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ABSTRACT

Molecular property regression often suffers from severe target distribution imbal-
ance: models tend to overfit to dense regions while underperforming on rare but
critical ones. This challenge arises from the continuous-valued nature and com-
plex structure–property relationships of molecular datasets, where molecules with
highly dissimilar structures may exhibit similar properties. These characteristics
pose challenges to many existing imbalance-handling methods, limiting their ef-
fectiveness when applied to molecular regression tasks. We propose Distribution-
Guided Expert Routing (DistRouting), a flexible framework that dynamically
assigns molecules to specialized experts based on predicted target ranges. Routing
decisions integrate deep molecular embeddings and physicochemical descriptors
to better reflect both learned representations and domain knowledge. To enhance
robustness, DistRouting employs a soft Top-k routing strategy, enabling each sam-
ple to attend to multiple experts. We incorporate DistRouting as a plug-in module
into four representative models and evaluate it on multiple molecular property
prediction benchmarks. Our approach consistently improves performance in rare
target regions, demonstrating its effectiveness in addressing label imbalance in
molecular regression tasks.

1 INTRODUCTION

Accurately predicting molecular properties is a fundamental problem in computational chemistry
and drug discovery (Gilmer et al., 2017; Wu et al., 2018; Yang et al., 2019). Many molecular prop-
erty prediction tasks are formulated as regression problems, where the goal is to estimate continuous-
valued outcomes such as binding affinity, solubility, and toxicity. However, these tasks often suffer
from imbalanced target distributions, where most data points concentrate in a narrow target range
while chemically significant outliers are sparsely distributed. This distributional imbalance causes
standard regression models to focus on dense target regions while neglecting rare but critical ones.

Figure 1: Structure–property mismatch in the
LD50 dataset. Molecules with highly dissim-
ilar structures can share identical property.

Prevailing approaches for handling imbalanced re-
gression can be broadly categorized into data re-
sampling, loss reweighting, and feature-level cal-
ibration. SMOGN (Branco et al., 2017) repre-
sents a resampling strategy that interpolates low-
density regions, yet such methods are generally un-
suitable for structured molecular data, as naive inter-
polation in high-dimensional molecular graphs of-
ten yields invalid or unrealistic samples that vio-
late chemical constraints (You et al., 2020; Rong
et al., 2020). Loss reweighting methods such as
DenseWeight (Steininger et al., 2021) and label dis-
tribution smoothing (LDS) (Yang et al., 2021), as
well as feature distribution smoothing (FDS) (Yang
et al., 2021), adjust sample importance or smooth
representations based on target density. While ef-
fective in general-purpose regression, these methods
share a common assumption that samples with simi-
lar labels are also close in the input space. However, molecular datasets often violate this assump-
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Figure 2: DistRouting framework and routing mechanism. (a) Overall architecture. DistRout-
ing selects Top-k experts by similarity and aggregates outputs for molecular property prediction.
(b) Routing mechanism. Top-k selection combines similarity scores between expert centroids and
both encoder outputs and RDKit physicochemical descriptors.

tion due to complex structure–property relationships: as shown in Figure 1, structurally dissimilar
molecules may exhibit identical properties. In such cases, reweighting methods may overemphasize
rare samples, improving the fit to those molecules but failing to generalize to structurally diverse
compounds with similar labels. In contrast, feature calibration approaches smooth embeddings
based on label similarity, but risk blurring critical distinctions by forcing structurally distinct yet
label-similar molecules closer in the representation space. These limitations undermine the ability
of the model to capture true structure–property relationships and ultimately reduce generalization.

To address these issues, we approach the challenge from the perspective of model architecture and
propose DistRouting, a distribution-guided expert routing framework for imbalanced molecular
property regression. DistRouting partitions the target space into intervals and assigns specialized ex-
perts to each, enabling the model to capture interval-level commonalities while preserving structural
diversity. Rather than relying on shared parameters that bias optimization toward high-frequency
labels, DistRouting allocates experts to different regions, ensuring that rare but mechanistically
distinct compounds are not overwhelmed by dominant ones. As illustrated in Figure 2a, routing
decisions are guided jointly by molecular embeddings and RDKit-based physicochemical descrip-
tors (Landrum, 2006), while a soft Top-k strategy allows each molecule to attend to multiple experts,
improving robustness in sparse regions. Furthermore, we align routing behavior with the target dis-
tribution via a KL divergence loss on soft interval labels and introduce an interval-aware contrastive
loss to structure the embedding space. By explicitly linking label distribution to representation
learning, DistRouting enables rare samples to share parameters within appropriate experts, alleviat-
ing their isolation and yielding more effective modeling of imbalanced molecular property data.

Our main contributions are summarized as follows:

• We propose DistRouting, a distribution-guided expert routing framework for molecular
property regression under imbalanced target distributions. By routing samples to special-
ized experts assigned to different target ranges, DistRouting effectively addresses the often-
overlooked challenge of target imbalance and consistently improves the performance of
diverse molecular encoders, with particularly strong gains in rare target regions.

• We introduce a physicochemical descriptors–guided routing mechanism, which lever-
ages RDKit-derived physicochemical descriptors to assist in expert selection. These fea-
tures act as chemically informed priors that stabilize routing decisions.

• We further propose an interval-aware supervised contrastive learning loss to structure
the molecular representation space, promoting semantic alignment among samples within
the same target interval to facilitate consistent expert routing.

