Under review as a conference paper at ICLR 2026

MECHANISMS OF SKILL TRANSFER
FROM PRETRAINING TO TARGET TASKS
IN RECURRENT NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Pretraining on simpler tasks can often improve learning outcomes on a more dif-
ficult target task. Nonetheless, what makes for a good pretraining curriculum and
the mechanisms of positive transfer across tasks remain poorly understood. Here
we use RNNs trained on fixed length temporal integration to compare curricula
with varying degrees of effectiveness. We show that pretraining on simpler ver-
sions of the target task is less effective than curricula which take advantage of
the target task’s compositional structure and train sub-skills needed for solving
it. By exploiting the highly structured solution of our target task, we can mech-
anistically explain improvements in speed and quality of learning in terms of the
slow features of the RNN dynamics that the curriculum helps build, and the reuse
and adaptation of those slow features during target training. Our results argue that
pretraining on tasks that individually hone sub-skills required for the target are
particularly beneficial, as they build a scaffolding on which additional dynamical
systems structures can be compositionally expanded to achieve the final function.
Thus, our results document a novel mechanism for repurposing dynamical systems
features in support of cognitive flexibility.

1 INTRODUCTION

In biological systems, learning of a new skill always happens on top of a structured body of previous
knowledge. Moreover, when training animals in new experimental tasks, this preexisting knowledge
is purposefully supplemented by first training simpler relevant tasks. Such behavioral shaping often
proves critical for being able to learn a desired behavior within a limited time. It is also an in-
creasingly common approach to training recurrent neural network (RNN) models on complex tasks
(Krueger & Dayanl 2009). Outside biology, using pretraining or some form of curriculum learning
is a common strategy for improving the quality of training in many machine learning tasks (So-
viany et al., [2022; Hacohen & Weinshall, 2019} Narvekar & Stone} |2018). What makes for a good
pretraining task and the mechanisms by which knowledge is reused across tasks remains poorly
understood.

Curriculum learning (CL)—the strategy of organizing training examples from simple to com-
plex—has long been recognized as an effective approach to accelerate learning (Bengio et al.,{2009).
Traditional curriculum methods focus on gradually increasing task difficulty through shorter se-
quences (Bengio et al.| 2015} [Chan et al.| 2015)), reduced data complexity, or automated difficulty
progression (Graves et al., [2017; |[Haviv et al., | 2019). The mechanics of why CL might help are not
fully understood but it is typically explained through the lens of the loss landscapes that different
tasks induce: simpler versions of the same task have easier to navigate loss surfaces bringing the
model parameters at good initial conditions for the more difficult to optimize loss surface of the
target task. Although this perspective has been influential in understanding why simpler tasks aid
training, open questions remain about what the process of transfer looks like from the perspective of
the representations learned during pretraining relative to those used in the final solution.

The reuse of pretrained representations has recently been the focus of study in multi-task RNNs.
Such models can learn reusable dynamical motifs and rule structures (Yang et al., 2019} [Driscoll
et al.,[2024)), where complex behaviors emerge through flexible combination of these dynamical sys-

Under review as a conference paper at ICLR 2026

tems computational elements. The geometric organization of these learned representations depends
critically on network architecture and task structure: networks may either reuse shared subspaces
across tasks or develop orthogonal representations (Turner & Barakl 2023 |Vafidis et al.l [2025).
Moreover, the structure of the initial conditions can determine the speed and nature of the learning
process (Liu et al., [2024). Despite much progress, cognitive flexibility remains largely studied in
scenarios where the recurrent dynamics (and associated dynamical systems computation motifs) are
structured but fixed. A new task then learns to repurpose these elements through learnable inputs
and outputs (Driscoll et al., [2024). It remains unclear how new dynamical systems motifs can be
learned on top of an already structured dynamical systems and what kind of dynamics repurposing
is possible in a sequential task learning context.

The ability to combine learned primitives to solve novel problems is tightly related to task compo-
sitionality (Lake & Baroni, 2018} [Zhou et al., 2024} [Park et al., [2024), which provides a principled
approach for constructing useful curricula. Evidence from animal learning (Boyd-Meredith et al.,
20235)), human behavioral studies (Szabd & Fiser, |2025)), and computational models (Hocker et al.,
2025 [Mark et al.|[2020) demonstrates that pretraining on tasks that target specific sub-computations
or relational structures substantially improves subsequent learning of complex tasks. How this hap-
pens at the level of learned neural representations is only partially understood (Hocker et al., 2025)).
When are the already existing primitives enough for new task adaptation vs. when de novo learning
of additional structure is needed is not always clear, although both strategies have been documented
biologically (Chang et al.,|[2024;|Yang et al., 2021} |Gastrock et al., 2024)).

Here we aim to understand positive benefits of RNN pretraining in terms of the network’s dynami-
cal systems features and how they change over learning. We do so by exploiting the very particular
dynamical systems structure of a new variant of temporal integration to mechanistically investigate
how pretraining on simpler tasks shapes the internal representations of RNNs at the level of slow
dynamical systems features that support task relevant computations. We identify a collection of dif-
ferent curricula that all prove beneficial in terms of speeding up learning in the target task. Different
curricula have different mechanistic ways of achieving knowledge transfer. Compositional curric-
ula yield the strongest benefits for target task training, by ensuring low rank effective changes in the
network dynamics. These correspond to a dynamic scaffold of useful function that then gets adapted
through the addition of further complementary dynamic modes during in task training. Moreover,
different sequential curricula which exploit compositional structure can lead to qualitatively differ-
ent dynamics repurpose strategies, from lazy reuse of exiting primitives, to rich reorganization of
the circuit dynamics as a whole.

