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Abstract

Fine-tuning continuous prompts for target001
tasks has recently emerged as a compact alter-002
native to full model fine-tuning. Motivated by003
these promising results, we investigate the fea-004
sibility of extracting a discrete (textual) inter-005
pretation of continuous prompts that is faithful006
to the problem they solve. In practice, we ob-007
serve a “wayward” behavior between the task008
solved by continuous prompts and the nearest009
neighbor discrete projections of these prompts:010
One can find continuous prompts that solve a011
task while being projected to an arbitrary text012
(e.g., definition of a different or even a contra-013
dictory task) and simultaneously being within014
a very small (2%) margin of the best contin-015
uous prompt of the same size for the task.016
We provide intuitions behind this odd and sur-017
prising behavior, as well as extensive empir-018
ical analyses quantifying the effect of design019
choices. For instance, larger models exhibit020
higher waywardness, i.e, we can find prompts021
that more closely map to any arbitrary text022
with a smaller drop in accuracy. These find-023
ings have important implications relating to024
the difficulty of faithfully interpreting contin-025
uous prompts and their generalization across026
models and tasks, providing guidance for fu-027
ture progress in prompting language models.028

1 Introduction029

Recent work has shown the surprising power of030

continuous prompts to language models (LMs) for031

controlled generation and for solving a wide range032

of tasks (Li and Liang, 2021; Lester et al., 2021;033

Min et al., 2021). Despite these successes, the034

resulting continuous prompts are not easy to inter-035

pret (Shin et al., 2020). Is it possible to come up036

with meaningful discrete (textual) interpretations037

of continuous prompts, especially ones that provide038

a faithful explanation of the prompt’s behavior?039

Towards addressing this question, we propose040

and investigate the Prompt Waywardness hypoth-041

esis (§3.2), a surprising disconnect between the042
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Figure 1: We show that one can find accurate contin-
uous prompts (that do well on a given task, e.g., sen-
timent classification here) such that they can be pro-
jected to any arbitrary text, such as the definition of
a different task (e.g., generating a question) or even an
irrelevant statement (e.g., a piece of code) — suggest-
ing a disconnect between the outcome of continuous
prompts and their discrete interpretations.

intended behavior of continuous prompts and their 043

nearest-neighbor discrete (language) representa- 044

tions.1 In particular, we show that one can find con- 045

tinuous prompts that perform a desired task while, 046

at the same time, project to any given target text. 047

This indicates that there is little correspondence 048

between continuous prompts and their discrete in- 049

terpretation. For instance, a continuous prompt that 050

effectively solves the sentiment classification task 051

in Fig.1, when projected onto discrete space, might 052

appear as the definition of a different task (“flip the 053

sentiment”). 054

We conduct extensive analysis showing Way- 055

wardness on five classification datasets (§4). Empir- 056

ically, we find the existence of wayward prompts — 057

prompts that solve each of these tasks while having 058

arbitrary natural language projections. To study a 059

variety of projected text, we experiment with 60+ 060

sentences, either a discrete prompt from another 061

task (from Mishra et al. 2021b) or a random sen- 062

1Nearest-neighbor projection via dot product has been
previously used to study properties of continuous word em-
beddings (Mikolov et al., 2013; Hashimoto et al., 2016) and is
commonly performed in the final layer of modern generative
LMs (Radford et al., 2019; Raffel et al., 2020).
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tence from a large text corpus. We observe that it is063

