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Abstract

Plastic pollution poses an alarming threat to marine ecosystems, necessi-
tating innovative and efficient solutions for its monitoring and management.
Building upon recent advancements in Artificial Intelligence (AI), Machine
Learning (ML), and Deep Learning (DL) |7], we have developed a cutting-
edge, Al-driven model utilizing the YOLOv8 architecture|4]. This model
not only excels in real-time detection of marine plastics but also integrates
advanced tracking and counting capabilities. Tailored for compatibility
with marine robotics and other low-resource applications, our approach
offers a robust solution even in GPU-deprived environments setting it apart
from previous efforts employing the R-CNN architecture|3|. Other recent
studies have employed imaging technologies coupled with deep learning
techniques, such as the deployment of bridge-mounted cameras on rivers
in Jakarta and the use of Unmanned Aerial Systems (UAS) for marine
litter mapping on beach-dune systems. Our model notably surpasses
these methodologies in performance, achieving superior precision, recall,
and overall efficiency metrics. Beyond its detection prowess, our model
represents a paradigm shift in the computational efficiency of monitoring
tools, poised to revolutionize the strategies to combat the plastic pollution
menace in aquatic ecosystems.

Keywords:Plastic pollution in Oceans,Computer Vision,Object
Detection,Object Tracking,Object counting

*https://www.linkedin.com/in/nadiera-mustapha-27230a180/



1 Introduction

The rapid urbanization and population growth has led to a surge in plastic
consumption, with production reaching nearly 400 million tons per year|2]. Plas-
tics, known for their non-biodegradable nature, pose a significant challenge
to ecosystems, especially oceans|l] . The detrimental impacts on marine life
are evident, with sea turtles facing ingestion and potential death, and other
species being entangled in plastic debris [9]. Plastic pollution disrupts marine
ecosystems, damages coral reefs and seafloor habitats, and interferes with the
growth of plankton. Moreover, it burdens industries such as fishing, aquaculture,
and tourism, and affects coastal communities and economies. The global reach
of plastic pollution is extensive, polluting remote areas and causing biodiversity
loss.This work introduces an artificial intelligence-based plastic detection model
enriched with tracking and counting functionality to bolster global efforts in
combatting the ramifications of plastic pollution.The model offers opportunities
for early detection and continuous monitoring, targeted cleanup efforts, identi-
fication of pollution hotspots, and source identification for accountability. By
harnessing the power of artificial intelligence, plastic pollution in our oceans can
be proactively combated in ongoing efforts to protect marine ecosystems and
biodiversity.

2 Methodology and Implementation

2.1 Dataset and Data Preparation:

The dataset, sourced from The Global Oceanographic Data Center (GODAC),
featured images and videos from deep-sea locations like Lake Tahoe, San Francisco
Bay, and Bodega Bay in California. Using Roboflow for image annotation, the
dataset was split into three segments: 1900 images for training, 637 for testing,
and 637 for validation. This 60/20/20 division ensured comprehensive learning,
reliable optimization, and performance evaluation on new data.

2.2 Algorithms, Models, and Techniques:

The YOLO (You Only Look Once)[6] object detection system, renowned for
its impressive blend of speed and accuracy, formed the cornerstone of our
methodology .The YOLOvVS8 architecture, which shares a similar backbone with
YOLOvV5 (|10]) was specifically chosen, owing to its exceptional capacity for
rapid and dependable object identification ([8]).

The YOLOvVS algorithm was fine-tuned on a dataset of oceanic plastic images
and videos. To guarantee both model stability and efficiency, hyperparameters
were tailored and key techniques implemented. A deliberate learning rate of
0.002 was chosen for gradual convergence, while a batch size of 16 struck a
balance between computational efficiency and model stability. Training spanned
over 250 epochs, employing early stopping as a safeguard, halting the process if
validation improvement ceased for 50 consecutive epochs.



