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ABSTRACT

In this paper, we propose a novel highly parallel deep ensemble learning, which
leads to highly compact and parallel deep neural networks. The main idea is to
split data into spectral subsets; train subnetworks separately; and ensemble the
output results in the inference stage. The proposed method has parallel branches
with each branch being an independent neural network trained using one spectral
subset of the training data. It ensembles the outputs of the parallel branches to
produce an overall network with substantially stronger generalization capability.
It can also scale up the model to the large scale dataset with limited memory.
The joint data/model parallel method is amiable for GPU implementation. Due
to the reduced size of inputs, the proposed spectral tensor network exhibits an
inherent network compression, which leads to the acceleration of training process.
We evaluate the proposed spectral tensor networks on the MNIST, CIFAR-10
and ImageNet data sets, to highlight that they simultaneously achieve network
compression, reduction in computation and parallel speedup. Specifically, on
both ImageNet-1K and ImageNet-21K dataset, our proposed AlexNet-spectral,
VGG-16-spectral, ResNet-34-spectral, CycleMLP-spectral and MobileVit-spectral
networks achieve a comparable performance with the vanila ones, and enjoy up to
4× compression ratio and 1.5× speedups.

1 INTRODUCTION

Deep neural networks (DNNs) [1] have made impressive successes in many applications, such
as computer vision [2][3][4], online game [5][6][7], natural language processing [8][9][10], au-
tonomous driving [11][12][13], and robotics [14][15][16]. However, DNNs are memory-intensive
and computation-intensive, which are two major challenges for wider adoption, e.g., in Internet of
Things (IoT) applications [17]. Modern DNNs may have billions of parameters that consume exces-
sive amount of memory and usually require long training time. Besides, it has been a great challenge
to train models on large datasets for netter performance, such as ImageNet-1K and ImageNet-22K for
image classification, Apache software foundation public mail archives for natural language procecss-
ing and Waymo Open for autopilot. All of them are more than 100 GB in storage which makes it
difficult to load in memory at the same time. We have to consistently pull and push batches of dataset
into memory from the storage to train the models, which leads to an unefficient training. For example,
AlexNet [18] consists of three fully-connected layers and five convolutional layers, containing 60
million parameters and consuming about 250 MB of memory and about 40 hours for training on
ImageNet data set [19].

Many existing works have been proposed to alleviate the challenge of training big models on large
scale datasets. Wei et al. [20] propose to select a subset from the large scale training dataset to make
a balance between the training time and the classification performance. He et al. [21] further propose
a block-based sampling method for large scale dataset. However, the sampling techniques suffer from
an issue of the drop of task performance, which hinders its application to real scenes. On the other
hand, some works focus on the distribute training to handle the large scale data [22][23][24]. But the
communication between different training nodes becomes the bottleneck. Although some work has
researched on the communication efficient scheme [25][26][27], the inherent low transfer speed and
bandwidth between computing nodes limit the efficiency of distributed learning. In our work, we
adopts a different way that we reduce the dimension of training data by splitting the dataset, which
leads to a compression of models and a communication-free parallel ensemble learning scheme for
efficient training.
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In this paper, we propose a unified approach that simultaneously achieves both model compression
and parallel learning without communication overhead. The key technique is a novel spectral tensor
layer that enables a joint data/model-parallel implementation of a DNN as follows: 1) The training
data set is split into multiple orthogonal spectral sets; 2) The neural network is split into parallel
branches with each branch being a conventional neural network, that are trained asynchronously and
independently on the corresponding spectral sets; 3) The outputs of the parallel branches are finally
ensembled to yield an overall neural network with substantially stronger generalization capability
than that of those parallel branches.

