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ABSTRACT

Despite the significant progress made on deep learning models, concerns yet ex-
ist when a trained model is deployed to real-world applications. Model calibra-
tion is a key consideration that has recently attracted more attention—a learned
model should not only achieve high predictive performance but also attain that
with a proper level of confidence—a mismatch between predictive performance
and confidence creates miscalibration and hence raises concerns about trusting a
(miscalibrated) model. Even with the importance of the problem and many recent
research efforts, calibration has not been fully understood yet, particularly when
it faces the common challenges that deep learning models struggle with: specifi-
cally limited training resources and noisy data. In this paper, we study calibration
emphasizing these scenarios. We particularly investigate the effect of curricu-
lum learning, which, inspired by human curricula, leverages a guided learning
regime to improve model generalization and has been found to improve predictive
performance in the aforementioned cases. Specifically, we provide an empirical
understanding on the impact of curriculum learning on model calibration under a
variety of general contexts. Our studies suggest the following: most of the time
curriculum learning has a negligible effect on calibration, but in certain cases un-
der the context of limited training time and noisy data, curriculum learning can
substantially reduce calibration error in a manner that cannot be explained by dy-
namically sampling the dataset. Second, curriculum and anti-curriculum learning
appear to have nearly identical effects on model calibration. Lastly, the choice of
pacing function and its parameters in curriculum learning can significantly impact
model calibration, indicating that extra care should be taken to minimize the risk
of severe model miscalibration. We hope the empirical insights will help us better
understand calibration and guide the utilization of curriculum learning in practice.

1 INTRODUCTION

Deep learning has achieved state-of-the-art performance in a wide range of problems (LeCun et al.,
2015; Bengio et al., 2021). Nevertheless, concerns exist when trained models are deployed for
real-world applications (Kelly et al., 2019). Calibration is one of the key considerations that has
recently attracted serious attention (Guo et al., 2017; Minderer et al., 2021). For example, in many
safety critical applications (Jiang et al., 2012), it is crucial for a classifier to not only achieve high
predictive performance but also attain that with a proper level of confidence—both underconfidence
or overconfidence should be avoided, and any mismatch as such creates miscalibration and raises
concerns about being able to trust model predictions. Research in the field of calibration has focused
on recalibration methods (Guo et al., 2017), calibration metrics (Nixon et al., 2020), and how out-
of-distribution (OOD) data affects confidence scores (Lee et al., 2018).

Many open questions related to deep learning models pertain the limited training resources (e.g.,
training data and training time) and noise in data. Such factors also affect the calibration of deep
neural networks in a negative manner (Zhao et al., 2020), and a wide variety of techniques have
been proposed to help overcome the challenges. Building on existing work on model calibration, in
this work we investigate curriculum learning for calibration, which has become a popular paradigm
in machine learning in general, and in particular for coping with limited training resources and
data noise. Curriculum learning has been widely used in various problems in supervised learn-
ing (Hacohen & Weinshall, 2019), semi-supervised learning (Gong et al., 2016), and reinforcement
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learning (Narvekar et al., 2020). Inspired by an intuitive notion of how curricula affect human
learning, whereby humans typically learn better starting from easy problems and working their way
to harder problems, curriculum learning in a machine learning context refers to presenting easier
training samples earlier in training and gradually adding more difficult samples as training proceeds
(Elman, 1993; Bengio et al., 2009). An alternate type of ordering called anti-curriculum learning is
also widely used which learns in the opposite order—ergo hardest first. Benefits have been observed
using both orderings in denoising (Jiang et al., 2018), faster generalization, and smoother gradients
(Bengio et al., 2009; Weinshall et al., 2018), although results range widely between the best choice
of ordering and consistent recommendations for use are hard to obtain (Wang et al., 2020). In recent
work, it has been shown that for standard benchmark datasets, curriculum learning has significant
benefits in improving model accuracy with limited training time and noisy data (Wu et al., 2021;
Ovadia et al., 2019). Despite these revelations of the benefits of curriculum learning, the question of
whether the same positive relationship exists with calibration remains unexplored.

When considering what theoretical effects curriculum learning can have on calibration, we note
that many calibration methods work by modifying how models are trained (Kumar et al., 2018;
Kong et al., 2020; Müller et al., 2019). Thus, it is reasonable to assume that curriculum learning,
which affects the nature of training by altering the optimization strategy, can have an influence on
calibration. Particularly curriculum learning’s purported benefits in generalization and regularizing
training towards better regions in parameter space by optimizing a smoother version of the training
objective (Wang et al., 2020) can theoretically punish overconfidence. It has been observed that the
increase in a neural network’s confidence over the course of training is one of the key causes of
miscalibration (Mukhoti et al., 2020), and as a result being exposed to the most difficult samples far
into training can mean there is less of a chance of a model becoming overconfident on data that it is
the poorest at classifying. Furthermore, when applying curriculum learning, at every training step
the algorithm is deciding which subset of the training set to learn on. Depending on the initial subset
used and the function used to add more samples for training each step, the degree of miscalibration
over time can be strongly affected by the biases in that subset. Hence not only do we examine the
overall effect on calibration, but also the propagation of error over the course of training.

We closely follow the approach taken by Wu et al. (2021) to conduct our experiments. We build on
top of their work by collecting information with regards to the calibration error of models trained
under different types of orders and pacing functions, using a number of metrics to validate our
findings. For our experiments we do not apply any recalibration techniques to our models. Rather
we wish to see 1) if there is any inherent advantage to curriculum learning in terms of reducing
calibration, particularly, in the case of limited training time and noisy data where curriculum learning
is found to have the most benefit; 2) if there are any pitfalls in certain curriculum learning or anti-
curriculum learning configurations that would discourage their use in settings where good classifier
calibration is critical. These factors are important to analyze as curriculum learning is deployed in
situations where calibration is a major concern.

To the best of our knowledge, our research is the first attempt to investigate the influence of cur-
riculum learning on calibration. Our key observations are four-fold. First, curriculum learning does
have an influence over calibration, but we demonstrate that this influence is inconsistent in general.
In many cases there is no statistically significant benefit over standard training, especially for full
time training. However, there are specific cases where its benefits can be observed. Second, the
significance of curriculum learning for calibration is most notable in limited training time and noisy
data where substantial reductions in calibration error are observed compared to standard training,
that are not seen when training using a dynamic-curriculum. This shows that curriculum learning
is providing benefits that cannot be explained by dynamically sampling the dataset. Third, curricu-
lum and anti-curriculum learning appear to have nearly identical trends regarding model calibration.
Lastly, the choice of pacing function and its parameters can markedly impact calibration, necessi-
tating extra care to be taken in selecting these hyperparameters to minimize risk of serious model
miscalibration.
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2 BACKGROUND

2.1 BASIC NOTATION AND DEFINITION OF CALIBRATION

Let X = {x1, x2, ..., xN} be a set of N feature vectors where each element x ∈ Rd has dimension-
ality d. Let N be defined as the size of the test set being evaluated. Let Y = {y1, y2, ..., yN} be
the corresponding true labels where y ∈ {1, 2, ...,K} and where K is the number of classes. We
define the classifier, in this case a neural network, as a function F −→ f(x) = (Ŷ , P̂ ) that takes an
input datapoint and outputs a predicted class Ŷ and corresponding predicted probability distribution
over the K classes P̂ = {p̂1, p̂2, ..., p̂K}. In a typical supervised neural network, this probability
vector is often produced after the softmax is taken in the final output layer where

∑K
i=1 p̂i = 1.

The confidence score is taken as the probability of the predicted class. A few different notions of
calibration exist. The strongest view, multiclass-calibration, is defined in the following equation for
all input datapoints (xn, yn) ∈ D = {(xn, yn)}Nn=1 in dataset D:

P(yn = k | P̂k(xn) = p) = p, ∀ k ∈ {1, 2, ..,K}, (1)

where p is a prediction vector p = {p1, p2, pk} |
∑K
i=1 pi = 1 . In this view, a network is considered

well calibrated when it predicts a probability distribution over all the classes and the probability that
the model predicts the correct labels matches the probabilities from its predicted distribution over
the classes. Any mismatch between these, the left and right hand sides of the equation, creates
miscalibration (calibration error).

