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ABSTRACT

We consider the problem of estimating the inverse temperature parameter 3 of an
n-dimensional truncated Ising model using a single sample. Given a graph G =
(V, E) with n vertices, a truncated Ising model is a probability distribution over
the n-dimensional hypercube {—1, 1}" where each configuration o is constrained
to lie in a truncation set S C {—1,1}" and has probability Pr(c) o exp(B3c " Ac)
with A being the adjacency matrix of G. We adopt the recent setting of [Galanis et
al. SODA’24], where the truncation set .S can be expressed as the set of satisfying
assignments of a k-SAT formula. Given a single sample ¢ from a truncated Ising
model, with inverse parameter 5*, underlying graph G of bounded degree A and
S being expressed as the set of satisfying assignments of a k-SAT formula, we
design in nearly O(n) time an estimator {3 that achieves a consistency rate of
O(A3//n) with the true parameter 3* for k > log(d?k)AS3.

Our estimator is based on the maximization of the pseudolikelihood, a notion that
has received extensive analysis for various probabilistic models without [Chatter-
jee, Annals of Statistics *07] or with truncation [Galanis et al. SODA ’24]. Our
approach generalizes recent techniques from [Daskalakis et al. STOC 19, Gala-
nis et al. SODA ’24], to confront the more challenging setting of the truncated
Ising model.

1 INTRODUCTION

Markov random fields (MRFs) are a common framework for analyzing high-dimensional distribu-
tions with complex conditional independence structures. A well-studied example of an MRF and
the primary topic of inquiry in this paper is the Ising model (Ising, 1925), a probability measure
Ka,p, over all assignments o in the binary hypercube {—1,1}". The model is parameterized by a
graph G = (V, E) and inverse temperature 3, and taking the form p¢ 3 o exp (8o " Ao), with
A being the adjacency matrix of G. The simplicity of the Ising model has led to widespread adop-
tion in fields as disparate as statistical physics, finance, the social sciences, and computer vision,
among others (see (Chatterjee, 2007; Qin & Zhao, 2011; Harris, 2013; Wang et al., 2015) and the
references therein for a brief collection of examples). These applications have, in turn, motivated a
substantial body of research on efficient sampling (Bresler, 2015; Lubetzky & Sly, 2013; Sly & Sun,
2012), rigorous testing (Daskalakis et al., 2019a), and principled inference of the inverse tempera-
ture parameter and interaction matrix (Dagan et al., 2020; 2021) under the framework of the Ising
model.

Beginning from the work of (Chatterjee, 2007), there has been substantial interest in the task of
estimating inverse temperature parameter /3, given only one sample o ~ p g and the graph G,
using the maximum pseudolikelihood estimator of (Besag, 1975). This setup subsumes the setting
of multi-sample estimation as ¢ samples of an Ising model over n nodes is equivalently a single
sample of an n¢ Ising model over ¢ disconnected components of a graph. This line of work is
driven by the inherent technical constraints of network data, wherein it is often impractical to obtain
independent observations of the same network responses (Daskalakis et al., 2019b; Dagan et al.,
2020). Interestingly, despite both static and dynamic phase transitions in model behavior as [ varies
which can render sampling computationally intractable (NP-hard) (Galanis et al., 2016), it remains
possible to construct consistent estimators of 5 and the interaction matrix A, provided that 5 = O(1)
(Dagan et al., 2020; 2021; Daskalakis et al., 2019b; Mukherjee et al., 2022a).



(a) Low Temperature (8 = 1) (b) High Temperature (3 = (32)

Figure 1: Two typical spin configurations over the Ising model at temperatures (31, B2 with 51 > 2
(equivalently at a lower temperature 7 and a higher temperature 75 where T’ < 1//3). Each node has
spin +1 or spin —1. The left panel shows the configuration at a lower temperature, with alignment
producing large domains of positive and negative spin assignments, while the right panel exhibits a
more disordered pattern.

In many real-world applications, however, we face not only soft constraints, which influence the
model behavior by introducing correlations or dependencies, while the full support of the mea-
sure remains intact, but also hard constraints: Certain configurations are outright forbidden, and
entire regions of the configuration space are excluded from the support of the distribution. Such
hard-constrained models (also called truncated) arise naturally in applications involving high-
dimensional, interconnected systems with strict feasibility requirements, one particularly notable
example of which arises in the context of spatial transcriptomics—a biological framework for char-
acterizing gene and protein expression in cells within organic tissue, relative to their spatial organi-
zation. The local relationships between cells are often represented as nodes in a graph with edges
linking cells together that are close in physical space (Eng et al., 2019). Associated with each node is
a set of measurements of expression to capture how the relationships between cells impact the pheno-
type of a given node. The complex relationship between genes often forces certain configurations of
expressions to be infeasible. In fact, the phenomenon of lateral inhibition can cause a cell expressing
gene one to prevent its neighbors from expressing it as well, instead causing them to express gene
two, as seen in the Notch-Delta pathway (Ghosh & Tomlin, 2001). The hard constraints discussed
in the above setting are not unique to spatial transcriptomics and are also commonly found in the
context of channel assignments in communication networks (Zafer & Modiano, 2006), carrier-sense
multiple access networks (Durvy & Thiran, 2006; Durvy et al., 2009), and multicasting networks
(Karvo et al., 2002; Luen et al., 2006) among others.

In this work, we study the problem of parameter estimation in n-dimensional Ising models that are
hard-constrained to the satisfying assignments of a bounded-degree k-SAT formula ® expressed in
CNF (Conjunctive Normal Form), using one sample. This means that we have access to a sample
from an Ising model, conditioned that it only takes values in a subset S C {£1}™ that is represented
through the satisfying assignments of a k-SAT formula, adopting the framework from (Galanis et al.,
2024). Learning in truncated MRFs using one or multiple samples has been studied in the context
of discrete product distributions truncated by the set of satisfying assignments of k-SAT formulas
(Galanis et al., 2024; 2025), more generally by truncated sets with combinatorial structure (Fotakis
et al., 2022), the hard-core model, and integer valued spins constrained over proper H —colorings
(Blanca et al., 2018; Bhattacharya & Ramanan, 2021). Our key deviation from the aforementioned
works stems from the fact that the Ising model is not a product distribution, and common tools used
to control the concentration of measure on the hypercube do not apply. This, moreover, induces two
sources of interdependence, namely from the model itself and from the structure of the truncation
set. With this background in mind, we seek to address the following challenge.

Is it possible to efficiently learn discrete distributions with complex dependencies
under hard constraints, having access to a single sample?



1.1 OUR RESULTS

Our main contribution is an affirmative answer to the previous challenge, by providing a sufficient
condition on the k-SAT formula that induces the truncation set, in terms of the maximum degree A
of G. We begin by formally defining the class of truncated Ising measures that is the primary inquiry
of this work. Given a maximum degree A graph with associated adjacency matrix A, and inverse
temperature 3 we define the pmf of a fruncated Ising model for any o € {£1}" to be

1
Prs s(o) == 7 Xp (Bo T Ao) 1{o € S}, (Truncated Ising Model)

8.8

where 1 captures the indicator function and Zg g is a renormalization term called the partition
function. We focus on the case where S is expressed as the set of satisfying assignments of a
bounded degree k-SAT formula ®,, ;. 4 = ® in CNF. Formally, ® is a collection of literals and
clauses (V,C), in which each clause C' € C contains k literals, and each literal v € V appears
in at most d distinct clauses; d is called the degree of the formula. Each element o0 € {—1,1}"
corresponds to a truth assignment for ®, where the variable v; is assigned to true if o; = 1 and false
if o; = —1. Any subset of the hypercube can be represented as the set of satisfying assignments of
a d degree k-SAT formula, provided that d is sufficiently large.

Our main result — stated below — is a sufficient condition on the degree d of the formula @ in terms of
the size of each clause & and the maximum degree A of the underlying graph G of the Ising model,
for computationally and statistically efficient estimation of the inverse temperature parameter 3.

Theorem 1 (Informal Version of Theorem 2). Let o be a single sample from a truncated, n-
dimensional Ising model with inverse temperature 3*, where the truncation set is captured by the
satisfying assignments of a k-SAT formula ®,, 1, q and the underlying graph G' has maximum degree
A of order o(n'/®). For n sufficiently large, 3* is O(1) and k > Q(4A3(1 4 log(d?k + 1))), there

exists an O(A3n log(n))—algorithm which takes as input o and outputs an estimator 8 such that

A A3
Prg- g {w -p* < C\f] > 99%, for a constant ¢ > 0 independent of n, A, d, k.
n

Notice when A is O(1), our estimate achieves O(1/4/n)-consistency, matching the minimax rate

for parameter estimation. Likewise, the restriction of A to be on the order of o(n'/%) ensures Bisa
consistent estimator.

1.2 TECHNICAL OVERVIEW

Given a single-parameter exponential family like the one we focus on, a natural approach to es-
timating the parameter is to find the maximum likelihood estimate. However, the computational
intractability of the partition function Zg g for Ising models (see (Galanis et al., 2016) and the refer-
ences therein) renders this approach infeasible. In light of these challenges, we utilize the maximum
pseudolikelihood estimator introduced by (Besag, 1975) and provided below.