possible to find prompts that project to a given dis-064

crete prompt (token overlap 94% F1) while scoring065

within 2% accuracy of the best continuous prompts-066

based solution for the task. Further analysis shows067

that the effect of Waywardness gets worse for larger068

models and longer prompts. We explain this sur-069

prising behavior by relating it to several structural070

properties of large language models (§5).071

We discuss several social and research implica-072

tions of prompt waywardness, to help guide future073

research on prompt based models (§6). First and074

foremost, despite many promising attributes of con-075

tinuous prompts, interpreting them is non-trivial076

and will require further research. In fact, careless077

interpretation of continuous prompts can result in078

vulnerabilities against malicious attacks concealed079

under the guise of benign discrete representation.080

Further, the loose correspondence between contin-081

uous and discrete prompts poses a challenge for fu-082

ture research in differentiable interpretable-prompt083

optimization – optimization in search of human084

readable discrete prompts through the continuous085

space. Our work shows that continuous and dis-086

crete prompts, despite their seeming similarity, are087

quite different and the results from one may not088

always transfer to the other. We hope these findings089

will motivate further innovations in the prompting090

literature for NLP models.091

2 Related Work092

Continuous prompts. There is a line of work fo-093

cused on tuning continuous prompts (Li and Liang,094

2021; Lester et al., 2021; Zhong et al., 2021; Qin095

and Eisner, 2021; Zhou et al., 2021). A recurring096

theme in this line of work is the strength of con-097

tinuous prompt in results in strong, yet compact098

models—compared to conventional architecture099

fine-tuning approaches. Motivated by the success100

of continuous prompt tuning, this paper investi-101

gates the feasibility of interpreting a learned contin-102

uous prompt and its connection to discrete prompts.103

Discrete prompts. The release of GPT-3 (Brown104

et al., 2020) sparked a lot of excitement about the105

emergent ability of LMs in following discrete nat-106

ural language prompts. Consequently, countless107

follow-up studies have used manually-designed dis-108

crete prompts for probing LMs (Petroni et al., 2019;109

Jiang et al., 2020), improving LMs few-shot abil-110

ity (Schick and Schütze, 2021; Gao et al., 2021;111

Le Scao and Rush, 2021), and their zero-shot abil-112

ity as well as transferability (Mishra et al., 2021a; 113

Reynolds and McDonell, 2021). While discrete 114

prompts have clear advantages, in addition to being 115

human-readable and thus easily interpretable, we 116

do not have efficient and algorithmic ways of recon- 117

structing them. For example, Shin et al. (2020)’s 118

algorithm discovers discrete prompts, yet the re- 119

sults are not human readable. Prior work also finds 120

that model performance is highly sensitive to small 121

changes in wordings (Mishra et al., 2021a) and that 122

optimization over the discrete prompt space is non- 123

trivial and often highly unstable. Our findings here 124

about the disconnect between continuous prompts 125

and their discrete interpretation provides another 126

perspective on the difficulty of discovering discrete 127

prompts via continuous optimization algorithms 128

that (directly or indirectly) leverage the continuous 129

space (more discussion in §6). 130

3 Prompt Waywardness 131

3.1 Preliminaries: Setup and Terminology 132

We begin with some notation and the setup of our 133

study, starting with the space of discrete and contin- 134

uous prompts (Fig.2). Let pd ∈ {0, 1}L×V denote 135

a discrete prompt represented as an L-length se- 136

quence of one-hot vectors over a lexicon of size V 137

(corners of a hyper-cube). Similarly, let pc ∈ RL×d 138

denote a continuous prompt, represented as a L- 139

length sequence of d-dimensional real vectors. 140

Projection operators. We define operators that 141

project these two spaces to one another. Define the 142

c-projection as one that maps discrete inputs to a 143

continuous space by multiplying with a fixed (often 144

pre-trained) embedding matrix2 E ∈ RV×d: 145

c-proj(pd) = pdE ∈ RL×d. (1) 146

The d-projection maps the continuous inputs to 147

nearest neighbor discrete elements, where for each 148

position l (1 ≤ l ≤ L), one of the possible (and per- 149

haps most straightforward) methods for interpret- 150

ing a continuous prompt is defined as a projection 151

onto nearest neighbor representations (Mikolov 152

et al., 2013; Hashimoto et al., 2016): 153

d-proj(pc) = [δ1 · · · δl · · · δL] ∈ {0, 1}L×V , (2) 154

2In our experiments we use the embedding matrix of the
GPT2 family (Radford et al., 2019) which is used for both
mapping input text to their embeddings as well as generating
text in the output layer.
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Figure 2: The general problem setup: Similar to Lester
et al. (2021)’s setup, each prompt (usually a continuous
one) is appended to the given input and fed to a frozen
language model.

where δl is a one-hot vector corresponding to the155

word with the closest (highest dot product) embed-156

ding to the l-th position of continuous prompt pc.157

These projections are used in the first and last158

layer of virtually all modern LMs, such as GPT2.159

Solving tasks with continuous prompts. Con-160

sider any machine learning model M (typically a161

pre-trained model) that takes textual input x and162

produces output y. Normally, the parameters of163

M are learned so as to optimize behavior on a164

task with a dataset D = {(x, y)} of input/output165

pairs. In prompt tuning (Lester et al., 2021), one166

freezes the parameters of M and instead optimizes167

for a prompt p that, when fed in conjunction with168

x, makes M produce the desired output y. Thus,169

p represents the only learnable parameters in this170

method. When p is a discrete prompt with k to-171

kens, it can be simply concatenated with x, denoted172

p+ x. In our study, p will be a continuous prompt173

(of length equal to the embedding of k tokens). We174

will concatenate it with the embedding of the input175

x. For simplicity and with some abuse of nota-176

tion, we use p+ x to denote concatenation in this177

continuous case as well.178

One can quantify the amount of loss incurred179

when using a continuous prompt p as follows:180

`(p;D) = Ex,y∼D [loss(M(p+ x), y)] , (3)181

Minimizing this loss function (empirical risk mini-182

mization) over p recovers a minimum risk continu-183

ous prompt for this dataset:184

p∗c = arg min
pc∈RL×d

`(pc;Dtrain). (4)185

Given this prompt, its generalization to the test data186

can be measured in terms of the loss incurred on187

the test set: `(p∗c ;Dtest). 188

3.2 The Waywardness Hypothesis 189

How should one interpret the resultant continu- 190

ous prompt p̃c? Empirically, one can easily ver- 191

ify that such continuous prompts are not unique 192

(e.g., random initializations lead to different out- 193

comes). Additionally, the resultant prompts get 194

projected to seemingly irrelevant discrete elements. 195

Taking this to an extreme, we hypothesize that next 196

to the continuous projection c-proj(pd) of any dis- 197

crete prompt pd, there exists a variety of continuous 198

prompts pc that trigger responses from model M 199

that are orthogonal to the intentions described by 200

the discrete prompt pd. We formalize this idea 201

as the following hypothesis, where L ∈ N is the 202

length of the discrete target prompt, M is a prompt- 203

based model, and D is a dataset for a desired task: 204

Hypothesis 1 (Prompt Waywardness) For all
L,M,D, there is a small ∆ such that for any
discrete target prompt pd with length L, there
exists a continuous prompt p̃c ∈ RL×d such that:

1.
∣∣`(p̃c;Dtest)− `(p∗c ;Dtest)

∣∣ < ∆, yet
2. d-proj(p̃c) = pd.