A less stringent and more commonly used notion in various metrics is called classwise calibration
(Kull et al., 2019). Here for all input datapoints (xn, yn) ∈ D = {(xn, yn)}Nn=1 in dataset D:

P(yn = Ŷ (xn) | p̂k(xn) = pk) = pk, (2)

where pk is the confidence score for predicted class k. Here only the predicted (or a specific class
of choice) is considered. It is important to emphasize that good calibration and accuracy are both
desirable properties, thus it is key to attempt to optimize both simultaneously and not improve one
at the expense of the other (Krishnan & Tickoo, 2020).

2.2 CALIBRATION METRICS

Equation 2 is an idealized representation of calibration, which, however, is impractical to calculate
in practice as it features a continuous function that requires infinite datapoints to compute the true
value. Numerous metrics have instead been developed to approximate calibration error, with their
own advantages and drawbacks. To provide a complete picture in our research we use three metrics.

Binning-based metrics remain the most popular method of approximating calibration error, of which
expected calibration error (ECE) (Pakdaman Naeini et al., 2015) is widely used in research and the
primary one we use for this study. To calculate ECE, the confidence scores on the predicted classes
are binned into M number evenly spaced bins, and the weighted sum over the differences between
the average confidence score and accuracy in each bin constitutes the expectation of the calibration
error of the model. This can be seen in the equation for ECE:

ECE =

M∑
m=1

nm
N
|acc(Bm)− conf(Bm)|, (3)

where Bm are the data points in the mth bin, and nm is the number of data points in the bin.
ECE and other metrics relying on binning have documented flaws and should not be used as the
only measurements of calibration error. The concerns include being sensitive to the number of bins
chosen and not being a proper scoring rule (Ovadia et al., 2019), leading to situations where there
can be zero or minimal calibration error despite severe miscalibration (Nixon et al., 2020). An
additional recently proposed metric, Kolmogorov-Smirnov Calibration Error (KS error), is binning-
free and rectifies some of these aforementioned flaws (Gupta et al., 2021). We use it alongside ECE
as one of our primary metrics.

Central to the KS error is leveraging the Kolmogorov-Smirnov statistical test for comparing the
equality of two distributions. The cumulative probability distributions of the confidence scores and
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Table 1: Expressions for the six different types of pacing functions we test.

Pacing Function Type Expression for ratio of training set used at step t
Logarithmic: Nb+N(1− b)(1 + 0.1log( t

aT + e−10))

Exponential: Nb+ N(1−b)
e10−1 (e

10t
aT − 1)

Step: Nb+Nb t
aT c

Root: Nb+ N−b√
aT

√
t

Linear: Nb+ N−b
aT t

Quadratic: Nb+ N−b
(aT )2 t

2

labels are compared and the maximum difference between them is calculated and taken as the error.
First the predictions are sorted according to the confidence score on class k, i.e., p̂k:

KS error = max
i
|hi − h̃i|,

where, h0 = h̃0 = 0,

hi = hi−1 + 1(yi = k)/N,

h̃i = h̃i−1 + pk(xi)/N.

(4)

Lastly, we use an additional metric called contraharmonic expected calibration error (ECE) (Obad-
inma et al., 2021). This metric was originally introduced for imbalanced data classification by taking
the contraharmonic mean over the ECE calculated for each class when binning each class individu-
ally. We find that since ECE values for individual classes vary widely when there are many classes,
we use CECE to be able to judge if any individual classes become miscalibrated compared to what is
suggested by the ECE value for the whole data. It is undesirable for there to be severe miscalibration
on certain classes that are harder to predict for example. CECE is defined as follows for class-wise
ECEi calculated using only datapoints belonging to each class k.

CECE =
ECE2

1 + ECE2
2 + ... ECE2

K

ECE1 + ECE2 + ... ECEK
. (5)

2.3 CURRICULUM LEARNING COMPONENTS

In curriculum learning an explicit curriculum has to be defined that alters the order a model is
exposed to the training data. The paradigm we follow has been widely used (Bengio et al., 2009;
Hacohen & Weinshall, 2019) where a curricula is defined as having two necessary components, a
scoring function S and a pacing function gθ. The scoring function S(x, y) creates a mapping for
each training datapoint to a scalar score based on the difficulty of the sample. Scoring functions are
typically loss based and scoring can be done as the model is being trained by dynamically updating
scores as in the case of self-paced learning (Kumar et al., 2010). They can also be static and pre-
calculated using a separate model or pre-defined method (Wu et al., 2021). We do not focus on the
influence of the scoring function on calibration but it is a worthy topic to examine further. Instead,
we use the estimated c-score loss scoring function used in Wu et al. (2021) that was found to perform
the best. Originally proposed for detecting of regularities in data (Jiang et al., 2020), here the scoring
function is defined as S(xn, yn) = Er

D
n∼D̂\{xn,yn}

[l(xn, yn)|D] where D is a training set sampled

from the full training set but without datapoint (xn, yn). l(xn, yn) is the loss over the datapoint.
Essentially, the score for a sample captures how consistently a group of models trained on random
training sets of various sizes excluding the datapoint can predict the correct label, to ensure that the
regularity of a given datapoint is represented.

The pacing function gθ, at training step t out of the total training steps T, determines the mini-batches
available for training based on the scoring functions which are sampled uniformly for that step. In
the case of curriculum learning, the data is sorted from the lowest score to the highest using the
scoring function. The pacing function selects the lowest scoring samples/mini-batches for training
at each step. Pacing functions are parameterized by θ = (a, b) where a is what fraction of training
time it takes the pacing function to begin sampling from the entire training set, and b denotes what
fraction of the training set the pacing function exposes to the model at the start of training. Both can
have dramatic effects on how the model trains, and due to this are an important topic for this study.
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Theoretically, a can range from 0 to infinity, though any value above 1 means the full training data
is not utilized. b ranges from 0 to 1. There are different types of pacing functions corresponding to
common function families that alter at what rate the training set is gradually increased, with different
functions affecting whether the size of the set increases fast at the start of training or vice-versa. As
in Wu et al. (2021), we test the 6 function families: logarithmic, exponential, step, linear, quadratic,
and root, and their definitions can be seen in Table 1.

After selecting the scoring function and pacing function the final step is determining the order.
Curriculum learning orders samples from lowest scoring to highest scoring, anti-curriculum learning
goes from highest to lowest scoring. Random-curriculum randomly samples data not according to
the scoring function in a given step, and the pacing function serves to dynamically increase the
amount of data the model is exposed to in a given step.

3 EXPERIMENTAL SETUP

We base our experiments on the work of Wu et al. (2021). In addition, we add on top of their work
our analysis of the calibration of the models using the metrics detailed in Section 2.2. We focused
on one standard model for image classification, ResNet-18 (He et al., 2016), on the benchmark
datasets CIFAR-10 and CIFAR-100 (Krizhevsky & Hinton, 2009). The same settings specified in
Wu et al. (2021) are used in our research, which will be briefly summarized in this section. Random
horizontal flip and normalization are used as data augmentation methods. The hyperparameters
for the model include: a batch size of 128, a learning rate set at an initial value of 0.1 with a cosine
decay learning rate scheduler, 0.9 momentum, 5e-4 weight decay, and a Stochastic Gradient Descent
(SGD) optimizer. We use these same settings for standard training, curriculum, anti-curriculum, and
random ordering for a fair comparison. We use 45,000 images for training and 5,000 for validation.
Note that for all the models we present the calibration results for the split with the best validation
accuracy. We use the pre-generated orders based on c-scores for everything apart from standard
training. As brought up in Wu et al. (2021), for the curricula approaches the class balance during
training is still preserved, and the learning rate still decays to 0 even with the reduced training times.
The number of iterations per epoch varies during training since the size of the dataset increases. As
a result, the number of actual epochs changes depending on the pacing function. Thus, it is more
accurate to refer to the total number of iterations/steps through the data during training, which is
calculated using the formula (training set size/batch size)∗number of epochs. Lastly for both
ECE and CECE we use 15 bins to estimate the error.

Figure 1: Bar plots comparing expected calibration error (ECE) on CIFAR-10 at 25 epochs (8800
steps) for standard training and 6 different combinations of pacing function parameters. We com-
pare results on curriculum ordering (left), anti-curriculum ordering (center), and random-curriculum
(right). A linear pacing function is used for all trials. The error bars show the standard deviation of
the measurements. It can be seen that one configuration (a = 0.8, b = 0.2) produces lower ECE
than standard training considering the error. The same effect is not seen in the random-curriculum
where the same parameters performer poorer than standard training.

