
000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LEARNING THE INVERSE TEMPERATURE OF ISING MODELS UNDER HARD CONSTRAINTS

Anonymous authors

Paper under double-blind review

ABSTRACT

We consider the problem of estimating the inverse temperature parameter β of an n -dimensional truncated Ising model using a single sample. Given a graph $G = (V, E)$ with n vertices, a truncated Ising model is a probability distribution over the n -dimensional hypercube $\{-1, 1\}^n$ where each configuration σ is constrained to lie in a truncation set $S \subseteq \{-1, 1\}^n$ and has probability $\Pr(\sigma) \propto \exp(\beta\sigma^\top A\sigma)$ with A being the adjacency matrix of G . We adopt the recent setting of [Galanis et al. SODA'24], where the truncation set S can be expressed as the set of satisfying assignments of a k -SAT formula. Given a single sample σ from a truncated Ising model, with inverse parameter β^* , underlying graph G of bounded degree Δ and S being expressed as the set of satisfying assignments of a k -SAT formula, we design in nearly $\mathcal{O}(n)$ time an estimator $\hat{\beta}$ that achieves a consistency rate of $\mathcal{O}(\Delta^3/\sqrt{n})$ with the true parameter β^* for $k \gtrsim \log(d^2k)\Delta^3$.

Our estimator is based on the maximization of the pseudolikelihood, a notion that has received extensive analysis for various probabilistic models without [Chatterjee, Annals of Statistics '07] or with truncation [Galanis et al. SODA '24]. Our approach generalizes recent techniques from [Daskalakis et al. STOC '19, Galanis et al. SODA '24], to confront the more challenging setting of the truncated Ising model.

1 INTRODUCTION

Markov random fields (MRFs) are a common framework for analyzing high-dimensional distributions with complex conditional structures. A well-studied example of an MRF and the primary topic of inquiry in this paper is the *Ising model* (Ising, 1925), a probability measure $\mu_{G,\beta}$, over all assignments σ in the binary hypercube $\{-1, 1\}^n$. The model is parameterized by a graph $G = (V, E)$ and inverse temperature β , taking the form $\mu_{G,\beta} \propto \exp(\beta\sigma^\top A\sigma)$, where A being the adjacency matrix of G . The simplicity of the Ising model has led to widespread adoption in fields as disparate as statistical physics, finance, the social sciences, and computer vision, among others (see (Chatterjee, 2007; Qin & Zhao, 2011; Harris, 2013; Wang et al., 2015) and the references therein for a brief collection of examples). These applications have, in turn, motivated a substantial body of research on efficient sampling (Bresler, 2015; Lubetzky & Sly, 2013; Sly & Sun, 2012), rigorous testing (Daskalakis et al., 2019a), and principled inference of the inverse temperature parameter and interaction matrix (Dagan et al., 2020; 2021) under the framework of the Ising model.

Beginning from the work of (Chatterjee, 2007), there has been substantial interest in the task of estimating inverse temperature parameter β , given only one sample $\sigma \sim \mu_{G,\beta}$ and the graph G , using the maximum pseudolikelihood estimator of (Besag, 1975). This setup subsumes the setting of multi-sample estimation as ℓ samples of an Ising model over n nodes is equivalently a single sample of an $n\ell$ Ising model over ℓ disconnected components of a graph. This line of work is driven by the inherent technical constraints of network data, wherein it is often impractical to obtain independent observations of the same network responses (Daskalakis et al., 2019b; Dagan et al., 2020). Interestingly, despite both static and dynamic phase transitions in model behavior as β varies which can render sampling computationally intractable (NP-hard) (Galanis et al., 2016), it remains possible to construct consistent estimators of β and the interaction matrix A , provided that $\beta = \mathcal{O}(1)$ (Dagan et al., 2020; 2021; Daskalakis et al., 2019b; Mukherjee et al., 2022a).

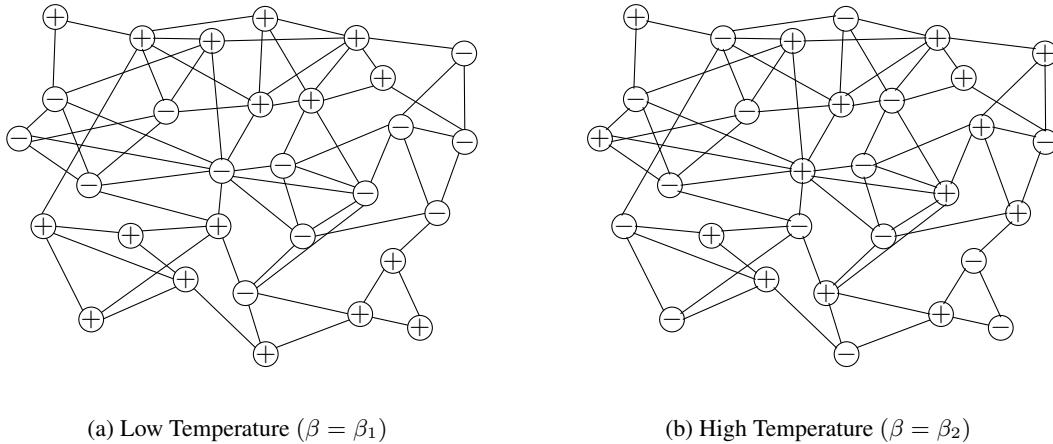


Figure 1: Two typical spin configurations over the Ising model at temperatures β_1, β_2 with $\beta_1 \gg \beta_2$ (equivalently at a lower temperature T_1 and a higher temperature T_2 where $T \propto 1/\beta$). Each node has spin $+1$ or spin -1 . The left panel shows the configuration at a lower temperature, with alignment producing large domains of positive and negative spin assignments, while the right panel exhibits a more disordered pattern.

In many real-world applications, however, we face not only *soft* constraints, which influence the model behavior by introducing correlations or dependencies, while the full support of the measure remains intact, but also *hard* constraints: Certain configurations are outright forbidden, and entire regions of the configuration space are excluded from the support of the distribution. Such hard-constrained models (also called *truncated*) arise naturally in applications involving high-dimensional, interconnected systems with strict feasibility requirements. One particularly notable example of which arises in the context of spatial transcriptomics—a biological framework for characterizing gene and protein expression in cells within organic tissue, relative to their spatial organization. The local relationships between cells are often represented as nodes in a graph with edges linking cells together that are close in physical space (Eng et al., 2019). Associated with each node is a set of measurements of expression to capture how the relationships between cells impact the phenotype of a given node. The complex relationship between genes often forces certain configurations of expressions to be *infeasible*. In fact, the phenomenon of *lateral inhibition* can cause a cell expressing gene one to prevent its neighbors from expressing it as well, instead causing them to express gene two, as seen in the Notch-Delta pathway (Ghosh & Tomlin, 2001). The *hard constraints* discussed in the above setting are not unique to spatial transcriptomics and are also commonly found in the context of channel assignments in communication networks (Zafer & Modiano, 2006), carrier-sense multiple access networks (Durvy & Thiran, 2006; Durvy et al., 2009), and multicasting networks (Karvo et al., 2002; Luen et al., 2006) among others.

In this work, we study the problem of parameter estimation in n -dimensional Ising models that are hard-constrained to the satisfying assignments of a bounded-degree k -SAT formula Φ expressed in CNF (Conjunctive Normal Form), using one sample. This means that we have access to a sample from an Ising model, conditioned that it only takes values in a subset $S \subset \{\pm 1\}^n$ that is represented through the satisfying assignments of a k -SAT formula, adopting the framework from (Galanis et al., 2024). The choice of the k -SAT framework is motivated by the fundamental observation that any truncation set $S \subseteq \{\pm 1\}^n$ can be exactly realized as the solution space of such a formula, provided the number of clauses is sufficiently large. This representation is particularly advantageous for statistical inference, as the structural parameters, in particular the clause size k and the variable degree, serve as natural controls for the complexity of the induced correlations in the analysis of the Maximum Pseudolikelihood Estimator (MPLE).

More generally, learning in truncated MRFs using one or multiple samples has been studied in the context of discrete product distributions truncated by the set of satisfying assignments of k -SAT formulas (Galanis et al., 2024; 2025), more generally by truncated sets with combinatorial structure (Fotakis et al., 2022), the hard-core model, and integer valued spins constrained over proper H -colorings (Blanca et al., 2018; Bhattacharya & Ramanan, 2021). Our key deviation from the

108 aforementioned works stems from the fact that the Ising model is *not a product distribution*, and
 109 common tools used to control the concentration of measure on the hypercube do not apply. This,
 110 moreover, induces two sources of interdependence, namely from the model itself and from the struc-
 111 ture of the truncation set. With this background in mind, we seek to address the following challenge.
 112

113 *Is it possible to efficiently learn discrete distributions with complex dependencies
 114 under hard constraints, having access to a single sample?*

116 **1.1 OUR RESULTS**

118 Our main contribution is an affirmative answer to the previous challenge, by providing a sufficient
 119 condition on the k -SAT formula that induces the truncation set, in terms of the maximum degree Δ
 120 of G . We begin by formally defining the class of truncated Ising measures that is the primary inquiry
 121 of this work. Given a graph G , with associated adjacency matrix A , and inverse temperature β we
 122 define the pmf of a *truncated* Ising model for any $\sigma \in \{\pm 1\}^n$ to be

$$123 \quad \Pr_{\beta, S}(\sigma) := \frac{1}{Z_{\beta, S}} \exp(\beta \sigma^\top A \sigma) \mathbf{1}\{\sigma \in S\}, \quad \text{(Truncated Ising Model)}$$

126 where $\mathbf{1}\{\sigma \in S\}$ captures the indicator function determining if $\sigma \in S$ and $Z_{\beta, S}$ is a renormalization
 127 term denoted the partition function. In our case, S is expressed as the set of satisfying assignments
 128 of a bounded degree k -SAT formula $\Phi_{n, k, d} = \Phi$ in *constrained normal form*. Formally, let Φ be a
 129 *formula in conjunctive normal form over variables* $\mathcal{V} = \{v_1, \dots, v_n\}$ and clause set \mathcal{C} , subject to the
 130 structural constraints that each clause contains exactly k literals (variables or their negations) and
 131 each variable occurs in at most d clauses. We identify each configuration $\sigma \in \{-1, 1\}^n$ with a truth
 132 assignment via the mapping where variable v_i is *true* if $\sigma_i = 1$ and *false* if $\sigma_i = -1$. A configuration
 133 σ is then said to satisfy Φ if and only if every clause $C \in \mathcal{C}$ contains at least one literal that evaluates
 134 to *true* under this assignment. Recall, any subset of the hypercube can be represented as the set of
 135 satisfying assignments of a degree- d k -SAT formula, provided that d is sufficiently large.

136 Our main result – stated below – is a sufficient condition on the degree d of the formula Φ in terms of
 137 the size of each clause k and the maximum degree Δ of the underlying graph G of the Ising model,
 138 for computationally and statistically efficient estimation of the inverse temperature parameter β .

139 **Theorem 1** (Informal Version of Theorem 2). *Let σ be a single sample from a truncated, n -
 140 dimensional Ising model with inverse temperature β^* , where the truncation set is captured by the
 141 satisfying assignments of a k -SAT formula $\Phi_{n, k, d}$ and the underlying graph G has maximum degree
 142 Δ of order $o(n^{1/6})$. For n sufficiently large, β^* is $\mathcal{O}(1)$ and $k \geq \Omega(4\Delta^3(1 + \log(d^2k + 1)))$, there
 143 exists an $\mathcal{O}(\Delta^3 n \log(n))$ -algorithm which takes as input σ and outputs an estimator $\hat{\beta}$ such that*

$$144 \quad \Pr_{\beta^*, S} \left[\left| \hat{\beta} - \beta^* \right| \leq \frac{c\Delta^3}{\sqrt{n}} \right] \geq 99\%, \text{ for a constant } c > 0 \text{ independent of } n, \Delta, d, k.$$

146 *Remark (Consistency).* Notice when Δ is $\mathcal{O}(1)$, our estimate achieves $\mathcal{O}(1/\sqrt{n})$ -consistency,
 147 matching the minimax rate for parameter estimation. Likewise, the restriction of Δ to be on the
 148 order of $o(n^{1/6})$ ensures the error of our estimator $\hat{\beta}$ is asymptotically diminishing and in turn con-
 149 sistent.

150 *Remark (Lower Bounds).* We further note that Galanis et al. (Galanis et al., 2024) recently es-
 151 tablished a lower bound for learning discrete Boolean distributions, demonstrating that estimation
 152 is information-theoretically impossible when $k \leq \log(d) - \log(k) + \Theta(1)$. This result relies on
 153 constructing a k -SAT instance with a single satisfying assignment. Importantly, this lower bound
 154 extends to our setting, implying that our results are optimal up to a constant factor when G is a graph
 155 of bounded degree. While subsequent work (Galanis et al., 2025) has provided a tighter bound, those
 156 techniques do not immediately translate to our context; the quadratic Hamiltonian induces a rugged
 157 energy landscape distinct from boolean product setting, necessitating different analytical tools.

158 **1.2 TECHNICAL OVERVIEW**

159 Given a single-parameter exponential family like we focus on, a natural approach to estimating the
 160 parameter is to find the maximum likelihood estimate. However, the computational intractability of

162 the partition function $Z_{\beta, S}$ for Ising models (see (Galanis et al., 2016) and the references therein)
 163 renders this approach infeasible. In light of these challenges, we utilize the maximum pseudolikeli-
 164 hood estimator introduced by (Besag, 1975) and provided below.

$$165 \hat{\beta} := \arg \max_{\tilde{\beta}} \prod_{i \in [n]} \mathbf{Pr}_{\tilde{\beta}, S}(\sigma_i | \boldsymbol{\sigma}_{-i}) = \arg \min_{\tilde{\beta}} - \sum_{i \in [n]} \log(\mathbf{Pr}_{\tilde{\beta}, S}(\sigma_i | \boldsymbol{\sigma}_{-i})) := \arg \min_{\tilde{\beta}} \phi(\tilde{\beta}; A, \boldsymbol{\sigma}).$$

166 (MPLE)
 167

168 We note that the second equality holds due to the monotonicity of the $\log(\cdot)$ function. Towards
 169 demonstrating the consistency of the maximum (log)-pseudolikelihood estimate $\hat{\beta}$, we follow the
 170 first and second derivative paradigm outlined by Chatterjee (Chatterjee, 2007; Daskalakis et al.,
 171 2019b; Galanis et al., 2024; 2025), which involves showing,
 172

- 173 • $\mathbf{Pr}_{\beta^*, S}[\nabla_{\beta} \phi(\beta^*; A, \boldsymbol{\sigma}) \leq \mathcal{O}(\sqrt{n})] \geq 1 - o(1)$,
- 174 • $\inf_{\beta \in (-B, B)} \nabla_{\beta}^2 \phi(\beta; A, \boldsymbol{\sigma}) \geq \Omega(n/\Delta^3)$ with probability $1 - o(1)$ over $\boldsymbol{\sigma} \sim \mathbf{Pr}_{\beta^*, S}$.