2 METHODS

2.1 PROBING EFFECTS OF PRETRAINING WITH A FIXED-LENGTH INTEGRATION TASK

We use a standard discrete time RNN, with network states h; € RN evolving as:
ht = (1 - a)ht—l + af(Wrecht—l + MTLmt + b), (1)

where x; € R2 is the input, « is the leak rate, tanh nonlinearity f(-), and trainable parameters
Wec, Wi, b. The output y; € R! is a linear readout y; = W, h;. The recurrent weight matrix
W.ec Was initialized either deterministically to a rescaled version of the identity matrix, while W;,,
and W,,,; were initialized using Xavier uniform initialization. We also tested Xavier uniform ini-
tialization for W,... and found qualitatively consistent results across all curriculum conditions, but
chose diagonal initialization as it removes one sort of variability from the process allowing us to fo-
cus on the effects of pretraining in changing those initial conditions. For all experiments, N = 100,
with a leak o = 0.9.

Our target task family is a variant of evidence integration, where independent Gaussian noise inputs
need to be summed-up over a time period [1,7] to generate the output (Fig.), yint = S

where z{i™ ~ N(u,02,). In each trial the mean input p is randomly chosen as 1 = =g with
equal probability. An additional input channel signals beginning of a new trial with a impulse at
t = 1, which provides a mechanism for a dynamic reset of the network state at the beginning of a

new trial. (see Appendix [A]for training details).

Under review as a conference paper at ICLR 2026

A trial n jtrial n+1 5 trial n jtrial n+1
2] lesees a i
@ leoe £ 2
H ¢ 3 /
£ ksl
2 i
S i
N
time steps time steps PC3
B 5
£ - A
8 p / "\ /
v, / YN P
l A ~
LN
\ target
[
\ network output pez
- o 1 2 3 4 3
time steps time within trial
D out — “birdcage” E)
B3 == unstructured control . autonomous
S, outside readout axis dynamics
= - - (zero inputs)
g o
kel
i 8"
LW, o
out 5
o

3 T
time within trial

Figure 1: An integration task with structured dynamics. (A) Example input-output trials for the task:
inputs are i.i.d. gaussian samples, while the output needs to report their sum over the course of the
trial. (B) Example network performance after training. (C) PCA projection of the network states,
color coded by either time within trial (left), or target output (right). (D) Projection of the average
network flow along the vertical (readout) axis and in the orthogonal horizontal plane as a function
of time within trial. Control network does not have birdcage structure. (E) Example trajectories
of autonomous dynamics starting at typical initial trial start states; larger dots show trajectories for
perturbed initial conditions.

Two features make it different from the standard version of this task: 1) the output needs to be
reported throughout the trial as opposed to reporting the final sign of the sum at the end (Sussillo
& Barakl 2013} Bredenberg et al., [2024), and 2) all trials have equal duration, with trial length, 7T,
controlling overall task difficulty. While this task is too simple to strictly require pretraining, we
will show that this twist on the standard formulation can still capture some interesting knowledge
transfer scenarios. Moreover, the simplicity of the setup allows the effects to be understood through
the lens of repurposing and adapting preexisting dynamical system structure.

2.2 A HIGHLY STRUCTURED DYNAMICAL SYSTEMS SOLUTION

While solo training of the integration task leads to good target output reconstruction (Fig.[T]B), the
dynamical system structure of the solution is somewhat variable (for networks trained on trial length
6 integration tasks, 11 out of 25 developed non-birdcage solutions). One particularly interesting
strategy that the trained networks seem to develop in solving the task takes the form of a “birdcage”
in the network activity space (Fig. [TIC). Each vertical “bar” marks one time point within the trial
(left), with the position of activity along the bar directly mapping into the integrated output (right).

This is interesting since it seems more structured than it needs to be: it is not immediately clear
why representing the passage of time would be useful for robustly performing the task; the fixed
trial duration is a robust statistical regularity in the training data so this cyclic nature can be perhaps
exploited for more effective task resettingﬂ This additional structure does come with additional
complications: for this geometry to be able to actually perform the task, the intermediate sum of
inputs up to the current step needs to be maintained and updated as the dynamics move from bar
to bar. If traditional evidence integration achieves the computation with a single (functional) line
attractor (Bredenberg et al., [2024]), this variant of the task needs a one-dimensional slow dynamic
mode along each of the bars.

"Note that in a solution relying on one line attractor, resetting from below or from above zero would need
inputs with opposite sign, which is not possible with a single linear reset signal.

Under review as a conference paper at ICLR 2026

A integrate (long) B integrate c integrate (long)
5 ~1 = ~t o ~
$ & i count 8
e 3 &integrate (short) ,E
Time steps Time steps E i Time steps
integrate (short) integrate (long) count integrate = count (long) integrate (long)
- T - T - - ~ ~N- - —
3 P 3 I 3 8 | 3 3 |
2| t = i 2 N = - 2 N 2 |
3 i - I) NC Time steps s NL I
Time steps Tme steps Time steps Time steps Time steps Time steps
700 —~ 700 > 700
target integration length target integration length target integration length
6001 § 600{ 468 g 26001 8
é
2 500 500 W so0
3 ') o
& 400 H =
o 8 400 T 400
= w -
E L o o
1 300 £ 3500 1 300
« ~ 1 @
‘EI L [¢) o
£ 200 :%: 200 £ 200 P
s T P
+ o, !
100 100 . © 100 4
=
0+- 0 o4 04
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
Solo Int_I Epochs Solo Int Epochs C_s - Int_s - Int_| Epochs

Figure 2: Learning speedups when pretraining with different curricula. Top: cartoon illustration of
the curriculum comparison; Bottom: numerical results averaged across 25 seeds. (A) Traditional
pretraining with shorter delays for the same task. (B) Pretraining with the counting time sub-task,
with length matched to integration target. (C) Mixed curricula combining short counting and inte-
gration with an optional target matched long counting. Learning speed measured by no. of epochs
required to reach threshold convergence on the target task, starting from random initial conditions.
Colors indicate target integration length. Multiple data points of the same color reflect different
pretraining configurations (e.g., varying pretraining task lengths) leading to the same target task.

