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ABSTRACT

Feedforward neural network (FNN) has been widely used in various fields. How-
ever, its credibility in some risk-sensitive fields remains questionable. The com-
plex causal relations between neurons in the input layer is hard to be observed.
These causal relations affect the credibility of FNN directly or indirectly. We
transform FNN into a causal structure with different causal relations in the input
layer. In order to analyze the causal structure accurately, we categorize it into
three causal sub-structures based on different causal relations between input and
output neurons. With different levels of intervention, we analyze the causal effect
by calculating average treatment effect for each neuron in the input layer. We con-
duct experiments in the field of pediatric ophthalmology. The results demonstrate
the validity of our causal-based analysis method.

1 INTRODUCTION

The black-box nature of deep learning models leads to a lack of authority and credibility in risk-
sensitive fields. Numerous researchers have analyzed the possibility of increasing credibility from
an interpretability perspective. Miller et al (Miller, 2019) argued that interpretability refers to the
ability of a human to understand why the model made this decision over another. Kim et al (Kim
et al., 2016) argued that the interpretability refers to the extent to whether can humans predict a
model’s next decision and Doshi-Velez et al (Doshi-Velez & Kim, 2017) suggested that explaining
to humans in an understandable way could increase credibility. In linear regression (Haufe et al.,
2014), expressions for weights and biases can show the magnitude of each feature’s influence on
the prediction as well as positive and negative correlations. DeepLIFT (Deep Learning Important
FeaTures) (Shrikumar et al., 2017) broke down the contributions of all neurons in a neural network
to each input variable by backpropagation to decompose the prediction of a neural network for a spe-
cific input. Individual Condition Expectation (ICE) (Goldstein et al., 2015) improved credibility by
plotting the relations between individual single characteristic variables and predicted values. Nauta
et al (Nauta et al., 2021) used classification models to find out information about the most impor-
tant visual features to enhance the prototype, thus improving credibility. LIME (Local Interpretable
Model-Agnostic Explanations) (Ribeiro et al., 2016) trained interpretable models to approximate
individual predictions without interpreting the whole model.
Pearl et al (Pearl, 2018) argue that causal interpretability approaches can answer questions related to
interpretability and Looveren et al. (Van Looveren & Klaise, 2021) proposed the use of prototypes to
guide the generation of counterfactuals. Chattopadhyay et al (Chattopadhyay et al., 2019) proposed
an abstraction approach for neural networks. In this paper, we introduce a causal-based analysis
method to analyze the credibility of feedforward neural network (FNN) decision reasoning. We
focus on the causal relations between neurons in the input and output layers and establish a causal
structure to describe the complex causal relations therein. In applications of various fields, there
may be causal relations between input neurons that people are not aware of, which directly leads to
biased output results and affect the credibility and authority of neural network decisions. We divide
the causal structure into three sub-structures based on the possible causal characteristics of the input
layer neurons. For different sub-structures, we propose different causal analysis methods and assess
the credibility of neural network from the causal perspective of the whole process.

Contributions. The contributions of our work are as follows:
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● We present a full-flow analysis of the credibility of feedforward neural networks from a causal
perspective.
●We unify the relations between neurons in the input and output layers into three sub-structures and
do causal analysis for each of them.

2 PRELIMINARIES

D-separation(Directional Separation): We use D-separation (Hayduk et al., 2003) to judge condi-
tional independence in a complex causal structure. A path in the causal structure consists of a series
of nodes, and there exists a directed edge between neighboring nodes, which points to the next node
in the sequence. A path p will be blocked by a set of nodes Z if and only if:

(1) p contains a chain junction A→ B → C or a fork junction A← B → C and node B is in the
set of nodes Z.

(2) p contains collision junction A → B ← C and neither collision node B nor its children
nodes are in Z.
Confounder: A common confounder is the co-causation of the intervened variable and the outcome
variable.
Backdoor path: Backdoor paths are defined as all paths between X and Y that begin with an arrow
pointing to X. The existence of such paths may lead to erroneous inferences of causality. Blocking
the backdoor paths realizes the deconfounding of X and Y.
Backdoor criterion: In a directed acyclic graph, given an ordered pair (X,Y), a set of variables Z
is considered to satisfy the backdoor criterion (Bareinboim & Pearl, 2016) for X and Y when the
following two conditions are satisfied:

(1) Z blocks all backdoor paths from X to Y, or Z d-separate all backdoor paths from X to Y.
(2) Z does not contain any descendant nodes of X

On the basis of the backdoor criterion, we are supposed to eliminate confounder. If the variable Z
satisfies the backdoor criterion for X and Y, then the causal effect of X on Y can be calculated by
Eq.1.