We evaluate the proposed spectral tensor networks on the MNIST, CIFAR-10 and ImageNet data
sets, to highlight that they simultaneously achieve network compression, reduction in computation
and parallel speedup. Specifically, on both ImageNet-1K and ImageNet-21K dataset, our proposed
AlexNet-spectral, VGG-16-spectral, ResNet-34-spectral, CycleMLP-spectral and MobileVit-spectral
networks achieve a comparable performance with the vanila ones, and enjoy up to 4× compression
ratio and 1.5× speedups.

The remainder of this paper is organized as follows. Section 2 presents an brief overview of the
related work. Section 3 presents the scheme of highly parallel deep ensemble learning. Section 4
presents the experimental results and we conclude this paper in Section 5.

2 RELATED WORKS

Signal processing for deep learning: Many studies have focused on the deep learning using
conventional signal processing techniques. Darestani et al. [28] proposes to use compressive sensing
to measure the robustness of deep learning. Lu et al. [29] apply Kalman fliter to deep neural network
for video compression. Tseng et al. [30] uses the Fourier transform of input-level attribution scores
as attribution prior to improve the interpretability and stability of deep models for genomics. Among
them, Spectral-based methods, which generalize deep learning models to non-Euclidean domains,
have achieved great success. Levie et al. [31] proposes a spectral domain convolution architecture
CayleyNet. Chang et al. [32] embed the spectral mechanism into attention-based graph neural
network. Li et al. [33] propose a graph deconvolution networks with inverse filters in spectral domain.
Yi et al. [34] propose SyncSpecCNN which enables weight sharing by parametrizing kernels in the
spectral domain.

Ensemble learning: Ensemble learning [35] is a powerful technique in machine learning community,
especially for AI competitions like Kaggle and ILSVRC [36]. It trains multiple weak learners
for a same problem and combines all of them for inference. Many researchers have discovered
that ensemble learning can be used to mitigate some challenges in machine learning methods,
such as class imbalance [37], curse of dimensionality [38] and concept drift [39]. Generally used
ensemble learning methods comprises of adaBoost [40], bagging [41], random forest [42], gradient
boosting machine [43] etc. Some researchers also apply ensemble learning methods to deep learning.
Chen et al. [44] propose to ensemble multiple convolution neural networks for hyperspectral image
classification. Lee et al. [45] propose a simple unified framework which ensembles multiple actors to
make final decision to make improvement in deep reinforcement learning. Lin et al. [46] propose
to ensemble graph neural networks to alleviates the nonrobustness and oversmoothing issues of the
models.

In our work, we leverage the signal processing techniques to transform the data into an independent
and orthogonal representation in subspace, which provides convenience for ensemble learning.
Besides, different from the sampling methods in conventional ensemble methods, our proposed
method reduces the dimension of dataset, leading to a compressed model and faster training process.

3 HIGHLY PARALLEL DEEP ENSEMBLE LEARNING

Notations: We use lowercase, boldface lowercase, boldface capital, and calligraphic letters to denote
scalars, vectors, matrices, and tensors, e.g., a ∈ R, a ∈ Rn, A ∈ Rn1×n2 , A ∈ Rn1×n2×n3 ,
respectively. We use A(:, :, k), A(:, j, :), A(i, :, :) to denote the frontal, lateral, and horizontal slices.
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Figure 1: Overview of our highly parallel deep ensemble learning method.

3.1 OVERVIEW

Our highly parallel deep ensemble learning method is shown in Fig. 1. The process of our proposed
method mainly consists of three steps, namely data preprocessing, parallel training of subnetworks,
and ensemble results.

• First, the batched data is pre-processed to the spectral datasets by discrete cosine transform (DCT)
along the last dimension and split into Q spectral sub-datasets.

• Second, Q sub-networks are training on Q different spectral sub-datasets in parallel.
• Finally, in the inference stage, a new sample is split into Q spectral data, and feed into these Q

subnetworks. The final result is an ensemble of the Q outputs.