To make these intuitions mathematically precise, we evaluated the flow of the autonomous network
dynamics (no input) starting from natural initial conditions, at different time points within the trial
(corresponding to different bars). Specifically, the flow defined as vector Ah; = h;;1 — h, which
measures the direction and magnitude of state changes in the network at any time point, or alterna-
tively by position in state space. We partition this total flow into the vertical component along the
Wout axis and the remainder, which includes flow along the “equator” of the birdcage structure and
whatever residual flow happens in higher dimensions of activity (Fig. [ID). We find virtually zero
autonomous flow along the vertical axis, which means that that axis of the dynamics behaves func-
tionally like a set of line attractors where shifts in the output are fully driven by new input coming in.
In contrast, the flow within the horizontal plane is non-negligible and consistent in magnitude across
time, reflecting a steady transition from bar to bar. Tracing zero input trajectories along the “equa-
tor” in response to perturbed unusual initial conditions suggests that the dynamics are attractive
from outside of the birdcage structure, making the horizontal plane flow functionally a limit cycle
(Fig. [IE). These signatures are reduced or missing in control networks that still perform the task
well but have no clear structure in their first 3 PCs, possibly a reflection of a functionally equivalent
but higher dimensional (and potentially less robust) solution (Fig. [ID, dashed lines). Overall, our
variant of integration shows highly structured and directly measurable dynamical systems features
in its solution, whose emergence we can hope to trace back through the learning process when using
different pretraining curricula.

3 ACCELERATING LEARNING BY SCAFFOLDING NEURAL DYNAMICS

3.1 SEVERAL CURRICULA SPEED UP TRAINING IN OUR TASK

What would a pretraining curriculum look like for our simple integration task? The most obvious
answer goes back to the essence of the CL idea (Bengio et al., 2009) which is to start small, with a
simpler version of the same task. This “short integration” pretraining starts by training for a small 7}
up to reasonable performance before switching to the longer T target task (Fig.[2JA). An alternative
idea motivated by behavioral shaping (Hocker et al.l 2025} [Krueger & Dayan, |2009) is to break out
the final solution into its compositional sub-elements and design a pretraining task intended to hone

Under review as a conference paper at ICLR 2026

targetint. length 8 target int. length target int. length
12 12 12
® final-CL

A final-initial Hok —_—
11 A 11 4 i | 11 § ok

104 104 101

Min Rank at Threshold (0.2)
©

Min Rank at Threshold (0.2)
<]

Min Rank at Threshold (0.2)
©

88X 1 *

T T T 4 T T T 4 T T T
Solo Int Int_half »Int C-Int SoloInt Int_half »Int C-Int SoloInt Int_half »Int C-Int

Figure 3: Dimensionality of functional changes in dynamics, as measured by the minimum rank
approximation of the learning-induced recurrent changes needed to preserve final task function.
Parameter changes measured relative to random initial conditions (triangles) for full learning effects,
and relative to pretrained state (circle) as measure of within-task learning. Left to right: different
target integration lengths.

in those skills individually. Since good solutions in our task often take advantage of representing
time within a trial, we decided to pretrain networks using a simple counting task, in which the
network needs to report the phase of an oscillation with period 7" in two output channels, y;* =
cos(2m(t — 1)/T) and y;™ = sin(2n(t — 1)/T)) (Fig.[2B); for simplicity, the trial length is matched
with the target. Finally, we also consider combinations of the two tasks as more complex mixed
curricula which also introduce mismatched lengths between counting and target integration(Fig. [2IC.

Perhaps unexpectedly given the simplicity of the setup, we find that all curricula considered improve
over solo target task training in terms of speed of learning, as measured by the number of epochs
required to reach criterion performance on the target task starting from random initial conditions.
This is true across a range of target task difficulty levels, 7', but the magnitude of the improvements
depends on the pretraining procedure. Benefits are modest for short integration but much more sub-
stantial when using counting as part of the pretraining, especially at long trial lengths. These benefits
saturate with more complex curricula, where the addition of long counting after short counting and
short integration does not seem to further improve speed of convergence (Fig.[2[C).

3.2 DIFFERENT CURRICULA INDUCE CHANGES WITH DIFFERENT EFFECTIVE RANKS

It is well understood that learning simple tasks induces low rank changes to the RNN recurrent
weights (Schuessler et al., [2020). Moreover, it was recently shown that the rank of the initial con-
ditions for the weights can change the nature of learning for a given task, interpolating between
rich and lazy learning (Liu et al.| [2024). We wondered thus if it would be possible to understand
differences in the magnitude of speed-ups of different curricula in terms of the rank of the changes
they induce to the network dynamics over learning.

How low rank are changes introduced by different learning curricula? To answer this, we turned to a
metric of the minimum necessary rank of weight changes induced during learning needed to support
final task structure (Schuessler et al.l |2020). This concretely replaces the full change in recurrent

parameters AW with increasingly low rank approximations AW), = Zle oivivl, where o;

7

are the eigenvalues and v; are the corresponding eigenvectors of AWE] It then asks what is the

’The input weights W;,, and output weights W, were kept fixed at their final trained values.