175

176 The first condition ensures the derivative of the log-pseudolikelihood objective with respect to the
 177 true model parameters β divided by n is *close* to 0, which is the value of the gradient of ϕ com-
 178 puted at the estimator, which in turn implies β is an *approximate stationary point of the objective*.
 179 Moreover, by demonstrating that the second derivative of the objective $\nabla_{\beta}^2 \phi(\beta; A, \boldsymbol{\sigma})$ is $\Omega(n/\Delta^3)$ -
 180 strongly convex with probability $1 - o(1)$ over a draw of the truncated Ising model, it implies that
 181 approximate stationary points of the objective are close in Euclidean distance to the optimum. These
 182 two facts combine to show the proximity of the optimum of the log-pseudolikelihood objective to β .
 183

184 Showing both of these conditions hold simultaneously is made complex due to the highly non-
 185 uniform measure induced by conditional dependencies of both the interaction matrix A and the
 186 truncation set S . To demonstrate the first condition, we craft upper bounds on the variance of the
 187 first derivative of ϕ , using the technique of exchangeable pairs pioneered by (Chatterjee, 2007),
 188 which, when combined with Chebyshev's inequality, implies an upper bound in probability. The
 189 primary challenge of this work lies in establishing the second condition. Previous works which used
 190 the deterministic structure of the interaction matrix to guarantee the concavity of the objective. **By**
 191 **contrast**, in our setting, the second derivative is governed by the local geometry of the truncation set
 192 S in the vicinity of the sample $\boldsymbol{\sigma}$. The Hessian ∇_{β}^2 is computed by summing a function of the local
 193 fields $m_i(\boldsymbol{\sigma}) = \langle A_i, \boldsymbol{\sigma} \rangle$, where the support of this sum is limited to the valid neighbors of $\boldsymbol{\sigma}$ in S
 194 with respect to the Hamming distance ¹

195 To show that, with high probability under the truncated Ising model, a sample $\boldsymbol{\sigma}$ has many neigh-
 196 boring configurations at Hamming distance 1, we construct an argument based on the Lovász Lo-
 197 cal Lemma (LLL), to guarantee the existence of a large number of satisfying assignments to Φ
 198 that differ from $\boldsymbol{\sigma}$ in exactly one bit. Using this powerful tool, however, requires control of the
 199 probabilities of partial spin assignments, which, given the tendency of the Ising model to con-
 200 tract into arbitrarily small portions of the hypercube and exhibit long-range correlations, can prove
 201 challenging. Counteracting this, our argument conditions on nodes outside of a specially crafted
 202 independent set I of the graph G , which preserves the marginal distribution of any given spin
 203 $\mathbf{Pr}_{\beta^*}[\sigma_i | (\sigma_1, \dots, \sigma_{i-1}, \sigma_{i+1}, \dots, \sigma_n)]$ despite limited to a small fraction of the support of the mea-
 204 sure, and collapses the Ising model into a product measure. **To conclude the strong convexity of**
 205 $\phi(\cdot; A, \boldsymbol{\sigma})$ **it remains to show a lower bound on $m_i(\boldsymbol{\sigma})$ in probability via a coupling argument which**
 206 **exploits the underlying edge structure of the connectivity graph G .**

207 We additionally note that the recent results on estimating Ising models using the pseudolikelihood
 208 approach (Dagan et al., 2020) rely on sophisticated concentration inequalities derived from the fast
 209 mixing nature of Glauber dynamics on the Boolean hypercube and their relation to the Gibbs mea-
 210 sure in order to conclude the strong convexity of the PL objective and bound the gradient with high
 211 probability. In our model, these powerful tools are not applicable due to the fragmented nature of the
 212 truncation set, rendering the domain of our measure into disconnected islands and make the Glauber
 213 dynamics *non-Ergodic*; the inequalities only imply concentration within a connected component of
 214 S , which may be too small to be informative. We lastly emphasize that our polynomial time algo-
 215 rithm *does not scale with the size of the truncation set*, enabling inference despite S being small
 216 with regards to the entire hypercube.

217 ¹The Hamming distance metric counts the number of differing indices between two vectors. Thus, a neighbor at Hamming distance one is obtained by flipping exactly one index of $\boldsymbol{\sigma}$.

216 1.3 RELATED WORK
217

218 The literature of parameter estimation in Markov Random Fields, and over hard-
219 constrained/truncated measures, is vast. In light of this, we mention a brief collection of
220 works relevant to our setting, and defer additional background and discussion to the appendix.
221 Single sample estimation initiated by (Besag, 1975; Chatterjee, 2007) has yielded a rich bounty
222 of results ranging from the setting of the Ising model (Chatterjee, 2007; Bhattacharya & Mukher-
223 jee, 2018; Ghosal & Mukherjee, 2020; Dagan et al., 2020), peer dependent logistic regression
224 (Daskalakis et al., 2019b; Mukherjee et al., 2022a; Daskalakis et al., 2020), higher order Ising
225 models (Mukherjee et al., 2022b), and robust inference over discrete distributions (Diakonikolas
226 et al., 2021). (Bhattacharyya et al., 2021) demonstrated the feasibility of single-sample learning
227 in the context of the hard-core model, a size-weighted distribution over all independent sets in a
228 graph G ; following up on this, (Galanis et al., 2024; 2025) studied parameter inference in a product
229 distribution truncated by the satisfying assignments of a k -SAT formula. The hard-constrained
230 models studied in this work are a subset of the literature analyzing efficient parameter estimation
231 and learning in truncated (Daskalakis et al., 2019c; 2018; Fotakis et al., 2022; De et al., 2023;
232 Nagarajan & Panageas, 2020) and censored distributions (Lugosi et al., 2024; Plevrakis, 2021;
233 Fotakis et al., 2021).

234 2 PRELIMINARIES
235

236 2.1 NOTATION
237

238 We denote the set of $\{1, 2, \dots, n\}$ as $[n]$. Vectors $\mathbf{x} \in \mathbb{R}^d$ are denoted with boldface, and matrices
239 $M \in \mathbb{R}^{m \times n}$ with capital letters. Given a vector $\mathbf{a} = (a_1, a_2, \dots, a_n)$ and a subset $I \subseteq [n]$, let
240 \mathbf{a}_I denote the length- $|I|$ coordinate vector $\{a_i : i \in I\}$, and \mathbf{a}_{-i} denote the vector \mathbf{a} with the
241 i -th element removed. We denote the probability of an event \mathcal{A} over the *untruncated* measure
242 parameterized by β as \mathbf{Pr}_{μ_β} and over the *truncated* Ising measure as $\mu_{G, \beta, S}(\mathcal{A}) = \mathbf{Pr}_{\beta, S}[\mathcal{A}] =$
243 $\mathbf{Pr}_{\mu_\beta}[\mathcal{A}|S]$. We often remove the explicit dependence on S and G for clarity of explanation.

244 We will say an estimator $\hat{\beta}$ is consistent with a rate $\mathcal{O}(f(n))$ (or equivalently $f(n)$ -consistent) with
245 respect to the true parameter β^* if there exists an integer n_0 and a constant $C > 0$ such that for every
246 $n \geq n_0$, with probability at least $1 - o(1)$,

$$247 \quad |\hat{\beta} - \beta^*| \leq C f(n).$$

248 Lastly, we call an entry σ_i of σ to be *flippable* if both (σ_i, σ_{-i}) and $(-\sigma_i, \sigma_{-i})$ lie in S , and
249 moreover we denote by $e_i(\sigma)$ the indicator of the event that σ_i of σ is flippable.

250 2.2 MAXIMUM PSEUDO-LIKELIHOOD ESTIMATION
251

252 Towards explicitly computing the (log)-pseudolikelihood objective and its associated derivatives, we
253 begin by finding the *conditional* distributions of the individual spins conditioned on the rest of the
254 assignment, $\mathbf{Pr}_\beta(\sigma_i | \sigma_{-i})$. Notice, when σ_i is *not* flippable, the conditional distribution is trivially
255 one, while for flippable i , the probability is given by the following:

$$256 \quad \mathbf{Pr}_\beta(\sigma_i | \sigma_{-i}) = \frac{\exp(\beta m_i(\sigma) \sigma_i)}{\exp(-\beta m_i(\sigma)) + \exp(\beta m_i(\sigma))} \text{ where } m_i(\sigma) := \sum_{j=1}^n A_{ij} \sigma_j.$$

257 Denoting $\mathcal{F}(\sigma)$ to be the set of flippable variables in σ , the negative log pseudo-likelihood objective
258 $\phi(\beta; A, \sigma)$ can be written explicitly as follows:

$$259 \quad \begin{aligned} \phi(\beta; A, \sigma) &:= - \sum_{i \in \mathcal{F}(\sigma)} \log(\mathbf{Pr}_\beta(\sigma_i | \sigma_{-i})) \\ 260 &= \sum_{i \in \mathcal{F}(\sigma)} (\log(\exp(-\beta m_i(\sigma)) + \exp(\beta m_i(\sigma))) - \beta m_i(\sigma) \sigma_i). \end{aligned} \tag{2.1}$$

261 In the sequel, we drop the reference to A in the pseudo-likelihood when the interaction matrix is
262 clear. The first and second derivatives of the objective (2.1) with respect to the inverse temperature

270 parameter β , denoted by $\phi_1(\beta; \sigma) = \nabla_\beta \phi(\beta; A, \sigma)$, $\phi_2(\beta; \sigma) = \nabla_\beta^2 \phi(\beta; A, \sigma)$ are given below:
271

$$272 \phi_1(\beta; \sigma) = \sum_{i \in \mathcal{F}(\sigma)} (m_i(\sigma)(\tanh(\beta m_i(\sigma)) - \sigma_i)), \quad \phi_2(\beta; \sigma) = \sum_{i \in \mathcal{F}(\sigma)} \frac{m_i(\sigma)^2}{\cosh^2(\beta m_i(\sigma))}.$$

273

274 Note that the negative log-pseudo-likelihood is convex as the second derivative is *always* non-
275 negative (sum of squares).
276

277 2.3 AN AUXILIARY LEMMA

278

279 In our analysis, demonstrating the consistency of our estimator, we frequently require the existence
280 of combinatorial objects, such as satisfying assignments to a k -SAT formula or fulfilling specific
281 constraints without their explicit construction. Such existence questions often reduce to avoiding
282 a collection of undesirable events, each of which occurs with low probability and exhibits limited
283 dependence on the others. This setting is naturally addressed using the probabilistic method, and in
284 particular, the Lovász Local Lemma.

285 **Lemma 2.1** (Symmetric Lovász Local Lemma). *Given a collection of events $\{A_i\}_{i \in [n]}$, where each
286 event A_i satisfies $\Pr(A_i) \leq p$ and each event is mutually independent from all but at most d other
287 events. If*

$$288 e \cdot p \cdot (d + 1) \leq 1, \quad (\text{Symmetric LLL})$$

289 then $\Pr(\bigcap_{i=1}^n \overline{A_i}) > 0$, where $\overline{A_i}$ denotes the complement of A_i and e refers to Euler's number.

290

291 3 LEARNING TRUNCATED ISING MODELS

292

293 In this section, we prove our main result, i.e., we provide a sufficient condition on the "complexity"
294 of the k -SAT formula Φ , (and by extension the truncation set S) in terms of the size of the clauses
295 k , the degree of the formula d and the maximum degree of the graph Δ for efficient estimation
296 of the inverse temperature parameter β . In advance of proving our result, we lay out some mild
297 assumptions on the interaction matrix A and Ising model $\mu_{G, \beta, S}$ which have been employed in past
298 works (Galanis et al., 2024; 2025; Dagan et al., 2020; Daskalakis et al., 2019b; Chatterjee, 2007;
299 Bhattacharya & Mukherjee, 2018).

300 **Assumption 1.** *Within our model (Truncated Ising Model), we assume*

- 301 • *A is the adjacency matrix of a connected graph over n nodes, with maximum degree Δ be-
302 ing $o(n^{1/6})$ and entries $A_{ij} \in \{-\frac{1}{\Delta}, +\frac{1}{\Delta}\}$ representing positive or negative interactions.*
- 303 • *The inverse temperature parameter β lies in the open interval $(-B, B)$.*
- 304 • *The truncation set S is the set of satisfying assignments to a k -SAT formula Φ in conjunctive
305 normal form.*

306 *Remark (Assumptions).* The assumption of graph connectivity ensures that the interaction matrix
307 contains sufficient signal energy for consistent parameter estimation. This requirement plays a role
308 analogous to the lower bounds on the Frobenius norm of the interaction matrix posited in (Chatterjee,
309 2007; Daskalakis et al., 2019b; Bhattacharya & Mukherjee, 2018). Absent such a structural guar-
310 antee, the log-partition function $Z_{\beta, S}$ may fail to diverge asymptotically with n , which prevents the
311 pseudolikelihood objective from achieving consistency. This pathology is exemplified by the Curie-
312 Weiss model with couplings scaling as $1/n$; there, the Frobenius norm of the interaction matrix is
313 $\mathcal{O}(1)$. In contrast, our connectivity and degree assumptions imply that the squared Frobenius norm
314 of A scales as $\Omega(n/\Delta^2)$, which diverges to infinity, thereby ensuring the problem is well-posed.
315

316 While general specifications of the Ising model allow for arbitrary coupling strengths $A_{ij} \in \mathbb{R}$, we
317 restrict the interaction magnitudes to a uniform value $|A_{ij}| = 1/\Delta$ towards isolating the structural
318 component of peer influence. This constraint posits that the social pressure exerted by any single
319 neighbor is functionally equivalent, thereby modeling a "peer effect" (Bertrand et al., 2000; Sacer-
320 dote, 2001; Duflo & Saez, 2003) where individual decisions are driven by the collective consensus of
321 the local group rather than the idiosyncratic intensity of specific dyadic relationships. By imposing
322 this homogeneity, we ensure that the model captures the emergent coordination arising from net-
323 work topology and group alignment, rather than being dominated by outliers with arbitrarily strong
pairwise connections.

324 The formal version of our main result is given as follows.

325 **Theorem 2** (Main result). *Let σ be a single sample from a truncated, n -dimensional Ising model*
 326 *satisfying Assumption 1. For all $k \geq \frac{4\Delta^3(1+\log(d^2k+1))}{\log(1+\exp(-2B))}$, if n is sufficiently large, there exists an*
 327 *$\mathcal{O}(\Delta^3 n \log n)$ -time algorithm which takes as input σ and outputs an estimator $\hat{\beta}$ such that*

$$329 \quad \mathbf{Pr}_{\beta^*, S} \left[|\hat{\beta} - \beta^*| \leq \frac{c\Delta^3}{\sqrt{n}} \right] \geq 99\%, \text{ for a constant } c > 0 \text{ independent of } n, \Delta, d, k.$$

330 *Remark* (The algorithm). We compute $\hat{\beta}$ in time $\mathcal{O}(\Delta^3 n \log n)$ by running projected gradient de-
 331 *scend (PGD) on the normalized log-pseudolikelihood objective $n^{-1}\phi(\beta; \sigma)$. Standard results from*
 332 *convex optimization (e.g., (Boyd & Vandenberghe, 2004)) imply that PGD converges to an ϵ -optimal*
 333 *solution in $\mathcal{O}(\kappa \log(1/\epsilon))$ iterations, where κ is the condition number of the objective, that is the*
 334 *ratio of the smoothness (i.e., the Lipschitz constant of the gradient) to the strong convexity param-
 335 *eter. In the sequel (Section 3.3), we demonstrate that the pseudo-likelihood objective is strongly*
 336 *convex with parameter $\Omega(n/\Delta^3)$, implying the normalized objective is $\Omega(1/\Delta^3)$ -strongly con-
 337 *vex. This, combined with an upper bound of 1 on the norm of the normalized gradient of the*
 338 *log-pseudolikelihood, yields the condition number of the objective is $\kappa = \mathcal{O}(\Delta^3)$. Due to the sta-
 339 *tistical limitations of the pseudolikelihood estimator, whose distance from the true parameter β can*
 340 *be as large as $\mathcal{O}(\Delta^3/\sqrt{n})$, we set $\epsilon = 1/\sqrt{n}$. Obtaining an accuracy of ϵ , requires $\mathcal{O}(\Delta^3 \log n)$*
 341 *iterations, each requiring $\mathcal{O}(n)$ time, resulting in an overall runtime of $\mathcal{O}(\Delta^3 n \log n)$.****

342 To prove Theorem 2, we begin by explicitly demonstrating how the conditions on the first and second
 343 derivatives of the $\phi(\beta; \sigma)$ imply the consistency of the MPLE $\hat{\beta}$ in Section 3.1. We then establish
 344 the conditions on the first derivative in Section 3.2, and the second in Section 3.3.

347 3.1 ROADMAP FOR PROVING THEOREM 2

348 In this subsection, we demonstrate the relationship between the derivatives of the (log)-
 349 pseudolikelihood and the estimation error $|\hat{\beta} - \beta^*|$.