2 RELATED WORK

Imbalance Regression. Existing approaches can be broadly categorized into three groups: data
resampling, loss reweighting, and feature-level calibration. Most existing work adapts the SMOTE
algorithm to regression (Blagus & Lusa, 2013; Branco et al., 2017; 2018), where synthetic samples
are generated for rare target regions by interpolation or by adding noise. Loss reweighting strategies,
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including DenseWeight (Steininger et al., 2021) and label distribution smoothing (LDS) (Yang et al.,
2021), adjust the training objective by assigning larger weights to samples from underrepresented
target regions, effectively biasing optimization toward rare values. Feature distribution smoothing
(FDS) (Yang et al., 2021) instead calibrates hidden representations by smoothing features according
to target density, mitigating overfitting to noisy or sparse regions.

Molecular Encoders. Learning effective molecular representations is fundamental to property
prediction. Graph Neural Networks (GNNs) model molecules as atom–bond graphs (Gilmer
et al., 2017; Xu et al., 2018; Hu et al., 2020), with variants such as Graph Attention Networks
(GAT) (Velickovic et al., 2017) and DeeperGCN (Li et al., 2023) improving message passing via
attention and residual connections. In parallel, sequence-based encoders process SMILES strings
as molecular language, with transformer models such as ChemBERTa (Chithrananda et al., 2020),
SMILES-BERT (Wang et al., 2019), and Chemformer (Irwin et al., 2022) demonstrating strong per-
formance through large-scale self-supervised pretraining. Extending to 3D molecular structures,
UniMol (Zhou et al., 2023) provides a unified framework that captures richer spatial information. In
our work, we evaluate DistRouting as a plug-in module across these modalities, showing consistent
gains for diverse molecular encoders.

Mixture of Experts. Mixture-of-Experts (MoE) architectures (Jacobs et al., 1991; Shazeer et al.,
2017; Dai et al., 2024) route each input to a sparse subset of experts via a gating mechanism. Each
expert is an independent feed-forward network, and the selected outputs of experts are combined
with learned weights. In our work, we adopt this framework but make experts distribution-aware, so
that each specializes in a target interval of the regression space.

Supervised Contrastive Learning. Contrastive learning aims to learn representations by pulling
similar samples closer and pushing dissimilar ones apart (Chen et al., 2020). Supervised contrastive
learning (SCL) (Khosla et al., 2020) extends this paradigm by leveraging label information, so that
samples with the same label are treated as positives. We further adapt this idea to Interval-Aware
SCL (ISCL), where positives are defined as samples within the same target interval and negatives
otherwise. This encourages the learned embeddings to align with expert assignments.

3 METHOD: DISTROUTING

3.1 PRELIMINARIES AND NOTATION

Let {(xi, yi)}Ni=1 denote the training set, where xi ∈ Rd is the input molecule and yi ∈ R is
the corresponding continuous-valued molecular property. We partition the label space Y into B
intervals {I1, . . . , IB}, each defined by boundaries [yb−1, yb], where b ∈ B = {1, . . . , B} indexes
the intervals. Each interval Ib is associated with an interval center cb, which is used for routing
supervision and representation guidance. We assign a dedicated expert to each interval, enabling
specialization across different target ranges. Given an input molecule x, we use a molecular encoder
f(x; θ) to extract a representation z ∈ Rd. Additionally, we extract 200 physicochemical descriptors
from RDKit and map them to Rd via a multilayer perceptron (MLP) to obtain a descriptor embedding
r ∈ Rd, which is used to guide the expert routing process.

3.2 DISTRIBUTION-AWARE ROUTING GUIDED BY PHYSICOCHEMICAL DESCRIPTORS

As illustrated in Figure 2b, we design a hybrid routing mechanism that leverages molecular em-
beddings and physicochemical descriptors to assign molecules to experts in a distribution-aware
manner. Given a molecular embedding z and an RDKit-derived descriptor vector r, each expert,
indexed by its interval b ∈ {1, . . . , B}, is associated with a learnable centroid vector eb ∈ Rd.

We compute the combined similarity between the input features and each expert centroid as:

sb = z⊤eb + r⊤eb. (1)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Routing weights are then computed by applying a softmax over the score vector {sb} and retaining
only the top-k experts:

gb =

{
softmaxb(s), if b ∈ TopK(s,K),

0, otherwise,
(2)

where softmaxb(s) denotes the b-th component of the softmax applied over all scores {s1, . . . , sB}.
The final output is obtained by aggregating the responses from the selected experts:

z′ =

B∑
b=1

gb · FFNb(z), (3)

where FFNb(·) denotes the b-th expert network.

3.3 GATING SUPERVISION WITH SOFT TARGET LABELS

As described in the problem setting, the continuous target space Y is partitioned into B intervals
{I1, I2, . . . , IB}, each with a centroid cb and width wb. This structure enables us to encode coarse-
grained semantics over target values, which we leverage to supervise expert routing.