Under review as a conference paper at ICLR 2026

lowest rank approximation such that the corresponding recurrent weights still preserve good task
performance, within a pre-specified tolerance.

We considered two variants of this metric: the traditional version which measures the parameter
change induced by the full training process, from random initial condition to final task convergence
(Fig. |3} triangles); this should describe the dimensionality of the dynamic modes used to solve the
final task. A second version of this analysis measures the necessary rank of parameter changes
specifically when training on the target task (Fig. [3] circles). This provides an intuitive notion of
“richness”/“laziness” in that if pretraining has already developed some of the dynamical systems
structures needed for the target task, then within task learning can proceed quickly and with very
low rank changes to the network dynamics.

Across task difficulties, we find a very systematic difference in the minimum necessary rank for
the full course of learning between count-based pretraining versus alternatives. This implies that
the counting curriculum results in systematically more compact dynamics for the solutions that it
finds for the target task. In contrast, the dimensionality of short integration curricula has much more
similar ranks to solo training. The degree of reorganization during target task training was also
different across curricula, with integration requiring very substantial reorganization of the dynamic
modes (of rank on pair with solo training) whereas the target specific adaptation was very low rank
in the counting curricula. While the results presented use a ratio of 2 between the short and long
intervals, similar phenomena can be observed for other choices of short length and other curricula
(Suppl. Fig.[7). Overall, pretraining using counting seems to lead to more compact solutions and
comparatively low rank dynamic changes during target task training. This is likely a reflection of
representational refinement rather than de novo learning.

A B

trial t I
i time within trial

\/ \/ % "
% (N f outside readout plane
. ‘ \ | o8
; ; |
% ; \\ | pos
i \ I
f A\ |
[X |
i A\ -
i PC2 P
X

time steps " - PC1 time within trial

targets: cos

Perpendicular

targets: sin

Figure 4: Different curricula lead to different dynamical systems structure. (A) The target output
for the counting task involves a 2-d periodic output; inputs are the same as for integration but com-
pletely irrelevant for counting. (B) Low dimensional projection of population activity after training,
colored by oscillation phase (left) and associated dynamical systems characterization (right) where
the directional flow is estimated relative to the 2-d count readout axes. (C) Trajectories driven by
autonomous dynamics for typical initial conditions (gray) and in response to vertical perturbations
(blue). The z is defines as the axis of largest variance orthogonal to the readout plane.

3.3 DYNAMICAL SCAFFOLDS AND COMPOSITIONAL GENERALIZATION

To understand the mechanism by which counting pretraining leads to compact and faster-to-learn
representations, we turned once more to the geometry of network states and their dynamics (Fig-
ure [4). Since the network receives the same kinds of inputs during pretraining as in the target task
(even if they act as a nuisance from the perspective of the pretraining task), we would expect that
the dynamics at the end of counting pretraining would not only exhibit periodicity but that they
would try to clamp the integration input channel, or at least place those inputs into the null space of
the relevant network responses. Indeed, the representation learned via counting shares the periodic
nature of the temporal representation, but without the vertical bars seen in the final task solution.
Investigating the network flow along the “horizontal” plane of the task relevant outputs, we find a
consistent flow akin to the functional limit cycle seen for integration. Unlike integration, the or-
thogonal axis shows substantial autonomous flow along the “vertical” axis. Moreover, given that the
network dynamics seem to compensate for perturbations along that dimension, it is likely that the
flow outside of the output plane reflects attractor forces that pull the dynamics onto the limit cycle
generating the counting outputs (Figure |4).

Under review as a conference paper at ICLR 2026

This seems very counterintuitive: we took one idiosyncratic property of the target solution, i.e. ex-
ploiting fixed trial length, and used it to build a pretraining task that not only reinforces that aspect of
the dynamics but does so at the expense of penalizing dynamical structure that would be desirable for
the end goal. And yet, learning the target from the resulting starting point is still much faster than any
alternative. A way to reconcile these observations is to think of them in terms of compositionality of
the dynamic modes: if the counting pretraining builds one dimension of the dynamics in the form of
the effective limit cycle element, the target tasks can use very low-dimensional perturbation of those
dynamics to add the one extra slow dimension needed for the integration (the vertical span of the
birdcage). Thus, the primary mechanism for skill transfer in this setting is the preservation of exist-
ing dynamic modes paired —which provides a dynamic scaffolds of sorts— with a low rank expansion
of the dynamics to account for added new functionality. Moreover, curricula involving counting
tasks yield consistent dynamical structures across different initializations, as evidenced by the low
variance in phase trajectories (Suppl. Fig.[§), suggesting that the temporal scaffolding provided by
counting leads to more robust solutions. More generally, the structured curricula reduce across-seed
variability in terms of the effects of task training (in terms of ranks, representational structure and
any other metrics we have measured) providing a more narrow but speedy path towards a good final
solution.

3.4 ADAPTING EXISTING STRUCTURE VS. BUILDING NEW ONE
Up to this point, we have focused our mechanistic understanding of CL on pairs of tasks with a

shared trial length. What happens when the length of trials in pretraining is shorter than that of the
final integration task (as is always the case for short integration curricula)?

A Count 6 B Integrate 6 c Integrate 12

< H
5 5 3
i s N =
PC2
PC1 pc1 PC2
— 70 P E Integrate 12
(%)
8 oo "
o
jo2
9 500
kel
‘g’ 200 y <
3 3
g s s
[200 o
100
0

1 2 3 4 5 6 7 8 8 101112 1 2 3 &4 5 6 7 8 9 1011 12

time within trial time within trial

Figure 5: Dynamic feature reuse in multi-task curricula. (A-E) Network activity structure across
multiple stages of pretraining for integrate-12 target task. (F) Phase of the population activity as a
function of time within trial for the Count6—Integrate6 (left) vs. Count6 — Integrate6— Count12
(right) pretraining; mean and sem estimated across 25 seeds.

