
AMORE: A Model-based Framework for Improving
Arbitrary Baseline Policies with Offline Data

Anonymous Author(s)
Affiliation
Address
email

Abstract

We propose a new model-based offline RL framework, called Adversarial Models1

for Offline Reinforcement Learning (AMORE), which can robustly learn policies2

to improve upon an arbitrary baseline policy regardless of data coverage. Based on3

the concept of relative pessimism, AMORE is designed to optimize for the worst-4

case relative performance when facing uncertainty. In theory, we prove that the5

learned policy of AMORE never degrades the performance of the baseline policy6

with any admissible hyperparameter, and can learn to compete with the best pol-7

icy within data coverage when the hyperparameter is well tuned and the baseline8

policy is supported by the data. Such a robust policy improvement property makes9

AMORE especially suitable for building real-world learning systems, because in10

practice ensuring no performance degradation is imperative before considering11

any benefit learning can bring.12

1 Introduction13

Offline reinforcement learning (RL) is a technique for learning decision making policies from logged14

data (Jin et al., 2021; Xie et al., 2021a). In comparison with alternate learning techniques, such as15

off-policy RL and imitation learning, offline RL reduces the data assumption needed to learn good16

policies and does not require collecting new data. Theoretically, offline RL can learn the best policy17

that the given data can explain: as long as the offline data includes all scenarios that executing a18

near-optimal policy would encounter, an offline RL algorithm can learn a near-optimal policy, even19

when the data is collected by highly sub-optimal policies or is not diverse. Such robustness to data20

coverage quality makes offline RL a promising technique for solving real-world problems, because21

collecting diverse or expert-quality data in practice is expensive or simply infeasible.22

The fundamental principle behind offline RL is the concept of pessimism in face of uncertainty,23

which considers worst-case outcomes for scenarios without data. In implementation, this is realized24

by (explicitly or implicitly) constructing performance lower bounds in policy learning, which pe-25

nalizes the agent to take uncertain actions. Various designs have been proposed to construct such26

lower bounds, including behavior regularization (Fujimoto et al., 2019; Kumar et al., 2019; Wu27

et al., 2019; Laroche et al., 2019; Fujimoto and Gu, 2021), point-wise pessimism based on negative28

bonuses or truncation (Kidambi et al., 2020; Jin et al., 2021), value penalty (Kumar et al., 2020; Yu29

et al., 2020), or two-player games (Cheng et al., 2022; Xie et al., 2021a; Uehara and Sun, 2021).30

Conceptually, the tighter the lower bound is, the better the learned policy would perform, as the31

performance estimate is more accurate.32



Despite these advances, offline RL still has not been widely adopted to build learning-based decision33

systems in practice. One reason we posit is that achieving high performance in the worst case is not34

the full picture of designing real-world learning agents.35

Usually we apply machine learning to applications that are not completely unknown, but have some36

running policies. These policies are the decision rules that are currently used in the system (e.g.,37

an engineered autonomous driving rule, or a heuristic-based system for diagnosis), and the goal of38

applying a learning algorithm is often to further improve upon these baseline policies. As a result,39

it is imperative that the policy learned by the agent does not lead to performance degradation. This40

criterion is especially critical for applications where the poor decision outcomes cannot be tolerated41

(such as health care, autonomous driving, and commercial resource allocation).42

Although optimizing for absolute or relative performance is the same when full information is avail-43

able, they can lead to different policies when we only have partial data coverage. In this case, the44

policy that has the best worst-case performance (which most existing offline RL aims to recover)45

would not necessarily perform better than the baseline policies when deployed in the real envi-46

ronment. Such performance degradation happens when the data do not cover all behaviors of the47

baseline policies, which can be due to finite samples or a coverage mismatch between the base-48

lines and the data collection policies. As a result, running policies learned by existing offline RL49

algorithms could risk degrading performance.50

In this work, we propose a new model-based offline RL framework, called Adversarial Models for51