Given a sample (xi, yi), we compute a soft target vector qi ∈ RB indicating the degree to which the
target yi belongs to each interval. The assignment is based on a normalized Gaussian kernel, scaled
by the width of each interval:

qib =

exp

(
− 1

2

(
yi−cb
wb·σ

)2
)

B∑
j=1

exp

(
− 1

2

(
yi−cj
wj ·σ

)2
) , (4)

where σ is a temperature hyperparameter controlling the smoothness of the soft labels. The pre-
dicted routing distribution pi ∈ RB is computed by applying softmax over the expert scores
si = {si1, . . . , siB}, where sib is the similarity score between sample i and expert b. The gating
loss is then defined as:

Lgate = KL(qi ∥pi). (5)

3.4 INTERVAL-AWARE SUPERVISED CONTRASTIVE LEARNING

interval 1
sample 1

interval 1
sample 2

interval 2
sample 3

anchor
positive negative

Molecular encoder output
Physicochemical descriptors

interval 1
sample 1

interval 1
sample 2

interval 2
sample 3

anchor
positive negative

Figure 3: ISCL mechanism. ISCL constructs
positives within the same interval and negatives
across intervals, applied to both molecular embed-
dings and physicochemical descriptors.

To promote semantic structure and expert spe-
cialization, we propose an interval-aware super-
vised contrastive learning (ISCL) loss. Unlike
standard contrastive learning with discrete la-
bels, ISCL handles continuous regression tar-
gets by grouping molecules into intervals and
assigning soft labels based on target proximity.

While routing assigns molecules to experts by
feature similarity, ISCL complements this by
pulling together samples with similar soft la-
bels and pushing apart dissimilar ones, applied
jointly to molecular embeddings and physico-
chemical descriptors (Figure 3).

Specifically, for each sample xi with target yi, we compute a soft target vector qi ∈ RB using a nor-
malized Gaussian kernel as described in Section A.4.5. Given a minibatch of samples {(xi, yi)}Mi=1,
we extract two representations per sample: the molecular encoder output zi = f(xi; θ) and the cor-
responding RDKit-derived descriptor embedding ri ∈ Rd. ISCL is applied independently to both
views, and the total contrastive loss is:

LISCL = Lmol
ISCL + Lrdkit

ISCL, (6)
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Each component follows a weighted supervised contrastive formulation:

L(·)
ISCL = − 1

|I|
∑
i∈I

1

|P (i)|
∑

j∈P (i)

log
exp (sim(vi, vj)/τ)∑

k ̸=i exp (sim(vi, vk)/τ) · wik
, (7)

where vi is either zi or ri, and the weighting term is defined as:

wik = γ1−cos(qi,qk), (8)

with γ > 1 controlling the penalty strength and where cos(·) denotes cosine similarity. This encour-
ages stronger repulsion between samples from dissimilar target intervals.

3.5 PREDICTION AND OVERALL LOSS

Following expert routing and aggregation, the fused representation is passed through an MLP head
to obtain the final prediction. The overall training objective combines three components:

L = Lreg + Lgate + λ · LISCL, (9)

where Lreg is the mean squared error loss, Lgate is the KL divergence loss supervising expert routing
(Section A.4.5), and LISCL is the interval-aware supervised contrastive loss (Section 3.4). The coef-
ficient λ balances the contrastive objective. A full training procedure is provided in Appendix A.1.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

Datasets. We evaluate DistRouting on five molecular property regression benchmarks from the
Therapeutics Data Commons (TDC) Huang et al. (2021): Caco2 Wang, Lipophilicity AstraZeneca,
PPBR AZ, LD50 Zhu, and QM9. These datasets cover diverse biophysical and pharmacokinetic
properties and exhibit target imbalance (details in Appendix A.2). For the first four datasets, we
adopt standard 5-fold scaffold split of TDC, with each fold divided into 70% training, 10% valida-
tion, and 20% test. For QM9, we use the provided random split and evaluate the HOMO–LUMO
gap.

Backbone Models. We evaluate DistRouting as a generic plug-in module across multiple standard
encoders. We consider five representative backbone models: GAT (Velickovic et al., 2017), Deep-
erGCN (Li et al., 2023), ChemBERTa (Chithrananda et al., 2020), GROVER (Rong et al., 2020),
and UniMol (Zhou et al., 2023), where UniMol is used only for QM9 as it leverages 3D molecular
structures for prediction. Each backbone is compared with its corresponding DistRouting-enhanced
variant. Implementation details of each encoder are provided in Appendix A.3.

Evaluation Process and Details. We evaluate model performance using both mean absolute error
(MAE) and Pearson correlation coefficient (PCC). To further examine robustness under target im-
balance, we report region-wise MAE and PCC on the head and tail intervals, defined as the bottom
and top 20% quantiles of the target distribution. All results are reported with mean and standard
deviation over 5 splits. The target space is partitioned into B = 8 intervals, and for each sample, the
Top-k = 2 most relevant experts are selected via similarity-guided routing. The soft label smoothing
parameter σ in Eq. 4 is set to 0.7. All models are trained using the Adam optimizer with a learn-
ing rate of 1e−4 and a batch size of 128, with the best model selected based on validation MAE.
Additional hyperparameter settings are provided in Appendix A.3.5.

4.2 OVERALL PERFORMANCE

Figure 10 (Appendix A.4.1) shows the validation MAE curves across training epochs, where Dis-
tRouting consistently achieves lower errors. Tables 1 and 9 (Appendix A.4.2) present the test re-
sults in terms of MAE and PCC, comparing each vanilla backbone with its DistRouting-enhanced
counterpart. Across all backbones, incorporating DistRouting leads to consistently better overall
performance, with the best results on Lipophilicity and LD50 achieved by GROVER + DistRouting,
including a substantial reduction on LD50 from 0.684 to 0.539.
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Table 1: MAE (↓) on the four datasets. Bold numbers indicate the best result in each column.