350 **Lemma 3.1.** *Let $\beta^* \in (-B, B)$ be the true parameter of the truncated Ising model $\mu_{G, \beta^*, S}$ and $\hat{\beta}$*
 351 *be the MPLE. It follows that with probability $1 - o(1)$*

$$352 \quad |\hat{\beta} - \beta^*| \leq \frac{|\phi_1(\beta^*; \sigma)|}{\min_{\tilde{\beta}} \phi_2(\tilde{\beta}; \sigma)}$$

353 *Proof Sketch.* We relate $\hat{\beta}$ with β^* , via smooth interpolation of both the parameter values themselves
 354 $\beta(t) = t\hat{\beta} + (1-t)\beta^*$, and the gradient $s(t) = (\hat{\beta} - \beta^*)\phi_1(\beta(t); \sigma)$. As the derivative of the
 355 pseudolikelihood at $\hat{\beta}$ is zero, we note that $s(1) = 0$. The fundamental theorem of calculus implies

$$356 \quad -(\hat{\beta} - \beta^*)\phi_1(\beta^*; \sigma) = s(1) - s(0) = \int_0^1 s'(t) dt = (\hat{\beta} - \beta^*)^2 \int_0^1 \phi_2(\beta(t); \sigma) dt.$$

357 The lemma follows from $\int_0^1 \phi_2(\beta(t); \sigma) dt \geq \min_{\tilde{\beta} \in (-B, B)} \phi_2(\tilde{\beta}; \sigma)$ and $\phi_2(\tilde{\beta}; \sigma) \geq 0$. \square

358 With this lemma in hand, demonstrating Theorem 2 reduces to showing $\phi_1(\beta^*; \sigma) = \mathcal{O}(\sqrt{n})$ and
 359 $\phi_2(\beta; \sigma) = \Omega(n/\Delta^3)$ simultaneously with probability $1 - o(1)$.

360 3.2 ANALYSIS OF FIRST MOMENT

361 The lemma below establishes the upper bound on $\phi_1(\beta; \sigma)$. To demonstrate an upper bound on
 362 $\phi_1(\beta; \sigma)$ in probability, we use the technique of exchangeable pairs (Chatterjee, 2007) to construct
 363 a bound on its variance. With the variance controlled, we invoke Markov's inequality to conclude
 364 $\phi_1(\beta; \sigma)$ that concentrates around its mean.

365 **Lemma 3.2** (Upper Bound on $\phi_1(\beta; \sigma)$ in Probability). *Fix a constant $\delta > 0$. The log-
 366 pseudolikelihood $\phi(\beta; \sigma)$ of a truncated Ising model fulfilling Assumption 1 satisfies the following
 367 upper bound in probability, for all $\beta \in \mathbb{R}$*

$$368 \quad \mathbf{Pr}_{\beta} \left[|\phi_1(\beta; \sigma)| \leq \sqrt{\frac{(12 + 4B)n}{\delta}} \right] \geq 1 - \delta.$$

378 3.3 SECOND DERIVATIVE BOUND
379

380 For reference, we recall the expression for the Hessian of the log pseudo-likelihood,
381

382
$$\phi_2(\beta; \sigma) = \frac{\partial^2 \phi(\beta; \sigma)}{\partial \beta^2} = \sum_{i=1}^n \frac{m_i^2(\sigma)}{\cosh^2(\beta m_i(\sigma))} e_i(\sigma).$$
383

384 The primary aim of this section is to demonstrate the following lower bound in probability.
385

386 **Lemma 3.3** (Lower Bound on $\phi_2(\beta; \sigma)$ in Probability). *The log-pseudolikelihood $\phi(\beta; \sigma)$ of a Ising*
387 *model, truncated by a k -SAT formula with $k \geq \frac{4\Delta^3(1+\log(d^2k+1))}{\log(1+\exp(-2B))}$, fulfilling Assumption 1 satisfies*
388 *the following lower bound in for all $\beta \in (-B, B)$*
389

390
$$\Pr_{\beta^*} \left[\frac{\partial \phi^2(\beta; \sigma)}{\partial^2 \beta} \geq \frac{n \exp(-B)}{\Delta^3(8kd)^2} \right] \geq 1 - \frac{(24 + 8B)}{n^{0.1}}.$$
391

392 We prove this claim in two steps, by **firstly** guaranteeing there are a *linear* number of flippable
393 variables $v_i \in V$, which contribute to the value of the second derivative, and **secondly** ensuring the
394 value of each term in the sum is bounded below by a constant.
395

396 3.3.1 ENSURING FLIPPABILITY
397

398 Given a sample σ , the flippability of a variable σ_i under the k -SAT formula Φ is characterized
399 by the condition that every clause containing σ_i is satisfied by at least one other variable in the
400 clause. Consequently, σ_i is *not* flippable if there exists a clause C such that all other variables
401 $v_j \in C \setminus \{v_i\}$ are assigned values that fail to satisfy the clause—an *antagonistic* configuration. Under
402 our assumptions, the truncated Ising model may be defined at arbitrarily low temperatures, including
403 values of $\beta = \mathcal{O}(1)$ that exceed the critical threshold. In this regime, standard concentration-of-
404 measure tools, such as log-Sobolev inequalities or Dobrushin-type conditions, are no longer valid
405 and fail to yield meaningful bounds. This makes it significantly more difficult to lower bound the
406 probability of antagonistic configurations, and, by extension, to bound the probability that a given
407 variable is flippable.

408 Towards providing such a bound, we construct an independent set I within the graph G , such that the
409 marginal distribution of the spins within I , conditioned on the variables outside of the independent
410 set $V \setminus I$, collapses into a product distribution, circumventing the above difficulties. Indeed, the
411 distribution of σ_I conditional on an assignment of the remaining nodes $\sigma_{V \setminus I}$ is given as follows,
412 with $m_i^{V \setminus I}(\sigma)$ instead of being random variables, they are now fixed constants.

413
$$\Pr_{\beta}(\sigma_I | \sigma_{V \setminus I}) \propto \exp \left(2\beta \sum_{i \in I} m_i^{V \setminus I}(\sigma) \sigma_i \right), \text{ where } m_i^{V \setminus I}(\sigma) = \sum_{j \in V \setminus I} A_{ij} \sigma_j.$$
414

415 One of the issues that arises from conditioning our graphical model on $V \setminus I$ is the natural truncation
416 of the k -CNF formula Φ ; erasing the variables outside of the independent set I from Φ transforms it
417 into a new formula Φ' , which contains only variables from I . An inherent concern in the selection
418 of the independent set is the presence of clauses in Φ' containing only a few variables, i.e., of size
419 $o(k)$, which can significantly skew the marginal distributions away from uniformity. To address this,
420 we show that there exists an independent set $I \subset V$ that intersects a linear fraction of the variables
421 in *every* clause, ensuring sufficient coverage and mitigating this issue.

422 **Lemma 3.4.** *Let G be a graph with maximum degree Δ of order $o(n^{1/6})$ and Φ be a k -SAT formula.*
423 *If $k > 10\Delta^3(1 + \log(dk\Delta^2))$, then there exists an independent set $I \subset V$ such that Φ' , Φ truncated*
424 *on $V \setminus I$, is a λk -SAT formula where $\lambda = 1/4\Delta^3$.*

425 *Proof Sketch.* To begin, we describe an algorithm that maps bijections of the vertex set to indepen-
426 dent sets in the graph G . Formally, given a map $\rho : V \rightarrow [n]$, we construct an independent set by
427 selecting all vertices $u \in V$ such that $\rho(u) > \rho(v)$ for all $v \in N(u)$. This selection criterion ensures
428 that no two adjacent vertices are included in the set, as any edge $\{u, v\} \in E$ prevents both u and v
429 from satisfying the condition simultaneously.

432 Under the uniform measure over all maps ρ , the event that a vertex v is selected into the independent
 433 set depends only on the relative rankings under ρ of v and its neighbors. This locality implies that
 434 for any pair of vertices $u, v \in V$ with graph distance $d(u, v) \geq 3$, the corresponding selection
 435 events are independent. Leveraging this property, for each clause C , we can extract a subset $C' \subset C$
 436 consisting of variables whose neighborhoods are pairwise disjoint, implying the event of selection
 437 for all elements $v \in C$ are mutually independent, yielding the selection events for all variables in C'
 438 are mutually independent. This allows us to treat the number of selected variables in $C' \cap I$ as a sum
 439 of independent Bernoulli random variables, enabling the use of Chernoff bounds, and consequently,
 440 we obtain an exponential upper bound on the probability of the bad event that $|C \cap I| < \lambda k$.

441 To establish a bound on k in terms of d and Δ that ensures the existence of a marking with the de-
 442 sired properties, we invoke the symmetric version of the Lovász Local Lemma (Lemma 2.1). Each
 443 variable appears in at most d other clauses, and the bad event corresponding to a variable's inclusion
 444 in the independent set depends only on the configuration of variables within its two-hop neighbor-
 445 hood. Since this neighborhood contains at most $\Delta^2 + 1$ variables, each bad event is dependent on
 446 at most $kd(\Delta^2 + 1)$ others. By the symmetric Lovász Local Lemma, if k is sufficiently large so
 447 that the associated condition is met, then with positive probability, there exists an independent set
 448 satisfying the required condition.s

$$449 \quad 450 \quad 2e \exp\left(-\frac{k}{8(\Delta^2 + 1)(\Delta + 1)}\right) (kd(\Delta^2 + 1)) < 1.$$

451 When $\Delta \geq 5$, if $k \geq 10\Delta^3(1 + \log(dk\Delta^2))$, k satisfies this requirement, completing the proof. \square

452 Armed with the guarantee that the truncated k -SAT formula Φ' contains a sufficient number of vari-
 453 ables in each clause, we relate the flippability of a given variable v_i to the satisfiability of select
 454 clauses solely through elements of the independent set I . Indeed, a sufficient condition for a vari-
 455 able v_i to be flippable is that every clause containing v_i is satisfied by at least one variable in the
 456 independent set I . We capture this requirement using the following indicator function:

$$460 \quad s_j(\sigma) := \mathbf{1} \{ \text{every clause containing } j \text{ is satisfied by some } i \in I \}.$$

462 This reformulation is particularly valuable because it translates the notion of flippability, which
 463 originally depends on the full joint distribution of the Ising model at arbitrary inverse temperature
 464 β , into a condition over the structure of the product distribution induced by the independent. As the
 465 selection of I can be made independently of the spin configuration and is governed by local rules
 466 (e.g., via randomized greedy selection based on random bijections), the probability that $s_j(\sigma) =$
 467 1 can be effectively analyzed using standard concentration inequalities such as Chernoff bounds,
 468 enabling explicit probabilistic guarantees on the flippability of variables, despite the tendencies of
 469 the underlying Ising model to exhibiting long-range dependencies.

470 To this end, we now establish a sufficient condition on k that ensures all variables are flippable with
 471 constant probability.

472 **Lemma 3.5.** *Given a sample $\sigma \sim \mathbf{Pr}_{\beta^*, S}$, such that the k -SAT formula Φ which induces the
 473 truncation set S , satisfies the following clause size bound*

$$475 \quad 476 \quad k \geq \frac{4\Delta^3(1 + \log(d^2k + 1))}{\log(1 + \exp(-2B))}.$$

477 ²Then for $\Delta \geq 5$, there exists an independent set I following Lemma 3.4 such that

$$479 \quad \mathbf{Pr}_{\beta^*, S}[s_j(\sigma) = 1] \geq 1/2 \quad \forall j \in V \setminus I.$$

481 Moreover, for any set $V' \subseteq I$ we can find a collection of $R \subseteq V'$ with $|R| \geq |V'|/(2kd)^2$ that are
 482 neighborhood disjoint in the interaction graph of Φ such that for all subcollections $\{i_1, \dots, i_t\} \subset R$,
 483

$$484 \quad \mathbf{Pr}_{\beta^*, S}[e_{i_t}(\sigma) = 1 | e_{i_1}(\sigma) = 1, \dots, e_{i_{t-1}}(\sigma) = 1] \geq 1/2.$$

485 ²This term scales as $\gtrsim e^{2B} \Delta^3 \log(d^2k)$.

486 3.3.2 BOUNDING THE MAGNETIZATIONS
 487

488 It now remains to demonstrate that the squared magnetizations $m_i^2(\sigma)$ are bounded below with
 489 constant probability over a draw of the truncated Ising model. We begin by providing a conditional
 490 lower bound to $m_i(\sigma)$.

491 **Lemma 3.6.** *The magnetizations, $m_i(\sigma) = \sum_{j \in [n]} A_{ij}\sigma_j$, of the truncated Ising model satisfy the
 492 following relation.*

493
$$\mathbb{E}_{\beta^*}[m_i(\sigma)^2 | \sigma_{-j}] \geq \frac{\exp(-B)}{\Delta^2} \mathbf{Pr}_{\beta^*}[e_j(\sigma) = 1]$$

 494

495 This lower bound is only non-trivial when *both* realizations (σ_i, σ_j) and $(\sigma_i, -\sigma_j)$ are feasible under
 496 the truncation set, i.e $e_j(\sigma) = 1$; likewise, this term only contributes to the $\phi_2(\beta; \sigma)$ if $e_i(\sigma) = 1$.
 497 Towards maximizing the second derivative, we wish to select a sequence of edges (i, j) such that
 498 both $e_i(\sigma) = 1$ and $e_j(\sigma) = 1$, that is, both endpoints are flippable. As each element $v_i \in I$ has
 499 at least one neighbor in $V \setminus I$, and the graph has maximum degree Δ , we can construct a subset
 500 $I' \subseteq I$ of size $|I'| > \frac{n}{\Delta^2}$ such that no two elements in I' share any common neighbors. With this
 501 independent set I' , we define a vertex bijection $h : V \rightarrow V$ as follows. For each $v \in I'$, we assign
 502 $h(v)$ to be a *unique* neighbor of v in $V \setminus I$. For vertices outside I' , we assign the remaining mappings
 503 arbitrarily, while maintaining the constraint that h remains a bijection on V . Using Lemma 3.6 and
 504 the above bijection h , we can find a lower bound on the entire conditional second derivative.

505 **Lemma 3.7.** *Over the truncated Ising model, given a bijection $h : V \rightarrow V$ defined by the above
 506 procedure, the conditional second derivative satisfies the following first moment bound.*

507
$$\sum_{i=1}^n \mathbb{E}_{\beta^*}[m_i(\sigma)^2 e_i(\sigma) | \sigma_{-h(i)}] \geq \frac{n \exp(-B)}{2\Delta^3 (4kd)^2}.$$

 508

511 **Establishing Lemma 3.3** Armed with the lower bound on the conditional expectation of $\phi_2(\beta; \sigma)$,
 512 to obtain our final lower bound we control the variance of $\sum_{i=1}^n \mathbb{E}_{\beta^*}[m_i^2(\sigma) e_i(\sigma) | \sigma_{-h(i)}]$ with the
 513 method of exchangeable pairs, in a similar fashion to Lemma 3.2. We then apply Chebyshev's
 514 inequality to the conditional variance to obtain our bound in probability.

515
 516 CONCLUSION AND FUTURE WORK
 517

518 In this paper, we present a affirmative answer to the challenge of single sample learning in the truncated
 519 Ising model, at all temperatures $\beta \in \mathcal{O}(1)$, giving a sufficient condition for the truncation set
 520 S , to ensure consistent inference, and extending the existing framework *beyond* boolean product
 521 distributions. Towards this goal, we craft concentration inequalities for the first and second derivatives
 522 of the log-pseudolikelihood via arguments concerning the local connectivity of the truncation set.

523 The present work opens the door to important future questions : (i) Given the above framework, does
 524 analyzing measures with random Hamiltonians, like those of the Sherrington-Kirkpatrick model,
 525 alleviate the dependence on Δ ? (ii) Do logistic regression techniques used to estimate untruncated
 526 graphical models apply to the constrained setting? (iii) Is there a way to simultaneously remove the
 527 $o(n^{1/6})$ assumption on the maximum degree of the graph while improving the rate of consistency?

528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539

540 REFERENCES
541

542 Marianne Bertrand, Erzo FP Luttmer, and Sendhil Mullainathan. Network effects and welfare cul-
543 tures. *The quarterly journal of economics*, 115(3):1019–1055, 2000.