Offline Reinforcement Learning (AMORE), which can robustly learn policies improving upon an52

arbitrary baseline policy. AMORE is designed based on the concept of relative pessimism (Cheng53

et al., 2022), which aims to optimize for the worst-case relative performance when facing uncer-54

tainty. In theory, we prove that the the learned policy from AMORE never degrades the performance55

of the baseline policy of comparison for a wide range of hyperparameters which are given before-56

hand, a property known as Robust Policy Improvement (RPI) (Cheng et al., 2022). In addition, we57

prove that, when the right hyperparameter is chosen and the baseline police is covered by the data,58

the learned policy of AMORE can also compete with any policy within data coverage in an absolute59

sense.60

To our knowledge, RPI property of offline RL has so far be limited to comparing against the data61

collection policy (Cheng et al., 2022; Fujimoto et al., 2019; Kumar et al., 2019; Wu et al., 2019;62

Laroche et al., 2019; Fujimoto and Gu, 2021). However, it is quite common that the baseline policy63

of interest is different from the data collection policy. For example, in robotics manipulation, we64

often have a dataset of activities different from the target task that we wish to solve. In AMORE, by65

using models, we extend the technique of relative pessimism to achieve RPI with arbitrary baseline66

policies, regardless whether the baseline policies collected the data or not.67

2 Preliminaries68

Markov Decision Process We consider an agent acting in an infinite-horizon discounted Markov69

Decision Process (MDP) M defined by the tuple ⟨S,A,P, R, γ⟩ where S is the state space, A70

is the action space, P : S × A → ∆(S) is the transition dynamics, R : S × A → [0, 1]71

is a scalar reward function and γ ∈ [0, 1) is the discount factor. The learner selects ac-72

tions using a policy π : S → ∆(A). We denote by Π the space of all Markovian poli-73

cies. Let, dπM (s, a) denote the discounted state-action distribution obtained by running policy74

π on M , i.e dπM (s, a) = (1− γ)E [
∑∞

t=0 γ
t
1 (st = s, at = a|at ∼ π (·|st))]. Let JM (π) =75

Eπ,M [
∑∞

t=0 γ
trt|at ∼ π] be the expected discounted return of policy π on M . The goal of re-76

inforcement learning is to find the policy that maximizes J . We define the value function as77

V π
M (s) = Eπ,M [

∑∞
t=0 γ

trt|s0 = s], and the related state-action value function (i.e., Q-function)78

as Qπ
M (s, a) = Eπ,M [

∑∞
t=0 γ

trt|s0 = s, s0 = a]. We use [0, Vmax] as the range of value functions.79

Offline RL The aim of offline RL is to output strong policies from a fixed dataset collected using80

a behavior policy without further environmental interactions. We assume the dataset D consists of81

{(si, ai, ri, si+1)}Ni=1, where (si, ai) is sampled i.i.d. from some distribution µ. We also abuse µ82
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as discounted state-action occupancy of behavior policy, i.e., µ ≡ dµM , and we use a ∼ µ(·|s) to83

denote sampling from that behavior policy.84

This paper is concerned with the model-based offline RL problem, and we use M to denote the85

model class. For each M ∈ M, we use PM : S × A → ∆(S) and RM : S × A → [0, 1] to denote86

the corresponding transition and reward function of M .87

Assumption 1 (Realizability). We assume the ground truth model M⋆ is in the model class M.88

3 Adversarial Models for Offline Reinforcement Learning (AMORE)89

In this section, we introduce our proposed approach, Adversarially Trained Models (AMORE), in90

Algorithm 1, and the main theoretical results.91

Algorithm 1 Adversarially Trained Models (AMORE)
Input: Batch data D. Model class M. Coefficient α. Policy class Π. Reference policy πref .

1: Construct version space for the model,

Mα =

{
M ∈ M : max

M ′∈M
LD(M

′)− LD(M) ≤ α

}
, (1)

where LD(M) :=
∑

(s,a,r,s′)∈D

[
logPM (s′|s, a)− (RM (s, a)− r)

2
]
, ∀M ∈ M. (2)

2: Conduct learning via relative pessimism,

π̂ = argmax
π∈Π

min
M∈Mα

JM (π)− JM (πref). (3)

AMORE can be viewed as a model-based extension of the ATAC algorithm by Cheng et al. (2022).92

In the next sections, we illustrate that AMORE is not only able to compete with the best data-covered93

policy as prior works (e.g., Xie et al., 2021a; Uehara and Sun, 2021; Cheng et al., 2022), but also94

enjoys a stronger robust policy improvement guarantee than (Cheng et al., 2022).95