3.2 METHODOLOGY

Split the dataset into multiple subsets in a spectral domain: Gray or color images are represented
as tensor X ∈ Rm×H×W or X ′ ∈ Rm×C×H×W , respectively. We split it into multiple subsets in a
spectral domain as follows:

• First, we transform X to the spectral domain X̃ ∈ Rm×H×W by using DCT along certain
dimension, e.g., the third dimension. We parallel this process on GPU using the torch-dct library.
Then X̃ be split into Q = W frontal slices X̃ (; , ; , k) ∈ Rm×H with k = 1, ..., Q.

• Then, we split X into Q parts and stack them as X̂ ∈ Rm×C× H
q1

×W
q2

×Q with Q = q1 × q2.

• Next, we transform X̂ to the spectral domain X̃ ∈ Rm×C× H
q1

×W
q2

×Q by performing DCT on X̂
along its last dimension.

It should be noted that DCT transformed X to X̃ which is represented in a spectral space spanned by a
series of orthogonal bases. With our proposed data splitting, each sub-dataset remains independent and
orthogonal to each other. Using ensemble learning, different models trained on different sub-datasets
learn an independent and orthogonal information, which leads to an improvement of generalization
and robustness of models.

The main advantage of our proposed data splitting method is that we can train models on large
scale datasets with limited memory. Because we can split the spectral dataset into multiple sub-
datasets, which can be loaded in the memroy for model training. Moreover, the reduced dimension
of input leads to a model compression. The scheme that trianing multiple sub-networks on muliple
independent sub-datasets fits ensemble learning well. Thus, the data/model joint parallel scheme is
amaible for GPU acceleration.

Train sub-networks: We consider supervised learning and assume that the training data set contains
m samples with C categories, i.e., {(X ,L}, where X ∈ Rm×H×W is the training data with n
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Table 1: Upper bounds for model compression and parallel speedup. For fully connected networks, n
denotes the input size of each sub-network, r is the maximum number of neurons of each layer in
sub-network, and there are Q branches. For convolutional networks, there are B branches.

- Fully Connected Convolutional (1D)
Compression ratio O(nQ/2r), O(nQ2/2r) O(B), O(B2)

Reduction in computation O(nQ/2r), O(nQ2/2r) O(B), O(B2)
Parallel speedup O(Q) O(B)

samples and L ∈ Rm×C is the corresponding categories matrix such that if the s-th sample X (s)
belongs to class c then L(s, c) = 1 and L(s, c′) = 0 for c′ ̸= c. By data splitting in spectral domain,
we obtain {(X̃ ,L)}.

We distribute the training data into Q subsets, as {(X̃ (:, :, :, q),L)}. We build Q independent neural
networks fq , q = 1, 2, ..., Q, for training on Q subsets in parallel. Specifically, fq(·) takes X̃ (:, :, :, q)
as the input and outputs Y q ∈ RC .

For the training process of each sub-network, its loss function is

Lq = Σm
s=1Σ

C
c=1L(s, c) · ln (Y q(s, c)). (1)

Ensemble results: We ensemble the outputs of Q sub-networks fq(·), q = 1, 2, ..., Q, and obtain the
final result. Specifically, we computes

Y = ΣQ
q=1wqY

q, (2)

where Y q = fq(X̃ q) and the weights here are optionally from the following scheme,

ws =


1
Q , equal weight
1
Lq , weights by loss

pa(q), geometric weight
δ(a(q) = 1), select the best

where p is a user-defined parameter, a(q) is the order of fq according to the loss function value
Lq in an ascending order, 1 ≤ a(q) ≤ Q, and fq is the best model when a(q) = 1. Besides, the
“select-the-best” scheme retains only the best sub-network, i.e., the one with the lowest loss function
value. Our experimental results indicate that the geometric weighting scheme yields the best inference
performance. On the other hand, the “select-the-best” scheme achieves an additional compression, at
the expense of some performance degradation.
Remark 1. We summarize the compression ratio, the reduction of computation, and the parallel
speedup in Table 1. They are theoretical upper bounds, while their actual values depend on data sets
and implementations. For the compression ratio and reduction in computation, each fully connected
network / convolutional network has two columns: the right one corresponds to select-the-best
weighting, and the left one to other weighting methods.