544 Julian Besag. Statistical analysis of non-lattice data. *Journal of the Royal Statistical Society Series*
545 *D: The Statistician*, 24(3):179–195, 1975.

546 Bhaswar B Bhattacharya and Sumit Mukherjee. Inference in ising models. 2018.

547 Bhaswar B. Bhattacharya and Kavita Ramanan. Parameter estimation for undirected graphical mod-
548 els with hard constraints, 2021. URL <https://arxiv.org/abs/2008.09925>.

549 Arnab Bhattacharyya, Rathin Desai, Sai Ganesh Nagarajan, and Ioannis Panageas. Efficient statistics
550 for sparse graphical models from truncated samples. In *International Conference on Artificial*
551 *Intelligence and Statistics*, pp. 1450–1458. PMLR, 2021.

552 Antonio Blanca, Zongchen Chen, Daniel Štefankovič, and Eric Vigoda. Structure learning of h -
553 colorings. In *Algorithmic Learning Theory*, pp. 152–185. PMLR, 2018.

554 Stephen P. Boyd and Lieven Vandenberghe. *Convex Optimization*. Cambridge University Press,
555 Cambridge, UK, 2004.

556 Guy Bresler. Efficiently learning ising models on arbitrary graphs. In *Proceedings of the forty-*
557 *seventh annual ACM symposium on Theory of computing*, pp. 771–782, 2015.

558 Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. *Foundations and*
559 *Trends® in Machine Learning*, 8(3-4):231–357, 2015.

560 Sourav Chatterjee. Estimation in spin glasses: A first step. 2007.

561 Yuval Dagan, Constantinos Daskalakis, Nishanth Dikkala, and Anthimos Vardis Kandiros. Learning
562 ising models from one or multiple samples, 2020. URL <https://arxiv.org/abs/2004.09370>.

563 Yuval Dagan, Constantinos Daskalakis, Nishanth Dikkala, Surbhi Goel, and Anthimos Vardis
564 Kandiros. Statistical estimation from dependent data, 2021. URL <https://arxiv.org/abs/2107.09773>.

565 Constantinos Daskalakis, Themis Gouleakis, Christos Tzamos, and Manolis Zampetakis. Efficient
566 statistics, in high dimensions, from truncated samples. In *2018 IEEE 59th Annual Symposium on*
567 *Foundations of Computer Science (FOCS)*, pp. 639–649. IEEE, 2018.

568 Constantinos Daskalakis, Nishanth Dikkala, and Gautam Kamath. Testing ising models, 2019a.
569 URL <https://arxiv.org/abs/1612.03147>.

570 Constantinos Daskalakis, Nishanth Dikkala, and Ioannis Panageas. Regression from dependent ob-
571 servations. In *Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing*,
572 pp. 881–889, 2019b.

573 Constantinos Daskalakis, Themis Gouleakis, Christos Tzamos, and Manolis Zampetakis. Compu-
574 tationally and statistically efficient truncated regression. In *Conference on learning theory*, pp.
575 955–960. PMLR, 2019c.

576 Constantinos Daskalakis, Nishanth Dikkala, and Ioannis Panageas. Logistic-regression with peer-
577 group effects via inference in higher order ising models, 2020. URL <https://arxiv.org/abs/2003.08259>.

578 Anindya De, Shivam Nadimpalli, and Rocco A Servedio. Testing convex truncation. In *Proceedings*
579 *of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)*, pp. 4050–4082.
580 SIAM, 2023.

581 Ilias Diakonikolas, Daniel M Kane, Alistair Stewart, and Yuxin Sun. Outlier-robust learning of ising
582 models under dobrushin’s condition. In *Conference on Learning Theory*, pp. 1645–1682. PMLR,
583 2021.

594 Esther Duflo and Emmanuel Saez. The role of information and social interactions in retirement plan
595 decisions: Evidence from a randomized experiment. *The Quarterly journal of economics*, 118(3):
596 815–842, 2003.

597 Mathilde Durvy and Patrick Thiran. A packing approach to compare slotted and non-slotted medium
598 access control. In *Proceedings of IEEE INFOCOM 2006. 25TH IEEE International Conference
599 on Computer Communications*, 2006.

600 Mathilde Durvy, Olivier Dousse, and Patrick Thiran. On the fairness of large csma networks. *IEEE
601 Journal on Selected Areas in Communications*, 27(7):1093–1104, 2009.

602 Chee-Huat Linus Eng, Michael Lawson, Qian Zhu, Ruben Dries, Noushin Koulena, Yodai Takei,
603 Jina Yun, Christopher Cronin, Christoph Karp, Guo-Cheng Yuan, et al. Transcriptome-scale
604 super-resolved imaging in tissues by rna seqfish+. *Nature*, 568(7751):235–239, 2019.

605 Dimitris Fotakis, Alkis Kalavasis, Vasilis Kontonis, and Christos Tzamos. Efficient algorithms for
606 learning from coarse labels. In *Conference on Learning Theory*, pp. 2060–2079. PMLR, 2021.

607 Dimitris Fotakis, Alkis Kalavasis, and Christos Tzamos. Efficient parameter estimation of truncated
608 boolean product distributions, 2022. URL <https://arxiv.org/abs/2007.02392>.

609 Alan Frieze and Michał Karoński. *Introduction to random graphs*. Cambridge University Press,
610 2015.

611 Andreas Galanis, Daniel Stefankovic, and Eric Vigoda. Inapproximability of the partition function
612 for the antiferromagnetic ising and hard-core models. *Combinatorics, Probability and Computing*,
613 25(4):500–559, February 2016. ISSN 1469-2163. doi: 10.1017/s0963548315000401. URL
614 <http://dx.doi.org/10.1017/S0963548315000401>.

615 Andreas Galanis, Alkis Kalavasis, and Anthimos Vardis Kandiros. Learning hard-constrained mod-
616 els with one sample. In *Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete
617 Algorithms (SODA)*, pp. 3184–3196. SIAM, 2024.

618 Andreas Galanis, Leslie Ann Goldberg, and Xusheng Zhang. One-shot learning for k-sat, 2025.
619 URL <https://arxiv.org/abs/2502.07135>.

620 Heidi Gebauer, Tibor Szabó, and Gábor Tardos. The local lemma is asymptotically tight for sat.
621 *Journal of the ACM (JACM)*, 63(5):1–32, 2016.

622 Promit Ghosal and Sumit Mukherjee. Joint estimation of parameters in ising model. 2020.

623 Ronojoy Ghosh and Claire J Tomlin. Lateral inhibition through delta-notch signaling: A piecewise
624 affine hybrid model. In *International Workshop on Hybrid Systems: Computation and Control*,
625 pp. 232–246. Springer, 2001.

626 Heng Guo, Mark Jerrum, and Jingcheng Liu. Uniform sampling through the lovász local lemma.
627 *Journal of the ACM (JACM)*, 66(3):1–31, 2019.

628 Linus Hamilton, Frederic Koehler, and Ankur Moitra. Information theoretic properties of markov
629 random fields, and their algorithmic applications. *Advances in Neural Information Processing
630 Systems*, 30, 2017.

631 Kathleen Mullan Harris. The add health study: Design and accomplishments. 2013.

632 Ernst Ising. Beitrag zur theorie des ferromagnetismus. *Zeitschrift für Physik*, 31(1):253–258, 1925.

633 Jouni Karvo, Samuli Aalto, and Jorma Virtamo. Blocking probabilities of multi-layer multicast
634 streams. In *Workshop on High Performance Switching and Routing, Merging Optical and IP
635 Technologie*, pp. 268–277. IEEE, 2002.

636 Eyal Lubetzky and Allan Sly. Cutoff for the ising model on the lattice. *Inventiones mathematicae*,
637 191:719–755, 2013.

638 Brad Luen, Kavita Ramanan, and Ilze Ziedins. Nonmonotonicity of phase transitions in a loss
639 network with controls. 2006.

648 Gábor Lugosi, Mihalis G Markakis, and Gergely Neu. On the hardness of learning from censored
649 and nonstationary demand. *INFORMS Journal on Optimization*, 6(2):63–83, 2024.
650

651 Somabha Mukherjee, Ziang Niu, Sagnik Halder, Bhaswar B. Bhattacharya, and George Michailidis.
652 High dimensional logistic regression under network dependence, 2022a. URL <https://arxiv.org/abs/2110.03200>.
653

654 Somabha Mukherjee, Jaesung Son, and Bhaswar B Bhattacharya. Estimation in tensor ising models.
655 *Information and Inference: A Journal of the IMA*, 11(4):1457–1500, 2022b.
656

657 Sai Ganesh Nagarajan and Ioannis Panageas. On the analysis of em for truncated mixtures of two
658 gaussians. In *Algorithmic Learning Theory*, pp. 634–659. PMLR, 2020.

659 Lars Onsager. Crystal statistics. i. a two-dimensional model with an order-disorder transition. *Physical
660 review*, 65(3-4):117, 1944.
661

662 Orestis Plevrakis. Learning from censored and dependent data: The case of linear dynamics. In
663 *Conference on Learning Theory*, pp. 3771–3787. PMLR, 2021.

664 Peiwei Qin and Jieyu Zhao. A polynomial-time algorithm for image segmentation using ising mod-
665 els. In *2011 Seventh International Conference on Natural Computation*, volume 2, pp. 932–935.
666 IEEE, 2011.

667 Bruce Sacerdote. Peer effects with random assignment: Results for dartmouth roommates. *The
668 Quarterly journal of economics*, 116(2):681–704, 2001.
669

670 Allan Sly and Nike Sun. The computational hardness of counting in two-spin models on d-regular
671 graphs. In *2012 IEEE 53rd Annual Symposium on Foundations of Computer Science*, pp. 361–
672 369. IEEE, 2012.

673 Michel Talagrand. *Spin glasses: a challenge for mathematicians: cavity and mean field models*,
674 volume 46. Springer Science & Business Media, 2003.
675

676 Michel Talagrand. *Mean field models for spin glasses: Volume I: Basic examples*, volume 54.
677 Springer Science & Business Media, 2010.

678 Yu Wang, Guanqun Cao, Shiwen Mao, and R. Mark Nelms. Analysis of solar generation and weather
679 data in smart grid with simultaneous inference of nonlinear time series. In *2015 IEEE Conference
680 on Computer Communications Workshops, INFOCOM Workshops, Hong Kong, China, April 26
681 - May 1, 2015*, pp. 600–605. IEEE, 2015.

682 Murtaza Zafer and Eytan Modiano. Blocking probability and channel assignment in wireless net-
683 works. *ieee transactions on Wireless communications*, 5(4):869–879, 2006.
684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **Contents**

703	A Related Work and Additional Background	14
704	A.1 Conjunctive Norm Formulae	15
705	A.2 Exchangeable Pairs	15
706	B Algorithm For Maximizing the Pseudo-Likelihood	16
707	C Omitted Proofs of Section 3.1 (Proof of Theorem 2)	17
708	D Omitted Proofs in Section 3.2 (Proof of Lemma 3.2)	17
709	E Omitted Proofs of Section 3.3 (Strong Convexity of the Pseudo-Likelihood)	19
710	E.1 Proof of Lemma 3.4	19
711	E.2 Proof of Lemma 3.5	22
712	E.3 Proof of Lemmas 3.6 & 3.7	24
713	E.4 Proof of Lemma 3.3	25
714	F Applications	28

724 **A RELATED WORK AND ADDITIONAL BACKGROUND**

725 The Ising model originated as a mathematical model of ferromagnetism on subgraphs of the lattice \mathbb{Z}^d , capturing local interactions in physical systems. Ising solved the one-dimensional case in his thesis (Ising, 1925), while Onsager later resolved the two-dimensional case (Onsager, 1944), revealing a continuous phase transition between ferromagnetic and paramagnetic states. Beyond low dimensions, the Ising model also serves as a foundational example of spin glasses, aiding both condensed matter physics and probability theory in understanding complex magnetic materials and high-dimensional correlated loss landscapes (Talagrand, 2003; 2010).

726 Our inquiry into the Ising model will be statistical in nature, concerning the consistent estimation of the inverse temperature parameter under the presence of truncation using a single sample. Despite the seeming simplicity of this task, the presence of phase transitions yields it to be theoretically 727 impossible in certain regimes; our results stand in light of these challenges. One of the primary 728 difficulties in our task is our graph G , by extension interaction tensor A , is arbitrary (although of 729 a somewhat bounded degree), and thus our results hold in a regime that is neither fully locally 730 connected or mean-field. The first work to prove such a result was (Chatterjee, 2007), who via use 731 of the technique of exchangeable pairs, a variation on Stein’s inequality to prove variance bounds, 732 was able to demonstrate the consistency of the maximum pseudolikelihood estimate derived from 733 a single sample (an objective that will be expounded on in the sequel) given the log partition function 734 $F_{G,\beta,n} = \log(Z_{G,\beta,n})$ diverges with n in the large data limit. As an example, when this seemingly 735 innocuous assumption is not upheld, under the mean field Curie-Weiss model, i.e.

$$747 \quad \Pr_{CW}(\sigma) = \frac{1}{Z_\beta} \exp \left(\beta \sum_{i,j \in [n]} \frac{1}{n} \sigma_i \sigma_j \right), \quad (\text{Curie-Weiss})$$

748 consistent estimation is *impossible*, as simple calculus yields that $\lim_{n \rightarrow \infty} F_{G,\beta,n} = \mathcal{O}(1)$. More- 749 over, if β diverges to infinity with n , the pseudolikelihood objective ceases to be strongly concave, 750 collapsing the Fisher information, and rendering estimation impossible. Beyond the estimation of 751 the inverse temperature, (Mukherjee et al., 2022b) was able to extend the regime of Chatterjee (Chat- 752 terjee, 2007), demonstrating results for the *joint* estimation of the inverse temperature β and the 753 external field h . Viewing the task of estimating the inverse temperature as structure estimation over 754

756 a parametric class of interaction matrices, i.e parameterized by β , (Dagan et al., 2020) generalized
 757 this setting to provide learning guarantees for large classes of parametric spaces, relying on a clever
 758 use of conditioning to use Dobrushin’s condition at all constant temperatures.

759 Beyond single sample learning, viewing the Ising model as a Markov random field, there is a larger
 760 body of work devoted to *structure* learning of the graph underlying the model using *multiple* samples.
 761 In a breakthrough work Bresler (Bresler, 2015), demonstrated how to efficiently estimate the
 762 strength of links in the graph underlying the Ising model by way of bounding the marginal influence
 763 each node receives. Building on this, (Hamilton et al., 2017) generalized this work to subsume
 764 models with higher order interaction terms and multiple possible spin states.

765 A parallel line of work has also investigated the feasibility of learning Markov random fields under
 766 *hard*-constrained distributions with a *single* sample. This line of work commenced with (Bhat-
 767 tacharya & Ramanan, 2021) studying the fugacity parameter of the hard core model, i.e. a prob-
 768 ability distribution over independent sets over a graph $G = (V, E)$ represented by binary vectors
 769 $\sigma \in \{0, 1\}^n$, where $\sigma_i = 1$ indicates the node is included in the independent set

$$770 \quad \Pr_{\lambda}^N(\sigma) = \frac{1}{Z_{G, \lambda}} \lambda^{\sum_{u=1}^N \sigma_u} \prod_{(u, v) \in E} \mathbf{1}\{\sigma_u + \sigma_v \leq 1\}. \quad (\text{Hard Core Model})$$

771 Following up on this (and closer to our setting), (Galanis et al., 2024) considered the feasibility of
 772 learning boolean product distributions over truncated portions of the boolean hypercube, making use
 773 of the *tilted- k -SAT* model over $S \subset \{0, 1\}^n$, where S is defined to be the set of solutions of a fixed
 774 bounded degree k -CNF formula Φ .

$$775 \quad \Pr_{\beta}(\sigma) = \frac{1}{Z_{\beta}} \exp \left(\beta \sum_{i \in [n]} \sigma_i \right) \mathbf{1}\{\sigma \in S\} \quad (\text{Tilted K-SAT})$$

776 Lastly, there has been a substantial amount of interest in constrained normal form formulae. The
 777 literature is multi-faceted, and we only recount the literature, pertinent to our setting. In the bounded-
 778 degree setting, it is well known from (Gebauer et al., 2016) that the satisfiability threshold ($d \lesssim 2^{k/2}$), that is the regime of the degree parameter with respect to the clause size is guaranteed to
 779 have a solution, coincides with the ability to apply the Lovasz Local Lemma (Guo et al., 2019), a
 780 powerful application of the probabilistic method. Moreover, there has been substantial inquiry into
 781 random k -CNF formulae and their solutions, as a function of the clause density $\alpha = m/n$, where m
 782 is the number of clauses in the formula and the multitude of other phase transitions governing the
 783 intrinsic geometry of the solution space, i.e. how do solutions cluster together and what can be said
 784 about local connections between them. Our results in both settings, take hold in the Lovasz Local
 785 Lemma regime where a solution under an average draw has many neighbors Hamming-distance one
 786 away in $S \subset \{-1, 1\}^n$.