3.1 Theoretical Analysis96

This section analyzes AMORE theoretically and presents guarantees on its absolute performance and97

the policy improvemence over the reference policy πref . Before presenting the detailed guarantees,98

we introduce generalized single-policy concentrability, which measures the distribution shift over99

some arbitrary policy π and data distribution µ.100

Definition 1 (Generalized Single-policy Concentrability). We define the generalized single-policy101

concentrability for policy π for model class M and offline data distribution µ as102

CM(π) := sup
M∈M

Edπ

[
DTV (PM (·|s, a), P ⋆(·|s, a))2 + (RM (s, a)−R⋆(s, a))

2
]

dµ

[
DTV (PM (·|s, a), P ⋆(·|s, a))2 + (RM (s, a)−R⋆(s, a))

2
] .

Note that CM(π) is always upper bounded by the standard single-policy concentrability coefficient103

∥dπ/µ∥∞ (e.g., Jin et al., 2021; Rashidinejad et al., 2021; Xie et al., 2021b), but it can be smaller in104

general with model class M. It can also be viewed as a model-based analog of the one in Xie et al.105

(2021a), and the detailed discussion around CM(π) refers to Uehara and Sun (2021).106

We are now ready to present the absolute performance guarantee of AMORE.107

Theorem 1 (Absolute performance guarantee). Under Assumption 1, there exists an absolute con-108

stant c such that for any δ ∈ (0, 1], if we choose α = c · (log(|M|/δ)) in Algorithm 1, then for109

arbitrary reference policy πref and comparator policy π† ∈ Π, with probability 1 − δ, the policy π̂110
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learned by Algorithm 1 satisfies111

J(π†)− J(π̂) ≤ O

([√
CM(π†) +

√
CM(πref)

]
· Vmax

1− γ

√
log(|M|/,δ)

n

)
.

Roughly speaking, Theorem 1 shows that π̂ learned by Algorithm 1 could compete with any policy112

π with a large enough dataset, as long as the offline data µ has good coverage on comparator policy113

π† (since the reference policy πref is the input of Theorem 1, one can set πref = µ (data collection114

policy) as CM(µ) ≤ CM(π†)). Compared to the closest model-based offline RL work (Uehara and115

Sun, 2021), if we set πref = µ (data collection policy), Theorem 1 leads to the almost the same116

guarantee as Uehara and Sun (2021, Theorem 1) (up to constant factors).117

In addition to the guarantee on the absolute performance above, below we show that, if Assumption118

1 is satisfied and πref ∈ Π, AMORE is always guaranteed to improve over J(π̂) for a wide range119

choice of pessimistic parameter α.120

Theorem 2 (Robust strong policy improvement). Under Assumption 1, there exists an absolute121

constant c such that for any δ ∈ (0, 1], if: i) α ≥ c · (log(|M|/δ)) in Algorithm 1; ii) πref ∈ Π, then122

with probability 1− δ, the policy π̂ learned by Algorithm 1 satisfies J(πref) ≥ J(π̂).123

3.2 Discussion124

Improving over some reference policy has been long studied in the literature. To highlight the125

advantage of AMORE, we formally give the definition of different policy improvement properties.126

Definition 2 (Robust policy improvement). Suppose π̂ is the learned policy from an algorithm.127

We say the algorithm has the policy improvement (PI) guarantee if J(πref) − J(π̂) ≤ o(n)/n is128

guaranteed for some reference policy πref with offline data D ∼ µ, where n = |D|. We use the129

following two criteria w.r.t. πref and µ to define different kinds PI:130

(i) The PI is strong if πref can be selected arbitrarily from policy class Π regardless of the choice131

data-collection policy µ; otherwise, PI is weak (e.g., πref ≡ µ is required).132

(ii) The PI is robust if it can be achieved by a range of hyperparameters with a known subset.133

Weak policy improvement is also known as safe policy improvement in the literature (Fujimoto134

et al., 2019; Laroche et al., 2019). It requires the reference policy to be also the behavior policy that135

collects the offline data. In comparison, strong policy improvement imposes a stricter requirement136

on the algorithm, which requires policy improvement regardless of how the data were collected.137

This condition is motivated by the common situation where the reference policy is not the data138

collection policy. For example, in a multi-task problem with shared dynamics, the data are collected139

by policies for different tasks, and the reference policy we wish to improve on is task specific. In this140

case, weak policy improvement is meaningless because the behavior policy, which is the average of141

policies from all tasks, does not have meaningful performance in the target task.142