3 := arg max H Pr; 5(oilo—;) = arg min — Z log(Prj g(0ilo—;)) := argmin ¢(B; A, o).
g i€[n] B i€[n] g
(MPLE)
We note that the second equality holds because log(+) is a monotone function. Towards demon-
strating the consistency of the maximum (log)-pseudolikelihood estimate B , we follow the first and
second derivative paradigm outlined by Chatterjee (Chatterjee, 2007; Daskalakis et al., 2019b; Gala-
nis et al., 2024; 2025), which involves showing,

* Prg. 5[Vpo(8*54,0) < O(Vn)] > 1 - o(1),
* infge(_p, B) V%gf)(ﬂ; A o) > Q(n/A?) with probability 1 — o(1) over o ~ Prp- g.
The first condition ensures the derivative of the log-pseudolikelihood objective with respect to the

true model parameters S divided by n is close to 0, which is the value of the gradient of ¢ com-
puted at the estimator, which in turn implies 3 is an approximate stationary point of the objective.



Moreover, by demonstrating that the second derivative of the objective V%¢(5; A o) is Q(n/A3)-
strongly convex with probability 1 — o(1) over a draw of the truncated Ising model, it implies
that approximate stationary points of the objective are close in Euclidean distance to the optimum.
Effectively, we combine these two facts to show the proximity of the optimum of the log-pseudo-
likelihood objective to 3.

Showing both of these conditions hold simultaneously is made complex due to the highly non-
uniform measure induced by conditional dependencies of both the interaction matrix A and the
truncation set .S. To demonstrate the first condition, we craft upper bounds on the variance of the first
derivative of ¢, using the technique of exchangeable pairs pioneered by (Chatterjee, 2007), which,
when combined with Chebyshev’s inequality, implies an upper bound in probability. The primary
challenge of this work lies in establishing the second condition; unlike previous works which used
the deterministic structure of the interaction matrix to guarantee the concavity of the objective, in
our setting the second derivative is instead determined by the number of elements Hamming distance
! one away from the sample o in the truncation set, and the magnitude of the magnetizations m; (o)
at these neighbors. We begin by showing a lower bound on m;(o) in probability via a coupling
argument which exploits the underlying edge structure of the connectivity graph G.

To show that, with high probability under the truncated Ising model, a sample o has many neigh-
boring configurations at Hamming distance 1, we construct an argument based on the Lovasz Lo-
cal Lemma (LLL), to guarantee the existence of a large number of satisfying assignments to ¢
that differ from o in exactly one bit. Using this powerful tool, however, requires control of the
probabilities of partial spin assignments, which, given the tendency of the Ising model to con-
tract into arbitrarily small portions of the hypercube and exhibit long-range correlations, can prove
challenging. Counteracting this, our argument conditions on nodes outside of a specially crafted
independent set I of the graph G, which preserves the marginal distribution of any given spin
Prg-[o;|(01, .., 0i—1,0i+1, ..., 0 )] despite limited to a small fraction of the support of the mea-
sure, and collapses the Ising model into a product measure.

We additionally note that the recent results (Dagan et al., 2020) rely on sophisticated concentration
inequalities derived from the fast mixing nature of Glauber dynamics on the Boolean hypercube
and their relation to the Gibbs measure. In our model, these powerful tools are not applicable
due to the fragmented nature of the truncation set, making the Glauber dynamics non-Ergodic; the
inequalities only imply concentration within a connected component of .S, which may be too small
to be informative.

1.3 RELATED WORK

The literature of parameter estimation in Markov Random Fields, and over hard-
constrained/truncated measures, is vast. In light of this, we mention a brief collection of
works relevant to our setting, and defer additional background and discussion to the appendix.
Single sample estimation initiated by (Besag, 1975; Chatterjee, 2007) has yielded a rich bounty
of results ranging from the setting of the Ising model (Chatterjee, 2007; Bhattacharya & Mukher-
jee, 2018; Ghosal & Mukherjee, 2020; Dagan et al., 2020), peer dependent logistic regression
(Daskalakis et al., 2019b; Mukherjee et al., 2022a; Daskalakis et al., 2020), higher order Ising
models (Mukherjee et al., 2022b), and robust inference over discrete distributions (Diakonikolas
et al., 2021). (Bhattacharyya et al., 2021) demonstrated the feasibility of single-sample learning
in the context of the hard-core model, a size-weighted distribution over all independent sets in a
graph G; following up on this, (Galanis et al., 2024; 2025) studied parameter inference in a product
distribution truncated by the satisfying assignments of a k-SAT formula. The hard-constrained
models studied in this work are a subset of the literature analyzing efficient parameter estimation
and learning in truncated (Daskalakis et al., 2019¢; 2018; Fotakis et al., 2022; De et al., 2023;
Nagarajan & Panageas, 2020) and censored distributions (Lugosi et al., 2024; Plevrakis, 2021;
Fotakis et al., 2021).

'The Hamming distance is a metric which measures the number of indices in which two vectors differ. If a
neighbor o’ is Hamming distance one away from o, it implies we can flip one index of o to yield o’



2 PRELIMINARIES

2.1 NOTATION

We denote the set of {1,2,...,n} as [n]. Vectors x € R? are denoted with boldface, and matrices
M € R™*™ with capital letters. Given a vector a = (ay,ag,...,a,) and a subset I C [n], let
ay denote the length-|7| coordinate vector {a; : ¢ € I}, and a_; denote the vector a with the
i—th element removed. We denote the probability of an event .4 over the untruncated measure
parameterized by 3 as Pr,, and over the truncated Ising measure as pq p,5(A) = Prg g[A] =
Pr,,[A]S]. We often remove the explicit dependence on S and G for clarity of explanation.

We will say an estimator 3 is consistent with a rate O(f(n)) (or equivalently f(n)-consistent) with
respect to the true parameter 5* if there exists an integer ny and a constant C' > 0 such that for every
n > ng, with probability at least 1 — o(1),

|8 —B* < Cf(n).
Lastly, we call an entry o; of o to be flippable if both (0;,0_;) and (—0;,0_;) lie in S, and
moreover we denote by e; (o) the indicator of the event that o; of o is flippable.

2.2 MAXIMUM PSEUDO-LIKELIHOOD ESTIMATION

Towards explicitly computing the (log)-pseudolikelihood objective and its associated derivatives, we
begin by finding the conditional distributions of the individual spins conditioned on the rest of the
assignment, Prﬂ(oi|o'_7; ). Notice, when o is not flippable, the conditional distribution is trivially
one, while for flippable ¢, the probability is given by the following:
exp(Bm;(o)o;)

exp(—fmi(a)) + exp(Smi(o))
Denoting F (o) to be the set of flippable variables in o, the negative log pseudo-likelihood objective
¢(B; A, o) can be written explicitly as follows:

¢(B;A,0) =~ Y log(Prs(oilo_,))

1€F (o)

= Y (log(exp(=Bmi(e)) + exp(Bmy())) — Bmi(o)oi).

iE€F (o)

Prg(o;lo_;) =

where ml(a) = Z Aiij.
j=1

2.1)

In the sequel, we drop the reference to A in the pseudo-likelihood when the interaction matrix is
clear. The first and second derivatives of the objective (2.1) with respect to the inverse temperature
parameter (3, denoted by ¢1(8;0) = Vgo(8; A, 0), p2(5;0) = V%d)(ﬁ; A, o) are given below:

o1(Bi0) = 3 (mi(o)(tanh(Bmi(o) — o)), a(Bio) = S

1€F (o) 1€F (o)

mi(e)?
cosh?(Bm; (o))

Note that the negative log-pseudo-likelihood is convex as the second derivative is always non-
negative (sum of squares).

2.3 AN AUXILIARY LEMMA

In our analysis, demonstrating the consistency of our estimator, we frequently require the existence
of combinatorial objects, such as satisfying assignments to a k-SAT formula or fulfilling specific
constraints without their explicit construction. Such existence questions often reduce to avoiding
a collection of undesirable events, each of which occurs with low probability and exhibits limited
dependence on the others. This setting is naturally addressed using the probabilistic method, and in
particular, the Lovasz Local Lemma.

Lemma 2.1 (Symmetric Lovasz Local Lemma). Given a collection of events { A; }ic[n], where each
event A; satisfies Pr(A;) < p and each event is mutually independent from all but at most d other
events. If

e-p-(d+1) <1, (Symmetric LLL)

then Pr (ﬂ?:l E) > 0, where A; denotes the complement of A; and e refers to Euler’s number:



3 LEARNING TRUNCATED ISING MODELS

In this section, we prove our main result, i.e., we provide a sufficient condition on the “complexity”
of the k-SAT formula ®, (and by extension the truncation set .S) in terms of the size of the clauses
k, the degree of the formula d and the maximum degree of the graph A for efficient estimation
of the inverse temperature parameter 3. In advance of proving our result, we lay out some mild
assumptions on the interaction matrix A and Ising model p¢ g s which have been employed in past
works (Galanis et al., 2024; 2025; Dagan et al., 2020; Daskalakis et al., 2019b; Chatterjee, 2007;
Bhattacharya & Mukherjee, 2018).