787 As a first step towards estimating the inverse temperature, our work lays the statistical groundwork
 788 to guarantee there exists an objective whose objective yields a consistent estimator for β and an
 789 algorithm to efficiently find it. This can be seen as a generalization of both regimes, as the Ising
 790 model with external field generalizing the tilted- k -SAT model by introducing a quadratic interaction
 791 term and extending the external field h to be an arbitrary vector in the $n - 1$ -sphere, i.e $\|h\|_2 \leq 1$,
 792 rather than the all ones vector. Beyond deterministic truncation, our results are the first to hold the
 793 broader class of solution sets under random truncation.

794 A.1 CONJUNCTIVE NORM FORMULAE

795 Conjunctive normal form (CNF) is a canonical way of expressing Boolean formulas as a conjunction
 796 of disjunctions, or equivalently, as an "AND" of "OR" clauses. Each clause is a disjunction of
 797 literals, where a literal is either a Boolean variable or its negation. A CNF formula is said to be
 798 a k -CNF formula (or a k -SAT instance) if every clause contains exactly k literals. For example,
 799 $(x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_1 \vee x_4 \vee x_5)$ is a 3-CNF formula with two clauses.

800 A.2 EXCHANGEABLE PAIRS

801 In the context of the Ising model, the method of exchangeable pairs provides a powerful technique
 802 for obtaining nonasymptotic variance bounds for functions of the boolean hypercube. In the context

810 of the Ising model $\mu_{G,\beta}$, given a function $f : \{-1, 1\}^n \rightarrow \mathbb{R}$, to bound $\text{Var}_\mu(f)$, the exchangeable
 811 pairs method constructs a pair (σ, σ') such that $(\sigma, \sigma') \stackrel{d}{=} (\sigma', \sigma)$ and the transition from σ to σ' is
 812 obtained via a single-site Glauber dynamics step (in our case truncated Glauber dynamics expanded
 813 on in the sequel).

814 Concretely, let σ' be obtained by resampling the spin at a uniformly chosen site $i \in V$ accord-
 815 ing to the conditional distribution $\text{Pr}_{\Phi,\beta}(\cdot \mid \sigma_{V \setminus \{i\}})$. Then (σ, σ') is an exchangeable pair. Let
 816 $F(\sigma, \sigma') = \mathbb{E}[f(\sigma) - f(\sigma') \mid \sigma_{-i}]$. The variance of f can be bounded via

$$818 \quad 819 \quad \text{Var}_\mu(f) \leq \frac{1}{2} \mathbb{E}_\mu [(f(\sigma) - f(\sigma')) F(\sigma, \sigma')] .$$

820

821 Under Lipschitz continuity with respect to the Hamming distance, this expression can be further
 822 bounded by quantities involving local influences and conditional variances, allowing for the control
 823 $\text{Var}_\mu(f)$ in terms of the geometry of G and the interaction strengths A_{ij} .

825 B ALGORITHM FOR MAXIMIZING THE PSEUDO-LIKELIHOOD

826

827 In this section, we present a polynomial-time algorithm for optimizing the pseudo-likelihood ob-
 828 jective using projected gradient descent. To guarantee convergence to the optimum, we rely on the
 829 following lemma from (Bubeck et al., 2015).

830 **Lemma B.1** (Bubeck et al., 2015) Theorem 3.10. *Let f be α -strongly convex and λ -smooth on
 831 the convex set \mathcal{X} . Then projected gradient descent with step-size $\eta = 1/\lambda$, satisfies for $t \geq 0$,*

$$833 \quad 834 \quad \|\mathbf{x}_{t+1} - \mathbf{x}^*\|_2^2 \leq \exp(\alpha t / \lambda) \|\mathbf{x}_1 - \mathbf{x}^*\|_2^2.$$

835 Therefore, setting $R = \|\mathbf{x}_1 - \mathbf{x}^*\|_2$ and $t = 2(\lambda/\alpha)(\log(R) - \log(\epsilon))$ guarantees that $\|\mathbf{x}_t - \mathbf{x}^*\|_2 \leq$
 836 ϵ .

837 Given the $\Omega(n/\Delta^3)$ -strong convexity of the pseudolikelihood function (Lemma 3.3) and the 1-
 838 Lipschitz continuity of its gradient, we apply projected gradient descent (PGD) with step size $\eta = 1$
 839 to obtain a $1/\sqrt{n}$ -accurate estimate of the MPLE. The algorithm is presented in Algorithm 1.

841 Algorithm 1 Projected Gradient Descent

842 1: **Input:** Vector sample σ , Magnetizations $m_i(\sigma) = \sum_j A_{ij} \sigma_j$, k -SAT Formula $\Phi = \Phi_{n,k,d}$
 843 2: **Output:** Maximum Pseudolikelihood Estimate $\hat{\beta}$
 844 3: Initialize: $\beta^0 = 0$, $\text{grad} = +\infty$, $\eta = 1$, flippable indices $\mathcal{F}(\sigma) = \emptyset$
 845 4: **for** i in $\{1, \dots, n\}$ **do**
 846 5: **if** $(-\sigma_i, \sigma_{-i})$ is a satisfying assignment of Φ **then**
 847 6: $\mathcal{F}(\sigma) \leftarrow \mathcal{F}(\sigma) \cup \{i\}$
 848 7: **end if**
 849 8: **end for**
 850 9: $t \leftarrow 0$
 851 10: **while** $|\text{grad}| > \frac{1}{\sqrt{n}}$ **do**
 852 11: $\text{grad} \leftarrow -\frac{1}{n} \sum_{i \in \mathcal{F}(\sigma)} [m_i(\sigma)(\sigma_i - \tanh(\beta^t m_i(\sigma)))]$
 853 12: $\beta^{t+1} \leftarrow \beta^t - \eta \text{grad}$
 854 13: $t \leftarrow t + 1$
 855 14: **if** $\beta^{t+1} < -B$ **then**
 856 15: $\beta^{t+1} \leftarrow -B$
 857 16: **end if**
 858 17: **if** $\beta^{t+1} > B$ **then**
 859 18: $\beta^{t+1} \leftarrow B$
 860 19: **end if**
 20: **end while**
 21: **return** β_t

864 C OMITTED PROOFS OF SECTION 3.1 (PROOF OF THEOREM 2) 865

866 In this section, we give a proof of Theorem 2, in the process demonstrating Lemma 3.1.
867

868 *Proof of Theorem 2.* Recall the first and second derivative bounds proved in Lemma 3.2 and Lemma
869 3.3, respectively
870

$$871 \mathbf{Pr}_{\beta^*} \left[|\phi_1(\beta^*; \boldsymbol{\sigma})| \leq \sqrt{\frac{(12 + 4B)n}{\delta}} \right] \geq 1 - \delta, \quad \text{and } \mathbf{Pr}_{\beta^*} \left[\frac{\partial \phi^2(\beta; \boldsymbol{\sigma})}{\partial^2 \beta} \geq \frac{n \exp(-B)}{\Delta^3 (8kd)^2} \right] \geq 1 - \frac{(24 + 8B)}{n^{0.1}}$$

874 The union bound implies that the event $\mathcal{A} = \{\boldsymbol{\sigma} \in \Omega(\Phi) : |\phi_1(\boldsymbol{\sigma}; \beta^*)| \leq c\sqrt{n}, \min_{\beta \in (-B, B)} \phi_2(\boldsymbol{\sigma}; \beta) \geq \Omega(n/\Delta^3)\}$ occurs with probability $1 - o(1)$.
875

876 To conclude the claim, we relate $\hat{\beta}$ with β^* , through smooth interpolation of both the parameter
877 values themselves $\beta(t) = t\hat{\beta} + (1-t)\beta^*$, and the gradient $s(t) = (\hat{\beta} - \beta^*)\phi_1(\beta(t); \boldsymbol{\sigma})$. Via the
878 chain rule, we notice that $s'(t) = (\hat{\beta} - \beta^*)^2 \phi_2(\beta(t); \boldsymbol{\sigma})$. The fundamental theorem of calculus
879 implies
880

$$881 -(\hat{\beta} - \beta^*)\phi_1(\beta; \boldsymbol{\sigma}) = s(1) - s(0) = \int_0^1 s'(t) dt = (\hat{\beta} - \beta^*)^2 \int_0^1 \phi_2(\beta(t); \boldsymbol{\sigma}) dt$$

884 The log-pseudolikelihood is a convex objective, $\phi_2(\tilde{\beta}; \boldsymbol{\sigma}) \geq 0$, for all $\tilde{\beta} \in (-B, B)$ and $\boldsymbol{\sigma} \in \mathcal{A}$
885 yielding,
886

$$887 |\hat{\beta} - \beta^*| |\phi_1(\beta^*; \boldsymbol{\sigma})| \geq (\hat{\beta} - \beta^*)^2 \left| \int_0^1 \phi_2(\beta(t); \boldsymbol{\sigma}) dt \right| \geq (\hat{\beta} - \beta^*)^2 \min_{\tilde{\beta} \in (-B, B)} \phi_2(\tilde{\beta}; \boldsymbol{\sigma}).$$

889 Rearranging this expression and using the fact that $\boldsymbol{\sigma} \in \mathcal{A}$,
890

$$891 |\hat{\beta} - \beta^*| \leq \frac{|\phi_1(\beta^*; \boldsymbol{\sigma})|}{\min_{\tilde{\beta} \in (-B, B)} \phi_2(\tilde{\beta}; \boldsymbol{\sigma})} \leq \mathcal{O} \left(\frac{\Delta^3}{\sqrt{n}} \right), \text{ for all } \boldsymbol{\sigma} \in \mathcal{A}.$$

894 Recalling that $\boldsymbol{\sigma} \in \mathcal{A}$ with probability $1 - o(1)$ proves the desired claim. \square
895

896 D OMITTED PROOFS IN SECTION 3.2 (PROOF OF LEMMA 3.2) 897

898 In this section, we provide a proof of the upper bound in probability for the first derivative of the
899 log-pseudolikelihood objective, restated below for reference.
900

901 **Lemma 3.2.** Fix a constant $\delta > 0$. The log-pseudolikelihood $\phi(\beta; \boldsymbol{\sigma})$ of a truncated Ising model
902 fulfilling Assumption 1 satisfies the following upper bound in probability, for all $\beta \in \mathbb{R}$.
903

$$904 \mathbf{Pr}_{\beta} \left[|\phi_1(\beta; \boldsymbol{\sigma})| \leq \sqrt{\frac{(12 + 4B)n}{\delta}} \right] \geq 1 - \delta.$$

906 *Proof.* To begin, we demonstrate our upper bound in probability over the first derivative of the log-
907 pseudolikelihood $\phi(\beta; \boldsymbol{\sigma})$, showing this concentration inequality via the technique of exchangeable
908 pairs introduced by (Chatterjee, 2007). Define the anti-symmetric function, $F : S \times S \rightarrow \mathbb{R}$,
909

$$910 F(\boldsymbol{\tau}, \boldsymbol{\tau}') = \frac{1}{2} \sum_{i \in [n]} (m_i(\boldsymbol{\tau}) + m_i(\boldsymbol{\tau}'))(\tau_i - \tau'_i)$$

913 Let $\boldsymbol{\sigma}$ drawn from the Ising model truncated by Φ . We construct a new assignment $\boldsymbol{\sigma}'$, via taking
914 one-step of the Glauber dynamics over the Markov random field induced by the Ising model; in other
915 words, we select a coordinate $J \in [n]$ at random and fix $\boldsymbol{\sigma}'_{-J} := \boldsymbol{\sigma}_{-J}$ and redraw the remaining
916 coordinate σ'_J from the conditional distribution $\mathbf{Pr}_{\beta}(\cdot | \boldsymbol{\sigma}_{-J})$. The value of F on $(\boldsymbol{\sigma}, \boldsymbol{\sigma}')$ simplifies
917 as,

$$F(\boldsymbol{\sigma}, \boldsymbol{\sigma}') = m_J(\boldsymbol{\sigma})(\sigma_J - \sigma'_J).$$

Define the function $f(\sigma)$ as the *conditional* expectation of $F(\sigma, \sigma')$ with respect to σ , that is

$$\begin{aligned} f(\sigma) &= \mathbb{E}_J (F(\sigma, \sigma') | \sigma) = \frac{1}{n} \sum_{i \in [n]} m_i(\sigma) (\sigma_i - \mathbb{E}(\sigma_i | \sigma_{-i})) \\ &= \frac{1}{n} \sum_{i \in \mathcal{F}(\sigma)} m_i(\sigma) (\sigma_i - \tanh(\beta m_i(\sigma))) \\ &= -\frac{1}{n} \frac{\partial}{\partial \beta} \phi(\beta; \sigma) \end{aligned}$$

To show prove the desired result, it suffices to show a bound on the second moment of $f(\sigma)$. Observe that (σ, σ') is indeed an exchangeable pair as

$$\mathbb{E}_\beta [f(\sigma)^2] = \mathbb{E}_{\beta, J} [f(\sigma) F(\sigma, \sigma')] = \mathbb{E}_{\beta, J} [f(\sigma') F(\sigma', \sigma)].$$

Moreover, the anti-symmetric nature of $F(\sigma, \sigma')$ implies $\mathbb{E}_{\beta, J} [f(\sigma') F(\sigma', \sigma)] = -\mathbb{E}_{\beta, J} [f(\sigma') F(\sigma, \sigma')]$. These facts combine to recast $\mathbb{E}_\beta [f(\sigma)]$ as follows,

$$\begin{aligned} \mathbb{E}_\beta [f(\sigma)^2] &= \mathbb{E}_{\beta, J} [f(\sigma) F(\sigma, \sigma')] = -\mathbb{E}_{\beta, J} [f(\sigma') F(\sigma, \sigma')] \\ &= \frac{1}{2} \mathbb{E}_{\beta, J} [(f(\sigma) - f(\sigma')) F(\sigma, \sigma')] \end{aligned}$$

If $\sigma = \sigma'$ then this expression is rendered trivially zero, and hence we need only analyse the case when $\sigma'_I = -\sigma_I$. If the redrawn coordinate I is selected from the set of flippable indices, this probability is,

$$p_i(\sigma) := \frac{\exp(-\sigma_i \beta m_i(\sigma))}{\exp(-\beta m_i(\sigma)) + \exp(\beta m_i(\sigma))} = \mathbf{Pr}(\sigma'_i = -\sigma_i | \sigma, I = i, i \in \mathcal{F}(\sigma))$$

and when $I \notin \mathcal{F}(\sigma)$ this probability is zero. Using the definitions of $f(\sigma)$ and $F(\tau, \tau')$ above, this expression is simplified as follows, where $\sigma^{(i)} = (-\sigma_i, \sigma_{-i})$.

$$\begin{aligned} \frac{1}{2} \mathbb{E}_J [(f(\sigma) - f(\sigma')) F(\sigma, \sigma') | \sigma] &= \frac{1}{n} \sum_{i \in \mathcal{F}(\sigma)} (f(\sigma) - f(\sigma^{(i)})) F(\sigma, \sigma^{(i)}) p_i(\sigma) \\ &= \frac{1}{n} \sum_{i \in \mathcal{F}(\sigma)} (f(\sigma) - f(\sigma^{(i)})) m_i(\sigma) (\sigma_i - \tanh(\beta m_i(\sigma))) p_i(\sigma) \\ &:= \frac{1}{n} \sum_{i \in \mathcal{F}(\sigma)} T_{1i} T_{2i} \end{aligned}$$

Bound on T_{1i} : We now bound each of term in the above expression, beginning with T_{1i} where i is flippable. The Taylor expansion of $f(\sigma^{(i)})$ centered at $f(\sigma)$ yields,

$$|f(\sigma^{(i)}) - f(\sigma)| \leq |\sigma_i - \sigma_i^{(i)}| \max_{w \in [-1, 1]} \frac{\partial f}{\partial \sigma_i}((w, \sigma_{-i})) = \max_{w \in [-1, 1]} 2 \cdot \frac{\partial f}{\partial \sigma_i}((w, \sigma_{-i})),$$

where w is point along the line with endpoints σ and $\sigma^{(j)}$.