In other words, p̃c is nearly as effective at making 205

M solve the task as the optimal continuous prompt 206

(Eq.4), and yet it projects to pd. In this statement, 207

∆ (prompt performance gap relative to the optimal 208

prompt p∗c) is a function of the prompt length L, the 209

model M (e.g., its embedding size and depth when 210

M is transformer based), and inherent properties 211

of the target dataset D. The analysis in §4.3 will 212

provide an empirical estimate of this gap ∆̂ as a 213

function of various parameters like model size and 214

prompt length. 215

It is worth emphasizing that the hypothesis is 216

stated for any task and any set of discrete prompts, 217

even if they are irrelevant or contradictory.3 218

3.3 Finding Wayward Prompts 219

While the above hypothesis promises the existence 220

of p̃c, it does not say how to discover them. We 221

now discuss a practical method for their discovery. 222

We learn a continuous prompt pc using a mod- 223

ification of the prompt tuning objective of Lester 224

et al. (2021). Our modification jointly minimizes 225

the standard downstream task cross-entropy loss 226

3While our focus is on the use of continuous prompts for
solving datasets (one prompt shared among many instances),
one can imagine applications of the same conjecture to special
use cases such as controlled generation (Dathathri et al., 2019)
with one prompt per instance.
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`(.) for the task (Eq.3) and a distance measure227

dist(.) between pc and the discrete target prompt228

pd ∈ {0, 1}L×V :229

`′(pc;D, γ) =`(pc;D) + γ dist(pc, pd) (5)230

p̃c = arg min
pc∈RL×d

`′(pc;D, γ), (6)231

where pc is the only learnable parameter, and γ is232

a hyperparamter.233

When γ = 0, the modified objective is reduced234

to the standard objective (Eq.4), `′(.) = `(.). We235

refer to this case and its resulting prompt p∗c as236

the ‘unconstrained’ setting. A large value of γ237

will make pc even closer (possibly identical) to238

c-proj(pd) but lead to poor accuracy on a target239

dataset. Most of the experiments below are con-240

ducted via a range of γ values to better understand241

the trade off between the two terms in the objective242

function. In practice, we find γ = 0.01 to give a243

reasonable trade-off regardless of the target dataset244

and the choice of pd.245

There are at least two natural ways to define the246

distance measure dist(pc, pd) between a continu-247

ous prompt pc and a discrete target prompt pd, by248

converting one so that both are in the same space:249

c-dist(pc, pd) =
‖pc − c-proj(pd)‖22

L
(7)250

d-dist(pc, pd) = F1
(
d-proj(pc), pd

)
(8)251

The first of these places both pc and pd in the contin-252

uous space and computes the squared-L2 norm, nor-253

malized by the prompt length. This is used in our254

training loss (Eq.5) implementation. The second255

places both in discrete space (text) and computes256

the standard word-level token overlap F1 score.4257

This is used during our evaluation.258

4 Empirical Support of Waywardness259

We empirically investigate the Prompt Wayward-260

ness hypothesis (§3.2) using our modification261

(§3.3) of the prompt tuning method from Lester262

et al. (2021). We show that given an arbitrary263

and irrelevant discrete prompt pd, it is possible264

to learn a continuous prompt that is mapped to pd265

while retaining its accuracy on a given dataset.266

4.1 Setup267

Target tasks. Following the setup of Min et al.268

(2021), we select a diverse set of 5 classifi-269

cation datasets: SST-2 (Socher et al., 2013),270

4Ignoring punctuation marks and articles, and applying
lemmatization.

SST-5 (Socher et al., 2013), AGNews (Zhang 271

et al., 2015), Subj (Pang and Lee, 2004) and 272

TREC (Voorhees and Tice, 2000). Statistics and 273

the unconstrained accuracy of each dataset are pro- 274

vided in Table 1. 275

Dataset Task |C| Acc

SST-2 Sentiment analysis (movie) 2 92.4
SST-5 Sentiment analysis (movie) 5 50.3
AGNews News classification (topic) 4 88.1
Subj Subjectivity classification 2 90.5
TREC Answer type classification 6 88.0

Table 1: The collection of downstream tasks used in the
experiments (§4.1). |C| indicates the output size (num-
ber of classes); Acc indicates the unconstrained accu-
racy of a prompt tuning method (Lester et al., 2021)
using GPT2 Large, as a reference point.

Discrete Target Projections. We compile two 276

sets of discrete target prompts: (1) 32 tar- 277

get prompts for solving tasks from Natural- 278

Instructions5 dataset (Mishra et al., 2021b) that 279

are distinct from and intentionally orthogonal to 280

the end tasks considered here. These were chosen 281

by excluding discrete target prompts that have high 282

lexical overlap with other discrete prompts; this 283

is because we found lexically similar prompts are 284

often semantically similar even when written for 285

different subtasks. (2) 30 random sentences from 286

PILE,6 a large-scale, diverse text corpus used to 287

pretrain GPT-J, the largest public causal language 288

model (Wang and Komatsuzaki, 2021). The sam- 289

pled sentences were drawn from a Poisson distribu- 290

tion with λ = 14, which makes the average length 291

of the sentence to be consistent to those in Natural- 292

Instructions. These sentences are selected to have 293

little or no token overlap with the true definition of 294

the target tasks. See Table 3 for a few examples. 295

Evaluation metrics. For all experiments, we re- 296

port two metrics: (1) the task accuracy7 as well 297

as (2) prompt F1, the word-level token overlap F1 298

score computed as in Eq.8, since it easy to interpret 299

and is commonly used for evaluating the textual 300

output of models (Rajpurkar et al., 2016). 301

Models. For evaluation, we use GPT2 (Radford 302

et al., 2019) an auto-regressive LM which has ex- 303

tensively been used in many NLP applications. Un- 304

5https://instructions.apps.allenai.org
6https://pile.eleuther.ai
7We did not consider alternatives like Macro-F1 because

all datasets are roughly balanced across different classes.
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Data pd Task Accuracy (%) Prompt