Since we are learning policies offline, without online interactions, it is not straightforward to tune143

the hyperparameter directly. Therefore, it is desirable that we can design algorithms with these144

properties in a robust manner in terms of hyperparameter selection. Formally, Definition 2 requires145

the policy improvement to be achievable by a set of hyperparameters that is known before learning.146

Theorem 2 indicates the robust strong policy improvement of AMORE. On the other hand, algo-147

rithms with robust weak policy improvement are available in the literature (Cheng et al., 2022;148

Fujimoto et al., 2019; Kumar et al., 2019; Wu et al., 2019; Laroche et al., 2019; Fujimoto and Gu,149

2021); this is usually achieved by designing the algorithm to behave like imitation learning (IL) for150

a known set of hyperparameter (e.g., behavior regularization algorithms have a weight that can turn151

off the RL behavior and regress to IL). However, the absolute performance guarantee of achieving152

the best data-covered policy of the IL-like algorithm is challenging due to its imitating nature. To153

our best knowledge, ATAC (Cheng et al., 2022) is the only algorithm that achieves robust (weak)154

policy improvement as well as guarantees absolute performance.155

4



References156

Alekh Agarwal, Sham Kakade, Akshay Krishnamurthy, and Wen Sun. Flambe: Structural com-157

plexity and representation learning of low rank mdps. Advances in neural information processing158

systems, 33:20095–20107, 2020.159

Ching-An Cheng, Tengyang Xie, Nan Jiang, and Alekh Agarwal. Adversarially trained actor critic160

for offline reinforcement learning. arXiv preprint arXiv:2202.02446, 2022.161

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.162

Advances in neural information processing systems, 34:20132–20145, 2021.163

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without164

exploration. In International Conference on Machine Learning, pages 2052–2062, 2019.165

Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline rl? In166

International Conference on Machine Learning, pages 5084–5096. PMLR, 2021.167

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: Model-168

based offline reinforcement learning. In NeurIPS, 2020.169

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy q-170

learning via bootstrapping error reduction. Advances in Neural Information Processing Systems,171

32:11784–11794, 2019.172

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline173

reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191,174

2020.175

Romain Laroche, Paul Trichelair, and Remi Tachet Des Combes. Safe policy improvement with176

baseline bootstrapping. In International Conference on Machine Learning, pages 3652–3661.177

PMLR, 2019.178

Qinghua Liu, Alan Chung, Csaba Szepesvári, and Chi Jin. When is partially observable reinforce-179

ment learning not scary? In Conference on Learning Theory, volume 178, pages 5175–5220.180

PMLR, 2022.181

Paria Rashidinejad, Banghua Zhu, Cong Ma, Jiantao Jiao, and Stuart Russell. Bridging offline rein-182

forcement learning and imitation learning: A tale of pessimism. Advances in Neural Information183

Processing Systems, 34:11702–11716, 2021.184

Masatoshi Uehara and Wen Sun. Pessimistic model-based offline reinforcement learning under185

partial coverage. In International Conference on Learning Representations, 2021.186

Sara A van de Geer. Empirical Processes in M-estimation, volume 6. Cambridge university press,187

2000.188

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.189

arXiv preprint arXiv:1911.11361, 2019.190

Tengyang Xie, Ching-An Cheng, Nan Jiang, Paul Mineiro, and Alekh Agarwal. Bellman-consistent191

pessimism for offline reinforcement learning. Advances in neural information processing systems,192

34:6683–6694, 2021a.193

Tengyang Xie, Nan Jiang, Huan Wang, Caiming Xiong, and Yu Bai. Policy finetuning: Bridg-194

ing sample-efficient offline and online reinforcement learning. Advances in neural information195

processing systems, 34:27395–27407, 2021b.196

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn,197

and Tengyu Ma. Mopo: Model-based offline policy optimization. Advances in Neural Information198

Processing Systems, 33:14129–14142, 2020.199

5



Tong Zhang. From ε-entropy to kl-entropy: Analysis of minimum information complexity density200

estimation. The Annals of Statistics, 34(5):2180–2210, 2006.201

6



Appendix202

A Proofs from Section 3203

A.1 Technical Tools204

Lemma 3 (Simulation lemma). Consider any two MDP model M and M ′, and any π : S → ∆(A),205

we have206

|JM (π)− JM ′(π)| ≤ Vmax

1− γ
Edπ [DTV (PM (·|s, a), PM ′(·|s, a))] + 1

1− γ
Edπ [|RM (s, a)−RM ′(s, a)|] .