4 OBSERVATIONS ON ORDER AND PACING FUNCTION PARAMETERS

The training order is crucial for curriculum learning. We compare the performance between cur-
riculum learning, anti-curriculum learning, and random-curriculum. In the literature, the preference
over these types of ordering is largely unsolved, though in general Wang et al. (2020) suggest that
curriculum learning tends to be helpful in noisy and difficult settings, while a preference for anti-
curriculum may be considered for cleaner datasets. To facilitate the comparison, we test a few
configuration of the hyperparameters a and b for each type of curriculum and compare the results
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to standard training. We test over three different training durations (35,200, 8,800, and 1,760 iter-
ations) corresponding to 100, 25, and 5 epochs through the data, respectively, in order to capture a
good range of various training times. We base the range of possible values from Wu et al. (2021)
where they have b ∈ {0.0025, 0.1, 0.2, 0.4, 0.8} and a ∈ {0.01, 0.1, 0.2, 0.4, 0.8, 1.6}. Due to the
computational cost of testing every possible combination, we choose only a few different represen-
tative combinations, in order to capture combinations that have a fair range of low, medium, and
high values. Specifically we choose, a = 0.8, b = 0.2; a = 0.1, b = 0.8; a = 0.4, b = 0.4;
a = 0.1, b = 0.1; a = 1.6, b = 0.1; a = 1.6, b = 0.8. For each different configuration we test (e.g.
curriculum learning a = 0.8, b = 0.2 with a linear pacing function), we average the results over
three randomly initialized trials for 100 and 25 epochs and calculate the standard deviation. For five
epochs we run five trials for every configuration due to the lower computational cost. Full tabular
data can be seen in Section A.3 in the Appendix.

Figure 2: Bar plot comparing the ECE on the test
set of CIFAR-100 at 25 epochs (8,800 steps) using
curriculum learning ordering models. We com-
pare the same 6 combinations of pacing function
parameters with the standard training model (left-
most). Similar to CIFAR-10, a = 0.8, b = 0.2
produces lower ECE than standard training.

Through our analysis, we determine that there
is a great similarity in the calibration error pro-
duced by models training using curriculum and
anti-curriculum learning considering all met-
rics, and the trends are near identical to both.
Figures 3a and 3b both show near identical
trends between curriculum learning and anti-
curriculum learning in all tested configurations
when considering change in calibration during
training, but a notable contrast can be seen
with random ordering. Note that the choice
of a and b has a larger influence over calibra-
tion than choosing between curriculum or anti-
curriculum learning. Values of the parameter a
greater than 1 have increased calibration error
compared to the other configurations. This can
be seen in the configurations with a=1.6, with
a=1.6, b=0.1 being particularly poor parame-
ters for the pacing function creating the highest
miscalibration in all tested scenarios, likely due to poorer generalizability as a result of the decreased
training set. The random-curriculum is interesting in that there is no case where it outperforms the
standard training scenario conclusively, and it largely performs in line or slightly worse than stan-
dard training. In any case, curriculum parameters have to be carefully tuned to have a noticeable
effect and most of the time the effect on calibration is negligible, and we note the beneficial scenarios
below. We also want to point out that the calibration metrics generally agree with one another.

We observed that for the full 100 epochs there is no benefit to curricula approaches. Rather, in
most cases the error becomes slightly higher. As such, we do not think curriculum learning is of
much interest in this scenario. When considering the more limited training time scenario of 25
epochs, the benefits of curriculum learning can be noted. As can be seen in Figure 1 and 2, for both
curriculum learning and anti-curriculum learning with a = 0.8, b = 0.2, the calibration error drops
below the standard training conclusively when considering the standard deviation. This is true for
both CIFAR-10 and CIFAR-100. This effect is not observed for the random order. This signals that
curriculum learning has the potential to help model calibration. The only issue is the decrease in
accuracy compared to standard training, creating a trade-off. Most of the other configurations are
about equal with standard training or poorer signifying that tuning is critical to obtain benefits.

There is great variability in the results at 5 epochs that make it difficult to conclusively determine
whether curricula are beneficial. The models are not trained for a long enough duration to fit the
data. Nevertheless, some configurations can still be conclusively proven worse, namely those with
an a value of 1.6. Despite averaging better accuracy at a = 1.6, b = 0.8, it is not recommended as
it produces higher calibration error compared to standard training. Furthermore, a = 0.8, b = 0.2
actually performs quite poorly here at 5 epochs compared to 25 epochs, signalling that each training
time appears to have its own ideal pacing function parameters. Regardless, we can see that the
significance of curriculum learning for calibration is most notable in limited training time. In this
case we see substantial reductions in calibration error compared to standard training that are not
present when simply dynamically sampling the dataset.
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(a)

(b)

Figure 3: Graphs capturing the change in calibration over time by tracking the change in ECE on
test set per training epoch for CIFAR-10 (a) and CIFAR-100 (b) at 25 epochs where the curricula
approaches are found to have the most benefit. Three different orderings are shown: curriculum
(left), anti-curriculum (centre), and random (right). The trends for standard training can be seen in
the bright red line. We test six configurations of pacing function parameters using a linear pacing
function. The most prominent observations are: (1) curriculum and anti-curriculum learning have
near identical trends; (2) they both differ from random ordering; (3) the curricula-based approaches
are prone to severe miscalibration early on during training that gradually improves to finish even
below the error of standard training.

5 EFFECT OF THE CHOICE OF PACING FUNCTIONS

Figure 4: Top row: CIFAR-10 results. Bottom row: CIFAR-100 re-
sults. Graphs comparing the progression of test ECE over the course
of training. Left graph is for 100 epochs (35,200 training steps) and
right is 25 epochs (8,800 training steps). Note the difference in how
different types of pacing functions converge to their final calibration
error despite the same parameters and especially the sudden improve-
ment in calibration seen with the step function.

In this section, we provide
empirical evidence for un-
derstanding the effect of
varying the choice of pac-
ing functions on calibration
error.

Given the similarity in
results we observed be-
tween curriculum learning
and anti-curriculum learn-
ing in the previous sec-
tion, we choose to only
test the variability in pac-
ing functions using curricu-
lum learning. We keep the
parameters a and b con-
stant at 0.8 and 0.2, re-
spectively, except for five
epochs where we use a =
0.1, b = 0.8 for CIFAR-
10 and a = 0.1, b = 0.1
for CIFAR-100, since they
have better performance at
this training time. We alter the pacing functions among the choices detailed in section 2. We test at
the three different training times at the 35,200, 8,800, and 1,760 steps. Full results are in Section A.3
of the Appendix. Overall, we demonstrate that the empirical study demonstrates that pacing func-
tions have a substantial effect on model calibration and that it is key to consider them. Differences
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between pacing functions can be large despite the same configuration of pacing function parameter.
The best performing pacing function is strongly case dependant and varies by dataset and training
time as we detail in the following paragraphs.

Figure 5: Bar plot showing the high effectiveness
of curriculum learning and anti-curriculum learn-
ing at reducing calibration error on the test set
compared to regular training with 40% and 80%
label noise at 25 epochs on CIFAR-100.

At 100 epochs (35,200 steps), the logarithmic
pacing function performs the best, even more
so than standard training in the case of CIFAR-
10. In contrast, the step pacing function per-
forms very well for CIFAR-100, yet calibration
error is average among the options for CIFAR-
10. Most of the functions offer negligible dif-
ference among each other and no statistically
significant benefits can be observed. Numer-
ous differences are seen for limited training un-
der 25 epochs (8,800 training steps). The step
pacing function performs the best for CIFAR-
10 along with the quadratic function, however
the accuracy for step is notably worse than for
quadratic despite a minor difference in ECE.
The logarithmic pacing function performs the
poorest among the options. For CIFAR-100,
step is by far the best in terms of calibration
and gets an extreme reduction in ECE and KS
error. Log is again found to perform worst and calibration error is notably higher than linear and
root, the next highest. At five epochs, four pacing functions (linear, quadratic, root and log) have
very similar calibration error values. The step function and especially the exponential function per-
form very poorly; the exponential error is almost double in CIFAR-10 compared to the average.
For CIFAR-100 the step and exponential pacing functions are the best in terms of ECE, with step
excelling particularly when considering the KS error. Linear, quadratic, root, and log are similar in
terms of ECE, but vary widely in terms of the KS error, making it difficult to evaluate their perfor-
mance. Once again, due to inconsistency, it is not clear which choice of pacing function creates any
conclusive benefit for this highly limited training time.

6 IMPACT OF NOISE

In this section we show that it is under noisy data that we observe the largest benefits for using
curricula to reduce calibration error.

