

000
 001
 002
 003
 004
 005
 006
 007
 008
 009
 010
 011
 012
 013
 014
 015
 016
 017
 018
 019
 020
 021
 022
 023
 024
 025
 026
 027
 028
 029
 030
 031
 032
 033
 034
 035
 036
 037
 038
 039
 040
 041
 042
 043
 044
 045
 046
 047
 048
 049
 050
 051
 052
 053

MECHANISMS OF SKILL TRANSFER FROM PRETRAINING TO TARGET TASKS IN RECURRENT NEURAL NETWORKS

Anonymous authors

Paper under double-blind review

ABSTRACT

Pretraining on simpler tasks can often improve learning outcomes on a more difficult target task. Nonetheless, what makes for a good pretraining curriculum and the mechanisms of positive transfer across tasks remain poorly understood. Here we use RNNs trained on fixed length temporal integration to compare curricula with varying degrees of effectiveness. We show that pretraining on simpler versions of the target task is less effective than curricula which take advantage of the target task’s compositional structure and train sub-skills needed for solving it. By exploiting the highly structured solution of our target task, we can mechanistically explain improvements in speed and quality of learning in terms of the slow features of the RNN dynamics that the curriculum helps build, and the reuse and adaptation of those slow features during target training. Our results argue that pretraining on tasks that individually hone sub-skills required for the target are particularly beneficial, as they build a scaffolding on which additional dynamical systems structures can be compositionally expanded to achieve the final function. Thus, our results document a novel mechanism for repurposing dynamical systems features in support of cognitive flexibility.

1 INTRODUCTION

In biological systems, learning of a new skill always happens on top of a structured body of previous knowledge. Moreover, when training animals in new experimental tasks, this preexisting knowledge is purposefully supplemented by first training simpler relevant tasks. Such behavioral shaping often proves critical for being able to learn a desired behavior within a limited time. It is also an increasingly common approach to training recurrent neural network (RNN) models on complex tasks (Krueger & Dayan, 2009). Outside biology, using pretraining or some form of curriculum learning is a common strategy for improving the quality of training in many machine learning tasks (Soviany et al., 2022; Hacohen & Weisshall, 2019; Narvekar & Stone, 2018). What makes for a good pretraining task and the mechanisms by which knowledge is reused across tasks remains poorly understood.

Curriculum learning (CL)—the strategy of organizing training examples from simple to complex—has long been recognized as an effective approach to accelerate learning (Bengio et al., 2009). Traditional curriculum methods focus on gradually increasing task difficulty through shorter sequences (Bengio et al., 2015; Chan et al., 2015), reduced data complexity, or automated difficulty progression (Graves et al., 2017; Haviv et al., 2019). The mechanics of why CL might help are not fully understood but it is typically explained through the lens of the loss landscapes that different tasks induce: simpler versions of the same task have easier to navigate loss surfaces bringing the model parameters at good initial conditions for the more difficult to optimize loss surface of the target task. Although this perspective has been influential in understanding why simpler tasks aid training, open questions remain about what the process of transfer looks like from the perspective of the representations learned during pretraining relative to those used in the final solution.

The reuse of pretrained representations has recently been the focus of study in multi-task RNNs. Such models can learn reusable dynamical motifs and rule structures (Yang et al., 2019; Driscoll et al., 2024), where complex behaviors emerge through flexible combination of these dynamical sys-

054
 055
 056
 057
 058
 059
 060
 061
 062
 063
 tems computational elements. The geometric organization of these learned representations depends
 critically on network architecture and task structure: networks may either reuse shared subspaces
 across tasks or develop orthogonal representations (Turner & Barak, 2023; Vafidis et al., 2025).
 Moreover, the structure of the initial conditions can determine the speed and nature of the learning
 process (Liu et al., 2024). Despite much progress, cognitive flexibility remains largely studied in
 scenarios where the recurrent dynamics (and associated dynamical systems computation motifs) are
 structured but fixed. A new task then learns to repurpose these elements through learnable inputs
 and outputs (Driscoll et al., 2024). It remains unclear how new dynamical systems motifs can be
 learned on top of an already structured dynamical systems and what kind of dynamics repurposing
 is possible in a sequential task learning context.

064
 065
 066
 067
 068
 069
 070
 071
 072
 073
 The ability to combine learned primitives to solve novel problems is tightly related to task compo-
 sitionaliy (Lake & Baroni, 2018; Zhou et al., 2024; Park et al., 2024), which provides a principled
 approach for constructing useful curricula. Evidence from animal learning (Boyd-Meredith et al.,
 2025), human behavioral studies (Szabó & Fiser, 2025), and computational models (Hocker et al.,
 2025; Mark et al., 2020) demonstrates that pretraining on tasks that target specific sub-computations
 or relational structures substantially improves subsequent learning of complex tasks. How this hap-
 pens at the level of learned neural representations is only partially understood (Hocker et al., 2025).
 When are the already existing primitives enough for new task adaptation vs. when *de novo* learning
 of additional structure is needed is not always clear, although both strategies have been documented
 biologically (Chang et al., 2024; Yang et al., 2021; Gastrock et al., 2024).

074
 075
 076
 077
 078
 079
 080
 081
 082
 083
 084
 085
 Here we aim to understand positive benefits of RNN pretraining in terms of the network’s dynamical
 systems features and how they change over learning. We do so by exploiting the very particular
 dynamical systems structure of a new variant of temporal integration to mechanistically investigate
 how pretraining on simpler tasks shapes the internal representations of RNNs at the level of slow
 dynamical systems features that support task relevant computations. We identify a collection of dif-
 ferent curricula that all prove beneficial in terms of speeding up learning in the target task. Different
 curricula have different mechanistic ways of achieving knowledge transfer. Compositional curricula
 yield the strongest benefits for target task training, by ensuring low rank effective changes in the
 network dynamics. These correspond to a dynamic scaffold of useful function that then gets adapted
 through the addition of further complementary dynamic modes during in task training. Moreover,
 different sequential curricula which exploit compositional structure can lead to qualitatively differ-
 ent dynamics repurpose strategies, from lazy reuse of exiting primitives, to rich reorganization of
 the circuit dynamics as a whole.

086 087 2 METHODS

090 2.1 PROBING EFFECTS OF PRETRAINING WITH A FIXED-LENGTH INTEGRATION TASK

091
 092 We use a standard discrete time RNN, with network states $\mathbf{h}_t \in \mathbb{R}^N$ evolving as:

$$093 \quad \mathbf{h}_t = (1 - \alpha)\mathbf{h}_{t-1} + \alpha f(\mathbf{W}_{rec}\mathbf{h}_{t-1} + \mathbf{W}_{in}\mathbf{x}_t + \mathbf{b}), \quad (1)$$

095
 096
 097
 098
 099
 100
 101
 102
 where $\mathbf{x}_t \in \mathbb{R}^2$ is the input, α is the leak rate, \tanh nonlinearity $f(\cdot)$, and trainable parameters
 $\mathbf{W}_{rec}, \mathbf{W}_{in}, \mathbf{b}$. The output $\mathbf{y}_t \in \mathbb{R}^1$ is a linear readout $\mathbf{y}_t = \mathbf{W}_{out}\mathbf{h}_t$. The recurrent weight matrix
 \mathbf{W}_{rec} was initialized either deterministically to a rescaled version of the identity matrix, while \mathbf{W}_{in}
and \mathbf{W}_{out} were initialized using Xavier uniform initialization. We also tested Xavier uniform ini-
tialization for \mathbf{W}_{rec} and found qualitatively consistent results across all curriculum conditions, but
chose diagonal initialization as it removes one sort of variability from the process allowing us to fo-
cus on the effects of pretraining in changing those initial conditions. For all experiments, $N = 100$,
with a leak $\alpha = 0.9$.