Assumption 1. Within our model (Truncated Ising Model), we assume

» A is the adjacency matrix of a connected graph over n nodes, with maximum degree A be-
ing o(nl/ 5) and entries Aij € {—i, —|—%} representing positive or negative interactions.

* The inverse temperature parameter 3 lies in the open interval (— B, B).

 The truncation set S is the set of satisfying assignments to a k-SAT formula ® in conjunctive
normal form.

The formal version of our main result is given as follows.
Theorem 2 (Main result). Let o be a single sample from a truncated, n-dimensional Ising model
4A3 (14log(d*k+1))
log(14+exp(—2B)) ’ N
O(A3nlog(n))—algorithm which takes as input o and outputs an estimator (3 such that
. A3
Prg- g {W —-p* < C\f] > 99%, for a constant ¢ > 0 independent of n, A, d, k.
n

satisfying Assumption 1. For all k > if n is sufficiently large, there exists an

Remark (The algorithm). We compute 3 in time O(A3nlogn) by running projected gradient de-
scent (PGD) on the normalized log-pseudolikelihood objective n~1¢(3; o). Standard results from
convex optimization (e.g., (Boyd & Vandenberghe, 2004)) imply that PGD converges to an e-optimal
solution in O(xlog(1/€)) iterations, where & is the condition number of the objective, that is the
ratio of the smoothness (i.e., the Lipschitz constant of the gradient) to the strong convexity param-
eter. In the sequel (Section 3.3), we demonstrate that the pseudo-likelihood objective is strongly
convex with parameter (n/A3%), implying the normalized objective is €(1/A3)-strongly con-
vex. This, combined with an upper bound of 1 on the norm of the normalized gradient of the
log-pseudolikelihood, yields the condition number of the objective is k = O(A3). Due to the sta-
tistical limitations of the pseudolikelihood estimator, whose distance from the true parameter /3 can
be as large as O(A3%/\/n), we set € = 1//n. Obtaining an accuracy of ¢, requires O(A3logn)
iterations, each requiring O(n) time, resulting in an overall runtime of O(A3n logn).

To prove Theorem 2, we begin by explicitly demonstrating how the conditions on the first and second

derivatives of the ¢(8; o) imply the consistency of the MPLE 5’ in Section 3.1. We then establish
the conditions on the first derivative in Section 3.2, and the second in Section 3.3.

3.1 ROADMAP FOR PROVING THEOREM 2

In this subsection, we demonstrate the relationship between the derivatives of the (log)-
pseudolikelihood and the estimation error |3 — 3*|.

Lemma 3.1. Let 8* € (—B, B) be the true parameter of the truncated Ising model jic g« s and B
be the MPLE. It follows that
[¢1(8";0)|

BB < — -
min; 62(5; )

Proof Sketch. We relate B with 8*, via smooth interpolation of both the parameter values themselves

B(t) = tp + (1 — t)B*, and the gradient s(t) = (5 — 5*)p1(B(t); o). As the derivative of the

pseudolikelihood at 3 is zero, we note that s(1) = 0. The fundamental theorem of calculus implies

(B B (5"0) = s(1) — s(0) = / S(t)dt = (3 — 5*) / b2(B(1); o).



The lemma follows from fol d2(B(t); o)dt > ming. _p p) $2(B; o) and ¢o(3; ) > 0. O

With this lemma in hand, demonstrating Theorem 2 reduces to showing ¢, (5*;0) = O(y/n) and
b2(B;0) = Q(n/A3) simultaneously with probability 1 — o(1).

3.2 ANALYSIS OF FIRST MOMENT

The lemma below establishes the upper bound on ¢;(3;0). To demonstrate an upper bound on
¢1(B; o) in probability, we use the technique of exchangeable pairs (Chatterjee, 2007) to construct
a bound on its variance. With the variance controlled, we invoke Markov’s inequality to conclude
¢1(B; o) that concentrates around its mean.

Lemma 3.2 (Upper Bound on ¢;(3;0) in Probability). Fix a constant 6 > 0. The log-
pseudolikelihood ¢(3; o) of a truncated Ising model fulfilling Assumption 1 satisfies the following
upper bound in probability, for all B € R

(12+4B)n

PI‘g 5

[¢1(B;0)] < >1-4.

3.3 SECOND DERIVATIVE BOUND

For reference, we recall the expression for the Hessian of the log pseudo-likelihood,

L _99(Bie) <~ mi(o)
P2(Bi0) = o 1:21 m%(a)-
The primary aim of this section is to demonstrate the following lower bound in probability.
Lemma 3.3 (Lower Bound on ¢»(3; o) in Probability). The log-pseudolikelihood ¢(3; o) of a Ising
model, truncated by a k-SAT formula with k > %, Sulfilling Assumption 1 satisfies
the following lower bound in for all € (—B, B)
99%(B; o) S nexp(—B)] o1 (24 +8B)

Prg-
T8 T A3 (8kd)? o1

We prove this claim in two steps, by firstly guaranteeing there are a linear number of flippable
variables v; € V, which contribute to the value of the second derivative, and secondly ensuring the
value of each term in the sum is bounded below by a constant.

3.3.1 ENSURING FLIPPABILITY

Given a sample o, the flippability of a variable o; under the k-SAT formula ® is characterized
by the condition that every clause containing o; is satisfied by at least one other variable in the
clause. Consequently, o; is not flippable if there exists a clause C' such that all other variables
v; € C\{v;} are assigned values that fail to satisfy the clause—an antagonistic configuration. Under
our assumptions, the truncated Ising model may be defined at arbitrarily low temperatures, including
values of 8 = O(1) that exceed the critical threshold. In this regime, standard concentration-of-
measure tools, such as log-Sobolev inequalities or Dobrushin-type conditions, are no longer valid
and fail to yield meaningful bounds. This makes it significantly more difficult to lower bound the
probability of antagonistic configurations, and, by extension, to bound the probability that a given
variable is flippable.

Towards providing such a bound, we construct an independent set / within the graph G, such that the
marginal distribution of the spins within /, conditioned on the variables outside of the independent
set V' \ I, collapses into a product distribution, circumventing the above difficulties. Indeed, the
distribution of o; conditional on an assignment of the remaining nodes oy s is given as follows,

with mz/\[ (o) instead of being random variables, they are now fixed constants.

Prg(or|oyv ) oc exp <2ﬁZmY\I(a)ai> , where mz/\l(a) = Z Ajjo;.

el jeEV\I



One of the issues that arises from conditioning our graphical model on V'\ I is the natural truncation
of the k-CNF formula ®; erasing the variables outside of the independent set I from @ transforms it
into a new formula ®’, which contains only variables from I. An inherent concern in the selection
of the independent set is the presence of clauses in @’ containing only a few variables, i.e., of size
o(k), which can significantly skew the marginal distributions away from uniformity. To address this,
we show that there exists an independent set / C V that intersects a linear fraction of the variables
in every clause, ensuring sufficient coverage and mitigating this issue.

Lemma 3.4. Let G be a graph with maximum degree A of order o(n/®) and ® be a k-SAT formula.
Ifk > 10A3(1 + log(dkA?)), then there exists an independent set I C 'V such that ®', ® truncated
on V\ 1, is a \k-SAT formula where \ = 1/4A3.

Proof Sketch. To begin, we describe an algorithm that maps bijections of the vertex set to indepen-
dent sets in the graph G. Formally, given a map p : V' — [n], we construct an independent set by
selecting all vertices v € V such that p(u) > p(v) for all v € N (u). This selection criterion ensures
that no two adjacent vertices are included in the set, as any edge {u, v} € F prevents both u and v
from satisfying the condition simultaneously.

Under the uniform measure over all maps p, the event that a vertex v is selected into the independent
set depends only on the relative rankings under p of v and its neighbors. This locality implies that
for any pair of vertices u,v € V with graph distance d(u,v) > 3, the corresponding selection
events are independent. Leveraging this property, for each clause C, we can extract a subset C’ C C
consisting of variables whose neighborhoods are pairwise disjoint, implying the event of selection
for all elements v € C' are mutually independent, yielding the selection events for all variables in C’
are mutually independent. This allows us to treat the number of selected variables in C' NI as a sum
of independent Bernoulli random variables, enabling the use of Chernoff bounds, and consequently,
we obtain an exponential upper bound on the probability of the bad event that |C' N I] < Ak.