Method Caco2 Lipophilicity PPBR LD50
DeeperGCN 0.366± 0.012 0.528± 0.012 8.355± 0.211 0.643± 0.010
DeeperGCN + DistRouting 0.315± 0.009 0.509± 0.013 7.849± 0.028 0.616± 0.009

GAT 0.383± 0.012 0.607± 0.008 7.940± 0.148 0.651± 0.014
GAT + DistRouting 0.327± 0.011 0.551± 0.010 7.780± 0.154 0.609± 0.026

ChemBERTa 0.352± 0.019 0.568± 0.009 8.069± 0.122 0.651± 0.009
ChemBERTa + DistRouting 0.329± 0.011 0.548± 0.007 7.869± 0.131 0.614± 0.014

GROVER 0.393± 0.008 0.516± 0.031 9.180± 0.340 0.684± 0.046
GROVER + DistRouting 0.358± 0.013 0.450± 0.009 8.188± 0.378 0.539± 0.025

4.3 REGION-WISE PERFORMANCE

Table 2: Region-wise MAE (↓) across all datasets and methods. Best between each pair is bolded.

Dataset Method Head MAE ↓ Body MAE ↓ Tail MAE ↓

Caco2

DeeperGCN 0.359± 0.031 0.376± 0.015 0.354± 0.041
DeeperGCN + DistRouting 0.306± 0.025 0.341± 0.032 0.267± 0.039

GAT 0.524± 0.031 0.298± 0.009 0.350± 0.054
GAT + DistRouting 0.285± 0.039 0.358± 0.041 0.323± 0.030

ChemBERTa 0.403± 0.025 0.332± 0.032 0.313± 0.021
ChemBERTa + DistRouting 0.359± 0.026 0.344± 0.007 0.238± 0.029

GROVER 0.476± 0.076 0.333± 0.044 0.403± 0.039
GROVER + DistRouting 0.366± 0.023 0.375± 0.009 0.304± 0.077

Lipophilicity

DeeperGCN 0.656± 0.029 0.449± 0.012 0.638± 0.037
DeeperGCN + DistRouting 0.597± 0.022 0.445± 0.015 0.614± 0.022

GAT 0.881± 0.035 0.457± 0.013 0.782± 0.047
GAT + DistRouting 0.673± 0.032 0.464± 0.006 0.691± 0.064

ChemBERTa 0.719± 0.017 0.528± 0.015 0.539± 0.016
ChemBERTa + DistRouting 0.711± 0.017 0.463± 0.017 0.639± 0.036

GROVER 0.612± 0.088 0.402± 0.023 0.758± 0.078
GROVER + DistRouting 0.512± 0.038 0.393± 0.013 0.557± 0.043

PPBR

DeeperGCN 19.671± 0.398 6.041± 0.282 3.923± 0.436
DeeperGCN + DistRouting 19.285± 0.425 5.633± 0.095 2.992± 0.232

GAT 18.541± 0.997 5.591± 0.431 4.346± 0.341
GAT + DistRouting 19.142± 1.801 5.722± 0.575 2.515± 0.368

ChemBERTa 20.810± 0.861 5.580± 0.274 2.723± 0.425
ChemBERTa + DistRouting 18.364± 0.913 6.084± 0.307 2.654± 0.601

GROVER 18.666± 0.768 6.934± 0.620 6.401± 0.565
GROVER + DistRouting 17.987± 1.456 6.337± 0.708 3.882± 1.264

LD50

DeeperGCN 0.513± 0.033 0.454± 0.022 1.338± 0.053
DeeperGCN + DistRouting 0.500± 0.019 0.465± 0.024 1.182± 0.062

GAT 0.495± 0.028 0.445± 0.004 1.423± 0.074
GAT + DistRouting 0.471± 0.020 0.438± 0.017 1.258± 0.153

ChemBERTa 0.458± 0.048 0.449± 0.010 1.447± 0.052
ChemBERTa + DistRouting 0.441± 0.029 0.431± 0.013 1.315± 0.069

GROVER 0.673± 0.093 0.405± 0.017 1.530± 0.201
GROVER + DistRouting 0.502± 0.045 0.397± 0.007 1.005± 0.102

Table 2 and Figure 11 (Appendix A.4.3) present MAE performance in the head, body, and tail re-
gions across all datasets, comparing each backbone model with its DistRouting-enhanced version.
Across the four datasets and four backbones, the head and tail regions comprise a total of 32 evalua-
tions, among which DistRouting achieves improvements in 30 cases. In several settings the gains are
particularly pronounced, such as GAT on the head region of Caco2 (0.524→ 0.285) and GROVER
on the tail region of Lipophilicity (0.758→ 0.557).
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The body region remains stable across models, with DistRouting showing modest improvements
or parity. This suggests that substantial gains in the head and tail regions are achieved without
compromising performance in the dense body. Overall, the results highlight DistRouting’s ability to
improve generalization, especially in underrepresented regions where baseline models struggle.

4.4 ABLATION STUDY

Table 3: Ablation study of DistRouting components. Each row corresponds to a variant with specific
modules removed. ✓ indicates the component is used. We report MAE (↓) on four datasets.