Source ∆̂ (Acc(p∗c) → Acc(p̃c)) F1 (%)

SST-2
NI 0.7 (92.4 → 91.8) 99.0
PILE 0.5 (92.5 → 92.0) 97.1
Avg 0.6 (92.4 → 91.9) 98.1

SST-5
NI 3.3 (50.2 → 48.5) 95.9
PILE 0.7 (50.5 → 50.2) 92.4
Avg 2.0 (50.3 → 49.3) 94.2

AGNews
NI 1.6 (88.0 → 86.6) 97.4
PILE -0.1 (88.1 → 88.2) 97.5
Avg 0.8 (88.1 → 87.3) 97.4

Subj
NI 2.0 (91.3 → 89.5) 97.3
PILE 0.9 (89.6 → 88.8) 94.4
Avg 1.5 (90.5 → 89.2) 95.9

TREC
NI 3.3 (87.5 → 84.7) 86.5
PILE 1.2 (88.5 → 87.5) 85.6
Avg 2.3 (88.0 → 86.0) 86.1

Table 2: Main Results: Accuracy of solving five clas-
sification datasets, in an unconstrained setting (p∗c ) vs.
constrained by the projection to various irrelevant
pieces of text (p̃c). Optimization is done using γ = 0.01
in the objective function (Eq.5). ∆̂ indicates the rela-
tive accuracy drop (in %) from unconstrained accuracy.
Each reported score (Accuracy and Prompt F1) are
the average over 62 discrete target prompts and 3 ran-
dom seeds. Overall, it is possible to achieve ≥ 94%
prompt F1 with under 2% drop in accuracy.

less otherwise specified, we use a ‘large’ variant305

consisting of 774M parameters.306

Implementation details. We use a batch size of307

8, learning rate 0.01, and 2000 training steps. When308

experimenting with a discrete target prompt pd, we309

initialize the search for continuous prompts (both310

p̃c and p∗c) using c-proj(pd).8 For all experiments,311

report accuracy averaged over three random seeds.312

4.2 Main Results313

For each of the 5 tasks T and for each of the 62314

discrete target prompts pd, we use the objective315

in Eq.5 to find a prompt p̃c such that it solves T316

with a high accuracy while, at the same time, hav-317

ing a discrete projection that is close to pd. For318

comparison, we also train unconstrained prompts319

p∗c (γ = 0.0) which solve task T without any pro-320

jection constraint. To ensure a fair comparison321

between p̃c and p∗c , we ensure that they have the322

same size L. In other words, for each p̃c (that has323

the same length as pd), we train another p∗c with the324

8While this is different from prior work (Lester et al., 2021;
Min et al., 2021) that uses a random subset of the top-5000
vocabs, we find no meaningful differences in an unconstrained
accuracy between two initialization methods.

same length. We denote the relative accuracy drop 325

from p∗c to p̃c as ∆̂. 326

Table 2 summarizes the results. Across all 327

datasets, we find that it is possible to learn a contin- 328

uous prompt pc whose discrete projection is very 329

close to pd and mostly retains the task accuracy. 330

There is a trade-off between the task accuracy and 331

prompt F1, which can be controlled by the choice 332

of γ (more extensive ablations in the forthcoming 333

paragraphs (§4.3)). Overall, with γ = 0.01, it is 334

possible to achieve ≥ 94% prompt F1 with un- 335

der 2% relative drop in task accuracy. The only 336

outlier is the TREC dataset where we achieved a 337

prompt F1 score of 86% for a ∆̂ = 2.3% relative 338

drop in accuracy. This might be due to the diffi- 339

culty of learning effective prompts on TREC (also 340

discussed by Min et al. (2021)). 341

Example prompts with varying values of prompt 342

F1 scores are shown in Table 3. A prompt F1 ≥ 343

94% generally indicates one word mismatch with 344

almost no semantically meaningful difference. 345

4.3 Further Analysis 346

Effect of Gamma. Fig. 3 shows the trade-off be- 347

tween task accuracy and the prompt F1 when vary- 348

ing γ from 0 to 0.03. As γ increases, the task 349

accuracy goes down while the prompt F1 increases. 350

The drop in task accuracy is relatively minor—it 351

is possible to learn a continuous prompt for which 352

prompt F1 is near 1.00 and the accuracy drop rela- 353

tive to the unconstrained accuracy is less than 1%. 354

Effect of Prompt Length (L). We randomly 355

sample sentences from The PILE with a con- 356

straint that its length must be L (chosen from 357

{4, 7, 14, 28, 56}). The left and the middle parts of 358

Fig. 4 illustrate the results. We find that when L is 359

very small (e.g., 4) it is relatively difficult to learn a 360

continuous prompt pc that is close to pd (F1<60%) 361

while retaining the task accuracy. This is likely be- 362

cause the prompt being too short significantly hurts 363

the expressivity of the prompt. Nonetheless, when 364

L is reasonably larger, e.g., 14 (the average length 365

of in Natural Instructions) or longer, all cases lead 366

to a continuous prompt with near 1.0 prompt F1 367

and little accuracy drop. 368

Effect of Model Size. We vary the size of the 369

GPT2 models—small, medium, large, and XL— 370

with 124M, 355M, 774M, and 1.5B parameters, 371

respectively. Figure 5 (right) reports the result on 372

SST-2. We find that (1) across different sizes of the 373

LM, our findings in learning continuous prompts 374
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d-proj(pc) Prompt F1 Acc(p̃c)

Task: AGNews pd: Write down the conclusion you can reach by combining the given Fact 1 and Fact 2.