3.3 MAPPING ONTO GPUS

The training process of each subnetwork is independent with each other and involves massive
parallelism. We use the vamp function in Jax to vectorizing all the input data and subnetworks for
batch computation for parallel in on GPU, while pmap is used for parallel computation in multiple
GPUs.

Scheduling on one GPU: We use the vmap function to map the training process onto one GPU as
follows,

• First, the dataset X̃ and ensemble models f are first vectorized as
[
X̃ (:, :, :, 1), X̃ (:, :, :, 2), ..., X̃ (:

, :, :, Q)
]

and
[
f1, f2, ..., fQ

]
, respectively.

• Then, the main process forks a total of Q threads scheduled to map (X̃ (:, :, :, q), fq), q =
1, 2, ..., Q,onto the GPU in parallel.
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• Next, Q treads compute fq(X̃ (:, :, :, q)) in parallel and send the result yq to the main process,
q = 1, 2, ..., Q. At the same time, each thread computes its own loss function value and leverages
the backprogation to update the parameters of models in parallel.

• The main process merges Q results and computes the ensemble outputs as the final inference result.

Scheduling on multiple GPUs: We use the pmap function to map the training process onto multiple
GPUs. The main difference between pmap and vmap is that pmap distributes the dataset X̃ and
ensemble models f into multiple GPUs for the following computation.

It should be noted that our proposed method is communication-free for the sub-network training,
which is extremely suitable for parallel training. Besides, the reduced dimension of spectral sub-
dataset leads to a compressed model, which provides a further acceleration for the training process.

4 PERFORMANCE EVALUATION

We first describe the experimental settings, then present the results on the MNIST, CIFAR-10 and
ImageNet data sets.

4.1 DATA SETS AND PERFORMANCE METRICS

We verify the performance of the proposed spectral tensor networks on the following three widely
used data sets: 1) MNIST [47] contains grayscale images of handwritten digits. Each image has
28 × 28 pixels. The training set has 60, 000 images and the testing set has 10, 000 images. 2)
CIFAR-10 [48] contains 60, 000 color images in 10 classes, where each image has size 32×32×3.3)
ImageNet-1K [19]: It contains 12, 000, 000 training images and 50, 000 testing images with size of
224× 224× 3, labeled with the presence or absence of 1000 object categories that do not overlap
with each other.

We are interested in the following performance metrics:1) Compression ratio: the ratio of the
conventional network size to the spectral tensor network size, which is the also the total reduction in
computation due to the reduced number of non-zero network weights; 2) Parallel speedup: the ratio
of the training time of a conventional network to that of the spectral tensor network, due to the fully
parallel training of all sub-networks; 3) Convergence: the loss value versus the training iterations: 4)
Accuracy: the percentage of correctly estimated labels. Both the training and testing processes are
executed on a DGX-2 server [49] that has two 64 core AMD CPUs, 8 NVIDIA A100 GPUs and 2
TB of memory. The operating system is Ubuntu 20.04 with CUDA 10.1. We use PyTorch [50] to
implement neural networks.

We summarize the compression ratio, the reduction of computation, and the parallel speedup in
Table 1. They are theoretical upper bounds, while their actual values depend on data sets and
implementations. For the compression ratio and reduction in computation, each fully connected
network / convolutional network has two columns: the right one corresponds to select-the-best
weighting, and the left one to other weighting methods.