Variant MoE Routing RDKit Gate Sup. ISCL Caco2 ↓ PPBR ↓ Lipo ↓ LD50 ↓

Full Model ✓ ✓ ✓ ✓ 0.315 7.849 0.509 0.616
w/o Gating Sup. ✓ ✓ ✗ ✓ 0.343 8.145 0.510 0.632
w/o ISCL ✓ ✓ ✓ ✗ 0.322 7.859 0.523 0.608
w/o RDKit Guidance ✓ ✗ ✓ ✓ 0.340 8.266 0.507 0.637
MoE Routing only ✓ ✗ ✗ ✗ 0.343 8.314 0.530 0.641

(a) Lipo with ISCL (b) Lipo w/o ISCL (c) LD50 with ISCL (d) LD50 w/o ISCL

Figure 4: t-SNE visualization of molecular representations. Molecular embeddings for the
Lipophilicity and LD50 datasets under two settings: with ISCL (a, c) and without ISCL (b, d).
Representations are extracted after the molecular encoder and before expert routing.

Based on the ablation results in Table 3, conducted with DeeperGCN as the backbone, we find that
gating supervision is the most critical component: its removal consistently degrades performance
across all datasets. The impact of ISCL, in contrast, is less consistent. While it brings clear im-
provements on the Lipophilicity dataset, its effect is minimal on others and even slightly detrimental
on LD50. Nevertheless, t-SNE visualizations in Figure 4 suggest that ISCL meaningfully enhances
the structure of the representation space. This observation is further corroborated by the quantitative
alignment metrics reported in Table 10 (Appendix A.4.4). We further examined ISCL by varying
its loss weight (Table 11, Appendix A.4.6). Performance degrades with small weights on LD50 but
recovers as the weight increases, reaching an MAE of 0.605 at λ = 3. This suggests that weak
ISCL signals are insufficient and may conflict with the gating objective. Ablations on auxiliary
supervision show similar trends: removing RDKit guidance causes moderate drops but still outper-
forms the baseline encoder, indicating that the routing mechanism provides useful inductive bias. In
contrast, the MoE-only variant performs the worst, highlighting that expert specialization requires
distribution-aware guidance.

5 DISCUSSION

Table 4: Comparison of imbalance handling methods on the DeeperGCN backbone. DistRouting
achieves the lowest MAE across datasets.

Method Caco2 Lipophilicity PPBR LD50
DeeperGCN 0.366± 0.012 0.528± 0.012 8.355± 0.211 0.643± 0.010
+ DenseWeight 0.383± 0.032 0.577± 0.011 10.418± 0.859 0.691± 0.033
+ FDS 0.365± 0.016 0.605± 0.006 8.955± 0.249 0.700± 0.020
+ LDS 0.409± 0.053 0.553± 0.014 10.161± 0.303 0.691± 0.024
+ DistRouting (ours) 0.315± 0.009 0.509± 0.013 7.849± 0.028 0.616± 0.009

7
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(a) Target distribution (b) t-SNE visualization

Figure 5: Rare-sample analysis on the Lipophilicity dataset. (a) Target distribution with the top
2.5% highlighted. (b) t-SNE visualization of rare-sample embeddings. Under DenseWeight (left),
rare samples show partial clustering but many remain as outliers in the embedding space. In contrast,
DistRouting (right) yields more compact and coherent clusters.

Comparison with Existing Imbalance Regression Methods. We further compare DistRouting
with representative imbalance regression approaches, including DenseWeight (Steininger et al.,
2021), FDS and LDS (Yang et al., 2021), all implemented on the DeeperGCN backbone. As shown
in Table 4, these methods generally degrade performance relative to vanilla DeeperGCN.

We visualize the learned embeddings of rare samples (with target values in the top 2.5%) using
t-SNE. Figure 5 compares DenseWeight and DistRouting. DistRouting forms more compact clus-
ters, providing empirical support for our hypothesis that while reweighting increases the weights
of structurally diverse molecules with similar labels, it does not ensure that these samples share
representations in the model and they may remain isolated, thereby limiting generalization.

Table 5: MAE performance of baseline and larger
MLP models on the LD50 dataset.

Setting MAE

Baseline (2-layer MLP, hidden=512) 0.643± 0.010
2-layer MLP (hidden=2048) 0.649± 0.017
2-layer MLP (hidden=4096) 0.808± 0.003
4-layer MLP (hidden=512) 0.803± 0.002

Parameter analysis. To examine whether
performance gains stem from parameter counts,
we compare the baseline 2-layer MLP with
larger ones by increasing hidden size or depth
on the LD50 dataset. As shown in Table 5,
simply enlarging the MLP fails to improve
MAE and even degrades performance, indicat-
ing that DistRouting’s improvements arise from
its routing mechanism rather than model scale.

Table 6: JS distance (↓) between predicted and
true target distributions.

Method Caco2 PPBR LD50 Lipo

DeeperGCN 0.1530 0.1417 0.1872 0.1508
+ DistRouting 0.1265 0.1233 0.1444 0.1342

Distribution Matching. To quantitatively as-
sess how well each model captures the
overall target distribution, we compute the
Jensen–Shannon (JS) distance between the pre-
dicted and true value distributions on the test
sets (see Appendix A.5 for details). As shown
in Table 6, when implemented on the Deep-
erGCN backbone, DistRouting achieves lower
JS distances than the baseline across all four datasets, indicating better global alignment with the
true label distribution. Figure 6 compares the baseline encoder with its DistRouting-enhanced ver-
sion. The baseline shows a central bias, while DistRouting better captures head and tail regions,
consistent with the lower MAE reported in Table 2.