Write down the conclusion you can reach by combining the given Fact 1 and Fact 2. 100.0 89.2
Write down the conclusion you can reach by combining the given Fact 1. Fact 2. 96.3 88.1
Write down the conclusion you can reach by combining the given Fact 1 Category Fact 2. 92.9 89.0
Write Messi in conclusion you can reach by combining the given Fact 1 and Fact 2. 89.7 88.8

Task: SST-5 pd: “If they have other interests and aims in life it does not necessarily follow that they are passive sheep.”

“If they have other interests and aims in life it does not necessarily follow that they are passive sheep.” 100.0 51.2
“If they have other interests and aims in life it does not necessarily follow that they are terrible sheep.” 94.7 53.6
“If they have other interests and aims in life it does not necessarily follow that they are terrible GoPro.” 89.5 52.3

Task: SST-5 pd: int clamp(int val, int min_val, int max_val) { return std::max(min_val, std::min(max_val, val)); }

int clamp(int val, int min_val, int max_val) { return std::max(min_val, std::min(max_val, val)); } 100.0 50.5
int clamp(int val, int min_val, int max_val) { return std::max(min_val, std::min(max_val terrible val)); } 95.7 52.0
int clamp(int val, int min_val, int max_val) { return std::max(min_val, std::min(max_val terrible val)); This} 91.7 53.3

Table 3: Examples of the target prompts pd and their reconstructions via d-proj(pc) for different ranges of prompt
F1 scores. The first pd is from Natural-Instructions; the rest two are sampled from The PILE. The mismatches with
the original prompt are color-coded.
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Figure 3: The effect of γ on SST-2 and AGNews. Accuracy is the average over 32 discrete target prompts from
Natural Instructions and 3 random seeds. A dotted line indicates unconstrained accuracy p∗c (same as when γ = 0).
Numbers inside parentheses in the y-axis indicate relative drop in accuracy against unconstrained accuracy. There
is a clear trade-off between the task accuracy and the prompt F1.

with the prompt F1 of near 1.0 and little drop in375

the accuracy generally hold, and (2) in particular,376

the drop in accuracy is more negligible with larger377

LMs (0.2% with XL, 0.5–0.7% with medium and378

large, 1.2% with small).379

5 Explaining Waywardness380

Here we provide intuitions behind the factors that381

enable Prompt Waywardness.382

The mapping between continuous and discrete383

spaces is not one-to-one. While a discrete tar-384

get prompt is mapped to exactly one continuous385

prompt (via its embedding, Eq.1; cf. Fig.2), the386

reverse is not true. In fact, except for a very small387

fraction of unnatural or degenerate edge cases,9388

for every target discrete prompt, there are infinitely389

many continuous prompts that project back to it390

9Such as using a non-metric distance in nearest-neighbor
mapping, or mapping all of Rd to a single discrete prompt.

(via Eq.2). While simple counting-based arguments 391

are insufficient in continuous spaces, we formally 392

prove (Appendix C) that this property holds for all 393

nearest-neighbor projections under any metric dis- 394

tance, and broadly for all but a negligible (measure 395

zero) portion of possible projection operators. 396

This intuitively suggests that there is a whole 397

region of continuous prompts that corresponds to a 398

fixed discrete representation (Fig.6). The remain- 399

ing question is, how is this region able to have a 400

diverse set of prompts that can solve a variety of 401

tasks? This is addressed next. 402

Deep models give immense expressive power to 403

earlier layers. The deeper a network is, the more 404

expressivity it has with respect to its inputs (Telgar- 405

sky, 2016; Raghu et al., 2017). Since continuous 406

prompts reside just before the first layer, they enjoy 407

a lot of expressivity. Therefore, no matter how nar- 408

row the regions corresponding to individual tokens 409

are (Fig.6), they are extremely powerful in solving 410
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Figure 4: The effect of the length of the prompt (L) on
AGNews. Each point computed via the average over 32
discrete target prompts from Natural Instructions and
3 random seeds (γ = 0.01 used). The corresponding
prompt F1 is reported as a orange line. The accuracy
of p∗c and p̃c increase as a function of prompt length,
however, the gap between them tends to decrease. The
relative accuracy drop is marginal when L is not too
small (e.g., 7 or larger).