103
 104
 105
 106
 107
 Our target task family is a variant of evidence integration, where independent Gaussian noise inputs
need to be summed-up over a time period $[1, T]$ to generate the output (Fig. 1A), $y_t^{\text{int}} = \sum_{i=1}^t x_i$
where $x_t^{\text{stim}} \sim \mathcal{N}(\mu, \sigma_{\text{stim}}^2)$. In each trial the mean input μ is randomly chosen as $\mu = \pm \mu_0$ with
equal probability. An additional input channel signals beginning of a new trial with a impulse at
 $t = 1$, which provides a mechanism for a dynamic reset of the network state at the beginning of a
new trial. (see Appendix A for training details).

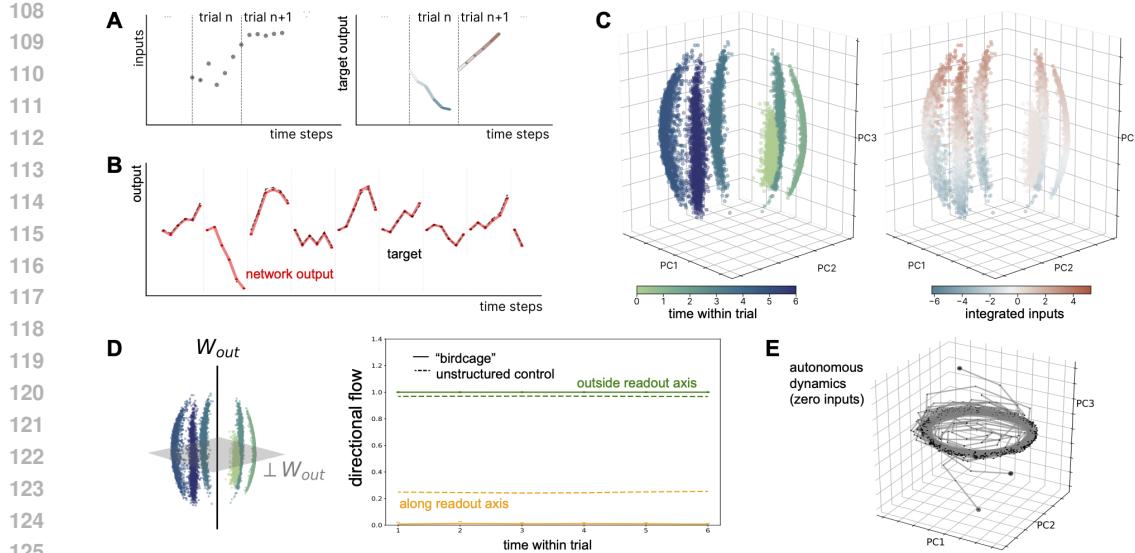


Figure 1: An integration task with structured dynamics. (A) Example input-output trials for the task: inputs are i.i.d. gaussian samples, while the output needs to report their sum over the course of the trial. (B) Example network performance after training. (C) PCA projection of the network states, color coded by either time within trial (left), or target output (right). (D) Projection of the average network flow along the vertical (readout) axis and in the orthogonal horizontal plane as a function of time within trial. Control network does not have birdcage structure. (E) Example trajectories of autonomous dynamics starting at typical initial trial start states; larger dots show trajectories for perturbed initial conditions.

Two features make it different from the standard version of this task: 1) the output needs to be reported throughout the trial as opposed to reporting the final sign of the sum at the end (Sussillo & Barak, 2013; Bredenberg et al., 2024), and 2) all trials have equal duration, with trial length, T , controlling overall task difficulty. While this task is too simple to strictly require pretraining, we will show that this twist on the standard formulation can still capture some interesting knowledge transfer scenarios. Moreover, the simplicity of the setup allows the effects to be understood through the lens of repurposing and adapting preexisting dynamical system structure.

2.2 A HIGHLY STRUCTURED DYNAMICAL SYSTEMS SOLUTION

While solo training of the integration task leads to good target output reconstruction (Fig. 1B), the dynamical system structure of the solution is somewhat variable (for networks trained on trial length 6 integration tasks, 11 out of 25 developed non-birdcage solutions). One particularly interesting strategy that the trained networks seem to develop in solving the task takes the form of a “birdcage” in the network activity space (Fig. 1C). Each vertical “bar” marks one time point within the trial (left), with the position of activity along the bar directly mapping into the integrated output (right).

This is interesting since it seems more structured than it needs to be: it is not immediately clear why representing the passage of time would be useful for robustly performing the task; the fixed trial duration is a robust statistical regularity in the training data so this cyclic nature can be perhaps exploited for more effective task resetting.¹ This additional structure does come with additional complications: for this geometry to be able to actually perform the task, the intermediate sum of inputs up to the current step needs to be maintained and updated as the dynamics move from bar to bar. If traditional evidence integration achieves the computation with a single (functional) line attractor (Bredenberg et al., 2024), this variant of the task needs a one-dimensional slow dynamic mode along each of the bars.

¹Note that in a solution relying on one line attractor, resetting from below or from above zero would need inputs with opposite sign, which is not possible with a single linear reset signal.