4.2 VERIFICATION ON MNIST AND CIFAR DATA SETS

For comparison, we consider a conventional fully connected network (FC) [1], the tNN [51], and the
fully connected spectral tensor network (FC-tensor) in Section ??. All three methods use the ReLU
activation function as σ(·) in the hidden layers, the softmax function as the output function f(·) in the
last layer, and the cross-entropy loss function in (??). We use N = 8 layers in each method and the
DCT transform in tNN and the proposed FC-tensor method. The learning rate was set to be 0.01, the
batch size was set to be 64, and we used the Adam optimizer [52]. We split the MNIST dataset into
Q = 28 spectral subsets and the CIFAR dataset into Q = 32 spectral subsets. For the combination
weights, we report the results for the four weighting schemes.

For the MNIST data set, the conventional FC method has n = 28, ℓ′0 = ... = ℓ′7 = 784, and L = 10.
Both the tNN method and our FC-tensor method have n = 28, Q = 28, ℓ0 = ... = ℓ7 = 28, and
L = 10. Our FC-tensor method has r = 8. For the CIFAR-10 data set, the following parameters are
different: n = 32, Q = 32, ℓ′0 = ... = ℓ′7 = 1, 024, and ℓ0 = ... = ℓ7 = 32. Therefore, our methods
achieve a compression ratio of 49× and 64× for the two data sets, respectively.
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Figure 2: Training loss of fully connected networks on the MNIST data set (left) and CIFAR-10 data
set (right).

The training loss over iterations is shown in Fig. 2, with the left one for the MNIST datas set and
the right one for the CIFAR-10 data set. Our scheme converges faster than tNN and FC, while the
training process is more stable than FC. The possible reason is that the FC-tensor has much less
parameters so that a more stable model can be learned from the same amount of data samples1. The
loss values of our sub-networks are lower than both tNN and FC.

Figure 3: Training loss on ImageNet-1K data set.

Table 3: MNIST and CIAFR-10 data sets.
Methods MNIST CIFAR-10
FC [1] 98.71% 59.19%

tNN [51] 97.59% 44.50%
FC-spectral (average) 97.43% 47.24%

FC-spectral (weighted sum) 98.02% 48.13%
FC-spectral (geometric) 99.01% 48.33%

In Table 3, we report accuracy results on both MNIST and CIAFR-10 data sets. Among the four
schemes for weighting the sub-networks , the geometric weighting gives the best performance. For
the MNIST data set, all three methods achieve a relative high accuracy, i.e., over 97%, while our
FC-tensor method reaches 98.36%. For the CIFAR-10 data set, all three methods achieve a relative
low accuracy, i.e., below 60%. This is consistent with the known fact that fully connected layers are
not enough for the classification task on CIFAR-10. Note that both tNN and FC-tensor achieve lower
accuracy than the FC method.

Convolutional Networks

For comparison, we consider a convolutional neural network (CNN) [1], the convolutional spectral
tensor network (Conv-spectral). Both methods use the ReLU funtion as the activation function, and
the cross-entropy loss function. The learning rate was 0.01 and the batch size was 64. We used the
Adam optimizer [52] and N = 8 layers. The results can be shown in Fig. 4 and Tab. 2.

The training loss and testing accuracy are shown in Fig. 4. Both methods achieve a relative high
accuracy, i.e., ≥ 92%. Our proposed Conv-tensor method converges much faster, using less than 60
iterations to reach the same accuracy.

1Note that we use the same number of layers and the same batch size.
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Figure 4: Training loss and testing accuracy of convolutional networks on the CIFAR-10 dataset.

Table 2: Results on the CIFAR-10 data set.

Methods Accuracy Size Training Time
CNN [1] 92.07% 203 MB 6.2 h

Conv-spectral (average) 97.25% 125 MB 2.7 h
Conv-spectral (weighted sum) 98.81% 125 MB 2.7 h

Conv-spectral (geometric) 99.95% 125 MB 2.7 h
Conv-spectral (select-the-best) 97.25% 33 MB 2.7 h

For CNN, we assume the input and output channels to be C = 16. Since the input image is 32×32×3
with 3 RGB channels, we divide it into B = 4 images with a downsampling factor 4× and obtain a
16× 16× 12 tensor. Compared with the CNN scheme, Conv-spectral achieve a compression ratio
B = B1B2 = 4×.