a variety of tasks. Previously in §4.2 we provide an411

empirical analysis showing evidence that the effect412

of Waywardness is stronger in deeper models.413

6 Implications of Prompt Waywardness414

We discuss the implications of these findings on415

several inter-related lines of research. Note that416

all the following statements are valid within the417

boundaries of the existing architectures. Moving418

beyond these barriers likely requires major innova-419

tions in terms of LM architectures or how continu-420

ous prompts are optimized.421

Faithful interpretation of continuous prompts422

is difficult. Given the intuitions behind and em-423

pirical support for the Waywardness hypothesis424

(§5), faithful discrete interpretations of continu-425

ous prompts via common discrete projections (like426

nearest-neighbor projection) are unlikely to be ro-427

bust based on current approaches. It is an open428

question whether there is a better way of inter-429

preting continuous prompts with human language,430

or whether explaining and interpreting continuous431

prompts via human language is inherently impossi-432

ble because they lie in completely different spaces.433

Future work may investigate more on this topic434
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Figure 5: The effect of the size of the model—small,
medium, large, and XL—on SST-2. Each point in
the experiment is computed by averaging over 30 ex-
periments each with a different discrete target prompt
from PILE and 3 random seeds. We vary γ =
{0.01, 0.005, 0.003} and choose the one for which
prompt F1 is larger than 0.98. The relative accuracy
drop (gap between the two trends) decreases as mod-
els become larger.

space of
cont i nuous pr ompt s

space of
di scr et e pr ompt s

subspace of continuous prompts that have the 
same projections but solve different tasks.

Figure 6: The projection discrete space (Eq.2) induces
a clustering (a Voronoi diagram) of the continuous
space. Each cluster has infinitely many points that get
mapped to the same discrete token.

in order to improve the interpretability of prompt- 435

based language models. 436

Risk of interpreting continuous prompts: con- 437

cealed adversarial attacks. It is not difficult to 438

imagine a future where proprietary model develop- 439

ment is driven by fine-tuned continuous prompts. 440

In such a world, not addressing the challenges 441

involved in discrete interpretation of continuous 442

prompts can lead to harmful (and potentially, ad- 443

versarial) consequences (Slack et al., 2020; Wallace 444

et al., 2021), as discussed below. 445

We consider the following scenario: a model de- 446

signer comes up with a set of continuous prompts 447

that solve a target task (e.g., ranking resumes ac- 448

cording to each applicant’s qualifications and mer- 449

its). Whether intentionally or not, such prompts 450

may maliciously target, for example, a minority 451

group. To assure their customers, the model de- 452

signer uses the projection of the prompt that ex- 453
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Figure 7: Waywardness implies that continuous
prompts can be mapped to seemingly innocuous de-
scriptions while acting maliciously.

presses a benign definition for the task, which does454

not reveal the true nature of the egregious behavior.455

The customers might even evaluate the prompt on456

a few instances but not notice this harmful behav-457

ior, e.g., when it effects a minority group not in458

the evaluation set. In a way, the benign discrete459

projections may provide a false sense of security.460

Optimizing discrete prompts through contin-461

uous prompts can be degenerate. Manually-462

written discrete prompts have many nice prop-463

erties (Schick and Schütze, 2021; Mishra et al.,464

2021a), yet we do not have an efficient algorithmic465

way of finding them. One way to operationalize this466

is to formulate differentiable objective functions467

via LMs like GPT (Radford et al., 2019). Consider468

the following problem which is defined in the space469

of continuous embeddings pc ∈ Rd:470

max
pc∈Rd

utility︷ ︸︸ ︷
P (D|pc)×

readability︷ ︸︸ ︷
P (d-proj(pc)), (9)471

This a joint optimization towards a utility objective472

(the extent to which it can solve dataset D) and473

a human readability objective. According to the474

Waywardness hypothesis, there are pc’s that assign475

high mass to the utility term while also mapping to476

human interpretable text that is irrelevant (or even477

contradictory) to the task solved by the prompt –478

hence, degenerate solutions.479

The same challenge holds if this optimization480

objective, instead of continuous prompts, is refor-481

mulated in terms of word probabilities (e.g., similar482

to Kumar et al. (2021, Sec 2.2)). This is the case,483

since searching in the space of word probabilities484

is analogous to a search in embedding spaces.10485

10 A distribution over words p ∈ [0, 1]V corresponds to
a continuous prompt pc = c-proj(p) which is a weighted
combination of V -many basis vectors (word embeddings) that
form a linear span of Rd.

In summary, Waywardness presents a challenge 486

for searching effective discrete prompts via contin- 487

uous optimization. The recent works have used 488

additional signals such as domain-specific con- 489

straints (Qin et al., 2020; Khot et al., 2021) to alle- 490

viate these challenges. We hope to see more design 491

innovations for further progress in this direction. 492

Continuous prompt tuning does not necessi- 493

tate task-specific initialization. Recent works 494

on continuous prompt-tuning have shown the ef- 495

fectiveness of initialization from embeddings of 496

random common words (Lester et al., 2021; Min 497

et al., 2021), despite these words being irrelevant 498

to the task solved by these prompts. This, however, 499

makes sense given the observations made in this 500

work regarding the existence of effective prompts 501

around word embedding subspaces. 502

7 Conclusion 503

The prompting literature has seen many paral- 504

lel developments around continuous and discrete 505

prompts, as efficient alternatives to fine-tuning 506

models with tens of millions of parameters. Our 507

work introduced the Prompt Waywardness hypoth- 508

esis, which expresses a surprising disconnect be- 509

tween continuous and discrete prompts: given a 510

downstream task, for any discrete target prompt pd, 511

there exists a continuous prompt that projects to 512

pd while achieving strong performance on the task. 513

We provided empirical evidence for this hypothe- 514

sis, studied various parameters around it, and ended 515

with several implications of this hypothesis. 516

While our experiments are done on the GPT fam- 517

ily, we expect our findings to apply to a broader 518

set of architectures that, in one way or another, use 519

similar mechanisms for mapping discrete elements 520

to continuous representations and vice versa. Sim- 521

ilarly, while our projection to the discrete space 522

(Eq.2) is a popular operator in the field (cf. Foot- 523

note 1), the intuition explained in Propositions 1 524

and 2 of the Appendix suggests similar behavior 525

for a broad class of projection operators. 526

Prompt Waywardness identifies challenges for 527

future progress on algorithmic methods for the dis- 528

covery of human readable prompts that are faithful 529

to the task they solve. We hope the observations 530

made in this work motivate architectural innova- 531

tions that overcome such challenges and guide fu- 532

ture steps in the prompting literature. 533
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Supplementary Material675