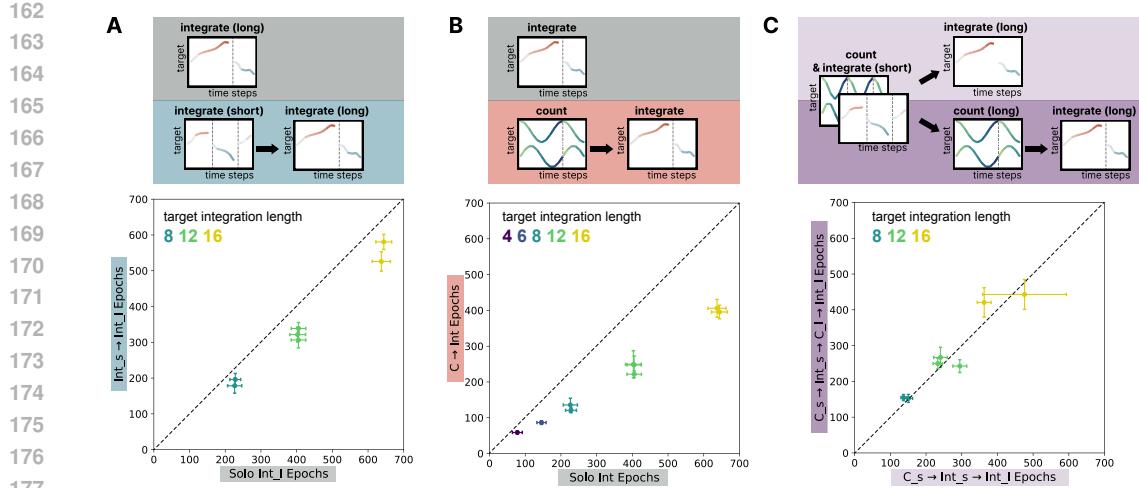


Figure 2: Learning speedups when pretraining with different curricula. Top: cartoon illustration of the curriculum comparison; Bottom: numerical results averaged across 25 seeds. (A) Traditional pretraining with shorter delays for the same task. (B) Pretraining with the counting time sub-task, with length matched to integration target. (C) Mixed curricula combining short counting and integration with an optional target matched long counting. Learning speed measured by no. of epochs required to reach threshold convergence on the target task, starting from random initial conditions. Colors indicate target integration length. Multiple data points of the same color reflect different pretraining configurations (e.g., varying pretraining task lengths) leading to the same target task.

To make these intuitions mathematically precise, we evaluated the flow of the autonomous network dynamics (no input) starting from natural initial conditions, at different time points within the trial (corresponding to different bars). Specifically, the flow defined as vector $\Delta \mathbf{h}_t = \mathbf{h}_{t+1} - \mathbf{h}_t$, which measures the direction and magnitude of state changes in the network at any time point, or alternatively by position in state space. We partition this total flow into the vertical component along the W_{out} axis and the remainder, which includes flow along the “equator” of the birdcage structure and whatever residual flow happens in higher dimensions of activity (Fig. 1D). We find virtually zero autonomous flow along the vertical axis, which means that that axis of the dynamics behaves functionally like a set of line attractors where shifts in the output are fully driven by new input coming in. In contrast, the flow within the horizontal plane is non-negligible and consistent in magnitude across time, reflecting a steady transition from bar to bar. Tracing zero input trajectories along the “equator” in response to perturbed unusual initial conditions suggests that the dynamics are attractive from outside of the birdcage structure, making the horizontal plane flow functionally a limit cycle (Fig. 1E). These signatures are reduced or missing in control networks that still perform the task well but have no clear structure in their first 3 PCs, possibly a reflection of a functionally equivalent but higher dimensional (and potentially less robust) solution (Fig. 1D, dashed lines). Overall, our variant of integration shows highly structured and directly measurable dynamical systems features in its solution, whose emergence we can hope to trace back through the learning process when using different pretraining curricula.

3 ACCELERATING LEARNING BY SCAFFOLDING NEURAL DYNAMICS

3.1 SEVERAL CURRICULA SPEED UP TRAINING IN OUR TASK

What would a pretraining curriculum look like for our simple integration task? The most obvious answer goes back to the essence of the CL idea (Bengio et al., 2009) which is to start small, with a simpler version of the same task. This “short integration” pretraining starts by training for a small T_1 up to reasonable performance before switching to the longer T_2 target task (Fig. 2A). An alternative idea motivated by behavioral shaping (Hocker et al., 2025; Krueger & Dayan, 2009) is to break out the final solution into its compositional sub-elements and design a pretraining task intended to hone

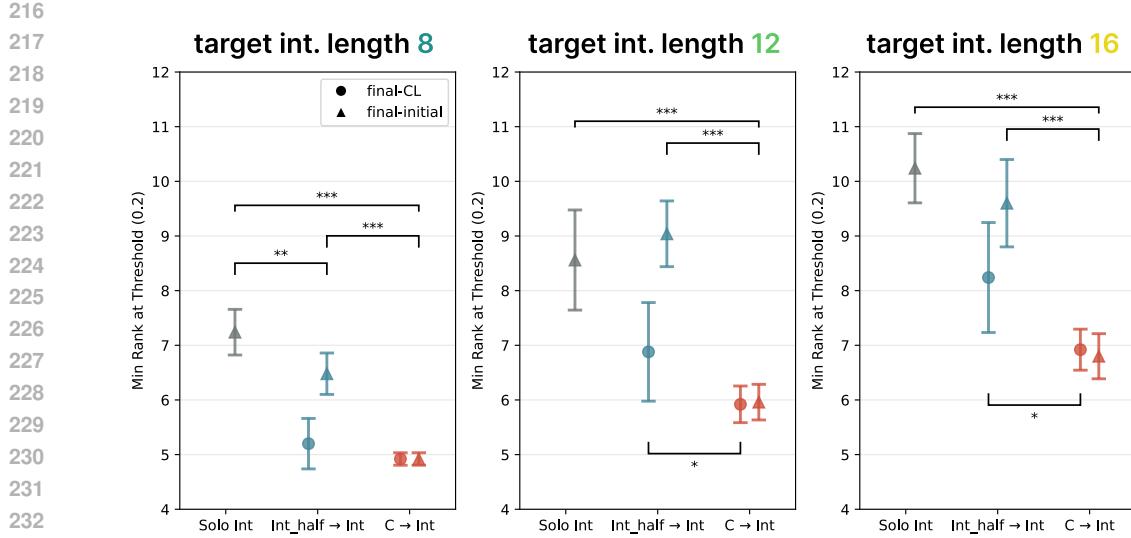


Figure 3: Dimensionality of functional changes in dynamics, as measured by the minimum rank approximation of the learning-induced recurrent changes needed to preserve final task function. Parameter changes measured relative to random initial conditions (triangles) for full learning effects, and relative to pretrained state (circle) as measure of within-task learning. Left to right: different target integration lengths.

in those skills individually. Since good solutions in our task often take advantage of representing time within a trial, we decided to pretrain networks using a simple counting task, in which the network needs to report the phase of an oscillation with period T in two output channels, $y_t^{\cos} = \cos(2\pi(t-1)/T)$ and $y_t^{\sin} = \sin(2\pi(t-1)/T)$ (Fig. 2B); for simplicity, the trial length is matched with the target. Finally, we also consider combinations of the two tasks as more complex mixed curricula which also introduce mismatched lengths between counting and target integration (Fig. 2C).

Perhaps unexpectedly given the simplicity of the setup, we find that all curricula considered improve over solo target task training in terms of speed of learning, as measured by the number of epochs required to reach criterion performance on the target task starting from random initial conditions. This is true across a range of target task difficulty levels, T , but the magnitude of the improvements depends on the pretraining procedure. Benefits are modest for short integration but much more substantial when using counting as part of the pretraining, especially at long trial lengths. These benefits saturate with more complex curricula, where the addition of long counting after short counting and short integration does not seem to further improve speed of convergence (Fig. 2C).

3.2 DIFFERENT CURRICULA INDUCE CHANGES WITH DIFFERENT EFFECTIVE RANKS

It is well understood that learning simple tasks induces low rank changes to the RNN recurrent weights (Schuessler et al., 2020). Moreover, it was recently shown that the rank of the initial conditions for the weights can change the nature of learning for a given task, interpolating between rich and lazy learning (Liu et al., 2024). We wondered thus if it would be possible to understand differences in the magnitude of speed-ups of different curricula in terms of the rank of the changes they induce to the network dynamics over learning.