We keep the parameters a and b constant at 0.8 and 0.2, except for CIFAR-10 at 5 epochs where
its a = 0.1, b = 0.8. The standard training, curriculum learning, and anti-curriculum learning are
compared. We forgo random ordering since we want to understand whether the previously observed
benefits of curriculum learning occur for noisy data. We test at two different noise levels, 40% and
80% label corruption following the approach of Hendrycks & Dietterich (2019).

There is no benefit to using curriculum learning when training for the full 35,200 training steps and it
appears to hurt the calibration of the model slightly in the case of CIFAR-10 and heavily in the case
of CIFAR-100 for high levels of label noise. The accuracy, however, does improve as was observed
in Wu et al. (2021). Figure 6 shows that standard training is able to hit a lower minimum error at
its best epoch than curriculum learning at the same noise threshold. At 8,800 training steps there
are significant benefits to be gained by using curriculum learning. Both CIFAR-10 and CIFAR-100
have high reductions under both curriculum learning and anti-curriculum learning, as can be seen
in Figure 5. This decrease is far starker than observed in any other scenario and the benefits are
significant enough to recommend using curriculum learning as a calibration method. Observing
the ECE progression in Figure 5, the curricula approaches manage to calibrate better over time
while standard training only gets more miscalibrated. Both curriculum learning and anti-curriculum
learning have near identical trends. At 1,760 training steps, results are mixed. For CIFAR-10 the
calibration error is about the same. For CIFAR-100 there appears to be a disadvantage to using
curriculum learning, especially when there is 80% label noise. In contrast to the results at 25 epochs,
we cannot recommend curriculum learning for a training time this low.
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(a) (b)

Figure 6: Graphs showing the change in model calibration over time under noisy data while com-
paring standard training, curriculum learning, and anti-curriculum learning. The curricula share the
same linear pacing function at a = 0.8, b = 0.2 We track the change in ECE on test set per training
epoch for CIFAR-100 at 40% and 80% label noise. (a) shows results at 100 epochs and (b) at 25
epochs. There is a stark difference in the trends between the two training times that favours standard
training for 100 epochs and the curricula approaches for 25 epochs. The noise level strongly affects
the trends in a difficult to predict manner.

7 RELATED WORK

Recent studies have been conducted into the calibration of specific types of model architectures, in-
cluding convolutional based architectures such as ResNet and DenseNet (Guo et al., 2017; Minderer
et al., 2021), pre-trained transformer-based models (Desai & Durrett, 2020), and ReLU-type neural
networks (Hein et al., 2019). In addition, there have been investigations into the effectiveness of spe-
cific calibration methods like temperature scaling (Kumar et al., 2019). Similar to these approaches,
we seek to evaluate the calibration of models trained with curriculum learning based architectures.

We would also like to highlight the work by Sakaridis et al. (2019), where they use a guided curricu-
lum adaptation to reach state-of-the-art performance on a semantic nighttime image segmentation
task under an uncertainty aware metric that rewards predictions with confidence consistent with hu-
man annotators. This study utilizes curriculum learning to improve confidence scores, but unlike
our work they do not provide a deeper examination into calibration specifically.

For a fuller examination of related work in the fields of calibration and curriculum learning, please
see Appendix A.1.

8 CONCLUSIONS AND FUTURE WORK

Along with the recent surge of interest in curriculum learning, we provide the first empirical study
on this promising technique for calibration. Our research here answers the following question: does
curriculum learning have a significant impact on model calibration similar to its great benefits in
improving model accuracy? Through extensive experiments, we contributed the following main
insights. First, under the context of limited training time and noisy data, curriculum learning can
substantially reduce the miscalibration error in certain cases, which cannot be explained by dynam-
ically sampling the dataset. Second, curriculum and anti-curriculum learning appear to have nearly
identical effects on model calibration. Last, the choice of pacing function and its parameters in
curriculum learning can significantly impact model calibration, indicating that extra care should be
taken to minimize the risk of severe model miscalibration. Based on the empirical observations pre-
sented in this study, we are interested in establishing a theoretical framework that can systematically
analyze the interplay between curriculum learning and model calibration in the future.

9 REPRODUCIBILITY STATEMENT

Our work is easily reproducible by following our experimental protocol in Section 3. Section 2.2
shows how we calculate the calibration error metrics. In terms of the curricula parameters that
we use, Section 4 lists the pacing function parameter combinations, Section 2.3 shows the pacing

9
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function types, and Section 6 shows the settings for the amount of label corruption. Since we follow
the approach by (Wu et al., 2021), the Github for their experiments can be referenced and used to
replicate our experiments. We will make our modifications to their code publicly available upon the
acceptance of the paper.
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A APPENDIX

A.1 ADDITIONAL RELATED WORK ON CALIBRATION AND CURRICULUM LEARNING

Here we provide a wider review of related work that has been conducted in the fields of calibration
and curriculum learning.

Research on the calibration of machine learning classifiers typically focuses on improving metrics
for calibration and creating novel calibration methods. Moreover, extensive studies have been con-
ducted in related topics focusing on confidence scores, such as out-of-distribution detection (Lee
et al., 2018) and uncertainty quantification (Rahaman & Thiery, 2020). Calibration methods in par-
ticular have received much attention. These methods are divided into post-calibration methods and
training-based methods. Post-calibration methods take an existing model and modify the predictions
at test time to be better calibrated, usually using validation data to tune a recalibration function. The
most popular recalibration method is temperature scaling (Guo et al., 2017), which scales the logits
to have higher entropy by dividing them by a temperature parameter before feeding them into the
soft-max function. Other established methods include Platt scaling (Platt, 1999), isotonic regression
(Zadrozny & Elkan, 2002), and histogram binning (Zadrozny & Elkan, 2001). More recently de-
veloped methods that achieve top performance include using splines for recalibration (Gupta et al.,
2021).

The second class of methods involve modifying the training regime to improve regularization and
punish overconfidence. Techniques that train using soft-labels like label smoothing (Müller et al.,
2019) have been found to improve model calibration by focusing neural networks to output less
confident predictions due to the smoothing parameter. Other techniques use data augmentation for
regularization. Methods of this type include Mix-Up (Zhang et al., 2018), which convexly combines
random pairs of images and their labels and helps calibration due to soft-labels (Thulasidasan et al.,
2019), and manifold smoothing (Kong et al., 2020), a method which combines on-manifold and
off-manifold regularization by creating pseudo-samples that are used as additional training data
to improve calibration. Other methods choose to modify the loss function to explicitly bias the
model towards learning to output better calibrated probabilities. MMCE is a RKHS kernel-based
measure of calibration that is optimized alongside negative likelihood loss (Kumar et al., 2018) and
is able to minimize calibration error without heavily punishing rightful high confidence predictions.
Mukhoti et al. (2020) find that using focal loss, rather than cross entropy loss, in conjunction with
temperature scaling creates models that are very well calibrated and attain state-of-the-art results.
Moon et al. (2020) use a novel loss function called Correctness Ranking Loss, which regularizes
class probabilities explicitly. The diverse range of these training-based calibration methods show
that modifying how the model trains can have a significant effect on calibration, and that methods
that provide regularization, like curriculum learning, warrant examination as we do in this study.

Curriculum learning has been used in a wide range of contexts, and prominent surveys like that of
(Wang et al., 2020) exist that describe the diverse landscape of research in this domain. In terms of
works pertinent to our analysis, we wish to highlight the studies on curriculum learning’s effective-
ness with noisy data and convergence speedup. The effectiveness of curriculum learning approaches
with noisy data has been well established by research (Zhou et al., 2021). MentorNet (Jiang et al.,
2018) is an algorithm for jointly optimizing deep CNNs on large-scale data using a data-driven cur-
riculum created by a neural network, and was found to improve the generalization performance on
corrupted labels. There is widespread use of curriculum learning in the weakly supervised domain as
a method of regularization (Guo et al., 2018; Gong et al., 2016), where curriculum learning has been
able to reduce the negative effects of the inherently noisy datasets to achieve state-of-the-art predic-
tive performance. Regarding performance under limited training time, curriculum learning has been
found to accelerate training (Bengio et al., 2009; Hacohen & Weinshall, 2019), and (Graves et al.,
2017) found that a curriculum learning-based approach reaches satisfactory performing models half
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the time with LSTM. Studies like these provide justification to see whether the improvements in
early convergence carry on to calibration.