The AdamW optimizer was used, complemented by weight decay. To
fine-tune the learning rate, a cosine annealing schedule with a warm-up phase
was employed, which expedited convergence and bolstered generalization. Fur-
thermore, data augmentation techniques such as scaling, translation, rotation,
shear, and flips, enriching the model’s ability to generalize effectively was used.

Beyond object detection, the plastic detection model was further enhanced
with tracking and counting capabilities through the integration of ByteTrack,
a state-of-the-art tracking algorithm ([11]). Notably, ByteTrack demonstrated
exceptional performance, achieving scores of 80.3 MOTA, 77.3 IDF1, and 63.1
HOTA on the MOT17 test set, securing its top position on the leader board
among all trackers.

3 Results and Visuals

3.1 Object Detection Evaluation metrics and validation :

Precision (Box P), recall (Box R), mean Average Precision (mAP) at an IoU
threshold of 0.50, and overall mAP scores were used as evaluation metrics to
determine the models ability to accurately detect and localize images.results are
as follows:

Table 1: Validation Results

Performance Metric | Value
Precision (Box P) 0.838
Recall (Box R) 0.687
mAP at IoU 0.50 0.756
Overall mAP 0.478
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Figure 1: Evaluation Metrics
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Figure 2: Test and Validation Predictions

The above visualizations illustrate the model’s performance on the validation
dataset (see Figure[2b]) and its predictions on the testing dataset (see Figure [2a)).

3.2 Tracking and Counting Functionality

After integrating tracking and counting functionalities and running inference
on the model it achieved an impressive inference speed of 3.5 milliseconds per
image.

Figure [3] showcases the results obtained by running inference of the complete
model on a video.

This footage was captured in
Manta Point,

Figure 3: Video Inference Frame

4 Discussion

A precision (Box P) score of 0.838 (Figure 1.a) indicates a relatively low false
positive rate, which demonstrates the model’s capability to correctly identify



and localize objects. A recall (Box R) score of 0.687 suggests that the model
is effective in detecting a high proportion of actual objects within the images.
An important observation during inference was the model’s ability to distin-
guish between various objects categories, including coral/rocks, fish, and plastic.
Notably, the model consistently identified plastic objects correctly.

By incorporating the BY TETracker algorithm, the plastic detection model
demonstrates robust object tracking and counting functionalities. This integra-
tion empowers the model to accurately monitor the presence and movement of
plastic objects across various visual data sources.From running inference the
complete model has highlighted the seamless integration of advanced tracking
and counting techniques. The fast inference speed allows the model to process
and analyze images rapidly, enabling real-time plastic detection in the ocean.
This capability is crucial for identifying and tracking plastic debris as it drifts or
moves in the water, facilitating immediate response and intervention.

5 Conclusion

The resulting model can analyze videos, accurately detect plastic objects, track
their movement, and even count the instances of plastic crossing a predefined
boundary. Results indicate that the model achieved reasonable accuracy in
detecting instances of plastic waste and shows the model’s effectiveness in plastic
detection and tracking in oceanic environments.This comprehensive solution
enables effective monitoring and management of plastic pollution in aquatic
environments. plastic detection model holds immense promise in addressing
the pressing issue of plastic pollution in our oceans. By effectively detecting,
tracking, and counting plastic objects in aquatic environments, this model enables
proactive monitoring and management strategies.This integration paves the way
for innovative and effective solutions to tackle this pressing global challenge.

6 Future Works

While our model has showcased promising capabilities in detecting marine
plastics, we have identified several areas for potential improvement and further
research:

e Weather Conditions: The model’s performance can be affected by
various weather conditions like fog, rain, or turbulent waters. Exploring
robustness under these conditions will be a priority.

e Dense Plastic Clusters: Our current model excels in detecting dispersed
plastic entities. However, detection in dense clusters poses a challenge.
Optimizing the model for such scenarios will be crucial for comprehensive
marine plastic detection.

These identified areas of enhancement will guide our next steps, ensuring a
more resilient and universally adaptable model.
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