A particularly illustrative example is the version where the trial length doubles in the target task
relative to pretraining, 7> = 277 (Fig.[5). Concretely, we start with training counting for length 6,
which builds a circular geometry but no encoding of integrated outputs, then expand the correspond-
ing birdcage vertical bars via training integration with the same length. At this point of the process,
we either jump straight into the target task integration length 12, or include additional pretraining
for counting with length 12.

The two curricula sequences yield systematically different mechanisms of task adaptation. In the
first scenario, the dynamics straight out reuse the existing dynamical systems structure where activity
circles the 6 bar birdcage twice. The concurrent presence of the start input, together with the network

Under review as a conference paper at ICLR 2026

being in the period-end state, is enough to reset the dynamics for a new trial. In contrast, training
with the long counting task reorganizes the representation to a length 12 limit cycle which then
expands an additional dimension of the integrated output, as (see also Suppl. Fig.[7/B). This is a
statistically robust result across seeds (Fig.[5F), showing that different pretraining procedures induce
strong inductive biases in terms of the nature of the final solution that the RNN learns for a given
target task (see also Suppl. Fig.[g).

The first type of adaptation is fundamentally lazy, by exploiting the representational task alignment
of the curriculum to effectively learn nothing new. The second causes compact, low dimensional
but very structured reorganization of the representation in the service of a new task (in this case
Integrate6 — Count12). The dynamic reuse demonstrated above suggests that networks can leverage
existing dynamical system structure (as well as low rank) to accelerate learning on related tasks.
The lack of additional speedups with the longest curriculum (including counting to 12) relative to
its direct integration counterpart (Fig. [ZC) can be understood as a tradeoff between reusing already
existing structure directly which is a little slower to train vs. pretraining further to make in task
training ever so slightly faster. By the time networks have completed short counting and short
integration, they have already established the essential dynamical scaffolds needed for the target
task: a functional limit cycle for temporal representation and the capacity for integration along
orthogonal dimensions; further reorganization provides minimal learning efficiency benefit, but at
the cost of additional training time. Nonetheless, representational differences between them remain
relevant in terms of the priming of the network for future learning. In particular, we expect that the
long curriculum will lead to networks that are faster to generalize to even longer temporal integration
windows.

3.5 SHARED REPRESENTATIONAL SUBSPACES ACROSS TASKS

While we have substantial evidence that dynamical systems features built during pretraining get re-
shaped and reused for learning in the final task, whether the topological reuse of structure comes
with systematic geometric changes is not clear. To investigate this in more detail, we analyzed the
similarity of the network’s representational geometry at different stages of the curriculum (Fig. [6).
Our analysis compared the structure of a single network after Count6 pretraining to its final structure
after subsequently learning the Integrate6 task (Fig. [(JA, blue). As a null model for the magnitude
of these effects, we compared the final states of two networks that were independently trained on
the full curriculum from different random seeds (Fig. @A, red). First, we evaluated the similarity of
the overall representation subspaces generated by the hidden state activity. We used three comple-
mentary metrics for this: 1) the alignment of principal component axes, 2) the degree of subspace
overlap, and 3) Centered Kernal Alignment (CKA) (Kornblith et al.,2019). The different metrics all
paint a coherent picture: they show significantly more aligned geometry between the network’s rep-
resentation at the end of pretraining and the final solution relative to control (Fig.[6B). Furthermore,
to examine the proximity of individual learned trajectories, we calculated the Euclidean distance be-
tween network’s evolution of states in several ways. Specifically, we computed the distance between
corresponding hidden states for each of the six time steps within a trial, averaged these six values
to obtain an overall trajectory distance, and additionally calculated the distance between the mean
hidden state vectors of each model (Fig. [6C). As for all other quantifications, we find that network
trajectories are geometrically preserved over the final target learning process.

4 DISCUSSION

In this work, we investigated the mechanisms by which curriculum learning shapes the internal dy-
namics of RNNs in the service of speeding up learning. We showed that although many curricula
can induce some degree of speedup relative to solo task training for our simple temporal integration,
what kind of dynamical system structure they build and how that gets reused by the target task can
vary. The most important and counterintuitive result is that pretraining on counting —which aims
to build one of the task-required dynamical modes at the cost of another— yields the strongest ben-
efit. Mechanistically, this provides a dynamic scaffold (in this case a limit cycle that keeps track
of time within trial) which gets combined with a new line-attractor extended dimension to imple-
ment the target function. This provides not only a possible explanation for the empirical benefits
of compositional curricula (Hocker et al., [2025)), but also a counterpart for the RNN simplicity bi-

Under review as a conference paper at ICLR 2026

Initial A

e e

Initial B

o
D
»

19
=

I

D

Count 6A Integrate 6A

=8
O—®)

Count 6B Integrate 6B

same run

D

Cluster by time within trial

PC-axis similarity

Baseline

{ & samerun
& Different run

Subspace overlap

10

CKA similarity

03

k2

compare group

compare group

Cluster overall

compare group

Avg. Hidden state

(2]

—&- Same run
4 Different run

75 * ¥

/
/
/

Euclidean distance
o
/
/

1

compare group

i

compare grou
time within trial pare group

Figure 6: Networks share representational geometry across curriculum stages. (A) Experimen-
tal design: Networks initialized from different random seeds undergo curriculum learning, Count6
—Integrate6. Comparisons are made within individual curriculum sequences (same run, blue) ver-
sus across different random initializations (different run, red). Gray indicates initial to count-trained
comparison. (B) Subspace similarity analysis across three measures-PC axis similarity, subspace
overlap, and CKA similarity. (C) Euclidean distance analysis between hidden states under zero
input noise conditions.

ases documented previously (Turner & Barak| 2023)), but through the lens of compositionality of
dynamics: New dynamic modes build up on top of existing ones to achieve complex function.