To establish a bound on k in terms of d and A that ensures the existence of a marking with the de-
sired properties, we invoke the symmetric version of the Lovasz Local Lemma (Lemma 2.1). Each
variable appears in at most d other clauses, and the bad event corresponding to a variable’s inclusion
in the independent set depends only on the configuration of variables within its two-hop neighbor-
hood. Since this neighborhood contains at most AZ + 1 variables, each bad event is dependent on
at most kd(A? + 1) others. By the symmetric Lovédsz Local Lemma, if & is sufficiently large so
that the associated condition is met, then with positive probability, there exists an independent set
satisfying the required condition.s

k
26 exp (_ S(AZ+1)(A 1)

When A > 5, if k > 1OA3(1 + log(dkAz)), k satisfies this requirement, completing the proof. [

) (kd(A® +1)) < 1.

Armed with the guarantee that the truncated k-SAT formula &’ contains a sufficient number of vari-
ables in each clause, we relate the flippability of a given variable v; to the satisfiability of select
clauses solely through elements of the independent set /. Indeed, a sufficient condition for a vari-
able v; to be flippable is that every clause containing v; is satisfied by at least one variable in the
independent set . We capture this requirement using the following indicator function:

sj(o) := 1 {every clause containing j is satisfied by some ¢ € I} .

This reformulation is particularly valuable because it translates the notion of flippability, which
originally depends on the full joint distribution of the Ising model at arbitrary inverse temperature
B, into a condition over the structure of the product distribution induced by the independent. As the
selection of I can be made independently of the spin configuration and is governed by local rules
(e.g., via randomized greedy selection based on random bijections), the probability that s;(o) =
1 can be effectively analyzed using standard concentration inequalities such as Chernoff bounds,
enabling explicit probabilistic guarantees on the flippability of variables, despite the tendencies of
the underlying Ising model to exhibiting long-range dependencies.

To this end, we now establish a sufficient condition on & that ensures all variables are flippable with
constant probability.



Lemma 3.5. Given a sample o ~ Prg- g, such that the k-SAT formula ® which induces the
truncation set S, satisfies the following clause size bound

4A3(1 + log(d?k + 1))
log(1 + exp(—2B))
>Then for A > 5, there exists an independent set I following Lemma 3.4 such that
Prg- s[sj(o) =1]>1/2 VjeV\I

Moreover, for any set V' C I we can find a collection of R C V' with |R| > |V'|/(2kd)? that are
neighborhood disjoint in the interaction graph of ® such that for all subcollections {41, ...,i:} C R,

Prs- s [eit(o') =1lle, (o) =1,...,¢e;_, (o) = 1] >1/2.

3.3.2 BOUNDING THE MAGNETIZATIONS

It now remains to demonstrate that the squared magnetizations m? (o) are bounded below with
constant probability over a draw of the truncated Ising model. We begin by providing a conditional
lower bound to m; (o).

Lemma 3.6. The magnetizations, m;(o) =Y jen] Ajjo;, of the truncated Ising model satisfy the
following relation.

By [mi(0)2]or_y] > mmne{—l,l};)rﬁ* [0 = K]

This lower bound is only non-trivial when both realizations (o;, o) and (o;, —o;) are feasible under
the truncation set, i.e e; (o) = 1; likewise, this term only contributes to the ¢2(3; o) if e;(0) = 1.
Towards maximizing the second derivative, we wish to select a sequence of edges (i, j) such that
both ¢;(or) = 1 and e, (o) = 1, that is, both endpoints are flippable. As each element v; € I has
at least one neighbor in V' \ I, and the graph has maximum degree A, we can construct a subset
I' C I of size |[I'| > R such that no two elements in I” share any common neighbors. With this
independent set I’, we define a vertex bijection i : V' — V as follows. For each v € I, we assign
h(v) to be a unique neighbor of v in V'\ I. For vertices outside I, we assign the remaining mappings
arbitrarily, while maintaining the constraint that /» remains a bijection on V. Using Lemma 3.6 and
the above bijection h, we can find a lower bound on the entire conditional second derivative.

Lemma 3.7. Over the truncated Ising model, given a bijection h : V — V defined by the above
procedure, the conditional second derivative satisfies the following first moment bound.

ZEW [mi(o)?ei(o)|o_ne)] = m'

Establishing Lemma 3.3 Armed with the lower bound on the conditional expectation of ¢5(5; o),
to obtain our final lower bound we control the variance of "' | Eg«[m?(c)e;(o)|o_p ;)] with the
method of exchangeable pairs, in a similar fashion to Lemma 3.2. We then apply Chebyshev’s
inequality to the conditional variance to obtain our bound in probability.

CONCLUSION AND FUTURE WORK

In this paper, we present a affirmative answer to the challenge of single sample learning in the trun-
cated Ising model, at all temperatures 8 € O(1), giving a sufficient condition for the truncation set
S, to ensure consistent inference, and extending the existing framework beyond boolean product dis-
tributions. Towards this goal, we craft concentration inequalities for the first and second derivatives
of the log-pseudolikelihood via arguments concerning the local connectivity of the truncation set.

The present work opens the door to important future questions : (i) Given the above stipulations
on the bounded degree k-SAT for inference, how does this relate to the discrete distributions con-
strained to the solutions of a random k-SAT? (ii) Is there a way to simultaneously remove the o(n'/6)
assumption on the maximum degree of the graph while improving the rate of consistency? (iii) Do
the current techniques generalize beyond the truncated Ising distribution to include other models,
such as truncated Boolean spin glasses?

2This term scales as > e>Z A3 log(d?k).
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A RELATED WORK AND ADDITIONAL BACKGROUND

The Ising model originated as a mathematical model of ferromagnetism on subgraphs of the lat-
tice Z%, capturing local interactions in physical systems. Ising solved the one-dimensional case in
his thesis (Ising, 1925), while Onsager later resolved the two-dimensional case (Onsager, 1944),
revealing a continuous phase transition between ferromagnetic and paramagnetic states. Beyond
low dimensions, the Ising model also serves as a foundational example of spin glasses, aiding both
condensed matter physics and probability theory in understanding complex magnetic materials and
high-dimensional correlated loss landscapes (Talagrand, 2003; 2010).

Our inquiry into the Ising model will be statistical in nature, concerning the consistent estimation of
the inverse temperature parameter under the presence of truncation using a single sample. Despite
the seeming simplicity of this task, the presence of phase transitions yields it to be theoretically
impossible in certain regimes; our results stand in light of these challenges. One of the primary
difficulties in our task is our graph G, by extension interaction tensor A, is arbitrary (although of
a somewhat bounded degree), and thus our results hold in a regime that is neither fully locally
connected or mean-field. The first work to prove such a result was (Chatterjee, 2007), who via use
of the technique of exchangeable pairs, a variation on Stein’s inequality to prove variance bounds,
was able to demonstrate the consistency of the maximum pseudolikelihood estimate derived from
a single sample(an objective that will expounded on in the sequel) given the log partition function
Fa g.n =log(Za p,n) is diverges with n in the large data limit. As an example, when this seemingly
innoucous assumption is not upheld, under the mean field Curie-Weiss model, i.e.

1 1
Prow(o) = Z—Bexp B8 Z —0i0; | (Curie-Weiss)
i,j€[n]

consistent estimation is impossible, as simple calculus yields that lim,,_, Fg g n = O(1). More-
over, if 5 diverges to infinity with n, the psuedolikelihood objective ceases to be strongly concave,
collapsing the Fisher information, and rendering estimation impossible. Beyond the estimation of
the inverse temperature, (Mukherjee et al., 2022b) was able to extend the regime of Chatterjee (Chat-
terjee, 2007), demonstrating results for the joint estimation of the inverse temperature 3 and the
external field h. Viewing the task of estimating the inverse temperature as structure estimation over
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a parametric class of interaction matrices, i.e parameterized by /3, (Dagan et al., 2020) generalized
this setting to provide learning guarantees for large classes of parametric spaces, relying on a clever
use of conditioning to use Dobrushin’s condition at all constant temperatures.

Beyond single sample learning, viewing the Ising model as a Markov random field, there is a larger
body of work devoted to structure learning of the graph underlying the model using multiple sam-
ples. In a breakthrough work Bresler (Bresler, 2015), demonstrated how to effciently estimate the
strength of links in the graph underlying the Ising model by way of bounding the marginal influ-
ence each node recieves. Building on this, (Hamilton et al., 2017) generalized this work to subsume
models with higher order interaction terms and multiple possible spin states.

A parallel line of work has also investigated the feasibility of learning Markov random fields under
hard-constrained distributions with a single sample. This line of work commenced with (Bhat-
tacharya & Ramanan, 2021) studying the fugacity parameter of the hard core model, i.e. a prob-
ability distribution over independent sets over a graph G = (V, E) represented by binary vectors
o € {0,1}", where 0; = 1 indicates the node is included in the independent set

1
Pr} (o) = BV HETE H 1{oy, + 0, < 1}. (Hard Core Model)
Zaa
(u,v)EE

Following up on this (and closer to our setting), (Galanis et al., 2024) considered the feasibility of
learning boolean product distributions over truncated portions of the boolean hypercube, making use
of the tilted-k-SAT model over S C {0,1}", where S is defined to be the set of solutions of a fixed
bounded degree k-CNF formula ®.

