to 10:
210 = 1024 ≡ 4 mod 10,
310 = (32)5 = 95 ≡ (−1)5 = −1 ≡ 9 mod 10,
410 = (42)5 = 165 ≡ 65 ≡ 62 · 62 · 6 ≡ 6 · 6 · 6 = 36 · 6 ≡ 6 · 6 = 36 ≡ 6 mod 10,
510 = (52)5 = 255 ≡ 55 ≡ 5 mod 10,
610 = (62)5 = 365 ≡ 65 ≡ 6 mod 10,
710 = (72)5 = 495 ≡ (−1)5 = −1 ≡ 9 mod 10,
810 = (82)5 = 645 ≡ 45 ≡ 42 · 42 · 4 ≡ 6 · 6 · 4 = 36 · 4 ≡ 6 · 4 = 24 ≡ 4 mod 10,
910 = (92)5 = 815 ≡ 15 = 1 mod 10,
1010 = 105cdot105 ≡ 05 · 05 = 0 mod 10,
1110 = (112)5 = 1215 ≡ 15 = 1 mod 10.
Summing these results:
4 + 9 + 6 + 5 + 6 + 9 + 4 + 1 + 0 + 1 = 45
The remainder when 45 is divided by 10 is:
45 mod 10 = 5
Therefore, the remainder when K is divided by 10 is 5 .
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W2SR Student To solve for the number of sequences A1, A2, dots, An where each Ai is a
subset of {1, 2, 3, dots, 10} and Ai−1 ⊆ Ai for each i between 2 and n,
we need to consider the following:
1. **Understanding the Sequence**: Each sequence starts with the empty
set A1 = {} and ends with some subset An of {1, 2, 3, dots, 10}. The key
property is that each set in the sequence is a subset of the next set.
2. **Counting the Sequences**: For each element in {1, 2, 3, dots, 10}, we
need to decide at which step it first appears in the sequence. If an element
appears at step k, it must be in all subsequent sets Ak, Ak+1, . . . , An.
3. **Binary Decision for Each Element**: Each of the 10 elements can first
appear at any step from 1 to n. Therefore, for each element, there are n
choices (it can first appear at any of the n steps or not appear at all,
which is the 0th step if we consider the empty set).
4. **Total Number of Sequences**: Since there are 10 elements and each
element has n choices, the total number of sequences is n10.
5. **Summing Over All Possible n**: n can range from 1 to 10. Therefore,
we need to sum n10 for n from 1 to 10:
K = sum10

n=1n
10

6. **Calculating the Sum**: We need to compute the sum of the 10th powers
of the first 10 positive integers:
K = 110 + 210 + 310 + · · ·+ 1010

7. **Finding the Remainder When K is Divided by 10**: We only need the
last digit of K. Therefore, we compute the last digit of each term n10 for
n from 1 to 10:
110 = 1 (last digit is 1)
210 = 1024 (last digit is 4)
310 = 59049 (last digit is 9)
410 = 1048576 (last digit is 6)
510 = 9765625 (last digit is 5)
610 = 60466176 (last digit is 6)
710 = 282475249 (last digit is 9)
810 = 1073741824 (last digit is 4)
910 = 3486784401 (last digit is 1)
1010 = 10000000000 (last digit is 0)
8. **Summing the Last Digits**:
1 + 4 + 9 + 6 + 5 + 6 + 9 + 4 + 1 + 0 = 45
The last digit of 45 is 5.

Therefore, the remainder when K is divided by 10 is ( 5 ).
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