A.2 PROGRESSION OF MODEL CALIBRATION DURING TRAINING

We discussed how calibration error changes over the course of training briefly in our main analysis,
and in this section we provide further details and insights. As we trained the curriculum learning,
anti-curriculum learning, and random order models, we measured the ECE on the test set at the end
of each dynamic epoch to witness how these approaches affect calibration convergence. We aver-
aged the measurements over multiple trials to remove any bias from an individual run. We previously
mentioned that both curriculum learning and anti-curriculum learning follow a similar trend largely
distinct from random ordering, as can be seen in Figures 3 and 7. Model calibration error is initially
higher than standard training in all cases before it rises and peaks early before gradually decreasing
over time, with the parameters a and b determining the peak and over how many dynamic epochs
it takes to reach its minimum value. The peak is particularly interesting as many combinations sig-
nificantly hurt model calibration early on during training creating model snapshots that are severely
miscalibrated compared to standard training. Standard training remains relatively low and contained
throughout training and does not rise to exceedingly high values. Despite this, all of the curriculum
learning configurations gradually lower to reach minimum values comparable to standard training
with the exception of a = 1.6, b = 0.1. Random order yields a more even distribution where it takes
longer to reach the point in training where the model produces its maximum calibration error. The
same rise-peak-decay pattern can be seen, however the miscalibration does not become nearly as
severe and remains relatively close to standard training even in the worst combinations of a and b.
The severe miscalibration early in training yields us to believe that learning from a limited subset
of data continuously early on leads to the model being unable to generalize well. As the model gets
exposed to more data it begins to learn to output confidence scores that take into account the entire
data distribution, rendering better calibration. This explains the difference between curriculum/anti-
curriculum learning and the random curriculum since random ordering is not necessarily training on
the same subset, providing less bias. Overall, curriculum learning does alter how a model’s calibra-
tion changes over time, and we discover that curriculum learning approaches learn to recover from
initially severe levels of miscalibration over the course of training.

A.2.1 EFFECT OF THE TYPE OF PACING FUNCTION ON MODEL CALIBRATION OVER TIME

One aspect of interest is the progression in calibration error the model produces on the test set over
the course of training using different pacing functions. Even for the same pacing function parameters
the trends between the different function families are markedly different in how they converge to
their optimal level of calibration. Examining Figure 4, a trend that can be seen, most notably for
the step and exponential pacing functions, is that at a certain point towards the end of training the
calibration error that the model produces plummets dramatically in only a few dynamic epochs. This
is in contrast with the other pacing functions that largely have model calibration steadily improving
over time in a nearly logarithmic fashion. This indicates that the severe miscalibration is being self-
corrected in a staggeringly short period of time over a few iterations through the whole data. The
graphs show results using the pacing function parameters a = 0.8, b = 0.2, and this effect occurs
close to the end of training when classifiers have a tendency to have low entropy for their outputted
probabilities, particularly for the longer training time. This means that these pacing functions are
able to suddenly shift the distribution of confidence scores despite being at the point in training
where deep neural networks trained using NLL tend to be highly confident on most data. In any
case, this phenomena is difficult to explain and warrants further investigation as it can offer insight
into the factors that can make model calibration improve dramatically.

A.3 FULL TABULAR RESULTS

We present our full tabular data in this section for each of our experiments in Sections 4, 5, and 6.
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Table 2: Table comparing the accuracy and calibration performance using ECE, CECE, and KS error
on the test set using a curriculum learning approach on CIFAR-10. We compare standard training
to 6 combinations of pacing function parameters using a linear pacing function for 100, 25, and
5 epochs. We show the average and standard deviation from three different runs for 100 and 25
epochs, and 5 for 5 epochs.

Standard a=0.8, b=0.2 a=0.1, b=0.8 a=0.4, b=0.4 a=0.1, b=0.1 a=1.6, b=0.1 a=1.6, b=0.8
μ σ μ σ μ σ μ σ μ σ μ σ μ σ

Best Epoch 95.7 1.5 176.0 2.6 94.7 5.0 115.7 2.5 111.3 3.5 328.7 4.2 114.7 1.5
ECE 0.0296 0.0012 0.0347 0.0016 0.0319 0.0023 0.0325 0.0018 0.0315 0.0012 0.0867 0.0018 0.0400 0.0018

100 epochs CECE 0.0417 0.0020 0.0517 0.0027 0.0492 0.0050 0.0476 0.0044 0.0453 0.0036 0.0991 0.0031 0.0529 0.0020
KS 0.0294 0.0014 0.0346 0.0015 0.0318 0.0022 0.0321 0.0018 0.0306 0.0014 0.0865 0.0019 0.0395 0.0016
Accuracy 0.9470 0.0017 0.9324 0.0033 0.9456 0.0032 0.9444 0.0021 0.9466 0.0011 0.8694 0.0015 0.9341 0.0020
Best Epoch 23.0 1.7 44.3 0.6 24.0 1.0 29.0 1.0 27.0 1.0 82.7 0.6 28.7 0.6
ECE 0.0263 0.0020 0.0215 0.0018 0.0260 0.0018 0.0275 0.0013 0.0256 0.0023 0.0958 0.0032 0.0461 0.0018

Curr 25 epochs CECE 0.0426 0.0023 0.0358 0.0023 0.0407 0.0017 0.0423 0.0027 0.0380 0.0039 0.1083 0.0030 0.0595 0.0020
KS 0.0255 0.0015 0.0212 0.0013 0.0257 0.0020 0.0272 0.0016 0.0252 0.0026 0.0958 0.0033 0.0461 0.0018
Accuracy 0.9218 0.0014 0.9088 0.0010 0.9225 0.0009 0.9224 0.0011 0.9221 0.0012 0.8400 0.0030 0.9081 0.0006
Best Epoch 4 0 9 0 4 0 5.8 0.4 5 0 15.8 0.4 5 0
ECE 0.0247 0.0036 0.0318 0.0052 0.0225 0.0040 0.0231 0.0042 0.0231 0.0052 0.1540 0.0041 0.0579 0.0143

5 epochs CECE 0.0681 0.0081 0.0603 0.0047 0.0635 0.0097 0.0713 0.0105 0.0668 0.0072 0.1645 0.0057 0.0840 0.0065
KS 0.0231 0.0041 0.0313 0.0059 0.0208 0.0045 0.0217 0.0054 0.0224 0.0050 0.1539 0.0040 0.0577 0.0142
Accuracy 0.7267 0.0235 0.7310 0.0341 0.7375 0.0139 0.7047 0.0443 0.7394 0.0251 0.6932 0.0179 0.7317 0.0592

Table 3: Table comparing the accuracy and calibration performance using ECE, CECE, and KS error
on the test set using an anti-curriculum learning approach on CIFAR-10. Presentation is the same as
in Table 2

Standard a=0.8, b=0.2 a=0.1, b=0.8 a=0.4, b=0.4 a=0.1, b=0.1 a=1.6, b=0.1 a=1.6, b=0.8
μ σ μ σ μ σ μ σ μ σ μ σ μ σ

Best Epoch 95.7 1.5 177.3 1.5 93.7 2.1 116.3 4.5 110.7 4.5 329.7 3.8 110.7 5.1
ECE 0.0296 0.0012 0.0320 0.0009 0.0310 0.0025 0.0323 0.0005 0.0303 0.0009 0.0842 0.0030 0.0405 0.0015

100 epochs CECE 0.0417 0.0020 0.0452 0.0026 0.0457 0.0044 0.0478 0.0017 0.0458 0.0003 0.0963 0.0032 0.0533 0.0023
KS 0.0294 0.0014 0.0319 0.0008 0.0308 0.0023 0.0322 0.0004 0.0299 0.0004 0.0841 0.0030 0.0403 0.0015
Accuracy 0.9470 0.0017 0.9358 0.0015 0.9461 0.0031 0.9445 0.0006 0.9471 0.0008 0.8714 0.0041 0.9323 0.0010
Best Epoch 23.0 1.7 44.3 0.6 23.7 1.5 29.0 1.0 27.7 0.6 82.0 1.0 27.7 0.6
ECE 0.0263 0.0020 0.0192 0.0016 0.0274 0.0017 0.0273 0.0021 0.0270 0.0012 0.1002 0.0023 0.0448 0.0011