Prg(o) = ZL exp | B Z o; | 1{o € S} (Tilted K-SAT)
p i€[n]

Lastly, there has been a substantial amount of interest in constrained normal form formulae. The
literature is multi-faceted, and we only recount the literature, pertinent to our setting. In the bounded-
degree setting, it is well known from (Gebauer et al., 2016) that the satisfiability threshold ( d <
2k/ 2), that is the regime of the degree parameter with respect to the clause size is guaranteed to
have a solution, coincides with the ability to apply the Lovascz Local Lemma (Guo et al., 2019), a
powerful application of the probabilistic method. Moreover, there has been substantial inquiry into
random k-CNF formulae and their solutions, as a function of the clause density « = m/n, where m
is the number of clauses in the formula and the multitude of other phase transitions governing the
intrinsic geometry of the solution space, i.e. how do solutions cluster together and what can be said
about local connections between them. Our results in both settings, take hold in the Lovascz Local
Lemma regime where a solution under an average draw has many neighbors Hamming-distance one
away in S C {—1,1}"™.

As a first step towards estimating the inverse temperature, our work lays the statistical groundwork
to guarantee there exists an objective whose objective yields a consistent estimator for 5 and an
algorithm to efficiently find it. This can be seen as a generalization of both regimes, as the Ising
model with external field generalizing the tilted-k-SAT model by introducing a quadratic interaction
term and extending the external field h to be an arbitrary vector in the n — 1-sphere, i.e ||hlj2 < 1,
rather than the all ones vector. Beyond deterministic truncation, our results are the first to hold the
broader class of solution sets under random truncation.

A.1 CONJUNCTIVE NORM FORMULAE

Conjunctive normal form (CNF) is a canonical way of expressing Boolean formulas as a conjunction
of disjunctions, or equivalently, as an "AND” of "OR” clauses. Each clause is a disjunction of
literals, where a literal is either a Boolean variable or its negation. A CNF formula is said to be
a k-CNF formula (or a k-SAT instance) if every clause contains exactly £ literals. For example,
(z1V —xe Va3) A (mxy V24 V x5) is a 3-CNF formula with two clauses.

A.2 EXCHANGEABLE PAIRS

In the context of the Ising model, the method of exchangeable pairs provides a powerful technique
for obtaining nonasymptotic variance bounds for functions of the boolean hypercube. In the context
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of the Ising model p¢; g, given a function f : {—1,1}" — R, to bound Var,(f), the exchangeable

. . d . .
pairs method constructs a pair (o, o) such that (o7, 6’) = (¢, o) and the transition from o to o” is
obtained via a single-site Glauber dynamics step (in our case truncated Glauber dynamics expanded
on in the sequel).

Concretely, let o’ be obtained by resampling the spin at a uniformly chosen site 7 € V accord-
ing to the conditional distribution Prg s(- | v\ (;1). Then (o, ') is an exchangeable pair. Let

F(o,0’) =E[f(o) — f(o')|o—;]. The variance of f can be bounded via

Var () < 5B [(f(0) — f(o")F(o,0")].

Under Lipschitz continuity with respect to the Hamming distance, this expression can be further
bounded by quantities involving local influences and conditional variances, allowing for the control
Var,(f) in terms of the geometry of G and the interaction strengths A;;.

B ALGORITHM FOR MAXIMIZING THE PSEUDO-LIKELIHOOD

In this section, we present a polynomial-time algorithm for optimizing the pseudo-likelihood ob-
jective using projected gradient descent. To guarantee convergence to the optimum, we rely on the
following lemma from (Bubeck et al., 2015).

Lemma B.1 ((Bubeck et al., 2015) Theorem 3.10). Let f be a—strongly convex and A—smooth on
the convex set X. Then projected gradient descent with step-size n = 1/, satisfies for t > 0,

e41 — X713 < exp(at/)]|x1 —x"I3.

Therefore, setting R = ||x1 —x*||2 and t = 2(\/a)(log(R) —log(¢)) guarantees that || x; —x*||2 <
€.

Given the Q(n/A3)-strong convexity of the pseudolikelihood function (Lemma 3.3) and the 1-
Lipschitz continuity of its gradient, we apply projected gradient descent (PGD) with step size n = 1
to obtain a 1/4/n-accurate estimate of the MPLE. The algorithm is presented in Algorithm 1.

Algorithm 1 Projected Gradient Descent

1: Input: Vector sample o, Magnetizations m;(o) = > ; A;;oj, k-SAT Formula ® = ®,, 1, 4
2: Output: Maximum Pseudolikelihood Estimate B

3: Initialize: 8° = 0, grad = +o00, ) = 1, flippable indices F (o) = ()

4: for iin {1,...,n} do

5: if (—o;,0_;) is a satisfying assignment of ¢ then

6: F(o) « F(o)U{i}

7: end if

8: end for

9:t<+0

10: while |grad| > ﬁ do

11: grad + —1 Yicr(o) milo) (o — tanh(Btm;(a))]
12: Bl « Bt — pgrad

13: t—t+1

14: if 371 < —B then

15: Bt « —B
16: end if

17: if 371 > B then
18: BTl «— B
19: end if

20: end while
21: return (;
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C OMITTED PROOFS OF SECTION 3.1 (PROOF OF THEOREM 2)
In this section, we give a proof of Theorem 2, in the process demonstrating Lemma 3.1.

Proof of Theorem 2. Recall the first and second derivative bounds proved in Lemma 3.2 and Lemma
3.3, respectively

) (124 4B)n 9¢*(B;0) _ nexp(—B) (24 +8B)
Prg. ||¢1(Bx o) </ ~——F5——| 21, and Prg. 55 > NG > 1=
The union bound implies that the event A = {o € Q@) : |¢1(o;8%)] <

cy/n,minge(— g, gy ¢2(0; B) > Q(n/A3)} occurs with probability 1 — o(1).

To conclude the claim, we relate B with 5%, through smooth interpolation of both the parameter
values themselves 5(t) = t5 + (1 — t)5*, and the gradient s(t) = (8 — 8*)¢1(B(t); o). Via the
chain rule, we notice that s'(t) = (3 — 8*)?¢2(8(t); o). The fundamental theorem of calculus
implies

—(B=B")¢1(8;0) = s(1) — 5(0) :/0 s'(t)dt = (3—5*)2/0 P2(B(t); o) dt

The log-pseudolikelihood is a convex objective, ¢2(5; ) > 0, forall 3 € (—B,B) and o € A
yielding,

1
/0 ¢2<5<t>;a>dt'><ﬁ—5*>2 min (5.

56(7373)

18— B*||¢1(8*, )| = (B — B)?

Rearranging this expression and using the fact that o € A,

N *, A3
| — B < — [61(8 70)‘~ SO(),fora]laEA.
ming. _p gy ¢2(8;0) vn
Recalling that o € A with probability 1 — o(1) proves the desired claim. O

D OMITTED PROOFS IN SECTION 3.2 (PROOF OF LEMMA 3.2)

In this section, we provide a proof of the upper bound in probability for the first derivative of the
log-pseudolikelihood objective, restated below for reference.

Lemma 3.2. Fix a constant 6 > 0. The log-pseudolikelihood ¢(53; o) of a truncated Ising model
fulfilling Assumption [ satisfies the following upper bound in probability, for all 5 € R .

(124+4B)n

>1-—0.
5 >1-94

Prg |[¢1(8;0)| <

Proof. To begin, we demonstrate our upper bound in probability over the first derivative of the log-
pseudolikelihood ¢(8; o), showing this concentration inequality via the technique of exchangeable
pairs introduced by (Chatterjee, 2007). Define the anti-symmetric function, F' : § x S — R,

7)) = 3 3 (milr) + mi(r) (i — 7))

i€[n]

Let o drawn from the Ising model truncated by ®. We construct a new assignment o”, via taking
one-step of the Glauber dynamics over the Markov random field induced by the Ising model; in other
words, we select a coordinate J € [n] at random and fix o’_; := o_; and redraw the remaining
coordinate ¢’; from the conditional distribution Prg(:|o_ ;). The value of F' on (o, o’) simplifies
as,

F(o,0')=my(o)(0; — ).
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Define the function f(o) as the conditional expectation of F(o, o) with respect to o, that is

fle)=E; (F(o,0)|o) = % D> mi(@)(o: —E(0ilo—)
i€[n]
_ % S mi(o) (o — tanh(Bm, ()

1€F (o)

10
Y (B;0)

To show prove the desired result, it suffices to show a bound on the second moment of f (o). Observe
that (o, o) is indeed an exchangeable pair as

Es[f(0)?] = Epslf(0)F(,0")] = Eg s[f(a")F(c’,0)].
Moreover, the anti-symmetric nature of F(o,o’) implies Eg j[f(o')F(o',0)] =
—Eg, s[f(c')F(o,0")]. These facts combine to recast Eg[f(o)] as follows,

By [/(0)?] = Ess[f(0)F(0,0)] = —Ej [f(e") F(r, 0]
— LB, 17(0) - (6 F(o, 0]

2
If o = o’ then this expression is rendered trivially zero, and hence we need only analyse the case
when o} = —oy. If the redrawn coordinate I is selected from the set of flippable indices, this
probability is,

exp(—0oiSm;(o))
exp(—pm;(o)) + exp(Bm; (o))
and when I ¢ F (o) this probability is zero. Using the definitions of f (o) and F(7,7’) above, this
expression is simplified as follows, where o) = (—0;,0_;).