Gating Behavior Analysis. To assess the effect of gating supervision, Figure 7 shows expert as-
signments across target values on the LD50 dataset. With KL-based supervision (Figure 7a), experts
specialize in distinct regions of the target space, forming a structured partition aligned with inter-
val semantics. Without supervision (Figure 7b), routing becomes disorganized: experts collapse to
overlapping or narrow ranges, and some remain unused.

This comparison reveals that the gating supervision plays a critical role in promoting expert diversity
and enforcing consistent expert-target alignment. Without this loss, the model struggles to utilize
expert capacity effectively. These findings align with the ablation results in Table 3, where removing

8
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Figure 6: Distribution matching between pre-
dicted and true targets across datasets. The plot
compares DistRouting (red), baseline encoder
(green), and the true target distribution (blue).
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Figure 7: Distribution of expert assignments
across target values on the LD50 dataset: (a)
with gating supervision; (b) without gating
supervision.

gating supervision leads to a significant performance drop. Similar trends are observed on other
datasets, as shown in Figure 12 (Appendix A.4.5).
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Figure 8: Effect of number of experts on
MAE for the Lipophilicity dataset.

Effect of Number of Experts. We extended the
ablation study on the Lipophilicity dataset with 2, 4,
6, 8, 10, 12, 16, 20, and 30 experts. Comparable per-
formance is observed for 6–16 experts, while using
only 2 experts or increasing to 20–30 experts leads
to a noticeable MAE increase (Figure 8).

Performance degradation with 2 experts arises from
insufficient specialization: with Top-k = 2, each in-
put aggregates outputs from both experts, weaken-
ing selective routing and diminishing the benefit of
targeted specialization. Excessive experts also harm
performance, likely due to fragmentation and under-
utilization. These results confirm that the effective-
ness of DistRouting stems from targeted specializa-
tion rather than increased model capacity.

Generalization to Large Datasets. To assess scalability and generalization, we evaluated Dis-
tRouting on QM9, a large-scale molecular benchmark. As shown in Table 12 (Appendix A.4.7),
incorporating DistRouting into UniMol reduces MAE from 0.0084 to 0.0066 and raises PCC from
0.9690 to 0.9790, demonstrating clear gains. Region-wise analysis of the HOMO–LUMO gap (Ta-
ble 13) further shows consistent MAE reductions across head, body, and tail regions. These results
indicate that DistRouting captures both frequent and rare targets, underscoring its robustness and
ability to generalize beyond smaller datasets.

6 CONCLUSION

We presented DistRouting, a distribution-guided expert routing framework that addresses molecular
property regression with imbalanced targets through architectural specialization. By assigning sam-
ples to experts for different target ranges and incorporating RDKit-guided routing with an interval-
aware contrastive loss, DistRouting improves performance across diverse encoders, especially in
rare regions.

Limitations. DistRouting currently relies on uniform interval partitioning of the target space. Fu-
ture work could consider property-aware partitioning strategies that incorporate the semantic mean-
ing of molecular properties to better guide expert specialization.

9
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This work develops DistRouting, a distribution-aware expert routing framework for molecular prop-
erty regression under imbalanced targets. Its applications mainly lie in computational chemistry and
drug discovery, which are intended to advance scientific understanding and provide societal benefits.
We do not foresee immediate negative ethical risks. We encourage the responsible use of artificial
intelligence in biomedical and chemical research.
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We have provided detailed descriptions of model architecture, training procedures, and datasets. The
source code, configuration files, and scripts necessary to reproduce our results will be released in a
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A APPENDIX

A.1 PSEUDOCODE FOR DISTROUTING

The following algorithm summarizes the training procedure of DistRouting, which combines
distribution-aware routing, physicochemical priors, and contrastive supervision.

Algorithm 1: DistRouting: Distribution-Aware Expert Routing with Physicochemical Guidance

Input: Training data D = {(xi, yi)}Ni=1;
Molecular encoder f(·; θ); RDKit extractor rdk(·);
RDKit encoder encrdk(·);
Number of experts B; top-k routing k;
Temperature parameters τ , σ; ISCL weight λ

Output: Trained encoder f(·) and expert networks {FFNj}Bj=1

1 Partition target space Y into B intervals {I1, . . . , IB} with centers {c1, . . . , cB} and widths
{w1, . . . , wB};

2 Initialize expert centroids {ej}Bj=1;
3 while not converged do
4 Sample minibatch {(xi, yi)}Mi=1;
5 foreach xi in minibatch do
6 Compute molecular embedding: zi ← f(xi);
7 Compute RDKit descriptors and encode: ri ← encrdk(rdk(xi));
8 foreach expert j = 1 to B do
9 Compute similarity: sij ← sim(zi, ej) + sim(ri, ej);

10 Compute routing weights: αij ← softmaxj(sij);
11 Construct sparse gate: gij ← αij if j ∈ TopK(αi, k) else 0;
12 Expert output: hi ←

∑B
j=1 gij · FFNj(zi);

13 Final prediction: ŷi ← MLP(hi);
14 Compute soft routing label:

wij ←
exp

(
− 1

2

(
yi−cj
wj ·σ

)2
)

B∑
l=1

exp

(
− 1

2

(
yi−cl
wl·σ

)2
)

15 Compute losses:
16 Regression loss: Lreg ← MSE(ŷi, yi);
17 Gating loss: Lgate ← KL(wi ||αi);
18 Contrastive loss: LISCL from Eq. (5);
19 Total loss: L ← Lreg + Lgate + λ · LISCL;
20 Update model parameters via backpropagation;

12
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Table 7: Overview of the datasets.