A Additional Experimental Details676

Here we include several experimental details (§4)677

that did not fit in the main text. For the experiments678

we used A100 GPUs with 40G memory. In terms of679

the time GPU time of the experiments, each round680

of training and inference for each seed took about681

around 6 min. Therefore, the total GPU hours for682

our main experiment (Table 2) adds up to 93 hours683

(6 mins × 3 seeds × 5 datasets × 62 prompts =684

5580 mins).685

B Experiment: Projection onto True686

Task Definitions687

In all our results so far in §4, the target projected688

text was orthogonal to the tasks being solved. One689

might naturally wonder whether there is any benefit690

in projecting continuous prompts to the texts that691

truly describe the task being solved, i.e., a “true”692

prompt for the task. To this end, we manually au-693

thored 5 “true” prompts for each of the tasks. We694

then follow the exact same setup used earlier for695

Table 2 to fine-tune continuous prompts p̃c for the696

task while projecting onto these true task defini-697

tions. As before, we also fine-tune unconstrained698

prompts p∗c of the same length, without any projec-699

tion requirement.700

By design, p̃c can be no more effective at solving701

the task than the unconstrained prompt p∗c (barring702

suboptimal search issues), which is what we find703

in practice. For completeness, we report detailed704

results for “true” target prompts (analogous to Ta-705

ble 2) in Table 4.706

More interestingly, as shown in Table 5, con-707

tinuous prompts that project to “true” target708

prompts are no more effective at solving the709

task than continuous prompts that project to the710

62 irrelevant target prompts considered earlier (Ta-711

ble 2). Specifically, the average performance gap712

∆ (relative to unconstrained prompts of the same713

length) is about the same (around 1.5) for con-714

tinuous prompts that map to true task definitions715

compared to prompts that map to irrelevant text.716

This observation further bolsters the waywardness717

hypothesis—continuous prompts don’t relate to the718

task being solved.719

Data Task Accuracy (%) Prompt

∆̂T (Acc(p∗c) → Acc(p̃c)) F1 (%)

SST-2 1.0 (91.9→ 90.9) 98.5
SST-5 0.9 (51.4 → 50.5) 96.1
AGNews 1.4 (91.8 → 90.4) 95.7
Subj 4.1 (89.8 → 85.6) 100.0
TREC 0.5 (88.6 → 88.1) 99.3

Table 4: Accuracy of solving five classification
datasets, unconstrained setting (p∗c ) vs. constrained by
the projection to the true definition of tasks (p̃c) using
γ = 0.01 in the objective function (Eq.5). Subscript T
in ∆T denotes this being the case for true task defini-
tions. Projecting to the true definition of a task does
not help continuous prompts solve a task.

SST-2 SST-5 AGNews Subj TREC Avg

∆̂T 1.0 0.9 1.4 4.1 0.5 1.6
∆̂ 0.6 2.0 0.8 1.5 2.3 1.4

Table 5: Task accuracy gap comparison between un-
constrained prompts and those fine-tuned to project to
a true task definition (∆̂T ) as reported in Table 4. For
comparison, we also show the corresponding perfor-
mance gaps with irrelevant (∆̂) from Table 2. The av-
erage performance gaps are about the same (around
1.5) for true and irrelevant target prompts—further
evidence that continuous prompts don’t relate to the
task being solved.

C The mapping between continuous and 720

discrete space is not one-to-one 721

As argued in §5, the mapping between the space of 722

discrete input and that of word embeddings (Fig.2) 723

is not a bijection. While a discrete target prompt is 724

mapped to exactly one continuous prompt (via its 725

embedding, Eq.1), the reverse is not true: except 726

for some unnatural or rare cases (as formalized 727

in the following propositions) there are infinitely 728

many continuous prompts that project back to a 729

fixed discrete target prompt (via Eq.2). 730

Nearest-neighbor projections are arguably natu- 731

ral, computationally efficient, and useful in prac- 732

tice. Although we have considered them in the 733

Euclidean space so far, they can be defined for 734

an arbitrary distance metric11 m on Rd. As be- 735

fore, consider an embedding of a lexicon of size 736

V into Rd and the corresponding one-hot vectors 737

in {0, 1}V . We call d-proj a nearest-neighbor pro- 738

jection operator w.r.t. m if it maps each x ∈ Rd to 739

the one-hot vector in {0, 1}V that corresponds to 740

11https://en.wikipedia.org/wiki/Metric_
(mathematics)

11

https://en.wikipedia.org/wiki/Metric_(mathematics)
https://en.wikipedia.org/wiki/Metric_(mathematics)


the lexicon item whose embedding is closest to x741

under metric m (breaking ties arbitrarily).742

Proposition 1 Every nearest-neighbor projec-
tion operator, under any metric, maps infinitely
many elements of Rd, forming one or more con-
tinuous subspaces, to every one-hot vector in
{0, 1}V .