Anti-Curr 25 epochs CECE 0.0426 0.0023 0.0352 0.0033 0.0432 0.0025 0.0398 0.0022 0.0454 0.0031 0.1129 0.0025 0.0558 0.0004
KS 0.0255 0.0015 0.0182 0.0028 0.0267 0.0013 0.0265 0.0019 0.0262 0.0017 0.0999 0.0024 0.0447 0.0011
Accuracy 0.9218 0.0014 0.9075 0.0020 0.9192 0.0070 0.9237 0.0013 0.9254 0.0010 0.8351 0.0023 0.9118 0.0041
Best Epoch 4 0 9 0 4.2 0.4 6 0 5 0 15.4 0.5 5 0
ECE 0.0247 0.0036 0.0360 0.0059 0.0185 0.0072 0.0235 0.0037 0.0175 0.0033 0.1551 0.0033 0.0579 0.0055

5 epochs CECE 0.0681 0.0081 0.0632 0.0163 0.0690 0.0117 0.0695 0.0215 0.0663 0.0058 0.1662 0.0041 0.0802 0.0044
KS 0.0231 0.0041 0.0357 0.0055 0.0169 0.0081 0.0210 0.0044 0.0153 0.0037 0.1550 0.0032 0.0577 0.0054
Accuracy 0.7267 0.0235 0.7199 0.0447 0.7001 0.0231 0.7216 0.0411 0.7092 0.0203 0.7115 0.0209 0.7448 0.0350

Table 4: Table comparing the accuracy and calibration performance using ECE, CECE, and KS error
on the test set using random ordering on CIFAR-10. Presentation is the same as in Table 2

Standard a=0.8, b=0.2 a=0.1, b=0.8 a=0.4, b=0.4 a=0.1, b=0.1 a=1.6, b=0.1 a=1.6, b=0.8
μ σ μ σ μ σ μ σ μ σ μ σ μ σ

Best Epoch 95.7 1.5 171.0 1.7 97.7 2.5 117.7 2.5 109.0 3.5 328.0 2.6 107.7 3.2
ECE 0.0296 0.0012 0.0314 0.0004 0.0305 0.0013 0.0313 0.0016 0.0293 0.0014 0.0440 0.0028 0.0323 0.0006

100 epochs CECE 0.0417 0.0020 0.0457 0.0011 0.0442 0.0045 0.0461 0.0023 0.0438 0.0033 0.0605 0.0021 0.0493 0.0022
KS 0.0294 0.0014 0.0310 0.0004 0.0305 0.0013 0.0309 0.0021 0.0292 0.0014 0.0439 0.0028 0.0321 0.0007
Accuracy 0.9470 0.0017 0.9429 0.0006 0.9467 0.0014 0.9455 0.0023 0.9479 0.0023 0.9170 0.0036 0.9425 0.0018
Best Epoch 23.0 1.7 44.0 1.0 25.0 0.0 28.7 0.6 26.7 0.6 81.7 1.5 27 0
ECE 0.0263 0.0020 0.0282 0.0013 0.0267 0.0016 0.0275 0.0016 0.0269 0.0028 0.0461 0.0035 0.0327 0.0021

Random 25 epochs CECE 0.0426 0.0023 0.0444 0.0044 0.0429 0.0054 0.0429 0.0007 0.0403 0.0015 0.0610 0.0030 0.0491 0.0035
KS 0.0255 0.0015 0.0279 0.0015 0.0264 0.0019 0.0274 0.0017 0.0270 0.0028 0.0452 0.0041 0.0319 0.0028
Accuracy 0.9218 0.0014 0.9200 0.0034 0.9224 0.0003 0.9219 0.0047 0.9217 0.0026 0.9007 0.0044 0.9193 0.0034
Best Epoch 4 0 9 0 4 0 5.8 0.4 5 0 15.8 0.4 5 0
ECE 0.0247 0.0036 0.0217 0.0059 0.0244 0.0044 0.0259 0.0053 0.0183 0.0083 0.0267 0.0032 0.0228 0.0070

5 epochs CECE 0.0681 0.0081 0.0645 0.0111 0.0741 0.0158 0.0714 0.0130 0.0696 0.0075 0.0790 0.0124 0.0768 0.0137
KS 0.0231 0.0041 0.0198 0.0074 0.0225 0.0038 0.0245 0.0064 0.0167 0.0086 0.0253 0.0039 0.0216 0.0074
Accuracy 0.7267 0.0235 0.7148 0.0340 0.7048 0.0344 0.7074 0.0105 0.6993 0.0405 0.7027 0.0170 0.6901 0.0463

Table 5: Table comparing the accuracy and calibration performance using ECE, CECE, and KS error
on the test set using a curriculum learning approach on CIFAR-100. Presentation is the same as in
Table 2

Standard a=0.8, b=0.2 a=0.1, b=0.8 a=0.4, b=0.4 a=0.1, b=0.1 a=1.6, b=0.1 a=1.6, b=0.8
μ σ μ σ μ σ μ σ μ σ μ σ μ σ

Best Epoch 93.7 1.2 176.0 4.6 95.7 2.9 114.3 4.9 111.7 1.5 331.3 0.6 113.3 1.2
ECE 0.0790 0.0033 0.0935 0.0015 0.0808 0.0012 0.0822 0.0030 0.0785 0.0025 0.1222 0.0017 0.0852 0.0020

100 epochs CECE 0.1202 0.0027 0.1516 0.0068 0.1256 0.0044 0.1248 0.0024 0.1355 0.0046 0.1606 0.0082 0.1325 0.0192
KS 0.0784 0.0041 0.0935 0.0015 0.0803 0.0015 0.0818 0.0032 0.0781 0.0024 0.1218 0.0017 0.0848 0.0014
Accuracy 0.7678 0.0036 0.7397 0.0017 0.7652 0.0027 0.7600 0.0032 0.7642 0.0042 0.6853 0.0023 0.7541 0.0022
Best Epoch 23.0 1.0 44.0 1.7 23.3 1.5 29.7 0.6 26.0 1.0 80.7 1.5 28 1
ECE 0.0799 0.0025 0.0643 0.0054 0.0801 0.0027 0.0796 0.0043 0.0842 0.0023 0.1687 0.0031 0.1139 0.0007

Curr 25 epochs CECE 0.1197 0.0066 0.1123 0.0096 0.1166 0.0123 0.1249 0.0070 0.1308 0.0156 0.2031 0.0070 0.1456 0.0044
KS 0.0796 0.0025 0.0642 0.0057 0.0800 0.0029 0.0796 0.0043 0.0841 0.0023 0.1686 0.0031 0.1139 0.0006
Accuracy 0.7244 0.0055 0.7108 0.0089 0.7242 0.0041 0.7271 0.0043 0.7202 0.0065 0.6345 0.0011 0.7115 0.0032
Best Epoch 4 0 9 0 4 0 6 0 5 0 15.6 0.5 5 0
ECE 0.0145 0.0023 0.0405 0.0043 0.0138 0.0020 0.0166 0.0050 0.0127 0.0027 0.1628 0.0109 0.0477 0.0019

5 epochs CECE 0.1377 0.0103 0.1305 0.0114 0.1373 0.0086 0.1340 0.0082 0.1297 0.0099 0.1854 0.0105 0.1357 0.0114
KS 0.0088 0.0025 0.0407 0.0043 0.0083 0.0013 0.0127 0.0045 0.0054 0.0017 0.1628 0.0109 0.0478 0.0019
Accuracy 0.4540 0.0147 0.4881 0.0097 0.4540 0.0123 0.4552 0.0261 0.4379 0.0401 0.4601 0.0139 0.4734 0.0105
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Table 6: Table comparing the accuracy and calibration performance using ECE, CECE, and KS error
on the test set using an anti-curriculum learning approach on CIFAR-100. Presentation is the same
as in Table 2

Standard a=0.8, b=0.2 a=0.1, b=0.8 a=0.4, b=0.4 a=0.1, b=0.1 a=1.6, b=0.1 a=1.6, b=0.8
μ σ μ σ μ σ μ σ μ σ μ σ μ σ

Best Epoch 93.7 1.2 176.0 1.7 98.3 2.1 118.3 2.1 110.7 2.5 329.7 2.1 110.3 5.5
ECE 0.0790 0.0033 0.0929 0.0067 0.0808 0.0045 0.0815 0.0035 0.0805 0.0005 0.1260 0.0023 0.0893 0.0035

100 epochs CECE 0.1202 0.0027 0.1277 0.0086 0.1240 0.0114 0.1262 0.0070 0.1298 0.0108 0.1584 0.0072 0.1312 0.0076
KS 0.0784 0.0041 0.0927 0.0066 0.0800 0.0038 0.0804 0.0036 0.0801 0.0005 0.1251 0.0016 0.0884 0.0034
Accuracy 0.7678 0.0036 0.7409 0.0039 0.7647 0.0014 0.7615 0.0027 0.7622 0.0023 0.6808 0.0016 0.7511 0.0021
Best Epoch 23.0 1.0 44.3 0.6 22.3 0.6 29.0 1.0 26.7 1.5 81.7 1.5 26 1
ECE 0.0799 0.0025 0.0656 0.0060 0.0809 0.0041 0.0785 0.0025 0.0840 0.0004 0.1713 0.0069 0.1112 0.0028