This feature distinguishes our approach from recent RNN models of cognitive flexibility which
demonstrate effective dynamics reuse through explicit context signals or rule inputs (Yang et al.,
2019; Driscoll et al.l [2024). In our case, the dynamical primitives remain plastic and can be con-
stantly be reshaped by new experience. The new learning happens in very compact spaces (parame-
ter changes being low rank) which may have interesting implications for continual learning in terms
of the ability of the systems to learn multiple unrelated tasks without interference. Future work will
need explore this in more detail.

From the perspective of the target task, pretraining can be thought of as a mechanism for favor-
able parameter initialization. This perspective aligns our findings with recent results on the effects
of initial low-rank connectivity on learning outcomes (Liu et al., |2024). This connection between
curriculum design and initial condition engineering suggests potentially broader conceptual rela-
tionships with modern mathematical attempts at understanding RNN learning (Proca et al., 2025)).

The neural tangent kernel framework (Jacot et al., |2018) reveals a dichotomy between lazy and
rich learning regimes—minimal versus substantial feature reorganization. Critically, initial weight
structure determines which regime dominates (Liu et al., 2024), with consequences for solution
efficiency and generalization. While the distinction between rich and lazy is not always clear in our
setup, we were able to identify several qualitatively different scenarios: 1) direct reuse of an existing
dynamical system feature (count and integrate joint curriculum), 2) reshaping of dynamic modes
on top of existing structure (CountT’ to Integrate7’) and 3) de novo formation of more complex
structure (e.g. long curriculum including Countl2). These argue for new metrics of laziness in
RNN training, focused on the persistence of topological features of the dynamics across the learning
process, perhaps akin to those that have been recently developed for studying metadynamics in
single tasks (Marschall & Savin, [2023).

REFERENCES

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for sequence
prediction with recurrent neural networks, 2015. URL https://arxiv.org/abs/1506.
03099.

https://arxiv.org/abs/1506.03099
https://arxiv.org/abs/1506.03099

Under review as a conference paper at ICLR 2026

Yoshua Bengio, Jérome Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the 26th annual international conference on machine learning, pp. 4148, 2009.

J Tyler Boyd-Meredith, Cristofer Holobetz, and Andrew M Saxe. Stage-like emergence of task
strategies in animals and in neural networks trained by gradient descent. In CCN, 2025.

Colin Bredenberg, Cristina Savin, and Roozbeh Kiani. Recurrent neural circuits overcome partial
inactivation by compensation and re-learning. Journal of Neuroscience, 44(16), 2024.

William Chan, Navdeep Jaitly, Quoc V. Le, and Oriol Vinyals. Listen, attend and spell, 2015. URL
https://arxiv.org/abs/1508.01211l

Joanna C Chang, Matthew G Perich, Lee E Miller, Juan A Gallego, and Claudia Clopath. De novo
motor learning creates structure in neural activity that shapes adaptation. Nature communications,
15(1):4084, 2024.

Laura N Driscoll, Krishna Shenoy, and David Sussillo. Flexible multitask computation in recurrent
networks utilizes shared dynamical motifs. Nature Neuroscience, 27(7):1349-1363, 2024.

Raphael Q Gastrock, Bernard Marius ’t Hart, and Denise YP Henriques. Distinct learning, retention,
and generalization patterns in de novo learning versus motor adaptation. Scientific Reports, 14
(1):8906, 2024.

Alex Graves, Marc G Bellemare, Jacob Menick, Remi Munos, and Koray Kavukcuoglu. Automated
curriculum learning for neural networks. In international conference on machine learning, pp.

1311-1320. Pmlr, 2017.

Guy Hacohen and Daphna Weinshall. On the power of curriculum learning in training deep net-
works. In International conference on machine learning, pp. 2535-2544. PMLR, 2019.

Doron Haviv, Alexander Rivkind, and Omri Barak. Understanding and controlling memory in re-
current neural networks, 2019. URL https://arxiv.org/abs/1902.07275.

David Hocker, Christine M Constantinople, and Cristina Savin. Compositional pretraining improves
computational efficiency and matches animal behaviour on complex tasks. Nature Machine Intel-
ligence, pp. 1-14, 2025.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. Advances in neural information processing systems, 31, 2018.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited. In International conference on machine learning, pp. 3519—
3529. PMIR, 2019.

Kai A Krueger and Peter Dayan. Flexible shaping: How learning in small steps helps. Cognition,
110(3):380-394, 2009.

Brenden Lake and Marco Baroni. Generalization without systematicity: On the compositional skills
of sequence-to-sequence recurrent networks. In International conference on machine learning,
pp. 2873-2882. PMLR, 2018.

Yuhan Helena Liu, Aristide Baratin, Jonathan Cornford, Stefan Mihalas, Eric Shea-Brown, and
Guillaume Lajoie. How connectivity structure shapes rich and lazy learning in neural circuits,
2024. URL https://arxiv.org/abs/2310.08513.

Niru Maheswaranathan, Alex Williams, Matthew Golub, Surya Ganguli, and David Sussillo. Uni-
versality and individuality in neural dynamics across large populations of recurrent networks.
Advances in neural information processing systems, 32, 2019.