E(Y ∣do(X = 1)) −E(Y ∣do(X = 0)) = EZE(Y ∣X = 1, Z) −EZE(Y ∣X = 0, Z) (1)

3 FNN TO CAUSAL SUB-STRUCTURES

In practice, there will be causal relations between input neurons that humans can not observe. In
order to analyze the credibility of FNN more accurately, we consider complex causal relations be-
tween input neurons. In FNN, only the input and output layers can be explicitly observed, while the
hidden layers cannot be effectively observed. To simplify our causal structure, we delete the hidden
layers because we focus more on input and output layer neurons. We marked neurons with causal
relationships between input layers in green, while independent neurons remained in blue in Fig(b)
and (c). Fig.1(c) shows the causal structure we established.

For a feedforward neural network FNN(l1, l2, ..., ln) with n layers, there is a corresponding
causal structure CS([l1, l2, ..., ln], [f

∗

1 , f2, ..., fn]), where li denotes the set of neurons in layer i,
l1 denotes the input layer, and ln denotes the output layer. Corresponding to each li, fi denotes
the set of causal functions of neurons in layer i − 1 to neurons in layer i, and f∗1 denotes the set
of causal functions consisting of causal relations among neurons in input layer. After deleting the
hidden layer, we have the following causal structure, where f∗ denotes the set of causal functions
consisting of causal relations among neurons in input layer and f ′ denotes the set of causal functions
of neurons in input layer to neurons in output layer as shown in Fig1(c).

CS′([l1, ln], [f
∗, f ′]) (2)

In order to discover the causal relations between input neurons, we use the Peter-Clark(PC) algo-
rithm (Spirtes et al., 2000) based on Degenerate Gaussian(DG) (Andrews et al., 2019), where DG is
a method to test independence between neurons. The main flow of the causal discovery algorithm is
as follows:

(1) Create a completed undirected graph consisting of all input layer neurons and test the inde-
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Figure 1: FNN to Causal structure

pendence among different neurons.
(1) Use D-separation to determine the direction of edges in the graph.

Further we categorized the causal structure into three different sub-structures based on the different
causal relations we discovered: independent sub-structure, mediate sub-structure and confounding
sub-structure. In independent sub-structure, neurons have no causal relations with other neurons.
In mediate sub-structure, neuron l1a has a causal relation with neuron l1b, neuron l1b becomes a
mediator between neurons l1a and lnc. In confounding sub-structure, neuron l1b is the co-causation
of the intervened neuron l1a and the outcome neuron lnc, so neuron l1b is a confounder between
neurons l1a and lnc. For different sub-structures, we propose different methods of causal analysis,
which will be explained in detail in section 4.
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(c) Confounding sub-structure

Figure 2: Three different sub-structures

4 CAUSAL ANALYSIS

4.1 INDEPENDENT SUB-STRUCTURE

We performed a causal analysis by imposing an intervention and assessing the causal effect of each
input layer neuron on the output layer neurons. Causal paths refers to all the directed paths from the
start neuron to the end neuron in the causal sub-structure. Based on all the identified causal paths,
we calculate each average causal effect(ATE) of three sub-structures. For neurons in independent
sub-structure, which have no causal relations with other neurons, we propose the following ATE
calculation:

ATEy
do(l1i=α)

= E[y∣do(l1i = α)] − baselinel1i (3)

We define ATEy
do(l1i=α)

as the causal effect of input neuron xi to output neuron y. When the domain

is continuous, the gradent ∂E[y∣do(l1i=α)]
∂l1i

is sometimes used to approximate the average causal effect
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ATE. However, the gradient is subject to sensitivities that can cause the causal effect to be interfered
with by other input layer neurons. In Eq.3, the ideal baseline is points on the decision boundary
of the neural network at which predictions are neutral. However, Kindermans et al (Kindermans
et al., 2019) showed that when a reference baseline is fixed to a specific value (e.g. zero vector), the
method is not affine invariant. Thus the ATE of l1i on y can be written as the baseline value of l1i as
baselinel1i = El1i[Ey[y∣do(l1i = α)]].
Consider an output neuron y in the simplified CS′([l1, ln], [f