Dataset #Samples Unit Range (Y) Description
Caco2 906 logPapp [-7.5, -3.6] Caco-2 cell permeability; simulates intestinal absorption.
PPBR 1,000 % [7.8, 100] Plasma protein binding ratio; reflects drug availability in blood.
Lipo 4,200 logD [-1.3, 4.5] Lipophilicity; influences drug absorption and distribution.
LD50 7,385 mg/kg [0.01, 7.1] Median lethal dose; widely used measure of acute toxicity.
QM9 133,885 eV [-14.2, 0.2] HOMO–LUMO gap of small molecules; quantum chemistry dataset.
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Figure 9: Target distributions of the datasets.

A.2 DATASET DETAILS

The four molecular property datasets used in this study vary in task type, scale, and target range, as
summarized in Table 7. Caco2 and PPBR contain fewer than 1,000 samples, while Lipo and LD50
are substantially larger, with over 4,000 and 7,000 compounds respectively. The prediction tasks
cover a diverse set of pharmacokinetic and toxicological endpoints.

Figure 9 illustrates the target distributions of each dataset. All four exhibit varying degrees of im-
balance, with PPBR and LD50 showing long-tailed or skewed patterns, while Caco2 and Lipo have
more compact but unevenly sampled target ranges. These distributional characteristics pose chal-
lenges for regression models, particularly in underrepresented regions of the target space.

A.3 MODEL COMPONENTS AND IMPLEMENTATION DETAILS

We describe the architectural configurations of key modules used in our experiments, including the
molecular encoders (backbones), regressor head, and expert networks within DistRouting.

A.3.1 BACKBONE ARCHITECTURES

We evaluate DistRouting on three types of molecular encoders:

• GAT: A 4-layer Graph Attention Network with hidden size 512, ReLU activation, dropout
rate 0.2, and Jumping Knowledge (JK) via concatenation. No normalization layers are
used.

• DeeperGCN: A 4-layer graph convolutional network based on GENConv blocks. Each
layer uses residual connections, PReLU activation, and batch normalization, with a hidden
size of 512. Global mean pooling is used for readout.

• ChemBERTa: A transformer-based encoder for SMILES strings. We use the pretrained
DeepChem/ChemBERTa-77M-MLM model with 6 transformer layers, 384 hidden di-
mensions, and 12 attention heads. The [CLS] token embedding serves as the molecular
representation.

• GROVER: A graph-transformer pre-trained on large-scale molecular data. We use the
grover base checkpoint.

A.3.2 REGRESSOR HEAD

The output representation from the DistRouting module is passed to a two-layer feedforward regres-
sor with a ReLU activation in between. The regressor maps from the input feature dimension to a
hidden dimension (512 in our experiments), and finally outputs a scalar property prediction.

13
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A.3.3 EXPERT NETWORKS

Each expert is a two-layer feedforward network. The input is first projected to a lower expert-
specific hidden dimension, followed by ReLU activation and a second linear transformation back to
the original size. Experts are initialized with Xavier initialization. Only the top-k experts selected
by the router contribute to each prediction.

A.3.4 EXPERIMENTS COMPUTE RESOURCES

All experiments were conducted on a computing server equipped with an NVIDIA A100 GPU with
80GB memory, running Ubuntu 24.04.2 LTS. Each task was trained on a single GPU.

A.3.5 HYPERPARAMETERS SETTINGS

Table 8: Hyperparameter settings.

Dataset λ γ

Caco2 0.1 4
PPBR 0.1 4
Lipophilicity 1.0 10
LD50 1.0 10

Table 8 summarizes the dataset-specific hyperparameters
used in DistRouting, including the ISCL loss weight λ
(Eq. equation 9) and the repulsion strength parameter
γ (Eq. equation 8), which controls the penalty for dis-
similar sample pairs. These hyperparameters were se-
lected via grid search over λ ∈ {0.1, 1.0} and γ ∈
{2, 4, 10, 20, 50}.

A.4 ADDITIONAL RESULTS

A.4.1 VALIDATION MAE CURVES

Figure 10 illustrates the MAE on the validation set across training epochs. We observe that Dis-
tRouting consistently converges to lower error compared to the vanilla encoders, and in some cases
achieves faster convergence.
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Figure 10: MAE on the validation set over training epochs. Across all four regression tasks,
DistRouting (yellow) reaches lower error compared to the vanilla encoder (green).

A.4.2 OVERALL PERFORMANCE

Table 9 reports PCC across the four datasets. DistRouting consistently improves correlation com-
pared to the vanilla backbones, showing stronger alignment between predictions and targets.

Table 9: PCC (↑) on the four datasets. Bold numbers indicate the best result in each column.