Lemma 3 is the standard simulation lemma in model-based reinforcement learning literature, and its207

proof can be found in, e.g., Uehara and Sun (2021, Lemma 7).208

A.2 Guarantees about Version Space209

Lemma 4. Let M⋆ be the ground truth model. Then, with probability at least 1− δ, we have210

max
M∈M

LD(M)− LD(M
⋆) ≤ O (log(|M|/δ)) ,

where LD is defined in Eq. (2).211

Proof of Lemma 4. By Lemma 6, we know212

max
M∈M

log ℓD(M)− log ℓD(M
⋆) ≤ log(|M|/δ). (4)

In addition, by Xie et al. (2021a, Theorem A.1) (with setting γ = 0), we know w.p. 1− δ,213 ∑
(s,a,r,s′)∈D

(R⋆(s, a)− r)
2 − min

M∈M

∑
(s,a,r,s′)∈D

(RM (s, a)− r)
2 ≲ log(|M|/δ). (1)

Combining the Eqs. (1) and (4), we have w.p. 1− δ,214

max
M∈M

LD(M)− LD(M
⋆)

≤ max
M∈M

log ℓD(M)− min
M∈M

∑
(s,a,r,s′)∈D

(RM (s, a)− r)
2 − LD(M

⋆)

≲ log(|M|/δ).

This completes the proof.215

Lemma 5. For any M ∈ M, we have with probability at least 1− δ,216

Eµ

[
DTV (PM (·|s, a), P ⋆(·|s, a))2 + (RM (s, a)−R⋆(s, a))

2
]

≤ O
(
maxM ′∈M LD(M

′)− LD(M) + log(|M|/δ)

n

)
,

where LD is defined in Eq. (2).217

Proof of Lemma 5. By Lemma 7, we have w.p. 1− δ,218

n · Eµ

[
DTV (PM (·|s, a), P ⋆(·|s, a))2

]
≲ log ℓD(M

⋆)− log ℓD(M) + log(|M|/δ). (5)

Also, we have219

n · Eµ

[
(RM (s, a)−R⋆(s, a))

2
]

(6)

= n · Eµ

[
(RM (s, a)− r)

2
]
− n · Eµ

[
(R⋆(s, a)− r)

2
]

(see, e.g., Xie et al., 2021a, Eq. (A.10) with γ = 0)
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≲
∑

(s,a,r,s′)∈D

(RM (s, a)− r)
2 −

∑
(s,a,r,s′)∈D

(R⋆(s, a)− r)
2
+ log(|M|/δ),

where the last inequality is a direct implication of Xie et al. (2021a, Lemma A.4) and 1 = 1.220

Combining Eqs. (5) and (6), we obtain221

n · Eµ

[
DTV (PM (·|s, a), P ⋆(·|s, a))2 + (RM (s, a)−R⋆(s, a))

2
]

≲ log ℓD(M
⋆)−

∑
(s,a,r,s′)∈D

(R⋆(s, a)− r)
2 − log ℓD(M) +

∑
(s,a,r,s′)∈D

(RM (s, a)− r)
2
+ log(|M|/δ)

= LD(M
⋆)− LD(M) + log(|M|/δ)

≤ max
M ′∈M

LD(M
′)− LD(M) + log(|M|/δ).

This completes the proof.222

223

A.3 MLE Guarantees224

We use ℓD(M) to denote the likelihood of model M = (P,R) with offline data D, where225

ℓD(M) =
∏

(s,a,r,s′)∈D

PM (s′|s, a). (7)

For the analysis around maximum likelihood estimation, we largely follow the proving idea of Agar-226

wal et al. (2020); Liu et al. (2022), which is inspired by Zhang (2006).227

The next lemma shows that the ground truth model M⋆ has a comparable log-likelihood compared228

with MLE solution.229

Lemma 6. Let M⋆ be the ground truth model. Then, with probability at least 1− δ, we have230

max
M∈M

log ℓD(M)− log ℓD(M
⋆) ≤ log(|M|/δ). (8)