%EJ (f(0) - f(o")Flo,0)|o] = = > (flo) = fle ) F(o,0)pi(c)

ieF (o)

> (flo) = f(e®))ymi(a) (o — tanh(Bmi(o))pi(o)

i€EF (o)

1
== Z T T
n
1€F (o)

=Pr(o, = —oilo, I =i,i € F(o))

pi(o) =

S

Bound on T;: We now bound each of term in the above expression, beginning with 77, where ¢ is
flippable. The Taylor expansion of f(o(?)) centered at f(o) yields,

) — <lg; — o f ) — of
|f(e') = flo)| < |oi — o, '&?ﬁi&]aai((w"’ﬂ)) w?ﬂf‘flﬂ 30,

((wv U*i))v

where w is point along the line with endpoints o and o7,

The partial derivative of f (o) with respect to o; evaluated at a spin configuration 7 € S is

CHCEEDS ((1z-=~ ﬂA) my(7) + (73 — tanh(Bm; () 8”;;ET>)

Jo; A 7 cosh?(Bm; (7))

The assumptions on G implies |m;(7)| < 1 for all values of i € I. Furthermore, |cosh(-)| > 1,
yielding the following bound on the rescaled first term.

> (- g )| < (4 S (o)
)

2 .
jEF(r cosh”(fm; (7)) {i#ilieF(T)}

Likewise, %U(_”) = A;; implies a bound on the second term.

(j — tanh(Bm;(7))) 8%0(:-) < 2[Aj;]

< I ~ tan (i (7)) | 2

?
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Combining these two bounds yields

o (w0

T3] € max
we[—1,1]

1
< max = |mi((w,oo))[+ D |BAmy((w,0-0))] + 2[4l
{i#ilieF (o)}

1
<- 1+ > J4il(2+B)
{i#ilieF(a)}
< (6 +2B)
n
Bound on Ty;: Recall |m;(o)| < 1foralli € Iand o € {—1,1}V/!l and |tanh(z)| < 1,Vz € R.
Then
|Tos| = [mi(o) (i — tanh(Bm,(o))pi(o)] < 2

Putting together the pieces: We are now ready to construct our final bound on Eg(f(o)?).
Es(f(0)*) =

el
1 [~ (124 4B)
< = 7
— 2n (; n )
(6 +2B)
n

Es.s ((f(e) = f(o')F(o,0"))

N —

Recalling the relationship between f (o) and g—g,

the claim follows directly. O
E OMITTED PROOFS OF SECTION 3.3 (STRONG CONVEXITY OF THE
PSEUDO-LIKELIHOOD)

The primary aim of this section is proving Lemma 3.3, recounted here for convenience.

Lemma 3.3. The log-pseudolikelihood ¢(f; o) of a Ising model, truncated by a k-SAT formula with
k 4A3(141log(d?k+1))

= log(l+exp(—2B)) ’
all 8 € (—B, B),

fulfilling Assumption 1 satisfies the following lower bound in probability for

0¢%(B;0) _ nexp(—B) (24 +8B)
Pro | =05 2 As@kay | STt

Towards this goal, we provide a proof of Lemma 3.4 in Section E.1, Lemma 3.5 in Section E.2, and
Lemmas 3.6 & 3.7 in Section E.3 before concluding Lemma 3.3 in Section E.4.

E.1 PROOF OF LEMMA 3.4

The proof of this lemma proceeds by defining an explicit, algorithmic correspondence between
bijections p : V' — [n] and independent sets 1. This mapping induces a measure 1, over bijections,
which in turn defines a distribution over the resulting independent sets. We analyze this distribution
to bound the probability that a randomly generated independent set contains fewer than Ak elements
in some clause—a bad event.” Applying the Lovasz Local Lemma, we show that with positive
probability, none of these bad events occur, implying the existence of an independent set that satisfies
the desired clause-wise coverage property.
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E.1.1 THE ALGORITHM

Given a bijection p : V' — [n], we provide a simple algorithm for finding an independent set detailed
formally below. To bound the probability of bad events, that fewer than Ak elements from a clause
are included in the independent set under the uniform measure over bijections f,, we must ensure
that the inclusion of distant vertices into the independent set occurs in a independent manner. This
form of spatial independence is crucial for applying the Lovasz Local Lemma, and it is established
in the following lemma.

Algorithm 2 Independent Set in Graph Based on Random Ordering

Require: Graph G = (V, E) with V = [n]
Ensure: Set S of selected vertices
1: Sample a random permutation p : V' — [n]
2: function INDEDGESET(p)
3: Initialize S < 0

4: foralle € V do

5: if p(u) > max,ecn () p(v) then
6: S« Su{u}

7: end if

8: end for

9: return S

10: end function
11: return IndEdgeSet(p)

Lemma E.1. Fix two vertices u,v € V such d(u,v) > 3, over the graph G induced by
A. Over the uniform measure of orderings p : V. — [n|, p,, the indicator random variables
1{u belongs to IndEdgeSet(p)} and 1{v belongs to IndEdgeSet(p)} are independent, that is

Pr, [{u,v € IndEdgeSet(p)}] = Pr, [{u € IndEdgeSet(p)}] - Pr,, [{v € IndEdgeSet(p)}]
Moreover, the probability a given node v lies in I is

1
A+1

Pr,, [{v € IndEdgeSet(p)}] <

Proof. The event that a vertex w € V lies in IndEdgeSet(p) depends fundamentally on the structure
of the bijection p. Specifically,

{w € IndEdgeSet(p)} = {p(w) > max p(i)},

1€N (w)
where N (w) denotes the neighbors of w in the graph.

The joint probability, under the uniform measure 1, over all bijections p, that two distinct vertices
u and v both belong to the set I = IndEdgeSet(p),

P clandvel]l=P > , > N,
Ty, [u vell=Pr, {p(U) wrenlggz)p(w) p(v) w,rgjaggv)p(w )]

depends only on the relative ordering of the values of p on the set {u, v} U N(u) U N (v), which has
size at most 2A + 2. Moreover, since d(u,v) > 3, the neighborhoods N (u) and N (v) are disjoint.

Towards computing this probability, observe that, there are |N(u)|! permutations of {u} U N (u)
in which w appears first, and similarly there are |N(v)|! permutations of {v} U N(v) in which
v appears first. All orderings over {u U v U N(u) U N(v)}, which place u, v first among their

respective neighbors are shuffles of existing orderings of {u U N(u)} and {v U N(v)}. Counting
combinations, there are (lN(’ﬁ\lﬁgx\lfﬂ)Hz) ways to interleave the two sets {u}UN (u) and {v}UN (v)
while preserving their internal orderings, implying the number of permuations satisfying the above
condition is:

NI+ INE+2Y e (N @]+ N )+ 2)
( N ()] + 1 )'M NN = N D) £ 1
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As the total number of permutations of the relevant elements is (| N (u)| 4+ |N(v)| + 2)!, the joint
probability is:

1
(IN () + (N (v)] + 1)
A similar argument yields that for a single vertex v there are N (v)!/(N(v) + 1)! = 1/(N(v) + 1
permutations placing it first in relative order among its neighbors. This implies the probability over
the uniform measure over bijections that v belongs to the induced independent set is:

1
Pr, [v € IndEdgeSet] = P > | = ———.
r,,[v € IndEdgeSet] = Pr,,, |p(v) jren]%p@) N+ 1

Pr,, [u,v € IndEdgeSet(p)] =

The desired conclusion follows by combining the expressions for the single and joint probabilities.
O

In advance of proving Lemma 3.4, we introduce an important tool that relates an arbitrary collection
of potentially correlated random variables to independently and identically distributed variables,
which will enable the use of Chernoff bounds in the sequel.

Lemma E.2 ((Frieze & Karonski, 2015) Section 23.9). Suppose that {Y,-}ie[n] are independent

random variables and that {X;};c[,) are random variables so that for any real t and i € [n), it
holds that
PI‘[Xl > t‘Xl, . .Xi,ﬂ > PI‘[Y; > t}.

Then, for any real t,
Pr(X, +..+ X, >t|>Pr[Y1 +..+Y, > 1.

Armed with this background, we now prove Lemma 3.4, recounted here for reference.

Lemma 3.4. Let G be a graph with maximum degree A = o(nl/ﬁ) and ® be a k-SAT formula. If
k > 10A3(1 + log(dkA?)), then there exists an independent set I C 'V such that ®', ® truncated
on V \ 1, is a \k- SAT formula where X\ = 1/4A3.