Shirley Mark, Rani Moran, Thomas Parr, Steve W Kennerley, and Timothy EJ Behrens. Transferring
structural knowledge across cognitive maps in humans and models. Nature communications, 11
(1):4783, 2020.

Owen Marschall and Cristina Savin. Probing learning through the lens of changes in circuit dynam-
ics. bioRxiv, pp. 2023-09, 2023.

10

https://arxiv.org/abs/1508.01211
https://arxiv.org/abs/1902.07275
https://arxiv.org/abs/2310.08513

Under review as a conference paper at ICLR 2026

Sanmit Narvekar and Peter Stone. Learning curriculum policies for reinforcement learning. arXiv
preprint arXiv:1812.00285, 2018.

Core Francisco Park, Maya Okawa, Andrew Lee, Ekdeep S Lubana, and Hidenori Tanaka. Emer-
gence of hidden capabilities: Exploring learning dynamics in concept space. Advances in Neural
Information Processing Systems, 37:84698-84729, 2024.

Alexandra Maria Proca, Clémentine Carla Juliette Dominé, Murray Shanahan, and Pedro A. M.
Mediano. Learning dynamics in linear recurrent neural networks. In Forty-second International
Conference on Machine Learning, 2025. URL https://openreview.net/forum?id=
KGOcrIWYnx.

Friedrich Schuessler, Francesca Mastrogiuseppe, Alexis Dubreuil, Srdjan Ostojic, and Omri Barak.
The interplay between randomness and structure during learning in rnns. Advances in neural
information processing systems, 33:13352-13362, 2020.

Petru Soviany, Radu Tudor Ionescu, Paolo Rota, and Nicu Sebe. Curriculum learning: A survey.
International Journal of Computer Vision, 130(6):1526-1565, 2022.

David Sussillo and Omri Barak. Opening the black box: low-dimensional dynamics in high-
dimensional recurrent neural networks. Neural computation, 25(3):626—649, 2013.

Bedta Tiinde Szabé and J6zsef Fiser. Decoupling levels of learning: behavioral evidence for disso-
ciable low-and high-level structure learning. In CCN, 2025.

Elia Turner and Omri Barak. The simplicity bias in multi-task rnns: shared attractors, reuse of
dynamics, and geometric representation. Advances in Neural Information Processing Systems,
36:25495-25507, 2023.

Pantelis Vafidis, Aman Bhargava, and Antonio Rangel. Disentangling representations through multi-
task learning, 2025. URL https://arxiv.org/abs/2407.11249,

Christopher S Yang, Noah J Cowan, and Adrian M Haith. De novo learning versus adaptation of
continuous control in a manual tracking task. elife, 10:e62578, 2021.

Guangyu Robert Yang, Madhura R Joglekar, H Francis Song, William T Newsome, and Xiao-Jing
Wang. Task representations in neural networks trained to perform many cognitive tasks. Nature
neuroscience, 22(2):297-306, 2019.

Yanli Zhou, Reuben Feinman, and Brenden M Lake. Compositional diversity in visual concept
learning. Cognition, 244:105711, 2024.

A EXTENDED METHODS

Loss function and optimization. All networks were trained using Mean Squared Error (MSE) loss
between the network output and target function. We used the Adam optimizer with a learning rate
of 0.0001 and default hyperparameters (51 = 0.9, B2 = 0.999).

Training protocol. Training was conducted in batches of 32 trials. Each epoch consisted of 512
batches. Rather than training for a fixed number of epochs, convergence for each task or curricu-
lum stage was determined adaptively: a network was considered converged when its test set MSE
remained below 0.2 for 10 consecutive epochs. This threshold was chosen to ensure robust task
performance while allowing comparison across different curricula.

Data generation. Each batch contained 200 time steps total, yielding 200/7 trials per batch (e.g.,
33 trials for T = 6, 16 trials for 7 = 12). Stimulus inputs were drawn from N (g, 02,;,,,) with po =
0.3 and o4t = 0.6, where the sign of ;o was randomly chosen per trial with equal probability.

11

https://openreview.net/forum?id=KGOcrIWYnx
https://openreview.net/forum?id=KGOcrIWYnx
https://arxiv.org/abs/2407.11249

Under review as a conference paper at ICLR 2026

targetint. length 8 target int. length target int. length
® final-CL ok il
141 A finakinitial 141 o 141 ok
| —| | |
ok
124 _— 124 124 {
| ——|
]] a
S 10+ S 10+ S 10+ {
3 3 I 3
ﬁ G @
¢ 8- ¢ g ¢ 8-
£ I £ £)
g 1 g 3 I
g 61 g 6 1 £ 6
o -4 -4
< e < S c | E—
s, s] * s, =
2 24 2
0 T T T 0 T T T 0 T T T
Solo Int Int_6 - Int C-Int SoloInt Int 6->Int C-Int SoloInt Int 6->Int C-Int
target int. length 8 target int. length target int. length
114 @® initial - final 114 114
W C_half - final -
A Int_half - final —
107 ¢ ¢ final 101 01—
8 8 — -]
S 91 S 9 S 9
| |
2 - 2 2
£y T £ 81 £ 8
g —— g 3 g
C 74 o7 E 57
© © ©
X X~ X~
[= f= f=
g 6 g 6 g 6 }
c E < £
=5 [=5 =5
4 i 4 I i 4
3 3 3 :
o\ o L o\ e s\
R “\x,“a“ Wt ¢ . “\x,“a\(wat” ¢ ey ¢ ot~ ¢
vt S\ ot e ot e
ct ¢ }\a\‘ [c j\a* ct < /“a\i

Figure 7: Effective rank for different curricula. (A) Minimal rank for different training curricula;
conventions as for Fig[3] but for different relationships between pretraining and target trial length.
(B) Same as A but covering the different stages of the complex pretraining curricula described in

Fig.2IC.