Proof of Lemma 6. The proof of this lemma is obtained by a standard argument of MLE (see, e.g.,231

van de Geer, 2000). For any M ∈ M,232

E [exp (log ℓD(M)− log ℓD(M
⋆))] = E

[
ℓD(M)

ℓD(M⋆)

]
= E

[ ∏
(s,a,r,s′)∈D PM (s′|s, a)∏
(s,a,r,s′)∈D PM⋆(s′|s, a)

]

= E

 ∏
(s,a,r,s′)∈D

PM (s′|s, a)
PM⋆(s′|s, a)


= E

 ∏
(s,a)∈D

E
[
PM (s′|s, a)
PM⋆(s′|s, a)

∣∣∣∣ s, a]


= E

 ∏
(s,a)∈D

∑
s′,r

PM (s′|s, a)


= 1. (9)

Then by Markov’s inequality, we obtain233

P [(log ℓD(M)− log ℓD(M
⋆)) > log(1/δ)]

≤ E [exp (log ℓD(M)− log ℓD(M
⋆))]︸ ︷︷ ︸

=1 by Eq. (9)

· exp [− log(1/δ)] = δ.
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Therefore, taking a union bound over M, we obtain234

P [(log ℓD(M)− log ℓD(M
⋆)) > log(|M|/δ)] ≤ δ.

This completes the proof.235

The following lemma shows that, the on-support error of any model M ∈ M can be captured via236

its log-likelihood (by comparing with the MLE solution).237

Lemma 7. For any M = (P,R), we have with probability at least 1− δ,238

Eµ

[
DTV (P (·|s, a), P ⋆(·|s, a))2

]
≤ O

(
log ℓD(M

⋆)− log ℓD(M) + log(|M|/δ)

n

)
,

where ℓD(·) is defined in Eq. (7).239

Proof of Lemma 7. By Agarwal et al. (2020, Lemma 25), we have240

Eµ

[
DTV (P (·|s, a), P ⋆(·|s, a))2

]
≤ − 2 logEµ×P⋆

[
exp

(
−1

2
log

(
P ⋆(s′|s, a)
P (s′|s, a)

))]
(10)

Eµ

[
DTV (R(·|s, a), R⋆(·|s, a))2

]
≤ − 2 logEµ×R⋆

[
exp

(
−1

2
log

(
R⋆(r|s, a)
R(r|s, a)

))]
,

where µ×P ⋆ and µ×R⋆ denote the ground truth offline joint distribution of (s, a, s′) and (s, a, r).241

Let D̃ = {(s̃i, ãi, r̃i, s̃′i)}ni=1 ∼ µ be another offline dataset that is independent to D. Then,242

− n · logEµ×P⋆

[
exp

(
−1

2
log

(
P ⋆(s′|s, a)
P (s′|s, a)

))]
= −

n∑
i=1

logE(s̃i,ãi,s̃′i)∼µ

[
exp

(
−1

2
log

(
P ⋆(s̃′i|s̃i, ãi)
P (s̃′i|s̃i, ãi)

))]

= − logED̃∼µ

[
exp

(
n∑

i=1

−1

2
log

(
P ⋆(s̃′i|s̃i, ãi)
P (s̃′i|s̃i, ãi)

)) ∣∣∣∣∣ D
]

= − logED̃∼µ

exp
 ∑

(s,a,s′)∈D̃

−1

2
log

(
P ⋆(s′|s, a)
P (s′|s, a)

) ∣∣∣∣∣∣ D
 . (11)

We use ℓP (s, a, s′) as the shorthand of − 1
2 log

(
P⋆(s|s,a)
P (s′|s,a)

)
, for any (s, a, s′) ∈ S×A×S. By Agar-243

wal et al. (2020, Lemma 24) (see also Liu et al., 2022, Lemma 15), we know244

ED∼µ

exp
 ∑

(s,a,s′)∈D

ℓP (s, a, s
′)− logED̃∼µ

exp
 ∑

(s,a,s′)∈D̃

ℓP (s, a, s
′)

 ∣∣∣∣∣∣ D
− log |M|

 ≤ 1.