4.3 PERFORMANCE ON IMAGENET-1K AND IMAGENET-22K DATA SETS

ImageNet-1K

The ImageNet data set [19] is split into B = 4 spectral subsets, where each image is organized into
a tensor of size 56× 56× 3× 16 and then processed into a spectrum tensor using DCT transform.
Note that the three RGB channels are processed independently.

Our proposed spectral tensor methods have the same structure in Fig. ??, where each branch is
replaced by either AlexNet [18] or CycleMLP. We use the DCT transform in our spectral methods.
We set the learning rate 0.01 and the batch size 128. We follow the standard practice in the community
by reporting the top-1 accuracy on the testing set.

For the ImageNet data set, the training loss over training iterations is shown in Fig. 3. Our spectral
sub-networks have similar loss curve to their original networks. In Table 3, we report the accuracy,
model size, and training time. For the AlextNet structure, our spectral network achieves 1.88× model
compression and 1.28× speedup in training time, at the cost of an accuracy drop of 1.18%. For the
VGG-16 structure, our spectral network achieves 1.88× model compression and 1.28× speedup
in training time, with an improvement of the accuracy of 1.37%. For the ResNet-34 structure, our
spectral network achieves 1.88× model compression and 1.28× speedup in training time, at the cost
of an accuracy drop of 1.18%. For the CycleMLP structure, our spectral network achieves 1.36×
model compression and 1.55× speedup in training time, at the cost of an accuracy drop of 0.03%.
For the MobileVit structure, our spectral network achieves 1.88× model compression and 1.28×
speedup in training time, at the cost of an accuracy drop of 1.18%.

ImageNet-21K

The ImageNet-21K dataset is similar with ImageNet-1K dataset, but is more challenging. It has
the number of 21K categories and 10× total number of images than that of ImageNet-1K dataset.
Because the differences of ImageNet-1K and ImageNet-22K are only the number of images and
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Table 3: Results on the ImageNet-1K data set.

Methods Accuracy Size Training Time
AlexNet [18] 63.44% 244 MB 40.8 h

AlexNet-spectral (average) 61.26% 130 MB 31.9 h
AlexNet-spectral (weighted sum) 58.01% 130 MB 31.9 h

AlexNet-spectral (geometric) 62.26% 130 MB 31.9 h
AlexNet-spectral (select-the-best) 56.45% 32 MB 31.9 h

VGG-16 [53] 71.25% 527 MB 81.7 h
VGG-16-spectral (average) 67.39% 436 MB 64.0 h

VGG-16-spectral (weighted sum) 69.57% 436 MB 64.0 h
VGG-16-spectral (geometric) 72.62% 436 MB 64.0 h

VGG-16-spectral (select-the-best) 68.66% 112 MB 64.0 h
ResNet-34 [54] 74.90% 83 MB 76.4 h

ResNet-34-spectral (average) 70.68% 69 MB 50.3 h
ResNet-34-spectral (weighted sum) 73.66% 69 MB 50.3 h

ResNet-34-spectral (geometric) 74.11% 69 MB 50.3 h
ResNet-34-spectral (select-the-best) 72.19% 15 MB 50.3 h

CycleMLP [55] 83.23% 103 MB 93.6 h
CycleMLP-spectral (average) 78.80% 76 MB 60.4 h

CycleMLP-spectral (weighted sum) 77.54% 76 MB 60.4 h
CycleMLP-spectral (geometric) 83.20% 76 MB 60.4 h

CycleMLP-spectral (select-the-best) 72.45% 22 MB 60.4 h
MobileVit [56] 72.90% 9 MB 192.4 h

MobileVit-spectral (average) 70.99% 7 MB 137.2 h
MobileVit-spectral (weighted sum) 71.22% 7 MB 137.2 h