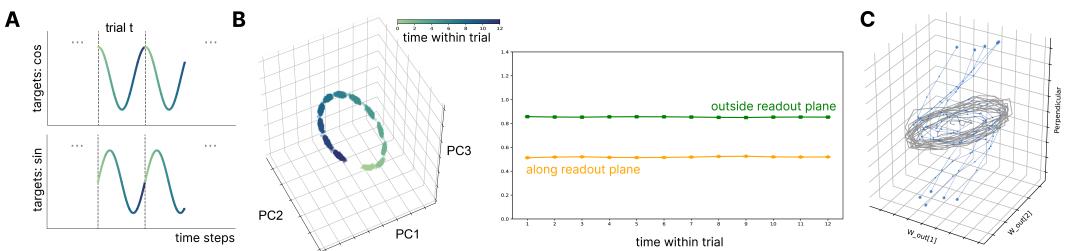
How low rank are changes introduced by different learning curricula? To answer this, we turned to a metric of the minimum *necessary rank* of weight changes induced during learning needed to support final task structure (Schuessler et al., 2020). This concretely replaces the full change in recurrent parameters $\Delta\mathbf{W}$ with increasingly low rank approximations $\Delta\mathbf{W}_k = \sum_{i=1}^k \sigma_i \mathbf{v}_i \mathbf{v}_i^T$, where σ_i are the eigenvalues and \mathbf{v}_i are the corresponding eigenvectors of $\Delta\mathbf{W}$.² It then asks what is the

²The input weights W_{in} and output weights W_{out} were kept fixed at their final trained values.

270 lowest rank approximation such that the corresponding recurrent weights still preserve good task
 271 performance, within a pre-specified tolerance.
 272

273 We considered two variants of this metric: the traditional version which measures the parameter
 274 change induced by the full training process, from random initial condition to final task convergence
 275 (Fig. 3, triangles); this should describe the dimensionality of the dynamic modes used to solve the
 276 final task. A second version of this analysis measures the necessary rank of parameter changes
 277 specifically when training on the target task (Fig. 3, circles). This provides an intuitive notion of
 278 “richness”/“laziness” in that if pretraining has already developed some of the dynamical systems
 279 structures needed for the target task, then within task learning can proceed quickly and with very
 280 low rank changes to the network dynamics.

281 Across task difficulties, we find a very systematic difference in the minimum necessary rank for
 282 the full course of learning between count-based pretraining versus alternatives. This implies that
 283 the counting curriculum results in systematically more compact dynamics for the solutions that it
 284 finds for the target task. In contrast, the dimensionality of short integration curricula has much more
 285 similar ranks to solo training. The degree of reorganization during target task training was also
 286 different across curricula, with integration requiring very substantial reorganization of the dynamic
 287 modes (of rank on pair with solo training) whereas the target specific adaptation was very low rank
 288 in the counting curricula. While the results presented use a ratio of 2 between the short and long
 289 intervals, similar phenomena can be observed for other choices of short length and other curricula
 290 (Suppl. Fig. 7). Overall, pretraining using counting seems to lead to more compact solutions and
 291 comparatively low rank dynamic changes during target task training. This is likely a reflection of
 292 representational refinement rather than *de novo* learning.



301 Figure 4: Different curricula lead to different dynamical systems structure. (A) The target output
 302 for the counting task involves a 2-d periodic output; inputs are the same as for integration but
 303 completely irrelevant for counting. (B) Low dimensional projection of population activity after training,
 304 colored by oscillation phase (left) and associated dynamical systems characterization (right) where
 305 the directional flow is estimated relative to the 2-d count readout axes. (C) Trajectories driven by
 306 autonomous dynamics for typical initial conditions (gray) and in response to vertical perturbations
 307 (blue). The z is defined as the axis of largest variance orthogonal to the readout plane.

310 3.3 DYNAMICAL SCAFFOLDS AND COMPOSITIONAL GENERALIZATION

311 To understand the mechanism by which counting pretraining leads to compact and faster-to-learn
 312 representations, we turned once more to the geometry of network states and their dynamics (Figure 4). Since the network receives the same kinds of inputs during pretraining as in the target task
 313 (even if they act as a nuisance from the perspective of the pretraining task), we would expect that
 314 the dynamics at the end of counting pretraining would not only exhibit periodicity but that they
 315 would try to clamp the integration input channel, or at least place those inputs into the null space of
 316 the relevant network responses. Indeed, the representation learned via counting shares the periodic
 317 nature of the temporal representation, but without the vertical bars seen in the final task solution.
 318 Investigating the network flow along the “horizontal” plane of the task relevant outputs, we find a
 319 consistent flow akin to the functional limit cycle seen for integration. Unlike integration, the
 320 orthogonal axis shows substantial autonomous flow along the “vertical” axis. Moreover, given that the
 321 network dynamics seem to compensate for perturbations along that dimension, it is likely that the
 322 flow outside of the output plane reflects attractor forces that pull the dynamics onto the limit cycle
 323 generating the counting outputs (Figure 4).

This seems very counterintuitive: we took one idiosyncratic property of the target solution, i.e. exploiting fixed trial length, and used it to build a pretraining task that not only reinforces that aspect of the dynamics but does so at the expense of penalizing dynamical structure that would be desirable for the end goal. And yet, learning the target from the resulting starting point is still much faster than any alternative. A way to reconcile these observations is to think of them in terms of compositionality of the dynamic modes: if the counting pretraining builds one dimension of the dynamics in the form of the effective limit cycle element, the target tasks can use very low-dimensional perturbation of those dynamics to add the one extra slow dimension needed for the integration (the vertical span of the birdcage). Thus, the primary mechanism for skill transfer in this setting is the preservation of existing dynamic modes paired –which provides a dynamic scaffolds of sorts– with a low rank expansion of the dynamics to account for added new functionality. Moreover, curricula involving counting tasks yield consistent dynamical structures across different initializations, as evidenced by the low variance in phase trajectories (Suppl. Fig. 8), suggesting that the temporal scaffolding provided by counting leads to more robust solutions. More generally, the structured curricula reduce across-seed variability in terms of the effects of task training (in terms of ranks, representational structure and any other metrics we have measured) providing a more narrow but speedy path towards a good final solution.

3.4 ADAPTING EXISTING STRUCTURE VS. BUILDING NEW ONE

Up to this point, we have focused our mechanistic understanding of CL on pairs of tasks with a shared trial length. What happens when the length of trials in pretraining is shorter than that of the final integration task (as is always the case for short integration curricula)?