∗, f ′]). This causal function can be
written as y = f

′

y(l11, l12, ..., l1k), where l1i is neuron i in the input layer and k is the number of
input neurons. If a do(l1i = α) operation is imposed on the network, the causal function is given
by f

′

y∣do(l1i=α)
(l11, ..., l1(i−1), α, l1(i+1), ..., l1k). For brevity, remove the do(l1i = α) subscript and

simply refer to it as f
′

y .
Let µj = E[l1j ∣do(l1i = α)]∀l1j ∈ l1, µ = [µ1, µ2, ..., µk]

T is a column vector. We assume f
′

y
is a smooth causal function, the second-order Taylor’s expansion of the causal function around the
vector µ = [µ1, µ2, ..., µk]

T is given by

f
′

y(l1) ≈ f
′

y(µ) + ∇
T f

′

y(u)(l1 − µ) +
1

2
(l1 − µ)

T
∇

2f
′

y(µ)(l1 − µ) (4)

Taking expectation on both sides:

E[f
′

y(l1)] ≈ f
′

y(µ) +
1

2
Tr(∇2f

′

y(µ))E[(l1 − µ)(l1 − µ)
T
] (5)

Since E[l1∣l1i = α] = µ, the first-order term ∇T f
′

y(u)(l1 − µ) disappears. It is now only necessary
to calculate the vector µ and E[(l1 − µ)(l1 − µ)

T
∣do(l1i = α)] to calculate Eq.8 (Chattopadhyay

et al., 2019).
We propose Algorithm 1 to give causal analysis of input layer neurons on output layer neurons in
independent sub-structure. In the interval from lowi to highi of intervention α, we give the value
to α num times uniformly. Cov denotes the covariance matrix. Based on the causal function f, we
input neuron x in input layer, neuron y in output layer and vector µ. The output is an array of the
causal effect corresponding to different α.

Algorithm 1 ATE on independent sub-structure
Input: y, l1i, [lowi, highi

], num, µ, Cov, f()
Output: e[]

1: Cov[l1i][∶] ∶= 0;Cov[∶][l1i] ∶= 0
2: intervention expection ∶= [];α = lowi

3: while α ⩽ highi do
4: µ[i] = α
5: intervention expection.append(f(µ) + 1

2
trace(matmul(∇2f(µ),Cov)))

6: α = α + highi
−lowi

num
7: add E[y∣do(l1i = α)] to array e[]
8: end while
9: return e[]

4.2 MEDIATE SUB-STRUCTURE

Because of the presence of mediator in mediate sub-structure, we can not directly calculate the causal
effect using Algorithm 1. Consider an output neuron lnc in the simplified CS′([l1, ln], [f

∗, f ′]) as
shown in Fig.3(b). The intervened input layer neuron is assumed to be l1a and there is no confounder
between l1a and ln1 . It is necessary to identify all causal paths between l1a and lnc. In Fig.3(b),
there are two causal paths of l1a to lnc , denoted as P1 = l1a → lnc and P2 = l1a → l1b → lnc. The
P2 path is a chain junction, where l1b neuron can be considered as a mediator. After intervening on
neuron l1a, the distribution of neuron l1b in the input layer is also affected due to the presence of the
l1a → l1b path. Similarly, this effect is reflected in the l1b → lnc path. Thus, the total causal effect
of l1a on lnc should be the sum of the causal effect calculated on these two causal paths. When
intervening on l1a, the value of l1b changes accordingly because of the causal relation between l1a
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and l1b. l1a’s average causal effect on l1b is calculated as in Eq.6.

ATE = E[l1b∣do(l1a = xi)] −E[l1b∣l1a] (6)

In addition, we conduct three validation experiments between neurons l1a and l1b in order to assess
the reliability of ATE and define the error rate as the Eq.7.

(1) Bootstrap Validation (BV): The estimated causal effect should not change significantly
when replacing a given dataset with a sample from the same dataset.

(2) Add Random Common Cause (ARCC): The algorithm adds random variables to the data
set as confounders to determine the causal effect. The correct causal effect should not change much
with the addition of random confounders. Therefore, the better the algorithm works, the smaller the
difference between the new causal effect estimate and the original estimate.