Proof. To begin, consider a clause C' € C, and select a maximal collection of neighborhood disjoint
variables C’ C C. In other words, we require that for all 4, j € C’, d(4, j) > 3. The maximum size
of a two-hop neighborhood of a given point is at most A% + 1, implying the size of C’ is at least
k/(A%+1). Denote the function fc(p) = |{IndEdgeSet(p) NC}|. As each pair of elements in C” is
at least distance 3 apart from each other, Lemma E.1 implies the following bound on the expectation

of fo(p).
By, [fc(p)] = By, [for(p)] = > Pry [vi € 1] >

v;eC’
Moreover, this directly implies that for all ¢, that for ¥; ~ Bern(1/(A + 1))
Pr(1{v; € I}|1{vs € I},..., 1{v;—1 € I}] > Pr[Y; > t].

Given this information, we use Chernoff bounds to find an upper bound on the event Pr[Y; + - - - +
Y, > k/(2(A% + 1)(A + 1))], and use this to in turn bound E,, [fc(p)].

-__ Kk
=~ A+ DA+

k k
P < <P Y., <
T, | Je () (2(A+1)(A2+1))] ' XE:C S RA+1D(AT )
<Pr| ) v <1 i
- T T 2(A+1)(A%+1))
Lv, eC
=Pr Z Y, —E[ Y Y, | <(1-1/2E| > Y,
Lv; €C’ v, €C’ v; €C’

< exp (—8(A+1)k(A2 +1))
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To construct a final bound on k in terms of d and A to ensure that a marking satisfying our desired
conditions exists, we use the symmetric version of the Lovascz Local Lemma. Each variable appears
in at most d other clauses, and the event of selection into the independent set relies on its A2 +1
neighbors which lie in its two-hop neighborhood. This implies the degree of the dependency graph
of @ is kd(A% + 1).

k 2
2e exp (—8(A2+1)(A+1)>(/€d(A +1)) <1
k 1
exp <_8(A2+1)(A+1)> < 2e(kd(A% + 1))
k

< —1 —log(kd(A? +1)))

S 8(AZ+1)(A+1)
k> 8(1 + log(kd) + 3log(A))(A? + 1)(A + 1)

The independent set / induces a smaller CNF, @], ,, ;, = (V',C’), with clauses C' = g C N1,
each of which has at least k/(2A3 + 2A) variables, concluding the desired claim. O

E.2 PROOF OF LEMMA 3.5

In this section, our aim to show Lemma 3.5. We accomplish this goal in two steps, first demonstrat-
ing each variable outside the independent set is flippable with probability 1 — §, where § € (0,1)
and second demonstrating each variable inside the independent set is flippable with probability at
least 1/2.

Proceeding, we introduce the version of the Lovascz Local Lemma that will be used in bound of
si(o).
Lemma E.3 (Guo et al., 2019)). Suppose that (o) is a product distribution over o’ € {—1,1}*.

Let A; be an event determined by the elements of o, and denote B(S) = NicsA;. Then if there
exists a vector x such that x € (0,1]™ and

Pr(A) <z [] (1-=))

(i,5)€E

then
Pr(B(S)) > [[(1 - ) >0
ics
Moreover, let E be an event determined by some of the coordinates of o and let T'(E) = {i € S :
var(A;) Nvar(E) # 0}. We then see that

Pr,(E|B(S) < Pru(B) [] (1-w)
iel(E)NS

Lemma E4. Given a sample o ~ Prg g, where 5 € (—B, B) and that the k-SAT formula ® which
induces the truncation set S, satisfies the following clause size bound
4A3(1 + log(d?k + 1))
log(1 + exp(—2B))

3Then for A > 5, there exists an independent set I following Lemma 3.4 such that

Prgs(sj(o) =11>1/2 VjeV\I

Proof. Towards establishing the desired claim, we first need a bound on &k’ with respect to d to
ensure the use of Lemma E.3 (the asymmetric LLL). For any assignment 7 € {—1,1}/V/l define
®™ = (V7,C7) as the CNF formula obtained via truncation on the partial assignment 7, that is
the assignment that removes clauses satisfied by 7 and removes literals from 7 from the remaining

3This term scales as > e>? A3 log(d?k).
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clauses. Notice, the set of clauses C’ within ®’ are merely the union of all clauses C™ over all &7,
that is

C = U CT’
re{—1,1}IV/1]
implying a bound that would guarantee a satisfying assignment for ®’, would in turn ensure the
existence of the satisfiability of all 7.

Moreover, recall for any independent set I, conditioned on the variables outside of the independent
set V/1I, the Ising model collapses into a product distribution.

Prﬁ[0'1|o-v/1} _ H exp (B Z]GV/I "4 O'J) e (0-)
ier e (ﬁ 2jevyi Aij“ﬂ') + exp (*5 2jevr Aija'j)

This directly implies
. exp(|8]) exp(2|4])
min Prglo; = kle; (o), 0 > =
oy Prolos = mlei@). ol 2 CoBR) +exp(—5A) ~ T+ exp(216)

For each clause C” € (', the event {C” is not satisfied} depends on dk variables which lie in at most
d*k clauses. Following the setup of Lemma E.3, we set 2(C’) = 1/(D + 1), D := d?k, and notice
itk > 1+10g(d2k+1)

= log(1+exp(—2|8]))

(p@im) . (D)D L
exp2lB) +1) “\D+1) D1
(D) - (D +1) < (1+exp(~28])"
D+1 - P
e(d’k+1) < (1 + exp(—2|8])"
1+ log(d®k + 1) < k'log(1 + exp(—2|4]))
1+ log(d?k + 1) /
Tog(1 + exp(—2A]) ="

Counting combinations, there is only one way to assign all the variable in C’ such that the clause
is not satisfying. The worst case probability a clause C’ takes any given configuration under the
untruncated distribution (g is at most

Pr,,,[clause C is not satisfied] < (exp(2|ﬁ|)> ;
e “\1l+exp(218))/)

For every pinning 7 € {—1, 1}|V/ Il, we can equivalently find a upper bound for the probability that
{si(o") = 0}, under the conditional distribution, i.e. given o € S, where S is the set of satisfying
assignments of ® where oy, is pinned to .

Prgls;(o) =0] = Z Pr,,[si(o) = 0lo € S;]Prs[o € S,]
Te{-1,1}IV/1I
<

Te{zrll?l}}(lvm Pry;lsi(e) = Olo € 5]

< Pry,[si(0) = 0) (1 - Dl+1> L (%)k,
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The final inequality derives from our use of Lemma E.3, relating probabilities between the truncated
and untruncated distributions. We lastly rearrange for &’ to derive the final result.

.
Pryfsi(o)] = (1—6) >1—ed <1j—}fx(12>|(§|)ﬂ|))
exp(2(8) \*
d<1+eXp(2lﬁ)) =0
1+ log(d) — K (log(1 + exp(2]8])) — 2|8]) > log(d)

1+ log(d) — log(¢) <k
log(1 +exp(2[4])) —2[8]

Lastly, to guarantee there are a sufficient number of flippable variables in the independent set itself,
we use the following result from (Galanis et al., 2024) to find a lower bound on the number of
variables within the independent set that are flippable under a product distribution.

Lemma E.5 (Lemma 15 & 16 (Galanis et al., 2024)). Consider a formula ®' = ®,, j» q with k' >
2log(dk’)+O(1)
Alog(1+e—#)
variable is set to 1 independently with probability (exp(7))/(1 + exp(7)). Then for each variable

o; €V,

, and an associated product measure (i, over the hypercube {—1,1}", such that each

Pr,[o; is not flippable] < 1/2.

Moreover, we can find a collection of R C [n] with |R| > n/(2kd)? that are neighborhood disjoint
in the interaction graph of the k-SAT formula ®' such that for all subcollections {iy, ...,i:} C R,

Pr, [e;, (o) =1lej, (o) =1,....e;,_,(0) =1] > 1/2.

This in turn implies, with probability 1 — exp(—Q(n)) over the choice of o ~ Pry g, it holds that
2icreila) 2 |R[/3.

The second half of Lemma 3.5 then follows from this corresponding results in (Galanis et al., 2024).
To relate these results to our setting, observe that under our product distribution, the probability that

any variable is set to one is at most e 2 /(1 + e~ ), and the true marginals may in fact be more
balanced. Consequently, the conditions of their result are satisfied in our regime.

E.3 PROOF OF LEMMAS 3.6 & 3.7

For reference, recall the expression for the Hessian of the log pseudo-likelihood,

L M R %e- o
$2(B50) = o2 ; cosh?(m; (o)) )

Towards demonstrating ¢ (/3; o) € Q(n) with probability 1 —o(1) for all § € (—B, B), we provide
a lower bound of the conditional mean of the magnetization of the flippable variables via proving
Lemma 3.6.