MobileVit-spectral (geometric) 72.06% 7 MB 137.2 h
MobileVit-spectral (select-the-best) 72.10% 2 MB 137.2 h

the number of categories, we adopt the same setting for training neural networks on ImageNet-1K
dataset. The result can be shown in Table 4. For the AlextNet structure, our spectral network achieves
1.85× model compression and 1.34× speedup in training time, at the cost of an accuracy drop of
1.07%. For the VGG-16 structure, our spectral network achieves 1.25× model compression and
1.25× speedup in training time. It has an improvement of the accuracy of 1.33%. For the ResNet-34
structure, our spectral network achieves 1.36× model compression and 1.42× speedup in training
time, at the cost of an accuracy drop of 0.25%. For the CycleMLP structure, our spectral network
achieves 1.64× model compression and 1.52× speedup in training time, at the cost of an accuracy
drop of 2.11%. For the MobileVit structure, our spectral network achieves 1.44× model compression
and 1.31× speedup in training time, at the cost of an accuracy drop of 1.44%.

5 CONCLUSIONS

In this paper, we have proposed a spectral tensor form of deep neural networks that is inherently
compressive and allows communication-free parallel/distributed implementations. The data is orga-
nized into tensors and a linear transform is applied along certain dimension, resulting in different
spectral subsets. The overall network consists of parallel branches of networks, each independently
performs training and inference on a spectral data subset. We tested the proposed spectral networks,
including fully connected, convolutional, AlexNet, VGG-16, ResNet-34, CycleMLP and MobileVit,
on the MNIST, CIFAR-10 and ImageNet data sets, and results show that they can achieve relatively
high accuracy with substantial network compression, computation reduction, and parallel speedup,
compared with conventional networks.

For future works, we would like to explore an ensemble-style approach model soup [57] that takes
average over multiple trained models and achieves state-of-the-art performance on the ImageNet data
set.
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Table 4: Results on the ImageNet-21K data set.

Methods Accuracy Size Training Time
AlexNet [18] 54.52% 289 MB 42.9 h

AlexNet-spectral (average) 50.44% 156 MB 32.7 h
AlexNet-spectral (weighted sum) 49.54% 156 MB 32.7 h

AlexNet-spectral (geometric) 53.35% 156 MB 32.7 h
AlexNet-spectral (select-the-best) 48.99% 41 MB 32.7 h

VGG-16 [53] 60.66% 592 MB 82.8 h
VGG-16-spectral (average) 56.88% 472 MB 65.9 h

VGG-16-spectral (weighted sum) 58.62% 472 MB 65.9 h
VGG-16-spectral (geometric) 61.99% 472 MB 65.9 h

VGG-16-spectral (select-the-best) 59.31% 132 MB 65.9 h
ResNet-34 [54] 63.81% 103 MB 80.1 h

ResNet-34-spectral (average) 61.98% 76 MB 56.2 h
ResNet-34-spectral (weighted sum) 62.33% 76 MB 56.2 h

ResNet-34-spectral (geometric) 63.56% 76 MB 56.2 h
ResNet-34-spectral (select-the-best) 61.25% 19 MB 56.2 h

CycleMLP [55] 74.56% 135 MB 97.2 h
CycleMLP-spectral (average) 69.23% 82 MB 63.9 h

CycleMLP-spectral (weighted sum) 67.88% 82 MB 63.9 h
CycleMLP-spectral (geometric) 72.45% 82 MB 63.9 h

CycleMLP-spectral (select-the-best) 63.11% 26 MB 63.9 h
MobileVit [56] 63.79% 13 MB 199.5 h

MobileVit-spectral (average) 58.11% 9 MB 143.9 h
MobileVit-spectral (weighted sum) 60.67% 9 MB 143.9 h

MobileVit-spectral (geometric) 62.35% 9 MB 143.9 h
MobileVit-spectral (select-the-best) 61.56% 2 MB 143.9 h
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