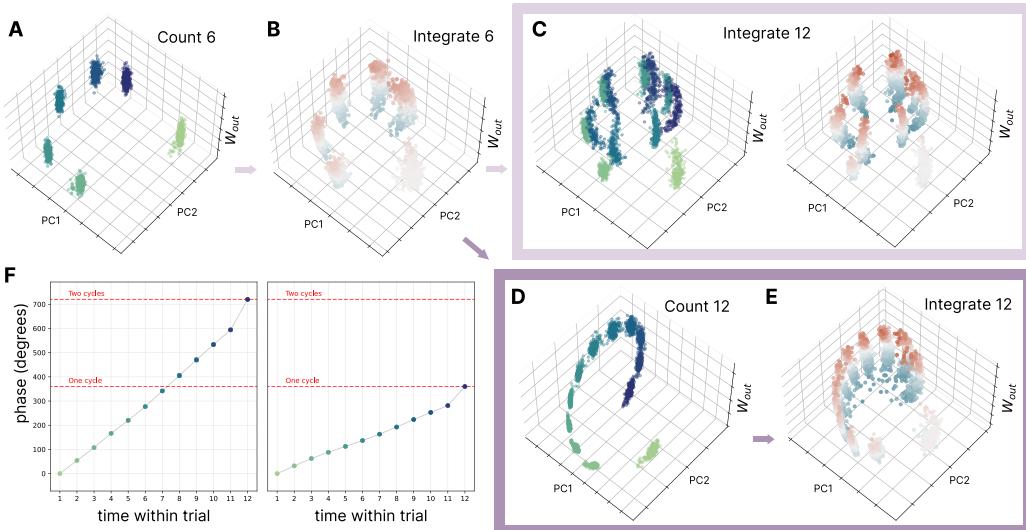


Figure 5: Dynamic feature reuse in multi-task curricula. (A-E) Network activity structure across multiple stages of pretraining for integrate-12 target task. (F) Phase of the population activity as a function of time within trial for the Count6 → Integrate6 (left) vs. Count6 → Integrate6 → Count12 (right) pretraining; mean and sem estimated across 25 seeds.

A particularly illustrative example is the version where the trial length doubles in the target task relative to pretraining, $T_2 = 2T_1$ (Fig. 5). Concretely, we start with training counting for length 6, which builds a circular geometry but no encoding of integrated outputs, then expand the corresponding birdcage vertical bars via training integration with the same length. At this point of the process, we either jump straight into the target task integration length 12, or include additional pretraining for counting with length 12.

The two curricula sequences yield systematically different mechanisms of task adaptation. In the first scenario, the dynamics straight out reuse the existing dynamical systems structure where activity circles the 6 bar birdcage twice. The concurrent presence of the start input, together with the network

378 being in the period-end state, is enough to reset the dynamics for a new trial. In contrast, training
 379 with the long counting task reorganizes the representation to a length 12 limit cycle which then
 380 expands an additional dimension of the integrated output, as (see also Suppl. Fig. 7B). This is a
 381 statistically robust result across seeds (Fig. 5F), showing that different pretraining procedures induce
 382 strong inductive biases in terms of the nature of the final solution that the RNN learns for a given
 383 target task (see also Suppl. Fig. 8).

384 The first type of adaptation is fundamentally lazy, by exploiting the representational task alignment
 385 of the curriculum to effectively learn nothing new. The second causes compact, low dimensional
 386 but very structured reorganization of the representation in the service of a new task (in this case
 387 Integrate6 → Count12). The dynamic reuse demonstrated above suggests that networks can leverage
 388 existing dynamical system structure (as well as low rank) to accelerate learning on related tasks.
 389 The lack of additional speedups with the longest curriculum (including counting to 12) relative to
 390 its direct integration counterpart (Fig. 2C) can be understood as a tradeoff between reusing already
 391 existing structure directly which is a little slower to train vs. pretraining further to make in task
 392 training ever so slightly faster. By the time networks have completed short counting and short
 393 integration, they have already established the essential dynamical scaffolds needed for the target
 394 task: a functional limit cycle for temporal representation and the capacity for integration along
 395 orthogonal dimensions; further reorganization provides minimal learning efficiency benefit, but at
 396 the cost of additional training time. Nonetheless, representational differences between them remain
 397 relevant in terms of the priming of the network for future learning. In particular, we expect that the
 398 long curriculum will lead to networks that are faster to generalize to even longer temporal integration
 399 windows.

400 3.5 SHARED REPRESENTATIONAL SUBSPACES ACROSS TASKS

401 While we have substantial evidence that dynamical systems features built during pretraining get re-
 402 shaped and reused for learning in the final task, whether the topological reuse of structure comes
 403 with systematic geometric changes is not clear. To investigate this in more detail, we analyzed the
 404 similarity of the network’s representational geometry at different stages of the curriculum (Fig. 6).
 405 Our analysis compared the structure of a single network after Count6 pretraining to its final structure
 406 after subsequently learning the Integrate6 task (Fig. 6A, blue). As a null model for the magnitude
 407 of these effects, we compared the final states of two networks that were independently trained on
 408 the full curriculum from different random seeds (Fig. 6A, red). First, we evaluated the similarity of
 409 the overall representation subspaces generated by the hidden state activity. We used three comple-
 410 mentary metrics for this: 1) the alignment of principal component axes, 2) the degree of subspace
 411 overlap, and 3) Centered Kernel Alignment (CKA) (Kornblith et al., 2019). The different metrics all
 412 paint a coherent picture: they show significantly more aligned geometry between the network’s rep-
 413 resentation at the end of pretraining and the final solution relative to control (Fig. 6B). Furthermore,
 414 to examine the proximity of individual learned trajectories, we calculated the Euclidean distance be-
 415 between network’s evolution of states in several ways. Specifically, we computed the distance between
 416 corresponding hidden states for each of the six time steps within a trial, averaged these six values
 417 to obtain an overall trajectory distance, and additionally calculated the distance between the mean
 418 hidden state vectors of each model (Fig. 6C). As for all other quantifications, we find that network
 419 trajectories are geometrically preserved over the final target learning process.

421 4 DISCUSSION

422 In this work, we investigated the mechanisms by which curriculum learning shapes the internal dy-
 423 namics of RNNs in the service of speeding up learning. We showed that although many curricula
 424 can induce some degree of speedup relative to solo task training for our simple temporal integration,
 425 what kind of dynamical system structure they build and how that gets reused by the target task can
 426 vary. The most important and counterintuitive result is that pretraining on counting –which aims
 427 to build one of the task-required dynamical modes at the cost of another– yields the strongest ben-
 428 efit. Mechanistically, this provides a dynamic scaffold (in this case a limit cycle that keeps track
 429 of time within trial) which gets combined with a new line-attractor extended dimension to imple-
 430 ment the target function. This provides not only a possible explanation for the empirical benefits
 431 of compositional curricula (Hocker et al., 2025), but also a counterpart for the RNN simplicity bi-