Proof of Lemma 3.6. For all o € {—1,1}", consider (3, ,; Aitor + A;j)? and (D tzj Aitor —
A It Do 2 Ao, and A;; have the same sign, the first term is at least A?j and the opposite sign,
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the second is at least Afj. This implies that

Eg-[m} (o = Y Eg[mi(o)le(o) = k]Prgle;(o) = K]
ke{0,1}
> > A Juin  (Prg-loj = llo—j,e;(0) = ])Prsle;(o) = ]
oo 1} e{~1,1}

A2
> TJexp — |5 ZAthj Prg-[e;(o) =1]
t#£]
A2
> T exp(—B)Pra-le;() =

O

This result provides a lower bound for ¢ (3; o) in terms of scaled elements of the interaction matrix
A;;. To maximize this lower bound, we wish to select columns h(z) for each row to ensure the
value of A;;,(;) is as large as possible. To this end, consider an injective mapping b : V' — V. The
requirement that || A| o < 1 and ||a;||2 > ¢, implies the existence of a edge A;; for each row such
that A;; > ¢’. Moreover, due to the connectivity of the graph, we can select a subset I’ C I of size
at least |I|/A > n/A?, with an unique neighbor h(i) € V/I, where A;(;y > ¢. Outside of I’,
we assign partners arbitrarily making sure to keep (i) a bijection. Towards this goal, we present a
proof of Lemma 3.7.

Proof of Lemma 3.7. We begin by constructing a set & C I of variables that are disjoint in both
the incidence graph of the k—SAT formula and the graph G. A simple greedy algorithm that se-
lects a point arbitrarily, deletes its 2-hop neighbors in both graphs and recurses has size at least
n/(2k' d)zAz. This implies the sum of conditional magnetizations takes the following form.

> s [mi(o)ei(o)lo—n] = DB [mi (@) lo_nPra-lei(o) = e (0) = 1,61, (0) = 1]
i€ER zER

> ZE,G o)|o—n@)]

ZGR
exp(=B)
> ) — Praleno) =1]
te|R|

< nexp(—B)(1 —9)

- A(4kdA)?
Note the last inequality comes from Lemma 15, and the fact that s;(o) < e; (o). O

E.4 PROOF OF LEMMA 3.3

Armed with the tools from the previous section we now prove Lemma 3.3.

Proof of Lemma 3.3. We begin by expanding out m; (o) into its component parts, namely

2

mi(o) = | Y Ayoy | +Ahw+2| D Auoy | Anwone
i#h(i) J#h(i)

Cancelling common factors implies that

Es- |12 > Z Aijog | Aingy (0ni) — Es=[onlonm)])
(1,5)€F (o) \Jj#h(i
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We merely sum over the flippable indices, as when oy(;) is not flippable, the term
2
on(iy — Epg=[on@i)|o_n)] collapses. Denoting y;(o) = 2 (Zj# Az-jaj) A;; and recalling

Eg+[0;]o—;] = tanh(8*m? (o)), yields the following simplified version of the above expression.

Eg- | D (vinoy(@) (ong) — tanh(8*mag(0)))”
(i))eF (@)

We aim to prove this concentration inequality via the technique of exchangeable pairs introduced by
(Chatterjee, 2007). Consider, again, the anti-symmetric function, F' : S x S — R,

n

Fr ) = 5 3 i (1) + inca (7)) = 70,

and an assignment o drawn from the Ising model truncated by S. We construct a new assignment
o’, via taking one-step of the Glauber dynamics over the Markov random field. The value of F on
(o, 0') simplifies as,

F(Uao'/) = Zih(i)(U)(UI - 0”1)-
Define the function f(o) as the conditional expectation of F(o, o) with respect to o, that is

$(0) = Er (Flo,a")o) = 3 v (0)(o: — Blailor )

- % Z Yin(i) (o) (07 — tanh (8 m;(o)))

i€F (o)

To show prove the desired result, it suffices to show a bound on the second moment of f (o). Observe
that (o, o) is indeed an exchangeable pair as

Ep-[f(0)’] = Ep- 1[f(0)F(0,0")] = Es- 1[f(¢") F (o, 0)].
Moreover, the anti-symmetric nature of F(o,o’) implies Eg- [f(6')F(c’,0)] =
—Eg- 1[f(6")F(o,0")]. These facts combine to recast Eg-[f(o)] as follows,
Eg- [f(0)?] = Eg-1[f(0)F(0,0")] = —Eg- 1[f(0")F (o, 0")]
= LB s [(f(0) ~ F(e") (o, 0")

If o = o’ then this expression is rendered trivially zero, and hence we need only analyse the case
when o} = —oy. If the redrawn coordinate I is selected from the set of flippable indices, this
probability is,

exp(—0i(8*mi(a)))
exp(—f*mi(0)) + exp(5*mi(o))
and when I ¢ F (o) this probability is zero. Using the definitions of f (o) and F(7,7’) above, this
expression is simplified as follows, where o) = (=0, 0_;).

SEU0) ~ f@)Fe ool = - 3 (f(0) ~ o) Flo,0®)pio)
i€F (o)

= L ST (1(0) = 169 yings (@) (01 — tanh (8" (0))pi(r)

n
1€EF (o)

1

== Z T1iT3;
n
i€F (o)

pi(o) = =Pr(o, = —oi|lo, I =i,i € F(o))

Bound on T};: We now bound each of term in the above expression, beginning with 77, where ¢ is
flippable. The Taylor expansion of f(o(?)) centered at f(o) yields,

@y _ <o oD N — of .
1) = @) < o~ o] max (w0 = wax 2 2w,
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where w is point along the line with endpoints o and o(7).

The partial derivative of f (o) with respect to o; evaluated at a spin configuration 7 € S is

of . 1 o B* Angyyi . . Yjn(jy(T)
do; - nje;(ﬂ <<1Z_J - COSh2(/3*mh(j)(7'))> Yiny () + (73 = tamh(B"magy () - 9o

The assumption ||Al| < 1 implies |m;(7)| < 1 for all values of i € [n] and 7 € {—1,1}".
Furthermore, | cosh(+)| > 1, yielding the following bound on the rescaled first term.

B* Aniyi .
5 <1i=j_COSh2 ) (T))>yjh(j><f> < DR OICo D DR e Il

JEF(r) (B {jEFIhG)=i()} {i#iliE€F(T)}

9zjn(j (o)
g4

It can be quickly seen that this value is at most (2 4+ 2B). Likewise,
bound on the second term.

= 2Ap,(j); implies a

OYin)(T)

OYjn(j)(T)
80’1‘ Jdo;

7

< | (75 — tanh(8 mp ;) ()| ‘ ‘ < 4] Apyil

(Tj — tanh(B8"my,;) (T))

Combining these two bounds yields

|T:1| <2 max
we[—1,1]

o ((wo-0)

2
< — | (2+2B 4| Ap iy
S o 2+ )+‘E [ An il
JjeF(r)

% ((2+2B) +4)
(12 + 4B)

IN

IN

Bound on Ty;: Recall |y;;,y(0)| < 1foralli € [n] and o € {—1,1}" and | tanh(z)| < 1,Vz € R.
Then

|T2i| = |Yin(s) (o) (07 — tanh (8" my, iy (0))pi(o)| < 4

Putting together the pieces: We are now ready to construct our final bound on Es-(f(o)?).
1
Es-((0)?) = 5 Es1 (f(0) = (o) F(,0")

1 n

(24 +8B)
n

This directly implies that
n n 2
Eg- (Z m?(o)ei(o) — Z Eg- [mi(a)ei(aﬂah(i)]) < (24+8B)n
i=1 i=1
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Applying Chebyshev’s inequality to this term, yields a bound in probability that the second deriva-
tive deviates far from its conditional mean.

[ n n 2
Prg- <Z mi(o)ei(o) — ZEB* [mi(a')ei(a)ah(i)]> >ntl| < %

IS - 5 (24 + 8B)
Prg. ;m?(ﬂ)ei(f") - ;Em [mi(o)ei(o)|o_nwp]| > n’?| < .
[ & nexp(—B)(1 -9 24 + 8B
Prg- me(a)ei(a) < A((4kd)A()2 ) _ 0.55] < (no%
Li=1

Prs- | Y mio)elo) < 2RI (”] > 1-o(1)

F APPLICATIONS

In this brief section, we establish a connection between the notion of fatness, as introduced in the
context of truncated Boolean product distributions (Fotakis et al., 2021), and the Ising measure
conditioned on the solutions to a k-CNF formula. Specifically, we show that this truncated Ising
measure satisfies the combinatorial conditions required for fatness, thereby extending the fatness
framework beyond the setting of product distributions. We recound the definition of an a—fat dis-
tribution below.

Definition 1 («-fat Distributions (Fotakis et al., 2021)). A truncated boolean distribution Dg is
a-fat if for all coordinates i € [n] there exists some o > 0 such that

Pr..ps [(xl,...,mi,l,—xi,xiﬂ,...,xn) € S] > 3

Corollary F.1. Given an Ising model Prg s, satisfying Assumption 1, whose measure is truncated
to the solutions S of a k-SAT formula such that
k > O(3A%(1 + log(d*k + 1))),

then the distribution is %-fat, ie.,

, foralli € [n].

N =

PI'/g,S [(—O'Z',O'_i) € S] >

Proof. This is a direct consequence of Lemma 3.5. O
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