Anti-Curr 25 epochs CECE 0.1197 0.0066 0.1184 0.0030 0.1172 0.0140 0.1171 0.0051 0.1265 0.0038 0.2083 0.0133 0.1411 0.0074
KS 0.0796 0.0025 0.0654 0.0063 0.0809 0.0041 0.0785 0.0025 0.0838 0.0008 0.1712 0.0070 0.1111 0.0030
Accuracy 0.7244 0.0055 0.7078 0.0052 0.7190 0.0015 0.7255 0.0012 0.7201 0.0037 0.6274 0.0098 0.7126 0.0045
Best Epoch 4 0 9 0 4 0 5.8 0.4 5 0 15.4 0.5 5 0
ECE 0.0145 0.0023 0.0433 0.0064 0.0158 0.0020 0.0130 0.0020 0.0157 0.0057 0.1730 0.0054 0.0453 0.0029

5 epochs CECE 0.1377 0.0103 0.1398 0.0056 0.1389 0.0022 0.1337 0.0078 0.1359 0.0096 0.1882 0.0067 0.1462 0.0112
KS 0.0088 0.0025 0.0433 0.0065 0.0080 0.0017 0.0077 0.0033 0.0084 0.0044 0.1729 0.0055 0.0454 0.0030
Accuracy 0.4540 0.0147 0.4920 0.0183 0.4441 0.0066 0.4565 0.0185 0.4566 0.0165 0.4607 0.0083 0.4711 0.0093

Table 7: Table comparing the accuracy and calibration performance using ECE, CECE, and KS error
on the test set using random order on CIFAR-10. Presentation is the same as in Table 2

Standard a=0.8, b=0.2 a=0.1, b=0.8 a=0.4, b=0.4 a=0.1, b=0.1 a=1.6, b=0.1 a=1.6, b=0.8
μ σ μ σ μ σ μ σ μ σ μ σ μ σ

Best Epoch 93.7 1.2 177.3 2.1 96.7 2.5 116.3 3.2 106.3 3.2 331.7 0.6 110.3 1.5
ECE 0.0790 0.0033 0.1016 0.0042 0.0796 0.0024 0.0787 0.0032 0.0778 0.0010 0.1210 0.0037 0.0800 0.0026

100 epochs CECE 0.1202 0.0027 0.1561 0.0048 0.1345 0.0058 0.1167 0.0179 0.1213 0.0083 0.1718 0.0074 0.1326 0.0099
KS 0.0784 0.0041 0.1013 0.0042 0.0783 0.0035 0.0778 0.0037 0.0773 0.0007 0.1204 0.0041 0.0791 0.0019
Accuracy 0.7678 0.0036 0.7299 0.0066 0.7694 0.0013 0.7644 0.0058 0.7680 0.0016 0.6563 0.0078 0.7566 0.0013
Best Epoch 23.0 1.0 44.7 0.6 24.3 0.6 28.7 0.6 26.7 1.2 80.7 0.6 28.3 0.6
ECE 0.0799 0.0025 0.0877 0.0010 0.0780 0.0022 0.0809 0.0016 0.0796 0.0025 0.1577 0.0011 0.0926 0.0101

Random 25 epochs CECE 0.1197 0.0066 0.1274 0.0131 0.1130 0.0101 0.1191 0.0052 0.1138 0.0192 0.1961 0.0153 0.1364 0.0150
KS 0.0796 0.0025 0.0876 0.0010 0.0779 0.0023 0.0809 0.0016 0.0793 0.0028 0.1577 0.0011 0.0923 0.0103
Accuracy 0.7244 0.0055 0.7177 0.0046 0.7268 0.0037 0.7239 0.0046 0.7250 0.0041 0.6195 0.0036 0.7203 0.0059
Best Epoch 4 0 9 0 4.2 0.4 6 0 5 0 15.8 0.4 5 0
ECE 0.0145 0.0023 0.0120 0.0014 0.0146 0.0026 0.0135 0.0055 0.0136 0.0021 0.0175 0.0051 0.0126 0.0028

5 epochs CECE 0.1377 0.0103 0.1409 0.0101 0.1359 0.0100 0.1415 0.0129 0.1351 0.0102 0.1295 0.0032 0.1416 0.0074
KS 0.0088 0.0025 0.0065 0.0031 0.0068 0.0030 0.0082 0.0037 0.0056 0.0015 0.0156 0.0064 0.0062 0.0012
Accuracy 0.4540 0.0147 0.4485 0.0211 0.4470 0.0070 0.4404 0.0142 0.4453 0.0160 0.4437 0.0150 0.4406 0.0104

Table 8: Table comparing the accuracy and calibration performance using ECE, CECE, and KS
error on the test set using 6 different pacing functions on CIFAR-10. Here we only use a curriculum
learning approach at the same combination of a and b. Again we compare three different training
times of 100, 25, and 5 epochs. For 100 and 25 epochs we use a = 0.8, b = 0.2. For 5 epochs we
use a = 0.1, b = 0.8 since its performance is not as bad as the aforementioned combination. We
show the average and standard deviation from three different runs for 100 and 25 epochs, and 5 for
5 epochs.

linear quad root step exp log
μ σ μ σ μ σ μ σ μ σ μ σ

Best Epoch 176.0 2.6 237.3 1.5 136.3 4.7 415.7 0.6 350.3 1.5 104.7 1.5
ECE 0.0347 0.0016 0.0350 0.0020 0.0320 0.0001 0.0336 0.0014 0.0364 0.0028 0.0285 0.0006

100 epochs CECE 0.0517 0.0027 0.0497 0.0033 0.0468 0.0022 0.0504 0.0022 0.0526 0.0034 0.0439 0.0012
KS 0.0346 0.0015 0.0345 0.0023 0.0319 0.0002 0.0331 0.0013 0.0364 0.0027 0.0283 0.0006
Accuracy 0.9324 0.0033 0.9305 0.0026 0.9403 0.0021 0.9216 0.0014 0.9221 0.0024 0.9456 0.0002
Best Epoch 44.3 0.6 59.3 0.6 32.7 0.6 104.0 0.0 88.3 1.2 26.7 0.6
ECE 0.0215 0.0018 0.0186 0.0005 0.0191 0.0017 0.0178 0.0026 0.0195 0.0015 0.0252 0.0029

25 epochs CECE 0.0358 0.0023 0.0376 0.0032 0.0354 0.0035 0.0411 0.0059 0.0407 0.0012 0.0360 0.0024
KS 0.0212 0.0013 0.0182 0.0003 0.0184 0.0011 0.0152 0.0042 0.0179 0.0029 0.0251 0.0030
Accuracy 0.9088 0.0010 0.9007 0.0002 0.9170 0.0015 0.8626 0.0018 0.8790 0.0064 0.9201 0.0040
Best Epoch 9 0 12 0 7 0 20 0 18 0 6 0
ECE 0.0318 0.0052 0.0328 0.0038 0.0321 0.0034 0.0482 0.0048 0.0635 0.0052 0.0289 0.0038

5 epochs CECE 0.0603 0.0047 0.0578 0.0084 0.0611 0.0057 0.0696 0.0029 0.0776 0.0039 0.0604 0.0029
KS 0.0313 0.0059 0.0326 0.0039 0.0315 0.0037 0.0482 0.0048 0.0630 0.0050 0.0281 0.0041
Accuracy 0.7310 0.0341 0.7173 0.0664 0.7472 0.0198 0.6857 0.0083 0.7063 0.0088 0.7430 0.0201
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Table 9: Table comparing the accuracy and calibration performance using ECE, CECE, and KS error
on the test set using 6 different pacing functions on CIFAR-100. Experimental setup is the same as
in table 8 except that a = 0.1, b = 0.1 is used for 5 epochs instead.

linear quad root step exp log
μ σ μ σ μ σ μ σ μ σ μ σ

Best Epoch 176.0 4.6 239.0 1.0 135.7 5.9 413.7 2.1 351.0 1.0 103.3 3.5
ECE 0.0935 0.0015 0.0964 0.0044 0.0910 0.0031 0.0787 0.0013 0.0927 0.0030 0.0833 0.0004