The partial derivative of $f(\sigma)$ with respect to σ_i evaluated at a spin configuration $\tau \in S$ is

$$\frac{\partial f}{\partial \sigma_i}(\tau) = \frac{1}{n} \sum_{j \in \mathcal{F}(\tau)} \left(\left(\mathbf{1}_{i=j} - \frac{\beta A_{ji}}{\cosh^2(\beta m_i(\tau))} \right) m_j(\tau) + (\tau_j - \tanh(\beta m_j(\tau))) \frac{\partial m_j(\tau)}{\partial \sigma_i} \right)$$

The assumptions on G implies $|m_i(\tau)| \leq 1$ for all values of $i \in I$. Furthermore, $|\cosh(\cdot)| \geq 1$, yielding the following bound on the rescaled first term.

$$\left| \sum_{j \in \mathcal{F}(\tau)} \left(\mathbf{1}_{i=j} - \frac{\beta A_{ji}}{\cosh^2(\beta m_i(\tau))} \right) m_j(\tau) \right| \leq \left(|m_i(\tau)| + \sum_{\{j \neq i | j \in \mathcal{F}(\tau)\}} |\beta A_{ji} m_j(\tau)| \right)$$

Likewise, $\frac{\partial m_j(\tau)}{\partial \sigma_i} = A_{ji}$ implies a bound on the second term.

$$\left| (\tau_j - \tanh(\beta m_j(\tau))) \frac{\partial m_j(\tau)}{\partial \sigma_i} \right| \leq |(\tau_j - \tanh(\beta m_j(\tau)))| \left| \frac{\partial m_j(\tau)}{\partial \sigma_i} \right| \leq 2 |A_{ji}|$$

972 Combining these two bounds yields
973

$$\begin{aligned}
974 \quad |T_{i1}| &\leq \max_{w \in [-1, 1]} \left| \frac{\partial f}{\partial \sigma_i}((w, \sigma_{-i})) \right| \\
975 \\
976 \quad &\leq \max_{w \in [-1, 1]} \frac{1}{n} \left(|m_i((w, \sigma_{-i}))| + \sum_{\{j \neq i | j \in \mathcal{F}(\sigma)\}} |\beta A_{ji} m_j((w, \sigma_{-i}))| + 2|A_{ji}| \right) \\
977 \\
978 \quad &\leq \frac{1}{n} \left(1 + \sum_{\{j \neq i | j \in \mathcal{F}(\sigma)\}} |A_{ji}|(2 + B) \right) \\
979 \\
980 \quad &\leq \frac{(6 + 2B)}{n}
\end{aligned}$$

985 *Bound on T_{2i} :* Recall $|m_i(\sigma)| \leq 1$ for all $i \in I$ and $\sigma \in \{-1, 1\}^{|V/I|}$ and $|\tanh(x)| \leq 1, \forall x \in \mathbb{R}$.
986 Then

$$987 \quad |T_{2i}| = |m_i(\sigma)(\sigma_i - \tanh(\beta m_i(\sigma))p_i(\sigma))| \leq 2$$

988 *Putting together the pieces:* We are now ready to construct our final bound on $\mathbb{E}_\beta(f(\sigma)^2)$.

$$\begin{aligned}
989 \quad \mathbb{E}_\beta(f(\sigma)^2) &= \frac{1}{2} \mathbb{E}_{\beta, J}((f(\sigma) - f(\sigma'))F(\sigma, \sigma')) \\
990 \\
991 \quad &= \frac{1}{2n} \mathbb{E}_\beta \left(\sum_{i \in I} T_{1i} T_{2i} e_i(\sigma) \right) \\
992 \\
993 \quad &\leq \frac{1}{2n} \left(\sum_{i=1}^n \frac{(12 + 4B)}{n} \right) \\
994 \\
995 \quad &= \frac{(6 + 2B)}{n}
\end{aligned}$$

996 Recalling the relationship between $f(\sigma)$ and $\frac{\partial \phi}{\partial \beta}$, the claim follows directly. □
997

1003 E OMITTED PROOFS OF SECTION 3.3 (STRONG CONVEXITY OF THE 1004 PSEUDO-LIKELIHOOD)

1005 The primary aim of this section is proving Lemma 3.3, recounted here for convenience.

1006 **Lemma 3.3.** *The log-pseudolikelihood $\phi(\beta; \sigma)$ of a Ising model, truncated by a k -SAT formula with
1007 $k \geq \frac{4\Delta^3(1+\log(d^2k+1))}{\log(1+\exp(-2B))}$, fulfilling Assumption 1 satisfies the following lower bound in probability for
1008 all $\beta \in (-B, B)$,*

$$1009 \quad \Pr_{\beta^*} \left[\frac{\partial \phi^2(\beta; \sigma)}{\partial^2 \beta} \geq \frac{n \exp(-B)}{\Delta^3(8kd)^2} \right] \geq 1 - \frac{(24 + 8B)}{n^{0.1}}.$$

1010 Towards this goal, we provide a proof of Lemma 3.4 in Section E.1, Lemma 3.5 in Section E.2, and
1011 Lemmas 3.6 & 3.7 in Section E.3 before concluding Lemma 3.3 in Section E.4.

1012 E.1 PROOF OF LEMMA 3.4

1013 The proof of this lemma proceeds by defining an explicit, algorithmic correspondence between
1014 bijections $\rho : V \rightarrow [n]$ and independent sets I . This mapping induces a measure μ_ρ over bijections,
1015 which in turn defines a distribution over the resulting independent sets. We analyze this distribution
1016 to bound the probability that a randomly generated independent set contains fewer than λk elements
1017 in some clause—a “bad event.” Applying the Lovász Local Lemma, we show that with positive
1018 probability, none of these bad events occur, implying the existence of an independent set that satisfies
1019 the desired clause-wise coverage property.

1026 E.1.1 THE ALGORITHM
1027

1028 Given a bijection $\rho : V \rightarrow [n]$, we provide a simple algorithm for finding an independent set detailed
1029 formally below. To bound the probability of bad events, that fewer than λk elements from a clause
1030 are included in the independent set under the uniform measure over bijections μ_ρ , we must ensure
1031 that the inclusion of distant vertices into the independent set occurs in a *independent* manner. This
1032 form of spatial independence is crucial for applying the Lovász Local Lemma, and it is established
1033 in the following lemma.

1034 **Algorithm 2** Independent Set in Graph Based on Random Ordering
1035

1036 **Require:** Graph $G = (V, E)$ with $V = [n]$
1037 **Ensure:** Set S of selected vertices
1038 1: Sample a random permutation $\rho : V \rightarrow [n]$
1039 2: **function** INDEdgeSET(ρ)
1040 3: Initialize $S \leftarrow \emptyset$
1041 4: **for all** $e \in V$ **do**
1042 5: **if** $\rho(u) > \max_{v \in N(u)} \rho(v)$ **then**
1043 6: $S \leftarrow S \cup \{u\}$
1044 7: **end if**
1045 8: **end for**
1046 9: **return** S
1047 10: **end function**
1048 11: **return** INDEdgeSET(ρ)

1049 **Lemma E.1.** Fix two vertices $u, v \in V$ such $d(u, v) \geq 3$, over the graph G induced by
1050 A . Over the uniform measure of orderings $\rho : V \rightarrow [n]$, μ_ρ , the indicator random variables
1051 $\mathbf{1}\{u \text{ belongs to } \text{IndEdgeSet}(\rho)\}$ and $\mathbf{1}\{v \text{ belongs to } \text{IndEdgeSet}(\rho)\}$ are independent, that is

$$1052 \Pr_{\mu_\rho}[\{u, v \in \text{IndEdgeSet}(\rho)\}] = \Pr_{\mu_\rho}[\{u \in \text{IndEdgeSet}(\rho)\}] \cdot \Pr_{\mu_\rho}[\{v \in \text{IndEdgeSet}(\rho)\}]$$

1053 Moreover, the probability a given node v lies in I is

$$1055 \Pr_{\mu_\rho}[\{v \in \text{IndEdgeSet}(\rho)\}] \leq \frac{1}{\Delta + 1}$$

1058 *Proof.* The event that a vertex $w \in V$ lies in $\text{IndEdgeSet}(\rho)$ depends fundamentally on the structure
1059 of the bijection ρ . Specifically,

$$1060 \{w \in \text{IndEdgeSet}(\rho)\} = \left\{ \rho(w) > \max_{i \in N(w)} \rho(i) \right\},$$

1063 where $N(w)$ denotes the neighbors of w in the graph.

1064 The joint probability, under the uniform measure μ_ρ over all bijections ρ , that two distinct vertices
1065 u and v both belong to the set $I = \text{IndEdgeSet}(\rho)$,

$$1067 \Pr_{\mu_\rho}[u \in I \text{ and } v \in I] = \Pr_{\mu_\rho} \left[\rho(u) > \max_{w \in N(u)} \rho(w), \rho(v) > \max_{w' \in N(v)} \rho(w') \right],$$

1069 depends only on the relative ordering of the values of ρ on the set $\{u, v\} \cup N(u) \cup N(v)$, which has
1070 size at most $2\Delta + 2$. Moreover, since $d(u, v) \geq 3$, the neighborhoods $N(u)$ and $N(v)$ are disjoint.

1072 Towards computing this probability, observe that, there are $|N(u)|!$ permutations of $\{u\} \cup N(u)$
1073 in which u appears first, and similarly there are $|N(v)|!$ permutations of $\{v\} \cup N(v)$ in which
1074 v appears first. All orderings over $\{u \cup v \cup N(u) \cup N(v)\}$, which place u, v first among their
1075 respective neighbors are shuffles of existing orderings of $\{u \cup N(u)\}$ and $\{v \cup N(v)\}$. Counting
1076 combinations, there are $\binom{|N(u)| + |N(v)| + 2}{|N(u)| + 1}$ ways to interleave the two sets $\{u\} \cup N(u)$ and $\{v\} \cup N(v)$
1077 while preserving their internal orderings, implying the number of permutations satisfying the above
1078 condition is:

$$1079 \binom{|N(u)| + |N(v)| + 2}{|N(u)| + 1} \cdot |N(u)|! \cdot |N(v)|! = \frac{(|N(u)| + |N(v)| + 2)!}{(|N(u)| + 1)(|N(v)| + 1)}.$$

1080 As the total number of permutations of the relevant elements is $(|N(u)| + |N(v)| + 2)!$, the joint
 1081 probability is:

$$1082 \Pr_{\mu_\rho}[u, v \in \text{IndEdgeSet}(\rho)] = \frac{1}{(|N(u)| + 1)(|N(v)| + 1)}.$$

1083 A similar argument yields that for a single vertex v there are $|N(v)|!(|N(v)| + 1)! = 1/(|N(v)| + 1)$
 1084 permutations placing it first in relative order among its neighbors. This implies the probability over
 1085 the uniform measure over bijections that v belongs to the induced independent set is:

$$1086 \Pr_{\mu_\rho}[v \in \text{IndEdgeSet}] = \Pr_{\mu_\rho} \left[\rho(v) > \max_{j \in N(v)} \rho(j) \right] = \frac{1}{|N(v)| + 1}.$$

1087 The desired conclusion follows by combining the expressions for the single and joint probabilities.
 1088 \square

1089 In advance of proving Lemma 3.4, we introduce an important tool that relates an arbitrary collection
 1090 of potentially correlated random variables to independently and identically distributed variables,
 1091 which will enable the use of Chernoff bounds in the sequel.

1092 **Lemma E.2** ((Frieze & Karoński, 2015) Section 23.9). *Suppose that $\{Y_i\}_{i \in [n]}$ are independent
 1093 random variables and that $\{X_i\}_{i \in [n]}$ are random variables so that for any real t and $i \in [n]$, it
 1094 holds that*

$$1095 \Pr[X_i \geq t | X_1, \dots, X_{i-1}] \geq \Pr[Y_i \geq t].$$

1096 Then, for any real t ,

$$1097 \Pr[X_1 + \dots + X_n \geq t] \geq \Pr[Y_1 + \dots + Y_n \geq t].$$

1098 Armed with this background, we now prove Lemma 3.4, recounted here for reference.

1099 **Lemma 3.4.** *Let G be a graph with maximum degree $\Delta = o(n^{1/6})$ and Φ be a k -SAT formula. If
 1100 $k > 10\Delta^3(1 + \log(dk\Delta^2))$, then there exists an independent set $I \subset V$ such that Φ' , Φ truncated
 1101 on $V \setminus I$, is a λk -SAT formula where $\lambda = 1/4\Delta^3$.*

1102 *Proof.* To begin, consider a clause $C \in \mathcal{C}$, and select a maximal collection of *neighborhood* disjoint
 1103 variables $C' \subseteq C$. In other words, we require that for all $i, j \in C'$, $d(i, j) \geq 3$. The maximum size
 1104 of a two-hop neighborhood of a given point is at most $\Delta^2 + 1$, implying the size of C' is at least
 1105 $k/(\Delta^2 + 1)$. Denote the function $f_C(\rho) = |\{\text{IndEdgeSet}(\rho) \cap C\}|$. As each pair of elements in C' is
 1106 at least distance 3 apart from each other, Lemma E.1 implies the following bound on the expectation
 1107 of $f_C(\rho)$.

$$1108 \mathbb{E}_{\mu_\rho}[f_C(\rho)] \geq \mathbb{E}_{\mu_\rho}[f_{C'}(\rho)] = \sum_{v_i \in C'} \Pr_{\mu_\rho}[v_i \in I] \geq \frac{k}{(\Delta + 1)(\Delta^2 + 1)}$$

1109 Moreover, this directly implies that for all t , that for $Y_i \sim \text{Bern}(1/(\Delta + 1))$

$$1110 \Pr[\mathbf{1}\{v_i \in I\} | \mathbf{1}\{v_1 \in I\}, \dots, \mathbf{1}\{v_{i-1} \in I\}] \geq \Pr[Y_i \geq t].$$

1111 Given this information, we use Chernoff bounds to find an upper bound on the event $\Pr[Y_1 + \dots + Y_n \geq k/(2(\Delta^2 + 1)(\Delta + 1))]$, and use this to in turn bound $\mathbb{E}_{\mu_\rho}[f_C(\rho)]$.

$$\begin{aligned} 1112 \Pr_{\mu_\rho} \left[f_C(\rho) < \frac{k}{(2(\Delta + 1)(\Delta^2 + 1))} \right] &< \Pr \left[\sum_{v_i \in C} Y_{v_i} < \frac{k}{(2(\Delta + 1)(\Delta^2 + 1))} \right] \\ 1113 &\leq \Pr \left[\sum_{v_i \in C'} Y_{v_i} < \frac{k}{(2(\Delta + 1)(\Delta^2 + 1))} \right] \\ 1114 &= \Pr \left[\sum_{v_i \in C'} Y_{v_i} - \mathbb{E} \left[\sum_{v_i \in C'} Y_{v_i} \right] \leq (1 - 1/2) \mathbb{E} \left[\sum_{v_i \in C'} Y_{v_i} \right] \right] \\ 1115 &\leq \exp \left(-\frac{k}{8(\Delta + 1)(\Delta^2 + 1)} \right) \end{aligned}$$