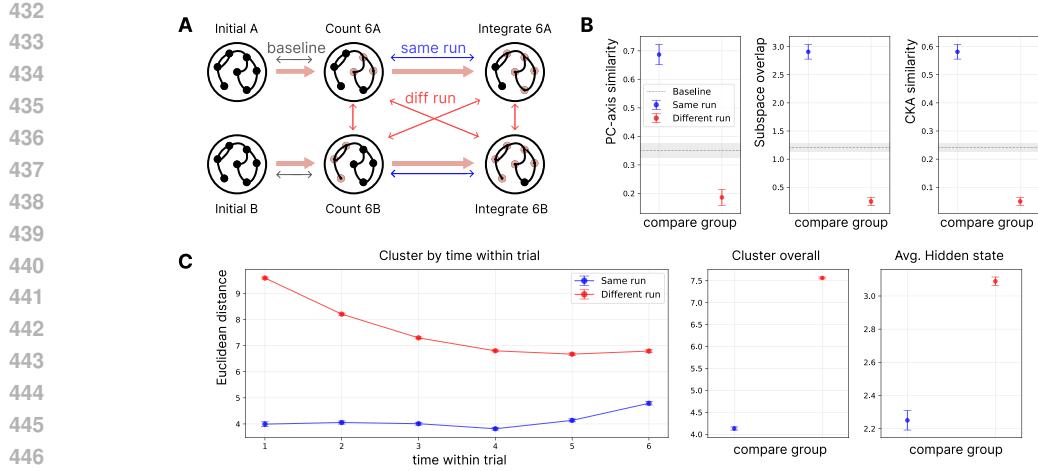


Figure 6: Networks share representational geometry across curriculum stages. (A) Experimental design: Networks initialized from different random seeds undergo curriculum learning, Count6 → Integrate6. Comparisons are made within individual curriculum sequences (same run, blue) versus across different random initializations (different run, red). Gray indicates initial to count-trained comparison. (B) Subspace similarity analysis across three measures-PC axis similarity, subspace overlap, and CKA similarity. (C) Euclidean distance analysis between hidden states under zero input noise conditions.

ases documented previously (Turner & Barak, 2023), but through the lens of compositionality of dynamics: New dynamic modes build up on top of existing ones to achieve complex function.

This feature distinguishes our approach from recent RNN models of cognitive flexibility which demonstrate effective dynamics reuse through explicit context signals or rule inputs (Yang et al., 2019; Driscoll et al., 2024). In our case, the dynamical primitives remain plastic and can be constantly be reshaped by new experience. The new learning happens in very compact spaces (parameter changes being low rank) which may have interesting implications for continual learning in terms of the ability of the systems to learn multiple unrelated tasks without interference. Future work will need explore this in more detail.

From the perspective of the target task, pretraining can be thought of as a mechanism for favorable parameter initialization. This perspective aligns our findings with recent results on the effects of initial low-rank connectivity on learning outcomes (Liu et al., 2024). This connection between curriculum design and initial condition engineering suggests potentially broader conceptual relationships with modern mathematical attempts at understanding RNN learning (Proca et al., 2025).

The neural tangent kernel framework (Jacot et al., 2018) reveals a dichotomy between lazy and rich learning regimes—minimal versus substantial feature reorganization. Critically, initial weight structure determines which regime dominates (Liu et al., 2024), with consequences for solution efficiency and generalization. While the distinction between rich and lazy is not always clear in our setup, we were able to identify several qualitatively different scenarios: 1) direct reuse of an existing dynamical system feature (count and integrate joint curriculum), 2) reshaping of dynamic modes on top of existing structure (CountT to IntegrateT) and 3) de novo formation of more complex structure (e.g. long curriculum including Count12). These argue for new metrics of laziness in RNN training, focused on the persistence of topological features of the dynamics across the learning process, perhaps akin to those that have been recently developed for studying metadynamics in single tasks (Marschall & Savin, 2023).

REFERENCES

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for sequence prediction with recurrent neural networks, 2015. URL <https://arxiv.org/abs/1506.03099>.

486 Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
 487 *Proceedings of the 26th annual international conference on machine learning*, pp. 41–48, 2009.
 488

489 J Tyler Boyd-Meredith, Cristofer Holobetz, and Andrew M Saxe. Stage-like emergence of task
 490 strategies in animals and in neural networks trained by gradient descent. In *CCN*, 2025.

491 Colin Bredenberg, Cristina Savin, and Roozbeh Kiani. Recurrent neural circuits overcome partial
 492 inactivation by compensation and re-learning. *Journal of Neuroscience*, 44(16), 2024.

493 William Chan, Navdeep Jaitly, Quoc V. Le, and Oriol Vinyals. Listen, attend and spell, 2015. URL
 494 <https://arxiv.org/abs/1508.01211>.

495 Joanna C Chang, Matthew G Perich, Lee E Miller, Juan A Gallego, and Claudia Clopath. De novo
 496 motor learning creates structure in neural activity that shapes adaptation. *Nature communications*,
 497 15(1):4084, 2024.

498 Laura N Driscoll, Krishna Shenoy, and David Sussillo. Flexible multitask computation in recurrent
 499 networks utilizes shared dynamical motifs. *Nature Neuroscience*, 27(7):1349–1363, 2024.

500

501 Raphael Q Gastrock, Bernard Marius ’t Hart, and Denise YP Henriques. Distinct learning, retention,
 502 and generalization patterns in de novo learning versus motor adaptation. *Scientific Reports*, 14
 503 (1):8906, 2024.

504

505 Alex Graves, Marc G Bellemare, Jacob Menick, Remi Munos, and Koray Kavukcuoglu. Automated
 506 curriculum learning for neural networks. In *international conference on machine learning*, pp.
 507 1311–1320. Pmlr, 2017.

508

509 Guy Hacohen and Daphna Weinshall. On the power of curriculum learning in training deep net-
 510 works. In *International conference on machine learning*, pp. 2535–2544. PMLR, 2019.

511 Doron Haviv, Alexander Rivkind, and Omri Barak. Understanding and controlling memory in re-
 512 current neural networks, 2019. URL <https://arxiv.org/abs/1902.07275>.

513

514 David Hocker, Christine M Constantinople, and Cristina Savin. Compositional pretraining improves
 515 computational efficiency and matches animal behaviour on complex tasks. *Nature Machine Intel-
 516 ligence*, pp. 1–14, 2025.

517 Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
 518 eralization in neural networks. *Advances in neural information processing systems*, 31, 2018.

519

520 Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
 521 network representations revisited. In *International conference on machine learning*, pp. 3519–
 522 3529. PMLR, 2019.

523 Kai A Krueger and Peter Dayan. Flexible shaping: How learning in small steps helps. *Cognition*,
 524 110(3):380–394, 2009.

525

526 Brenden Lake and Marco Baroni. Generalization without systematicity: On the compositional skills
 527 of sequence-to-sequence recurrent networks. In *International conference on machine learning*,
 528 pp. 2873–2882. PMLR, 2018.

529

530 Yuhan Helena Liu, Aristide Baratin, Jonathan Cornford, Stefan Mihalas, Eric Shea-Brown, and
 531 Guillaume Lajoie. How connectivity structure shapes rich and lazy learning in neural circuits,
 532 2024. URL <https://arxiv.org/abs/2310.08513>.

533

534 Niru Maheswaranathan, Alex Williams, Matthew Golub, Surya Ganguli, and David Sussillo. Uni-
 535 versality and individuality in neural dynamics across large populations of recurrent networks.
 536 *Advances in neural information processing systems*, 32, 2019.

537

538 Shirley Mark, Rani Moran, Thomas Parr, Steve W Kennerley, and Timothy EJ Behrens. Transferring
 539 structural knowledge across cognitive maps in humans and models. *Nature communications*, 11
 540 (1):4783, 2020.