100 epochs CECE 0.1516 0.0068 0.1409 0.0047 0.1317 0.0122 0.1292 0.0116 0.1387 0.0136 0.1169 0.0136
KS 0.0935 0.0015 0.0962 0.0045 0.0908 0.0032 0.0786 0.0011 0.0921 0.0024 0.0818 0.0006
Accuracy 0.7397 0.0017 0.7306 0.0054 0.7467 0.0023 0.7242 0.0012 0.7232 0.0034 0.7611 0.0012
Best Epoch 44.0 1.7 59.0 1.0 34.3 0.6 103.3 0.6 88.3 0.6 26.0 1.0
ECE 0.0643 0.0054 0.0593 0.0022 0.0704 0.0011 0.0279 0.0040 0.0509 0.0040 0.0761 0.0009

25 epochs CECE 0.1123 0.0096 0.1267 0.0102 0.1153 0.0113 0.1170 0.0129 0.1239 0.0084 0.1270 0.0077
KS 0.0642 0.0057 0.0591 0.0024 0.0703 0.0010 0.0262 0.0045 0.0507 0.0042 0.0760 0.0010
Accuracy 0.7108 0.0089 0.6974 0.0051 0.7171 0.0002 0.6370 0.0096 0.6671 0.0049 0.7255 0.0042
Best Epoch 5.0 0.0 6.0 0.0 4.3 0.6 8.0 0.0 7.0 0.0 4.0 0.0
ECE 0.0144 0.0015 0.0135 0.0042 0.0142 0.0010 0.0100 0.0008 0.0130 0.0007 0.0158 0.0020

5 epochs CECE 0.1328 0.0119 0.1277 0.0106 0.1369 0.0095 0.1438 0.0117 0.1341 0.0117 0.1403 0.0028
KS 0.0060 0.0021 0.0095 0.0070 0.0080 0.0007 0.0035 0.0012 0.0080 0.0008 0.0070 0.0014
Accuracy 0.4287 0.0503 0.4537 0.0074 0.4479 0.0207 0.4307 0.0161 0.4461 0.0307 0.4469 0.0188

Table 10: Table comparing the accuracy and calibration performance using ECE, CECE, and KS
error on the test set under noisy labels on CIFAR-10. We compare standard training to curriculum
and anti-curriculum learning under 40% and 80% label noise. Again we compare three different
training times of 100, 25, and 5 epochs. For 100 and 25 epochs we keep the pacing function param-
eters constant at a = 0.8, b = 0.2. For 5 epochs we use a = 0.1, b = 0.8. We show the average and
standard deviation from three different runs for 100 and 25 epochs, and 5 for 5 epochs.

Standard Curr Anti-Curr
0.4 Noise 0.8 Noise 0.4 Noise 0.8 Noise 0.4 Noise 0.8 Noise
μ σ μ σ μ σ μ σ μ σ μ σ

Best Epoch 97.3 0.6 89.00 3.46410 177.3 3.1 180.3 1.2 176.3 0.6 177.7 4.0
ECE 0.0291 0.0023 0.0316 0.0016 0.0337 0.0011 0.0356 0.0014 0.0326 0.0024 0.0317 0.0009

100 epochs CECE 0.0444 0.0048 0.0467 0.0011 0.0493 0.0024 0.0529 0.0031 0.0467 0.0047 0.0475 0.0011
KS 0.0289 0.0025 0.0314 0.0015 0.0335 0.0011 0.0355 0.0012 0.0324 0.0023 0.0316 0.0009
Accuracy 0.9483 0.0016 0.9449 0.0024 0.9357 0.0009 0.9335 0.0023 0.9367 0.0031 0.9364 0.0020
Best Epoch 23.0 1.0 23.7 0.6 45.0 0.0 44.3 0.6 43.0 1.0 44.3 0.6
ECE 0.0301 0.0015 0.0260 0.0013 0.0198 0.0019 0.0181 0.0017 0.0178 0.0007 0.0184 0.0005

25 epochs CECE 0.0458 0.0037 0.0438 0.0036 0.0349 0.0012 0.0366 0.0038 0.0336 0.0016 0.0340 0.0030
KS 0.0301 0.0015 0.0253 0.0012 0.0173 0.0010 0.0169 0.0026 0.0173 0.0005 0.0182 0.0007
Accuracy 0.9216 0.0026 0.9217 0.0049 0.9122 0.0023 0.9099 0.0023 0.9099 0.0057 0.9114 0.0026
Best Epoch 4 0 4 0 4 0 4 0 4 0 4 0
ECE 0.0255 0.0054 0.0208 0.0036 0.0205 0.0039 0.0180 0.0047 0.0243 0.0052 0.0235 0.0086

5 epochs CECE 0.0742 0.0221 0.0630 0.0134 0.0745 0.0121 0.0805 0.0117 0.0695 0.0152 0.0714 0.0098
KS 0.0250 0.0050 0.0191 0.0053 0.0195 0.0050 0.0159 0.0055 0.0235 0.0057 0.0223 0.0094
Accuracy 0.7259 0.0344 0.7276 0.0385 0.7109 0.0202 0.6900 0.0269 0.7401 0.0209 0.7156 0.0261

Table 11: Table comparing the accuracy and calibration performance using ECE, CECE, and KS
error on the test set under noisy labels on CIFAR-10. We compare standard training to curriculum
and anti-curriculum learning under 40% and 80% label noise. Experimental setup is the same as in
table 10 except that a = 0.8, b = 0.2 is used for 5 epochs instead.

Standard Curr Anti-Curr
0.4 Noise 0.8 Noise 0.4 Noise 0.8 Noise 0.4 Noise 0.8 Noise
μ σ μ σ μ σ μ σ μ σ μ σ

Best Epoch 48.7 4.7 62.67 4.61880 109.7 5.1 29.3 7.4 118.0 3.6 35.0 3.0
ECE 0.0767 0.0343 0.1102 0.0252 0.1658 0.0158 0.1354 0.0174 0.1323 0.0163 0.1652 0.0178

100 epochs CECE 0.2015 0.0273 0.2098 0.0804 0.2231 0.0315 0.1962 0.0204 0.2100 0.0317 0.2048 0.0067
KS 0.0745 0.0362 0.1093 0.0266 0.1658 0.0158 0.1354 0.0174 0.1323 0.0163 0.1652 0.0178
Accuracy 0.5235 0.0051 0.2353 0.0142 0.5603 0.0064 0.2325 0.0056 0.5636 0.0118 0.2263 0.0039
Best Epoch 23.0 1.0 23.3 0.6 36.3 2.5 33.7 2.1 37.7 1.5 29.3 3.8
ECE 0.1364 0.0042 0.1225 0.0043 0.0482 0.0254 0.0497 0.0044 0.0570 0.0225 0.0519 0.0197

25 epochs CECE 0.1941 0.0025 0.1857 0.0307 0.1532 0.0161 0.1415 0.0207 0.1479 0.0073 0.1552 0.0157
KS 0.1365 0.0042 0.1225 0.0043 0.0443 0.0306 0.0495 0.0046 0.0564 0.0242 0.0518 0.0196
Accuracy 0.5709 0.0025 0.1675 0.0053 0.5836 0.0087 0.2241 0.0028 0.5816 0.0022 0.2309 0.0065
Best Epoch 4 0 4 0 5 0 4.4 0.547723 5 0 5 0
ECE 0.1063 0.0033 0.0454 0.0098 0.1176 0.0082 0.0872 0.0058 0.1191 0.0097 0.0838 0.0123

5 epochs CECE 0.1783 0.0183 0.0255 0.0070 0.1907 0.0158 0.1023 0.0328 0.1845 0.0208 0.1414 0.0427
KS 0.1062 0.0032 0.0449 0.0100 0.1174 0.0084 0.0871 0.0058 0.1191 0.0097 0.0834 0.0124
Accuracy 0.2361 0.0093 0.0665 0.0113 0.2730 0.0121 0.1152 0.0077 0.2710 0.0257 0.1122 0.0139
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(a)

(b)

Figure 7: Graphs showing the progression of ECE on the test set calculated at every dynamic epoch
during training for CIFAR-10 (top) and CIFAR-100 (bottom) at 100 epochs to measure the cali-
bration of the model over the course of training. We compare 3 different orderings: curriculum
(left), anti-curriculum (centre) and random (right) at the same 6 combinations of a and b discussed
in section 4. We also include the trend of standard training in bright red.
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