1134 To construct a final bound on k in terms of d and Δ to ensure that a marking satisfying our desired
 1135 conditions exists, we use the symmetric version of the Lovasz Local Lemma. Each variable appears
 1136 in at most d other clauses, and the event of selection into the independent set relies on its $\Delta^2 + 1$
 1137 neighbors which lie in its two-hop neighborhood. This implies the degree of the dependency graph
 1138 of Φ is $kd(\Delta^2 + 1)$.
 1139

$$\begin{aligned}
 1140 \quad & 2e \exp\left(-\frac{k}{8(\Delta^2 + 1)(\Delta + 1)}\right) (kd(\Delta^2 + 1)) < 1 \\
 1141 \quad & \exp\left(-\frac{k}{8(\Delta^2 + 1)(\Delta + 1)}\right) < \frac{1}{2e(kd(\Delta^2 + 1))} \\
 1142 \quad & -\frac{k}{8(\Delta^2 + 1)(\Delta + 1)} < -1 - \log(kd(\Delta^2 + 1)) \\
 1143 \quad & k > 8(1 + \log(kd) + 3 \log(\Delta))(\Delta^2 + 1)(\Delta + 1) \\
 1144 \quad & \\
 1145 \quad & \\
 1146 \quad & \\
 1147 \quad &
 \end{aligned}$$

1148 The independent set I induces a smaller CNF, $\Phi'_{n,k',d'} = (\mathcal{V}', \mathcal{C}')$, with clauses $\mathcal{C}' = \bigcup_{C \in \mathcal{C}} C \cap I$,
 1149 each of which has at least $k/(2\Delta^3 + 2\Delta)$ variables, concluding the desired claim. \square
 1150

1151 E.2 PROOF OF LEMMA 3.5

1152 In this section, our aim to show Lemma 3.5. We accomplish this goal in two steps, **first** demonstrating
 1153 each variable outside the independent set is flippable with probability $1 - \delta$, where $\delta \in (0, 1)$
 1154 and **second** demonstrating each variable *inside* the independent set is flippable with probability at
 1155 least $1/2$.
 1156

1157 Proceeding, we introduce the version of the Lovasz Local Lemma that will be used in bound of
 1158 $s_i(\sigma)$.
 1159

1160 **Lemma E.3** ((Guo et al., 2019)). *Suppose that $\mu(\sigma)$ is a product distribution over $\sigma' \in \{-1, 1\}^k$.
 1161 Let A_i be an event determined by the elements of σ , and denote $B(S) = \bigwedge_{i \in S} \bar{A}_i$. Then if there
 1162 exists a vector x such that $x \in (0, 1]^m$ and*

$$\Pr(A_i) \leq x_i \prod_{(i,j) \in E} (1 - x_j)$$

1163 then
 1164

$$\Pr(B(S)) \geq \prod_{i \in S} (1 - x_i) > 0$$

1165 Moreover, let E be an event determined by some of the coordinates of σ and let $\Gamma(E) = \{i \in S :
 1166 \text{var}(A_i) \cap \text{var}(E) \neq \emptyset\}$. We then see that
 1167

$$\Pr_\mu(E|B(S)) \leq \Pr_\mu(E) \prod_{i \in \Gamma(E) \cap S} (1 - x_i)^{-1}$$

1168 **Lemma E.4.** *Given a sample $\sigma \sim \mathbf{Pr}_{\beta, S}$, where $\beta \in (-B, B)$ and that the k -SAT formula Φ which
 1169 induces the truncation set S , satisfies the following clause size bound*

$$k \geq \frac{4\Delta^3(1 + \log(d^2k + 1))}{\log(1 + \exp(-2B))}.$$

1170 ³Then for $\Delta \geq 5$, there exists an independent set I following Lemma 3.4 such that
 1171

$$\Pr_{\beta, S}[s_j(\sigma) = 1] \geq 1/2 \quad \forall j \in V \setminus I.$$

1172 *Proof.* Towards establishing the desired claim, we first need a bound on k' with respect to d to
 1173 ensure the use of Lemma E.3 (the asymmetric LLL). For any assignment $\tau \in \{-1, 1\}^{|V \setminus I|}$, define
 1174 $\Phi^\tau = (\mathcal{V}^\tau, \mathcal{C}^\tau)$ as the CNF formula obtained via truncation on the partial assignment τ , that is
 1175 the assignment that removes clauses satisfied by τ and removes literals from τ from the remaining
 1176 clauses.
 1177

³This term scales as $\gtrsim e^{2B} \Delta^3 \log(d^2k)$.

1188 clauses. Notice, the set of clauses \mathcal{C}' within Φ' are merely the union of all clauses \mathcal{C}^τ over all Φ^τ ,
 1189 that is
 1190

$$1191 \quad \mathcal{C}' = \bigcup_{\tau \in \{-1,1\}^{|V/I|}} \mathcal{C}^\tau, \\ 1192 \\ 1193$$

1194 implying a bound that would guarantee a satisfying assignment for Φ' , would in turn ensure the
 1195 existence of the satisfiability of all Φ^τ .
 1196

1197 Moreover, recall for any independent set I , conditioned on the variables outside of the independent
 1198 set V/I , the Ising model collapses into a product distribution.
 1199

$$1200 \quad \Pr_\beta[\sigma_I | \sigma_{V/I}] = \prod_{i \in I} \frac{\exp\left(\beta \sum_{j \in V/I} A_{ij} \sigma_i \sigma_j\right) e_i(\sigma)}{\exp\left(\beta \sum_{j \in V/I} A_{ij} \sigma_j\right) + \exp\left(-\beta \sum_{j \in V/I} A_{ij} \sigma_j\right)} \\ 1201 \\ 1202$$

1203 This directly implies
 1204

$$1205 \quad \min_{\kappa \in \{-1,1\}} \Pr_\beta[\sigma_i = \kappa | e_i(\sigma), \sigma_{V/I}] \geq \frac{\exp(|\beta|)}{\exp(\beta\Delta) + \exp(-\beta\Delta)} = \frac{\exp(2|\beta|)}{1 + \exp(2|\beta|)} \\ 1206 \\ 1207$$

1208 For each clause $C' \in \mathcal{C}'$, the event $\{C' \text{ is not satisfied}\}$ depends on dk variables which lie in at most
 1209 d^2k clauses. Following the setup of Lemma E.3, we set $x(C') = 1/(D+1)$, $D := d^2k$, and notice
 1210 if $k' \geq \frac{1+\log(d^2k+1)}{\log(1+\exp(-2|\beta|))}$
 1211

$$1212 \quad \begin{aligned} & \left(\frac{\exp(2|\beta|)}{\exp(2|\beta|) + 1} \right)^{k'} \leq \left(\frac{D}{D+1} \right)^D \frac{1}{D+1} \\ 1213 & \left(\frac{D}{D+1} \right)^{-D} (D+1) \leq (1 + \exp(-2|\beta|))^{k'} \\ 1214 & e(d^2k+1) \leq (1 + \exp(-2|\beta|))^{k'} \\ 1215 & 1 + \log(d^2k+1) \leq k' \log(1 + \exp(-2|\beta|)) \\ 1216 & \frac{1 + \log(d^2k+1)}{\log(1 + \exp(-2|\beta|))} \leq k' \\ 1217 & \end{aligned} \\ 1218$$

1219 Counting combinations, there is only one way to assign all the variable in C' such that the clause
 1220 is not satisfying. The worst case probability a clause C' takes any given configuration under the
 1221 *untruncated* distribution μ_β is at most
 1222

$$1223 \quad \Pr_{\mu_\beta}[\text{clause } C' \text{ is not satisfied}] \leq \left(\frac{\exp(2|\beta|)}{1 + \exp(2|\beta|)} \right)^{k'}.$$

1224 For every pinning $\tau \in \{-1,1\}^{|V/I|}$, we can equivalently find a upper bound for the probability that
 1225 $\{s_i(\sigma) = 0\}$, under the conditional distribution, i.e. given $\sigma \in S_\tau$, where S_τ is the set of satisfying
 1226 assignments of Φ where $\sigma_{V/I}$ is pinned to τ .
 1227

$$1228 \quad \begin{aligned} & \Pr_\beta[s_i(\sigma) = 0] = \sum_{\tau \in \{-1,1\}^{|V/I|}} \Pr_{\mu_\beta}[s_i(\sigma) = 0 | \sigma \in S_\tau] \Pr_\beta[\sigma \in S_\tau] \\ 1229 & \leq \max_{\tau \in \{-1,1\}^{|V/I|}} \Pr_{\mu_\beta}[s_i(\sigma) = 0 | \sigma \in S_\tau] \\ 1230 & \leq \Pr_{\mu_\beta}[s_i(\sigma) = 0] \left(1 - \frac{1}{D+1} \right)^{-D} \leq ed \left(\frac{\exp(2|\beta|)}{1 + \exp(2|\beta|)} \right)^{k'} \\ 1231 & \end{aligned}$$

1242 The final inequality derives from our use of Lemma E.3, relating probabilities between the truncated
 1243 and untruncated distributions. We lastly rearrange for k' to derive the final result.
 1244

$$\begin{aligned}
 1245 \quad \Pr_{\beta}[s_i(\sigma)] &= (1 - \delta) \geq 1 - ed \left(\frac{\exp(2|\beta|)}{1 + \exp(2|\beta|)} \right)^{k'} \\
 1246 \quad ed \left(\frac{\exp(2|\beta|)}{1 + \exp(2|\beta|)} \right)^{k'} &\leq \delta \\
 1247 \quad 1 + \log(d) - k'(\log(1 + \exp(2|\beta|)) - 2|\beta|) &\geq \log(\delta) \\
 1248 \quad \frac{1 + \log(d) - \log(\delta)}{\log(1 + \exp(2|\beta|)) - 2|\beta|} &\leq k' \\
 1249 \quad 1250 \quad 1251 \quad 1252 \quad 1253 \quad 1254 \quad 1255 \quad 1256 \quad 1257 \quad \square
 \end{aligned}$$

1258 Lastly, to guarantee there are a sufficient number of flippable variables in the independent set itself,
 1259 we use the following result from (Galanis et al., 2024) to find a lower bound on the number of
 1260 variables within the independent set that are flippable under a product distribution.
 1261

Lemma E.5 (Lemma 15 & 16 (Galanis et al., 2024)). *Consider a formula $\Phi' = \Phi_{n,k',d}$ with $k' \geq \frac{2 \log(dk') + \Theta(1)}{\lambda \log(1 + e^{-\beta})}$, and an associated product measure μ_{γ} over the hypercube $\{-1, 1\}^n$, such that each variable is set to 1 independently with probability $(\exp(\gamma))/(1 + \exp(\gamma))$. Then for each variable $\sigma_i \in \mathcal{V}$,*

$$1266 \quad \Pr_{\gamma}[\sigma_i \text{ is not flippable}] \leq 1/2. \quad 1267$$

1268 Moreover, we can find a collection of $R \subseteq [n]$ with $|R| \geq n/(2kd)^2$ that are neighborhood disjoint
 1269 in the interaction graph of the k -SAT formula Φ' such that for all subcollections $\{i_1, \dots, i_t\} \subset R$,
 1270

$$1271 \quad \Pr_{\gamma}[e_{i_t}(\sigma) = 1 | e_{i_1}(\sigma) = 1, \dots, e_{i_{t-1}}(\sigma) = 1] \geq 1/2. \quad 1272$$

1273 This in turn implies, with probability $1 - \exp(-\Omega(n))$ over the choice of $\sigma \sim \Pr_{\phi, \beta}$, it holds that
 1274 $\sum_{i \in R} e_i(\sigma) \geq |R|/3$.
 1275

1276 The second half of Lemma 3.5 then follows from this corresponding results in (Galanis et al., 2024).
 1277 To relate these results to our setting, observe that under our product distribution, the probability that
 1278 any variable is set to one is at most $e^{-B}/(1 + e^{-B})$, and the true marginals may in fact be *more*
 1279 balanced. Consequently, the conditions of their result are satisfied in our regime.
 1280

1281 E.3 PROOF OF LEMMAS 3.6 & 3.7

1282 For reference, recall the expression for the Hessian of the log pseudo-likelihood,
 1283

$$\begin{aligned}
 1284 \quad \phi_2(\beta; \sigma) &= \frac{\partial^2 \phi(\beta; \sigma)}{\partial \beta^2} = \sum_{i=1}^n \frac{m_i^2(\sigma)}{\cosh^2(\beta m_i(\sigma))} e_i(\sigma). \\
 1285 \quad 1286 \quad 1287 \quad 1288
 \end{aligned}$$

1289 Towards demonstrating $\phi_2(\beta; \sigma) \in \Omega(n)$ with probability $1 - o(1)$ for all $\beta \in (-B, B)$, we provide
 1290 a lower bound of the conditional mean of the magnetization of the flippable variables via proving
 1291 Lemma 3.6.
 1292

1293
 1294 *Proof of Lemma 3.6.* For all $\sigma \in \{-1, 1\}^n$, consider $(\sum_{t \neq j} A_{it} \sigma_t + A_{ij})^2$ and $(\sum_{t \neq j} A_{it} \sigma_t - A_{ij})^2$. If $\sum_{t \neq j} A_{it} \sigma_t$ and A_{ij} have the same sign, the first term is at least A_{ij}^2 and the opposite sign,

1296 the second is at least A_{ij}^2 . This implies that
1297

$$\begin{aligned}
1298 \mathbb{E}_{\beta^*}[m_i^2(\boldsymbol{\sigma})|\boldsymbol{\sigma}_{-j}] &= \sum_{\kappa \in \{0,1\}} \mathbb{E}_{\beta^*}[m_i^2(\boldsymbol{\sigma})|e_j(\boldsymbol{\sigma}) = \kappa] \mathbf{Pr}_{\beta}[e_j(\boldsymbol{\sigma}) = \kappa] \\
1299 &\geq \sum_{\kappa \in \{0,1\}} A_{ij}^2 \cdot \min_{\ell \in \{-1,1\}} (\mathbf{Pr}_{\beta^*}[\sigma_j = \ell|\boldsymbol{\sigma}_{-j}, e_j(\boldsymbol{\sigma}) = \kappa]) \mathbf{Pr}_{\beta}[e_j(\boldsymbol{\sigma}) = \kappa] \\
1300 &\geq \frac{A_{ij}^2}{2} \exp\left(-\left|\beta^* \sum_{t \neq j} A_{jt} \sigma_j\right|\right) \mathbf{Pr}_{\beta^*}[e_j(\boldsymbol{\sigma}) = 1] \\
1301 &\geq \frac{A_{ij}^2}{2} \exp(-B) \mathbf{Pr}_{\beta^*}[e_j(\boldsymbol{\sigma}) = 1] \\
1302 &\geq \frac{A_{ij}^2}{2} \exp(-B) \mathbf{Pr}_{\beta^*}[e_j(\boldsymbol{\sigma}) = 1]
\end{aligned}$$

1303 \square
1304
1305
1306
1307
1308

1309 This result provides a lower bound for $\phi_2(\beta; \boldsymbol{\sigma})$ in terms of scaled elements of the interaction matrix
1310 A_{ij} . To maximize this lower bound, we wish to select columns $h(i)$ for each row to ensure the
1311 value of $A_{ih(i)}$ is as large as possible. To this end, consider an injective mapping $h : V \rightarrow V$. The
1312 requirement that $\|A\|_{\infty} \leq 1$ and $\|a_i\|_2 \geq c$, implies the existence of a edge A_{ij} for each row such
1313 that $A_{ij} > c'$. Moreover, due to the connectivity of the graph, we can select a subset $I' \subset I$ of size
1314 at least $|I|/\Delta > n/\Delta^2$, with an *unique* neighbor $h(i) \in V/I$, where $A_{ih(i)} \geq c'$. Outside of I' ,
1315 we assign partners arbitrarily making sure to keep $h(i)$ a bijection. Towards this goal, we present a
1316 proof of Lemma 3.7.
1317