541

542 Owen Marschall and Cristina Savin. Probing learning through the lens of changes in circuit dynam-
 543 ics. *bioRxiv*, pp. 2023–09, 2023.

540 Sanmit Narvekar and Peter Stone. Learning curriculum policies for reinforcement learning. *arXiv*
 541 *preprint arXiv:1812.00285*, 2018.
 542

543 Core Francisco Park, Maya Okawa, Andrew Lee, Ekdeep S Lubana, and Hidenori Tanaka. Emer-
 544 gence of hidden capabilities: Exploring learning dynamics in concept space. *Advances in Neural*
 545 *Information Processing Systems*, 37:84698–84729, 2024.

546

547 Alexandra Maria Proca, Clémentine Carla Juliette Dominé, Murray Shanahan, and Pedro A. M.
 548 Mediano. Learning dynamics in linear recurrent neural networks. In *Forty-second International*
 549 *Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=KGOcriIWYnx>.

550

551 Friedrich Schuessler, Francesca Mastrogiovanni, Alexis Dubreuil, Srdjan Ostojic, and Omri Barak.
 552 The interplay between randomness and structure during learning in rnns. *Advances in neural*
 553 *information processing systems*, 33:13352–13362, 2020.

554

555 Petru Soviany, Radu Tudor Ionescu, Paolo Rota, and Nicu Sebe. Curriculum learning: A survey.
 556 *International Journal of Computer Vision*, 130(6):1526–1565, 2022.

557

558 David Sussillo and Omri Barak. Opening the black box: low-dimensional dynamics in high-
 559 dimensional recurrent neural networks. *Neural computation*, 25(3):626–649, 2013.

560

561 Beáta Tünde Szabó and József Fiser. Decoupling levels of learning: behavioral evidence for disso-
 562 ciable low-and high-level structure learning. In *CCN*, 2025.

563

564 Elia Turner and Omri Barak. The simplicity bias in multi-task rnns: shared attractors, reuse of
 565 dynamics, and geometric representation. *Advances in Neural Information Processing Systems*,
 566 36:25495–25507, 2023.

567

568 Pantelis Vafidis, Aman Bhargava, and Antonio Rangel. Disentangling representations through multi-
 569 task learning, 2025. URL <https://arxiv.org/abs/2407.11249>.

570

571 Christopher S Yang, Noah J Cowan, and Adrian M Haith. De novo learning versus adaptation of
 572 continuous control in a manual tracking task. *elife*, 10:e62578, 2021.

573

574 Guangyu Robert Yang, Madhura R Joglekar, H Francis Song, William T Newsome, and Xiao-Jing
 575 Wang. Task representations in neural networks trained to perform many cognitive tasks. *Nature*
 576 *neuroscience*, 22(2):297–306, 2019.

577

578 Yanli Zhou, Reuben Feinman, and Brenden M Lake. Compositional diversity in visual concept
 579 learning. *Cognition*, 244:105711, 2024.

580

581 **A EXTENDED METHODS**

582

583 **Loss function and optimization.** All networks were trained using Mean Squared Error (MSE) loss
 584 between the network output and target function. We used the Adam optimizer with a learning rate
 585 of 0.0001 and default hyperparameters ($\beta_1 = 0.9$, $\beta_2 = 0.999$).

586

587 **Training protocol.** Training was conducted in batches of 32 trials. Each epoch consisted of 512
 588 batches. Rather than training for a fixed number of epochs, convergence for each task or curricu-
 589 lum stage was determined adaptively: a network was considered converged when its test set MSE
 590 remained below 0.2 for 10 consecutive epochs. This threshold was chosen to ensure robust task
 591 performance while allowing comparison across different curricula.

592 **Data generation.** Each batch contained 200 time steps total, yielding $200/T$ trials per batch (e.g.,
 593 33 trials for $T = 6$, 16 trials for $T = 12$). Stimulus inputs were drawn from $\mathcal{N}(\mu_0, \sigma_{stim}^2)$ with $\mu_0 =$
 0.3 and $\sigma_{stim} = 0.6$, where the sign of μ_0 was randomly chosen per trial with equal probability.

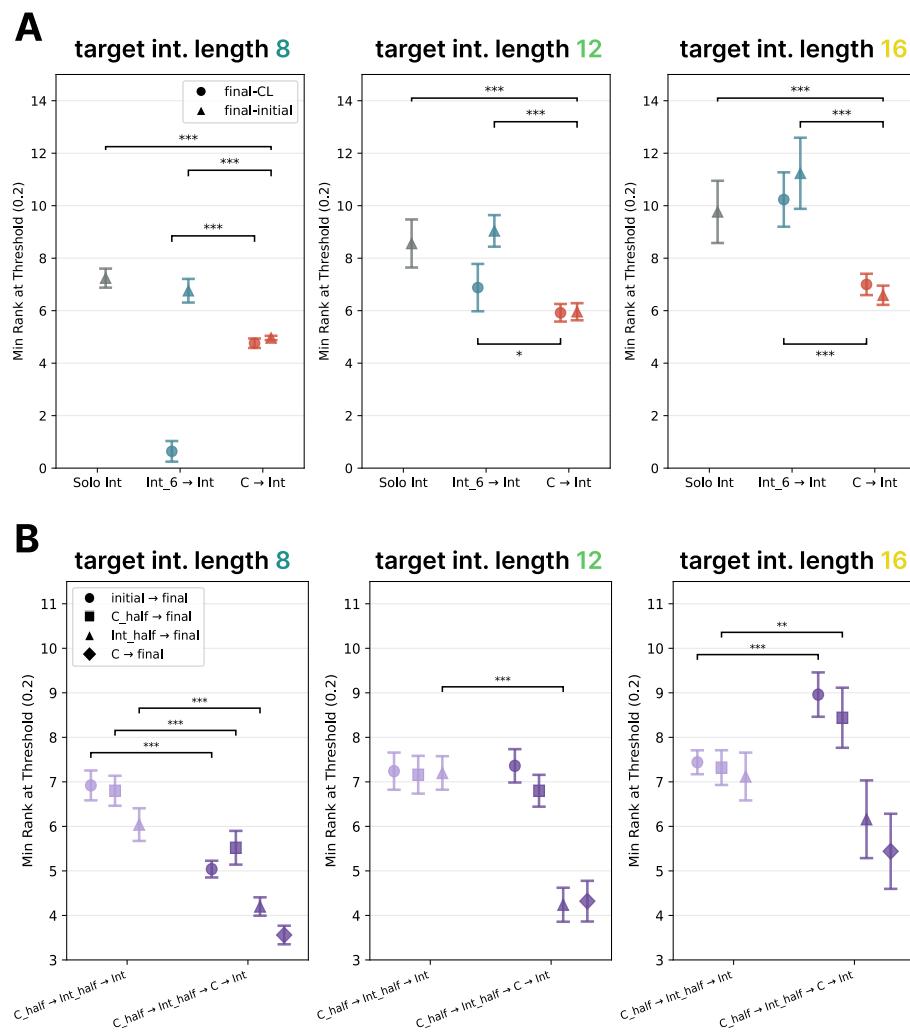


Figure 7: Effective rank for different curricula. (A) Minimal rank for different training curricula; conventions as for Fig.3, but for different relationships between pretraining and target trial length. (B) Same as A but covering the different stages of the complex pretraining curricula described in Fig. 2C.