B BENEFITS OF LEARNING SPEED COME FROM REUSE OF DYNAMICAL
SYSTEMS STRUCTURE, NOT JUST LOW DIMENSIONALITY

Given the observations that pretraining shapes the minimal rank of the computation, and with it the
dimensionality of the recurrent dynamics, as well as constructing slow dynamical systems features
that seem to get reused in the target task, it is reasonable to wonder what exactly drives the increase
in speed? Is it the low dimensionality of the dynamics, or the actual dynamical systems structures
built within that low dimensional manifold?

To investigate this distinction, we used a two dimensional version of the Flip-flop task as pretraining
(Fig[9). Training on this task results in a well-documented solution with four geometrically symmet-
ric fixed points forming a square (Maheswaranathan et al.,|2019). Input dependent transitions allow
the system to move between these points implementing a two bit form of item working memory.
The solution for this task shares many features with our Count4 pretraining: both have a planar ge-
ometry and four slow features within it, with the key distinction that the nature of the slow features

12

Under review as a conference paper at ICLR 2026

i12 i6->i12 cl2->i12
. 800 800 800
A yel T
o
g
3 600 600 600
Q
a
©
[
. ®
200 ’-"” 200 } 200 7
- ; -
.
.
0 o o
1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12
time within trial time within trial time within trial
€6->i6->i12 €6->i6->c12->i12
@ 800 800
g Two cycles
(=
(5
Z 600 . 600
2 o
©
< .
o
400 One cycle . 400
.
. .
.
200 - 4 200 P od
. .
.
.
.
o o
1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 a4 5 6 7 8 9 10 11 12
time within trial time within trial

Figure 8: Geometry of the final network trajectories for different curricula. Phase of the
population activity as a function of time within trial across different curriculum sequences.
Top row: Integratel2 (solo), Integrate6—Integratel2, Countl2—Integratel2. Bottom row:
Integrate6—Count6— Integrate 12, Integrate6—Count6—Count12— Integrate12.

is different. Counting dynamics have a consistent rotational flow between the slow points, whereas
the Flip-flop task do not have such flow. Importantly, the benefits of pretraining are only seen for
counting (regardless of the number of time steps, see also Fig. 2B). Despite the many similarities, it
takes a larger number of epochs to train the integration target task ((Maheswaranathan et al.l 2019)
a, left) which reflects the need for more dramatic changes in topology needed to construct the final
solution. Starting from the flip-flop solution as initial conditions still provides an improvement over
starting from scratch ((Maheswaranathan et al.,2019) a, gray) which proves that the corse geometry
is part of the benefit, but the flip-flop is generally slower to train, bringing the total training time up
by a large margin. Mechanistically, the integration solution after flip-flop training does not seem to
reuse the full set of fixed points, but rather concentrates the integration computation around one of
them ((Maheswaranathan et al.l 2019) b). Overall, these results suggest that knowledge transfer in
this task primarily relies on the reuse and adjustment of the limit cycle motif from pretraining to the
final birdcage solution.

13

Under review as a conference paper at ICLR 2026

A B Counting and Integration PCA Flow Field in Hidden State Space ,
. . .. - Counting Task 5 &
Integration Task Learning Efficiency Integration Task ' [
250 Task ok 2 s
@ Counting 1 .
2-bit Flip-flop il § 1 .3
® NoCL - ? , g
1 g Sy EL
200 -1)
— -2 1
-
2
] -3
+ =3 2 0 1 2 4 5
= PC1 (56.26%)
© 150 C
) . N
= 2-bit flip-flop and Integration PCA Flow Field in Hidden State Space
~ a 0.40
2 2-bit Flip-flop Task S
[Integration Task 3] ZIN 035
o
“ 9 2 030
100 E 2
P 0255
ok - g
g = 0203
® 015
50 E -2 0.10
-3 0.05
Epochs only for Integration Task Total Training Epochs -4

o 2
PC1 (55.75%)

Figure 9: Fixed points from 2-bit flip-flop pretraining fail to provide dynamical scaffold-
ing for curriculum transfer. (A) Learning efficiency comparison across three conditions:
Counting—Integration (red), 2-bit Flip-flop—Integration (orange), and No CL (gray). Left: epochs
for integration task only (post-pretraining); Right: total training epochs including pretraining. Error
bars show mean = std across 25 seeds. Counting pretraining significantly reduces both integration-
specific and total training time, while 2-bit flip-flop pretraining even increases total training time due
to the cost of learning an incompatible dynamical structure. (B) Counting task case. Left: combined
PCA of both counting task (red) and integration task (green) hidden states, showing overlapping
structure. Right: flow field for recurrent activity in the space of the first two PCs after counting pre-
training, showing limit cycle dynamics. (C) 2-bit flip-flop task case. Left: combined PCA of both
2-bit flip-flop task (orange) and integration task (green) hidden states, showing distinct structure.
Right: flow field for recurrent activity in the space of the first two PCs after flip-flop pretraining,
revealing convergence to four stationary attractors.

14

	Introduction
	Methods
	Probing effects of pretraining with a fixed-length integration task
	A highly structured dynamical systems solution

	Accelerating Learning by Scaffolding Neural Dynamics
	Several curricula speed up training in our task
	Different curricula induce changes with different effective ranks
	Dynamical scaffolds and compositional generalization
	Adapting existing structure vs. building new one
	Shared representational subspaces across tasks

	Discussion
	Extended methods
	Benefits of learning speed come from reuse of dynamical systems structure, not just low dimensionality