A proof is included in Appendix C.1. In effect,743

the projection operators induce a clustering of the744

space of continuous prompts Rd×L into regions745

that have the same discrete projection (Fig.6).746

The infinite-to-one mapping aspect is not limited747

to the class of nearest-neighbor projection opera-748

tors. It is rather an inherent property of the interac-749

tion between continuous and discrete spaces, and750

holds for a broader family consisting of all but a751

negligible portion of possible projection operators:752

Proposition 2 Let D denote the space of all pro-
jection operators that map Rd to one-hot vectors
in {0, 1}V . Let d-proj be a random projection
drawn uniformly from D. Then, with probability
1, d-proj maps infinite elements of Rd to every
one-hot vector in {0, 1}V .

C.1 Proofs753

Proof of Prop. 1: Let ci ∈ Rd for i ∈754

{1, . . . , V } be fixed vectors (denoting the em-755

bedding of words in a lexicon of size V ). Let756

ei ∈ {0, 1}V denote the one-hot vector with 1 in757

the i-th position and 0 elsewhere. Since d-proj is a758

nearest-neighbor projection operator w.r.t. m, by759

definition it maps x ∈ Rd to ei whenever x is clos-760

est to ci, i.e., i = arg minj m(x, cj) (breaking ties761

arbitrarily).762

Let Si ⊆ Rd denote the pre-image of ei, i.e.,763

the elements that the nearest-neighbor projection764

d-proj maps to the i-th one-hot vector. By defini-765

tion, ci ∈ Si. Let d′ = minj m(ci, cj) > 0 denote766

the distance of ci to the nearest cj w.r.t. the metric767

m. Consider the subspace Ci = {x | m(x, ci) <768

d′/2}. By design, we have Ci ⊆ Si. Further, mov-769

ing x by some small distance ε (w.r.t. m) to another770

point x′ changes its distance to ci only by at most771

ε (by the triangle inequality property of m). This772

implies that if ε is chosen to be small enough such773

that m(x, ci) + ε < d′/2, then x′ must also be in774

Ci. In other words, if x ∈ Ci, then, for a small775

enough ε, the entire ε-neighborhood of x is also in776

Ci. It follows that Ci is an open subset of Rd and777

thus contains infinitely many elements forming a778

continuous subspace. Hence Si, which contains779

Ci,e.g. also has infinite elements in one or more 780

continuous subspaces. � 781

Proof of Prop. 2: For simplicity, assume V = 782

2. A projection operator d-proj ∈ D can then be 783

fully characterized by the subset S ⊆ Rd that it 784

maps to any one arbitrarily chosen one-hot vector. 785

Choosing d-proj uniformly at random from D thus 786

amounts to choosing the subset S uniformly at 787

random from Rd. We show that the probability of 788

choosing an S such that |S| is finite, is 0. (The 789

same argument applies to |R \ S| being finite.) 790

To see this, let Si denote the set of all (finite) 791

subsets of Rd that have size exactly i. First, ob- 792

serve that the probability of choosing an S that 793

lies in S0 ∪ S1 (i.e., a subset of Rd that has at 794

most 1 element) is 0; this is a degenerate case in 795

the underlying continuous probability space. Sec- 796

ond, for any i ≥ 2, Si has the same “size” (in 797

the measure theoretic sense) as S1, because one 798

can construct an injective map from either one 799

to the other—which follows from the fact that 800

they both have the same cardinality as the set R.12 801

Lastly, the space S of all finite subsets of Rd is the 802

countable union ∪iSi of disjoint sets. Therefore, 803

Pr[S ∈ S] =
∑

i Pr[S ∈ Si] = 0. � 804

D Implications of Prompt Waywardness: 805

continued 806

Here we mention other implications (§6) that did 807

not fit in our page limit. 808

Gradients alone are insufficient to reverse en- 809

gineer a model. Suppose we are given a fixed 810

(fine-tuned or otherwise) model M (e.g., an open 811

question-answering model) and an expected output 812

y from this model (e.g., y =“Joe Biden”). Can 813

we use gradients alone to generate a semantically 814

meaningful input question that makes the model 815

M generate this given answer? (without any addi- 816

tional assumptions on the input). More formally, 817

if q ∈ [0, 1]L×V is a probability distribution over 818

all questions of length L, are gradients with re- 819

spect to the question input, ∂M(c-proj(q))=y
∂qlv

, alone 820

informative enough to move us towards the best 821

human readable input that is faithful to the task 822

being solved by M? 823

Our findings and the earlier argument about con- 824

tinuous differentiable optimization suggests this 825

12This can be proved using the rules of cardinal multiplica-
tion applied to Si viewed as (a subset of) the Cartesian product
of S1 with itself, i times.
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may not be feasible with current methods. To see826

the correspondence to Prompt Waywardness, we827

can replace D in Eq.9 with the desired outcome y828

and run the optimization over word distributions829

(cf. Footnote 10). While gradients can help guide830

us towards some input that makes M produce y,831

such input is quite likely to not be faithful to the832

task being solved byM . In the context of the above833

example (M being a QA system), gradients might834

lead to inputs that are perhaps linguistically flu-835

ent but are neither proper queries nor semantically836

descriptive of “Joe Biden”.837

Nevertheless, as noted earlier, gradients are still838

useful when they are applied using domain-specific839

constraints. For example, one can find local (word-840

level) perturbations that lead to a certain adversarial841

outcome, if the perturbations are restricted to well-842

defined semantic categories (e.g., “blue” can be843

perturbed to any other color name) (Guo et al.,844

2021; Yuan et al., 2021).845
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