B BENEFITS OF LEARNING SPEED COME FROM REUSE OF DYNAMICAL SYSTEMS STRUCTURE, NOT JUST LOW DIMENSIONALITY

Given the observations that pretraining shapes the minimal rank of the computation, and with it the dimensionality of the recurrent dynamics, as well as constructing slow dynamical systems features that seem to get reused in the target task, it is reasonable to wonder what exactly drives the increase in speed? Is it the low dimensionality of the dynamics, or the actual dynamical systems structures built within that low dimensional manifold?

To investigate this distinction, we used a two dimensional version of the Flip-flop task as pretraining (Fig.9). Training on this task results in a well-documented solution with four geometrically symmetric fixed points forming a square (Maheswaranathan et al., 2019). Input dependent transitions allow the system to move between these points implementing a two bit form of item working memory. The solution for this task shares many features with our Count4 pretraining: both have a planar geometry and four slow features within it, with the key distinction that the nature of the slow features

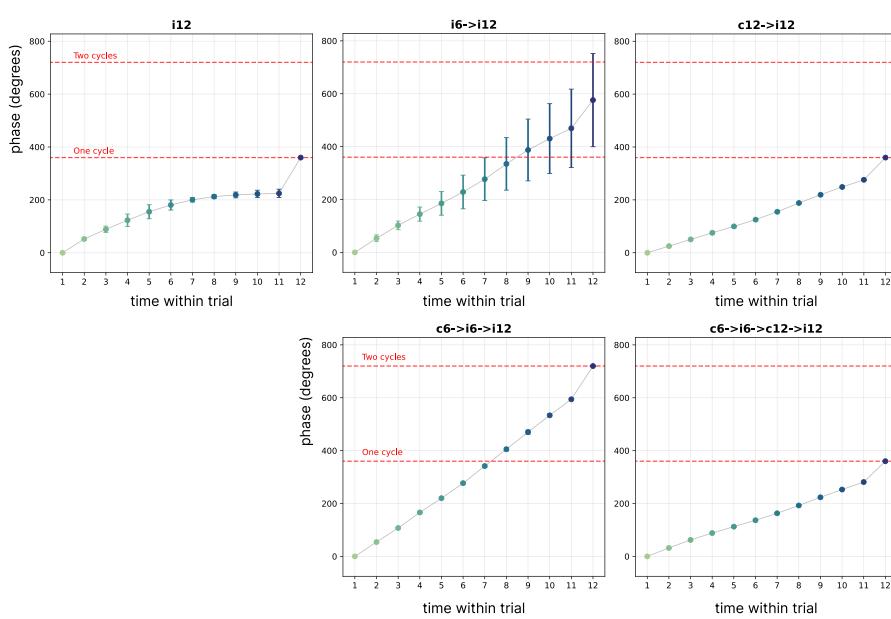


Figure 8: Geometry of the final network trajectories for different curricula. Phase of the population activity as a function of time within trial across different curriculum sequences. Top row: Integrate12 (solo), Integrate6→Integrate12, Count12→Integrate12. Bottom row: Integrate6→Count6→Integrate12, Integrate6→Count6→Count12→Integrate12.

is different. Counting dynamics have a consistent rotational flow between the slow points, whereas the Flip-flop task do not have such flow. Importantly, the benefits of pretraining are only seen for counting (regardless of the number of time steps, see also Fig. 2B). Despite the many similarities, it takes a larger number of epochs to train the integration target task ((Maheswaranathan et al., 2019) a, left) which reflects the need for more dramatic changes in topology needed to construct the final solution. Starting from the flip-flop solution as initial conditions still provides an improvement over starting from scratch ((Maheswaranathan et al., 2019) a, gray) which proves that the coarse geometry is part of the benefit, but the flip-flop is generally slower to train, bringing the total training time up by a large margin. Mechanistically, the integration solution after flip-flop training does not seem to reuse the full set of fixed points, but rather concentrates the integration computation around one of them ((Maheswaranathan et al., 2019) b). Overall, these results suggest that knowledge transfer in this task primarily relies on the reuse and adjustment of the limit cycle motif from pretraining to the final birdcage solution.

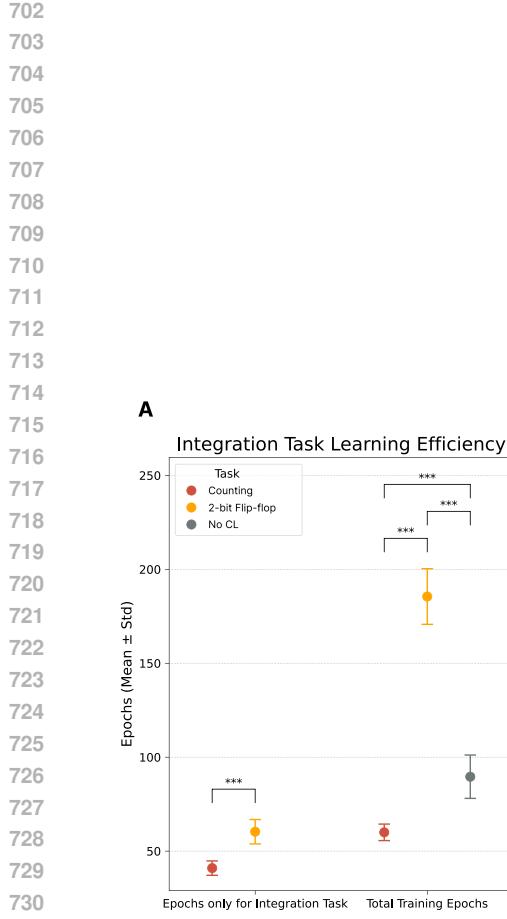


Figure 9: Fixed points from 2-bit flip-flop pretraining fail to provide dynamical scaffolding for curriculum transfer. (A) Learning efficiency comparison across three conditions: Counting→Integration (red), 2-bit Flip-flop→Integration (orange), and No CL (gray). Left: epochs for integration task only (post-pretraining); Right: total training epochs including pretraining. Error bars show mean \pm std across 25 seeds. Counting pretraining significantly reduces both integration-specific and total training time, while 2-bit flip-flop pretraining even increases total training time due to the cost of learning an incompatible dynamical structure. (B) Counting task case. Left: combined PCA of both counting task (red) and integration task (green) hidden states, showing overlapping structure. Right: flow field for recurrent activity in the space of the first two PCs after counting pretraining, showing limit cycle dynamics. (C) 2-bit flip-flop task case. Left: combined PCA of both 2-bit flip-flop task (orange) and integration task (green) hidden states, showing distinct structure. Right: flow field for recurrent activity in the space of the first two PCs after flip-flop pretraining, revealing convergence to four stationary attractors.

745
746
747
748
749
750
751
752
753
754
755