(3) Data Subsets Validation (DSV): The algorithm randomly selects a subset of the original
data as the new dataset, removes some of the data and performs causal effect estimation. If the
assumptions are correct, the causal effect will not change much.

ERRBV /ARCC/DSV = ∣
NewEffect −EstimatedEffect

EstimatedEffect
∣ (7)

After calculating the average causal effect between l1a and l1b, µ1b as the expectation of l1b after
intervention l1a can be obtained. We still use Eq.5 after modify the vector µ and covariance matrix
Cov to calculate ATE between l1a and lnc.

4.3 CONFOUNDING SUB-STRUCTURE

In real life, confounders are often interspersed between causal relations. Consider a common con-
founding sub-structure, as shown in Fig.3(c). The causal path from neuron l1a to neuron lnc is only
P1 = l1a → lnc. Since l1b also points to lnc, the intervention on l1a will be affected by l1b so that bias
appears on l1a. Neural l1b is a confounder that prevent us from using the causal effect calculations
in Eq.5. The calculation of ATE due to the presence of confounder will be a two-step process:

(1) Find all the backdoor paths from the causal structure.
(2) Identify covariates needed to block backdoor paths based on backdoor criterion
(3) Give causal analysis of the covariates identified in the second step along with neurons of

input layer and output layer in the confounding sub-structure.
We adopt the Domain Adaptive Meta-Learning algorithm (Battocchi et al., 2019) for the third step.
We use propensity score to adjust the covariate Z, which is denoted by e(z) as shown in Eq.10. The
propensity measures the propensity of receiving the intervention in a given condition.

e(z) = P [X = 1∣Z = z] (8)

We calculate the causal effect of confounding sub-structure as follows:
(1) Defining g(z) as an estimate of the propensity score e(z)

g(z) = ê(z) (9)

(2) Define the resultant functions whose interventions are 0 and 1: µ0(x) = E[Y (0)∣X = x]
and µ1(x) = E[Y (1)∣X = x]. Therefore, the algorithm combines the propensity score to estimate
both outcomes, defining the estimate:

µ̂0 =M1(Y
0
∼X0,weight =

g(X0)

1 − g(X0)
) (10)

µ̂1 =M2(Y
1
∼X1,weight =

g(X1)

1 − g(X1)
) (11)

where M denotes the machine learning model, M(Y ∼ X) denotes the estimation of E[Y ∣X = x],
µ̂0 and µ̂1 denote their corresponding prediction results.

(3) Calculate causal effect for the intervention and control groups for two steps. First, causal
effect is calculated for individuals in the intervention group using the predictive model for the control
group to estimate their causal effect. Second, individuals in the control group are estimated using
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the predictive model for the intervention group and their causal effect is calculated. As shown in
Eq.12 and Eq.13.

D̂1
i = Y

1
i − µ̂0(X

1
i ) (12)

D̂0
i = µ̂1(X

0
i ) − Y

0
i (13)

where Y 1
i , Y 0

i denote the outcomes of the intervention and control groups, respectively, and X1
i , X0

i
are the corresponding eigenvectors, also called covariates. This step involves calculating the causal
effect for the control and intervention groups separately to better address the imbalance between
these two groups. By doing this, the causal effect can be estimated more accurately.

(4) Calculate the final causal effect. The outcome is estimated by the prediction model to obtain
the causal effect estimate. The formula is defined as follows:

τ(x) = E[D̂∣X = x] (14)

τ̂ =M3(D̂
0
∪ D̂1

∼X0
∪X1

) (15)

Where D̂0
∪ D̂1 denotes the dataset joining of the causal effect obtained for the intervention and

control groups. X0
∪ X1 denotes the dataset joining for the covariate. M(D̂ ∼ X) denotes the

estimation of E[D̂∣X = x]. Taken together, the final causal effect estimate τ̂ is obtained. We also
conduct three validation experiments between neurons l1a and lnc.