Method Caco2 Lipophilicity PPBR LD50
DeeperGCN 0.788± 0.010 0.810± 0.007 0.552± 0.021 0.568± 0.005
DeeperGCN + DistRouting 0.832± 0.014 0.826± 0.007 0.623± 0.009 0.607± 0.024

GAT 0.794± 0.022 0.767± 0.007 0.618± 0.013 0.540± 0.027
GAT + DistRouting 0.819± 0.015 0.794± 0.004 0.624± 0.013 0.613± 0.042

ChemBERTa 0.778± 0.018 0.797± 0.004 0.527± 0.007 0.545± 0.013
ChemBERTa + DistRouting 0.827± 0.012 0.793± 0.004 0.627± 0.014 0.611± 0.020

GROVER 0.735± 0.012 0.839± 0.012 0.531± 0.032 0.503± 0.070
GROVER + DistRouting 0.792± 0.010 0.870± 0.004 0.600± 0.022 0.690± 0.026
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A.4.3 REGION-WISE MAE COMPARISON ACROSS BACKBONES

Figure 11 compares MAE across head, body, and tail regions for different backbones. DistRouting
yields improvements across most regions and backbones, with particularly notable gains in the head
and tail, while maintaining stable performance in the body region.
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Figure 11: Region-wise MAE across four datasets and three backbone models. Red bars denote
results with DistRouting, while green bars correspond to the baseline models without distribution-
enhanced routing. Note that PPBR values have been scaled down to allow visual comparison.

A.4.4 EMBEDDING–TARGET CORRELATION

We conducted additional analyses to directly assess the alignment between the learned embeddings
and the target values. Specifically, we evaluated:

• Linear R², computed by fitting a linear regressor on the embeddings using 5-fold cross-
validation

• Centered Kernel Alignment (CKA) similarity between the embeddings and target values
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Table 10 reports the results, showing that ISCL substantially improves the correlation between em-
beddings and target values on both datasets.

Table 10: Alignment between embeddings and target values with and without ISCL.

Dataset Metric w/ ISCL w/o ISCL

LD50 Linear R² (5-fold) ↑ 0.7849± 0.0279 0.3894± 0.1696
LD50 CKA Similarity ↑ 0.7029 0.3473
Lipophilicity Linear R² (5-fold) ↑ 0.8810± 0.0167 0.5443± 0.0428
Lipophilicity CKA Similarity ↑ 0.8615 0.5335

A.4.5 GATING SUPERVISION

To better understand how gating behaves under distribution-aware supervision, we visualize the
distribution of expert assignments across target values. Figure 12 shows representative results on
Caco2, PPBR, and Lipophilicity.
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Figure 12: Distribution of expert assignments across target values on the Caco2, PPBR and Lipophi-
cility dataset.

A.4.6 EFFECT OF ISCL LOSS WEIGHT ON PERFORMANCE

Table 11: Validation MAE under differ-
ent ISCL weights λ.

λ Caco2 PPBR Lipo LD50

0.1 0.315 7.849 0.508 0.643
1.0 0.326 8.427 0.509 0.616
2.0 0.345 8.403 0.509 0.624
3.0 0.377 8.267 0.511 0.605

Table 11 presents the impact of varying the ISCL loss
weight λ across four datasets. A smaller weight (λ =
0.1) generally yields the best results on Caco2 and
PPBR, suggesting that a modest contrastive signal is suffi-
cient to enhance representation learning in most settings.
For Lipophilicity, performance remains relatively stable
across different values of λ, indicating low sensitivity to
the ISCL weight. In contrast, LD50 exhibits a different
trend: performance is suboptimal at low weights, which
is discussed in Section 4.4.

A.4.7 QM9 PERFORMANCE

To evaluate scalability, we further tested DistRouting on the large-scale QM9 dataset. Table 12
shows that incorporating DistRouting into UniMol leads to clear overall improvements in both MAE
and PCC. Region-wise analysis on the HOMO–LUMO gap (Table 13) further confirms consistent
gains across head, body, and tail regions.
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Table 12: Performance on QM9. MAE (↓) and PCC (↑) are reported. Bold numbers indicate the
best result.

Method MAE ↓ PCC ↑

UniMol-MLP 0.0084± 0.0000 0.9690± 0.0003
UniMol + DistRouting 0.0066± 0.0001 0.9790± 0.0005

Table 13: Region-wise MAE (↓) on QM9 HOMO–LUMO gap. Best between each pair is bolded.

Method Head MAE ↓ Body MAE ↓ Tail MAE ↓

UniMol-MLP 0.0109± 0.0001 0.0079± 0.0000 0.0074± 0.0001
UniMol-DistRouting 0.0086± 0.0001 0.0062± 0.0001 0.0059± 0.0000

A.5 DISTRIBUTION SIMILARITY EVALUATION VIA JS DISTANCE

To evaluate the similarity between the predicted and true target distributions, we compute the
Jensen–Shannon (JS) distance, which is the square root of the Jensen–Shannon divergence—a sym-
metric and smoothed variant of the Kullback–Leibler (KL) divergence. Given two probability dis-
tributions P and Q over the same discrete support, the JS distance is defined as:

JSD(P ∥ Q) =

√
1

2
DKL(P ∥M) +

1

2
DKL(Q ∥M) where M =

1

2
(P +Q)

Here, KL(·∥·) denotes the Kullback–Leibler divergence. A smaller JS distance indicates greater
similarity between the two distributions, with a value of zero signifying identical distributions.

A.6 USE OF LARGE LANGUAGE MODELS

We acknowledge the use of a large language model (LLM) as a writing assistant in preparing this
manuscript. The LLM was used solely to improve clarity, conciseness, and readability, as well as to
suggest refinements in narrative flow. All scientific ideas, methods, experiments, and analyses are
entirely the work of the authors.
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