Thus, we can use Chernoff method as well as a union bound on the equation above to obtain the245

following exponential tail bound: with probability at least 1− δ, we have for all (P,R) = M ∈ M,246

− logED̃∼µ

exp
 ∑

(s,a,s′)∈D̃

ℓP (s, a, s
′)

 ∣∣∣∣∣∣ D
 ≤ −

∑
(s,a,s′)∈D

ℓP (s, a, s
′) + 2 log(|M|/δ). (12)

Plugging back the definition of ℓP and combining Eqs. (10) to (12), we obtain247

n · Eµ

[
DTV (P (·|s, a), P ⋆(·|s, a))2

]
≤ 1

2

∑
(s,a,s′)∈D

log

(
P ⋆(s|s, a)
P (s′|s, a)

)
+ 2 log(|M|/δ). (13)

By the same steps of obtaining to Eq. (13), we also have248

n · Eµ

[
DTV (R(·|s, a), R⋆(·|s, a))2

]
≤ 1

2

∑
(s,a,r′)∈D

log

(
R⋆(s|s, a)
R(s′|s, a)

)
+ 2 log(|M|/δ). (14)

9



Combining Eqs. (13) and (14), we obtain249

n · Eµ

[
DTV (P (·|s, a), P ⋆(·|s, a))2 +DTV (R(·|s, a), R⋆(·|s, a))2

]
≲

∑
(s,a,s′)∈D

log

(
P ⋆(s|s, a)
P (s′|s, a)

)
+

∑
(s,a,r′)∈D

log

(
R⋆(s|s, a)
R(s′|s, a)

)
+ log(|M|/δ)

= log ℓD(M
⋆)− log ℓD(M) + log(|M|/δ). (ℓD(·) is defined in Eq. (7))

This completes the proof.250

A.4 Proof of Main Theorems251

Proof of Theorem 1. By the optimality of π̂ (from Eq. (3)), we have252

J(π†)− J(π̂) = J(π†)− J(πref)− [J(π̂)− J(πref)]

≤ J(π†)− J(πref)− min
M∈Mα

[JM (π̂)− JM (πref)]

(by Lemma 6, we have M⋆ ∈ Mα)

≤ J(π†)− J(πref)− min
M∈Mα

[
JM (π†)− JM (πref)

]
, (15)

where the last step is because of π† ∈ Π By the simulation lemma (Lemma 3), we know for any253

policy π and any M ∈ Mα,254

|J(π)− JM (π)| ≤ Vmax

1− γ
Edπ [DTV (PM (·|s, a), P ⋆(·|s, a))] + 1

1− γ
Edπ [|RM (s, a)−R⋆(s, a)|]

≤ Vmax

1− γ

√
Edπ

[
DTV (PM (·|s, a), P ⋆(·|s, a))2

]
+

1

1− γ

√
Edπ

[
(RM (s, a)−R⋆(s, a))

2
]

≲
Vmax

1− γ

√
Edπ

[
DTV (PM (·|s, a), P ⋆(·|s, a))2 + (RM (s, a)−R⋆(s, a))

2
]

(a ≲ b means a ≤ O(b))

≤
Vmax

√
CM(π)

1− γ

√
Eµ

[
DTV (PM (·|s, a), P ⋆(·|s, a))2 + (RM (s, a)−R⋆(s, a))

2
]

≲
Vmax

√
CM(π)

1− γ

√
maxM ′∈M LD(M ′)− LD(M) + log(|M|/δ)

n
(by Lemma 5)

≲
Vmax

√
CM(π)

1− γ

√
log(|M|/,δ)

n
(16)

where the last step is because maxM ′∈M LD(M
′)− LD(M) ≤ α = O(log(|M|/δ)/n by Eq. (1).255

Combining Eqs. (15) and (16), we obtain256

J(π†)− J(π̂) ≲

[√
CM(π†) +

√
CM(πref)

]
· Vmax

1− γ

√
log(|M|/,δ)

n
.

This completes the proof.257

Proof of Theorem 2.
J(πref)− J(π̂) = J(πref)− J(πref)− [J(π̂)− J(πref)]

≤ − min
M∈Mα

[JM (π̂)− JM (πref)] (by Lemma 6, we have M⋆ ∈ Mα)

= −max
π∈Π

min
M∈Mα

[JM (π)− JM (πref)] (by the optimality of π̂ from Eq. (3))

≤ − min
M∈Mα

[JM (πref)− JM (πref)] (πref ∈ Π)

= 0.

258
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