5 EXPERIMENTS

In order to analyze the credibility of FNN decision reasoning, we construct a FNN from a medical
problem and calculate ATE based on causal relations. The medical field has a high demand for
credibility. Therefore, our experiments aim to verify the causal analysis method proposed in this
paper, which analyze the credibility of FNN in practical problems in the medical field. We conduct
experiments using a pediatric ophthalmology dataset from a city X in China, which is based on
annual follow-up surveys from 2011 to 2017, covering a variety of aspects, including individual
activities, parental genetics, diet and so on. We first conduct causal discovery experiment of input
layer neurons based on our causal structure. Based on the results of the causal discovery experiment,
we conduct causal analysis experiment of three different sub-structures, while we add validation
experiments on the second and third sub-structure to assess the reliability of causal effect estimates.
We selected 16 core variables as input neurons, whose names, meanings, types and ranges are listed
in the Appendix.

5.1 CAUSAL DISCOVERY OF INPUT LAYER

To discover causal relations between neurons in the input layer, we conduct the causal discovery
experiment. Our experiment performs causal discovery based on a PC algorithm with Degenerate
Gaussian for the obtained 16 variables of the pediatric myopia dataset. We use the TETRAD
(Ramsey et al., 2018) library in constructing the causal graph. The final causal graph constructed
by the experiment is shown in Fig.4. The experiment finds causal relations among a total of 10
variables out of 16, constructing a total of 15 edges. We discover DAI, GENDER, JTR, YTR, K1,
and K2 affect both AL and RA, HEIGHT and REDM only affect AL, and AL affects RA.

DAI GENDER JTR HEIGHT REDM YTR K1 K2

AL

RA

Figure 3: Causal discovery of pediatric ophthalmology dataset
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5.2 CAUSAL ANALYSIS OF INDEPENDENT SUB-STRUCTURE

Based on the causal discovery experiment in the previous section, we summarize and generalize
three different sub-structures. In this section we conduct a causal analysis experiment on indepen-
dent sub-structures. For PULSE, the experiment results are shown in Fig.5, other results are shown
in the Appendix. According to Fig.5, as the intervention value increases, PULSE tends to increase
on output neuron labeled No, while PULSE tends to decrease on output neuron labeled Yes. Sev-
eral studies have suggested that high pulse counts may be negatively associated with myopia (SHIH
et al., 1991). That is, FNN’s reasoning on PULSE is credible.

Figure 4: Causal analysis results of PULSE

5.3 CAUSAL ANALYSIS OF MEDIATE SUB-STRUCTURE

We use the method mentioned in Section 4.2 to assess the causal effect of the intervened neuron on
the mediator. The final causal effect diagram is shown in Fig.6, where positive causal effects are
labeled as solid lines and negative causal effects are labeled as dashed lines. The numbers on the
arrows in the figure are the values of the causal effect between two neurons. The results of three
validation experiments between neurons l1a and l1b are shown in Table 1. The error rates obtained
in three validation experiments are less than 9%, and there is no situation in which the error rates of
all three validation experiments are higher than 1%. This indicates that the causal effect estimates
obtained are reliable.
After obtaining reliable results for the assessment of causal effects between variables, we conduct the
causal analysis experiment. We only list the experiment results for HEIGHT as shown in Fig.7, and
other results are shown in the Appendix. A study published in 2016 in the journal PLoS One found
that taller people were more likely to be myopic among more than 60,000 respondents from several
European countries (Hamade et al., 2016). Therefore, it can be concluded that FNN’s reasoning on
HEIGHT is credible.

DAI

GENDER JTR HEIGHT REDM YTR K1

K2AL

RA

-0.3778 -0.2639 0.0651 0.0086 -0.5549 -0.2182

-0.0778 0.1572 0.2192 -0.0103

-0.0813

0.1572

0.0018-0.032

-0.0341

Figure 5: Causal effect of the pediatric ophthalmology dataset

5.4 CAUSAL ANALYSIS OF CONFOUNDING SUB-STRUCTURE

For confounding sub-structure, we adopt the Domain Adaptive Meta-Learning algorithm, but the
meta-learning model requires the inputs to be discrete variables. We use equal-width discretization
to discretize AL and RA and assess the average causal effect values between the discrete values as
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Figure 6: Causal analysis results of HEIGHT