1318
1319 *Proof of Lemma 3.7.* We begin by constructing a set $R \subset I$ of variables that are disjoint in both
1320 the incidence graph of the k -SAT formula and the graph G . A simple greedy algorithm that se-
1321 lects a point arbitrarily, deletes its 2-hop neighbors in both graphs and recurses has size at least
1322 $n/(2k'd)^2\Delta^2$. This implies the sum of conditional magnetizations takes the following form.
1323

$$\begin{aligned}
1324 \sum_{i \in R} \mathbb{E}_{\beta^*}[m_i^2(\boldsymbol{\sigma})e_i(\boldsymbol{\sigma})|\boldsymbol{\sigma}_{-h(i)}] &= \sum_{i \in R} \mathbb{E}_{\beta^*}[m_i^2(\boldsymbol{\sigma})|\boldsymbol{\sigma}_{-h(i)}] \mathbf{Pr}_{\beta^*}[e_i(\boldsymbol{\sigma}) = 1|e_{i_1}(\boldsymbol{\sigma}) = 1, \dots, e_{i_{t-1}}(\boldsymbol{\sigma}) = 1] \\
1325 &\geq \frac{1}{2} \sum_{i \in R} \mathbb{E}_{\beta^*}[m_i^2(\boldsymbol{\sigma})|\boldsymbol{\sigma}_{-h(i)}] \\
1326 &\geq \sum_{t \in |R|} \frac{\exp(-B)}{4} \mathbf{Pr}_{\beta^*}[e_{h(i)}(\boldsymbol{\sigma}) = 1] \\
1327 &\geq \frac{n \exp(-B)(1 - \delta)}{\Delta(4kd\Delta)^2}
\end{aligned}$$

1328 Note the last inequality comes from Lemma 15, and the fact that $s_i(\boldsymbol{\sigma}) \leq e_i(\boldsymbol{\sigma})$.
1329 \square
1330

1331 E.4 PROOF OF LEMMA 3.3

1332 Armed with the tools from the previous section we now prove Lemma 3.3.
1333

1334 *Proof of Lemma 3.3.* We begin by expanding out $m_i(\boldsymbol{\sigma})$ into its component parts, namely
1335

$$1336 m_i^2(\boldsymbol{\sigma}) = \left(\sum_{j \neq h(i)} A_{ij} \sigma_j \right)^2 + A_{ih(i)}^2 + 2 \left(\sum_{j \neq h(i)} A_{ij} \sigma_j \right) A_{ih(i)} \sigma_{h(i)}$$

1337 Cancelling common factors implies that
1338

$$1339 \mathbb{E}_{\beta^*} \left[\left(2 \sum_{(i,j) \in \mathcal{F}(\boldsymbol{\sigma})} \left(\sum_{j \neq h(i)} A_{ij} \sigma_j \right) A_{ih(i)} (\sigma_{h(i)} - \mathbb{E}_{\beta^*}[\sigma_{h(i)}|\boldsymbol{\sigma}_{h(i)}]) \right)^2 \right].$$

We merely sum over the flippable indices, as when $\sigma_{h(i)}$ is not flippable, the term $\sigma_{h(i)} - \mathbb{E}_{\beta^*}[\sigma_{h(i)}|\sigma_{-h(i)}]$ collapses. Denoting $y_{it}(\sigma) = 2 \left(\sum_{j \neq t} A_{ij} \sigma_j \right)^2 A_{it}$ and recalling $\mathbb{E}_{\beta^*}[\sigma_i|\sigma_{-i}] = \tanh(\beta^* m_i^2(\sigma))$, yields the following simplified version of the above expression.

$$\mathbb{E}_{\beta^*} \left[\sum_{(i,j) \in \mathcal{F}(\sigma)} (y_{ih(i)}(\sigma) (\sigma_{h(i)} - \tanh(\beta^* m_{h(i)}(\sigma)))^2 \right].$$

We aim to prove this concentration inequality via the technique of exchangeable pairs introduced by (Chatterjee, 2007). Consider, again, the *anti-symmetric* function, $F : S \times S \rightarrow \mathbb{R}$,

$$F(\tau, \tau') = \frac{1}{2} \sum_{i=1}^n (y_{ih(i)}(\tau) + y_{ih(i)}(\tau'))(\tau_i - \tau'_i),$$

and an assignment σ drawn from the Ising model truncated by S . We construct a new assignment σ' , via taking one-step of the Glauber dynamics over the Markov random field. The value of F on (σ, σ') simplifies as,

$$F(\sigma, \sigma') = z_{ih(i)}(\sigma)(\sigma_I - \sigma'_I).$$

Define the function $f(\sigma)$ as the *conditional* expectation of $F(\sigma, \sigma')$ with respect to σ , that is

$$\begin{aligned} f(\sigma) &= \mathbb{E}_I (F(\sigma, \sigma')|\sigma) = \frac{1}{n} \sum_{i=1}^n y_{ih(i)}(\sigma)(\sigma_i - \mathbb{E}(\sigma_i|\sigma_{-i})) \\ &= \frac{1}{n} \sum_{i \in \mathcal{F}(\sigma)} y_{ih(i)}(\sigma)(\sigma_i - \tanh(\beta^* m_i(\sigma))) \end{aligned}$$

To show prove the desired result, it suffices to show a bound on the second moment of $f(\sigma)$. Observe that (σ, σ') is indeed an exchangeable pair as

$$\mathbb{E}_{\beta^*}[f(\sigma)^2] = \mathbb{E}_{\beta^*, I}[f(\sigma)F(\sigma, \sigma')] = \mathbb{E}_{\beta^*, I}[f(\sigma')F(\sigma', \sigma)].$$

Moreover, the anti-symmetric nature of $F(\sigma, \sigma')$ implies $\mathbb{E}_{\beta^*, I}[f(\sigma')F(\sigma', \sigma)] = -\mathbb{E}_{\beta^*, I}[f(\sigma')F(\sigma, \sigma')]$. These facts combine to recast $\mathbb{E}_{\beta^*}[f(\sigma)]$ as follows,

$$\begin{aligned} \mathbb{E}_{\beta^*}[f(\sigma)^2] &= \mathbb{E}_{\beta^*, I}[f(\sigma)F(\sigma, \sigma')] = -\mathbb{E}_{\beta^*, I}[f(\sigma')F(\sigma, \sigma')] \\ &= \frac{1}{2} \mathbb{E}_{\beta^*, I}[(f(\sigma) - f(\sigma'))F(\sigma, \sigma')] \end{aligned}$$

If $\sigma = \sigma'$ then this expression is rendered trivially zero, and hence we need only analyse the case when $\sigma'_I = -\sigma_I$. If the redrawn coordinate I is selected from the set of flippable indices, this probability is,

$$p_i(\sigma) := \frac{\exp(-\sigma_i(\beta^* m_i(\sigma)))}{\exp(-\beta^* m_i(\sigma)) + \exp(\beta^* m_i(\sigma))} = \mathbf{Pr}(\sigma'_i = -\sigma_i | \sigma, I = i, i \in \mathcal{F}(\sigma))$$

and when $I \notin \mathcal{F}(\sigma)$ this probability is zero. Using the definitions of $f(\sigma)$ and $F(\tau, \tau')$ above, this expression is simplified as follows, where $\sigma^{(i)} = (-\sigma_i, \sigma_{-i})$.

$$\begin{aligned} \frac{1}{2} \mathbb{E}_I [(f(\sigma) - f(\sigma'))F(\sigma, \sigma')|\sigma] &= \frac{1}{n} \sum_{i \in \mathcal{F}(\sigma)} (f(\sigma) - f(\sigma^{(i)}))F(\sigma, \sigma^{(i)})p_i(\sigma) \\ &= \frac{1}{n} \sum_{i \in \mathcal{F}(\sigma)} (f(\sigma) - f(\sigma^{(i)}))y_{ih(i)}(\sigma)(\sigma_i - \tanh(\beta^* m_{h(i)}(\sigma)))p_i(\sigma) \\ &:= \frac{1}{n} \sum_{i \in \mathcal{F}(\sigma)} T_{1i}T_{2i} \end{aligned}$$

Bound on T_{1i} : We now bound each of term in the above expression, beginning with T_{1i} where i is flippable. The Taylor expansion of $f(\sigma^{(i)})$ centered at $f(\sigma)$ yields,

$$|f(\sigma^{(i)}) - f(\sigma)| \leq |\sigma_i - \sigma_i^{(i)}| \max_{w \in [-1, 1]} \frac{\partial f}{\partial \sigma_i}((w, \sigma_{-i})) = \max_{w \in [-1, 1]} 2 \cdot \frac{\partial f}{\partial \sigma_i}((w, \sigma_{-i})),$$

1404 where w is point along the line with endpoints σ and $\sigma^{(j)}$.
1405

1406 The partial derivative of $f(\sigma)$ with respect to σ_i evaluated at a spin configuration $\tau \in S$ is
1407

$$1408 \frac{\partial f}{\partial \sigma_i}(\tau) = \frac{1}{n} \sum_{j \in \mathcal{F}(\tau)} \left(\left(\mathbf{1}_{i=j} - \frac{\beta^* A_{h(j)i}}{\cosh^2(\beta^* m_{h(j)}(\tau))} \right) y_{jh(j)}(\tau) + (\tau_j - \tanh(\beta^* m_{h(j)}(\tau))) \frac{\partial y_{jh(j)}(\tau)}{\partial \sigma_i} \right)$$

1411
1412 The assumption $\|A\|_\infty \leq 1$ implies $|m_i(\tau)| \leq 1$ for all values of $i \in [n]$ and $\tau \in \{-1, 1\}^n$.
1413 Furthermore, $|\cosh(\cdot)| \geq 1$, yielding the following bound on the rescaled first term.
1414

$$1415 \left| \sum_{j \in \mathcal{F}(\tau)} \left(\mathbf{1}_{i=j} - \frac{\beta^* A_{h(j)i}}{\cosh^2(\beta^* m_{h(j)}(\tau))} \right) y_{jh(j)}(\tau) \right| \leq \left(\sum_{\{j \in \mathcal{F} | h(j)=i(\tau)\}} |y_{jh(j)}(\tau)| + \sum_{\{j \neq i | j \in \mathcal{F}(\tau)\}} |\beta^* A_{h(j)i} y_{jh(j)}(\tau)| \right)$$

1419 It can be quickly seen that this value is at *most* $(2 + 2B)$. Likewise, $\frac{\partial z_{jh(j)}(\sigma)}{\partial \sigma_i} = 2A_{h(j)i}$ implies a
1420 bound on the second term.
1421

$$1422 \left| (\tau_j - \tanh(\beta^* m_{h(j)}(\tau))) \frac{\partial y_{jh(j)}(\tau)}{\partial \sigma_i} \right| \leq |(\tau_j - \tanh(\beta^* m_{h(j)}(\tau)))| \left| \frac{\partial y_{jh(j)}(\tau)}{\partial \sigma_i} \right| \leq 4|A_{h(j)i}|$$

1425 Combining these two bounds yields
1426

$$1428 |T_{i1}| \leq 2 \max_{w \in [-1, 1]} \left| \frac{\partial f}{\partial \sigma_i}((w, \sigma_{-i})) \right|$$

$$1429 \leq \max_{w \in [-1, 1]} \frac{2}{n} \left((2 + 2B) + \sum_{j \in \mathcal{F}(\tau)} 4|A_{h(j)i}| \right)$$

$$1430 \leq \frac{2}{n} ((2 + 2B) + 4)$$

$$1431 \leq \frac{(12 + 4B)}{n}$$

1438 *Bound on T_{2i} :* Recall $|y_{ih(i)}(\sigma)| \leq 1$ for all $i \in [n]$ and $\sigma \in \{-1, 1\}^n$ and $|\tanh(x)| \leq 1, \forall x \in \mathbb{R}$.
1439 Then
1440

$$1441 |T_{2i}| = |y_{ih(i)}(\sigma)(\sigma_i - \tanh(\beta^* m_{h(i)}(\sigma))p_i(\sigma))| \leq 4$$

1443 *Putting together the pieces:* We are now ready to construct our final bound on $\mathbb{E}_{\beta^*}(f(\sigma)^2)$.
1444

$$1446 \mathbb{E}_{\beta^*}(f(\sigma)^2) = \frac{1}{2} \mathbb{E}_{\beta^*, I} ((f(\sigma) - f(\sigma'))F(\sigma, \sigma'))$$

$$1447 = \frac{1}{2n} \mathbb{E}_{\beta^*} \left(\sum_{i=1}^n T_{1i} T_{2i} e_i(\sigma) \right)$$

$$1448 = \frac{(24 + 8B)}{n}$$

1453 This directly implies that
1454

$$1455 \mathbb{E}_{\beta^*} \left[\left(\sum_{i=1}^n m_i^2(\sigma) e_i(\sigma) - \sum_{i=1}^n \mathbb{E}_{\beta^*} [m_i(\sigma) e_i(\sigma) | \sigma_{-h(i)}] \right)^2 \right] \leq (24 + 8B)n$$

1458 Applying Chebyshev's inequality to this term, yields a bound in probability that the second derivative
 1459 deviates far from its conditional mean.

$$\begin{aligned}
 1461 \Pr_{\beta^*} \left[\left(\sum_{i=1}^n m_i^2(\sigma) e_i(\sigma) - \sum_{i=1}^n \mathbb{E}_{\beta^*} [m_i(\sigma) e_i(\sigma) | \sigma_{-h(i)}] \right)^2 \geq n^{1.1} \right] &\leq \frac{(24 + 8B)}{n^{0.1}} \\
 1464 \Pr_{\beta^*} \left[\left| \sum_{i=1}^n m_i^2(\sigma) e_i(\sigma) - \sum_{i=1}^n \mathbb{E}_{\beta^*} [m_i(\sigma) e_i(\sigma) | \sigma_{-h(i)}] \right| \geq n^{0.55} \right] &\leq \frac{(24 + 8B)}{n^{0.1}} \\
 1467 \Pr_{\beta^*} \left[\sum_{i=1}^n m_i^2(\sigma) e_i(\sigma) \leq \frac{n \exp(-B)(1-\delta)}{\Delta(4kd\Delta)^2} - n^{0.55} \right] &\leq \frac{(24 + 8B)}{n^{0.1}} \\
 1470 \Pr_{\beta^*} \left[\sum_{i=1}^n m_i^2(\sigma) e_i(\sigma) \leq \frac{2n \exp(-B)(1-\delta)}{\Delta(4kd\Delta)^2} \right] &\geq 1 - o(1)
 \end{aligned}$$

□

F APPLICATIONS

1477 In this brief section, we establish a connection between the notion of fatness, as introduced in the
 1478 context of truncated Boolean product distributions (Fotakis et al., 2021), and the Ising measure
 1479 conditioned on the solutions to a k -CNF formula. Specifically, we show that this truncated Ising
 1480 measure satisfies the combinatorial conditions required for fatness, thereby extending the fatness
 1481 framework beyond the setting of product distributions. We recound the definition of an α -fat dis-
 1482 tribution below.

1483 **Definition 1** (α -fat Distributions (Fotakis et al., 2021)). *A truncated boolean distribution D_S is
 1484 α -fat if for all coordinates $i \in [n]$ there exists some $\alpha > 0$ such that*

$$1485 \Pr_{x \sim D_S} [(x_1, \dots, x_{i-1}, -x_i, x_{i+1}, \dots, x_n) \in S] \geq \frac{1}{2}.$$

1488 **Corollary F.1.** *Given an Ising model $\Pr_{\beta, S}$, satisfying Assumption 1, whose measure is truncated
 1489 to the solutions S of a k -SAT formula such that*

$$1490 k \geq \mathcal{O}(3\Delta^3(1 + \log(d^2k + 1))),$$

1492 *then the distribution is $\frac{1}{2}$ -fat, i.e.,*

$$1494 \Pr_{\beta, S} [(-\sigma_i, \sigma_{-i}) \in S] \geq \frac{1}{2}, \quad \text{for all } i \in [n].$$

1496 *Proof.* This is a direct consequence of Lemma 3.5. □