Table 1: Validation experiments for variables with causal relations

INTERVENTION RESULT BV% ARCC% DSV%

DAI AL 0.6291 0.0297 1.2914
DAI RA 6.2595 0.0275 0.2702

GENDER AL 0.9775 0.0130 1.6287
GENDER RA 1.1297 0.0192 1.1078

JTR AL 2.0231 0.0037 6.7741
JTR RA 6.8549 0.0030 2.8822

HEIGHT AL 0.9340 0.0096 0.9139
REDM AL 1.1528 0.0542 1.2745
YTR AL 2.6925 0.0013 1.0469
YTR RA 2.5916 0.0003 1.1852
K1 AL 0.5381 0.0026 0.0575
K1 RA 1.3375 0.0214 2.2884
K2 AL 7.6269 0.0109 8.6001
K2 RA 3.2185 0.1668 0.981
AL RA 3.4753 0.0234 3.4161

shown in Fig.8. The results of three validation experiments between input layer neurons AL, RA
and output layer neurons No, Yes are shown in Table 2.

Figure 7: Causal analysis results of AL and RA
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Table 2: Validation experiments for AL, RA, No and Yes

INTERVENTION RESULT BV% ARCC% DSV%

AL No 21.46 4.48 32.03
AL Yes 22.86 6.45 34.00
RA No 1.11 4.48 7.54
RA Yes 1.01 4.47 3.35

5.5 ABLATION EXPERIMENTS

To demonstrate the effectiveness of our causal analysis method. We also conducted ablation ex-
periments. We removed the causal relationship between input layer neurons in section 3, restoring
independence between each neuron. We conducted another causal analysis on each neuron in Fig.5
based on the method in Section 4.1. Due to space limitations, we have only listed the experiment
results of HEIGHT and K1, while we have included the experimental results of other input layer neu-
rons in Appendix C. From the experiment results, it can be seen that the curve becomes smoother
without considering the complex causal relationships between input layer neurons. The credibility
analysis of neural network will become more difficult.

Figure 8: Ablation experiment results of HEIGHT and K1

6 CONCLUSION

In this paper, we propose a credibility analysis method for FNN from a causal perspective. We
transform FNN into three different causal sub-structures to calculate its causal effect. We conduct
full-flow experiments on different sub-structures from the discovery of causal relations to the cal-
culation of causal effect. At the same time, we conduct validation experiments on different causal
effects and prove their accuracy. The results demonstrate the validity of our method of causal-based
analysis on FNN. Our work provides a new idea for the application and research of deep learning in
risk-sensitive fields.
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A VARIABLES OF THE PEDIATRIC OPHTHALMOLOGY DATASET

Table 3: Variables of the pediatric ophthalmology dataset

VARIABLE VARIABLE MEANING DATA TYPE DATA RANGE

RA Post-dilated refraction continuous variable -5.4-8.7
AL eye shaft length continuous variable 20-34
JG Total proximity workload continuous variable 0-102

YW Amount of long-distance outdoor activity continuous variable 0-57
JTR Right eye accommodation at close range continuous variable -5.1-2.2
YTR Right eye accommodation at far range continuous variable -6.6-4.4

HEIGHT height continuous variable 97-143
PULSE pulse rate continuous variable 52-140

GENDER gender binary variable 1,2
COLA Frequency of carbonated beverages discrete variable 1-5
EGG Frequency of eggs discrete variable 1-4

REDM Frequency of red meat discrete variable 1-5
WHIM Frequency of white meat discrete variable 1-5

DAI Number of parents wearing glasses discrete variable 0-2
K1 corneal curvature in both eyes continuous variable 38-71
K2 corneal curvature in both eyes continuous variable 38-183

B CAUSAL ANALYSIS RESULTS OF OTHER VARIABLES

Figure 9: Causal analysis results of YW

Figure 10: Causal analysis results of JTR
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Figure 11: Causal analysis results of K1

Figure 12: Causal analysis results of K2

Figure 13: Causal analysis results of REDM

Figure 14: Causal analysis results of GENDER
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Figure 15: Causal analysis results of DAI

Figure 16: Causal analysis results of YTR
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C ABLATION EXPERIMENT RESULTS OF OTHER VARIABLES

Figure 17: Ablation experiment results of AL

Figure 18: Ablation experiment results of DAI

Figure 19: Ablation experiment results of GENDER
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Figure 20: Ablation experiment results of JTR

Figure 21: Ablation experiment results of K2

Figure 22: Ablation experiment results of RA

Figure 23: Ablation experiment results of REDM
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Figure 24: Ablation experiment results of YTR
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