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Abstract
This paper introduces PIXART-δ, a text-to-image
synthesis framework that integrates the Latent
Consistency Model (LCM) and ControlNet into
the advanced PIXART-α model. PIXART-α is
recognized for its ability to generate high-quality
images of 1024px resolution through a remark-
ably efficient training process. The integration of
LCM in PIXART-δ significantly accelerates the
inference speed, enabling the production of high-
quality images in just 2-4 steps. Notably, PIXART-
δ achieves a breakthrough 0.5 seconds for gener-
ating 1024 × 1024 pixel images, marking a 7×
improvement over the PIXART-α. Additionally,
PIXART-δ is designed to be efficiently trainable
on 32GB V100 GPUs within a single day. With
its 8-bit inference capability (von Platen et al.,
2023), PIXART-δ can synthesize 1024px images
within 8GB GPU memory constraints, greatly en-
hancing its usability and accessibility. Further-
more, incorporating a ControlNet-like module en-
ables fine-grained control over text-to-image dif-
fusion models. We introduce a novel ControlNet-
Transformer architecture, specifically tailored for
Transformers, achieving explicit controllability
alongside high-quality image generation. As a
state-of-the-art, open-source image generation
model, PIXART-δ offers a promising alternative
to the Stable Diffusion series, contributing signifi-
cantly to text-to-image synthesis.

1. Introduction
In this paper, we propose PIXART-δ, which incorporates
LCM (Luo et al., 2023a) and ControlNet (Zhang et al., 2023)
into PIXART-α (Chen et al., 2023). Notably, PIXART-α is

*Equal contribution 1Dalian University of Technology 2IIIS, Ts-
inghua University 3The University of Hong Kong. Correspondence
to: Enze Xie <xieenze@connect.hku.hk>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

an advanced high-quality 1024px diffusion transformer text-
to-image synthesis model, developed by our team, known
for its superior image generation quality achieved through
an exceptionally efficient training process.

We incorporate LCM into the PIXART-δ to accelerate the
inference. LCM (Luo et al., 2023a) enables high-quality
and fast inference with only 2∼4 steps on pre-trained LDMs
by viewing the reverse diffusion process as solving an aug-
mented probability flow ODE (PF-ODE), which enables
PIXART-δ to generate samples within (∼4) steps while pre-
serving high-quality generations. As a result, PIXART-δ
takes 0.5 seconds per 1024 × 1024 image on an A100 GPU,
improving the inference speed by 7× compared to PIXART-
α. We also support LCM-LoRA (Luo et al., 2023b) for a
better user experience and convenience.

In addition, we incorporate a ControlNet-like module into
the PIXART-δ. ControlNet (Zhang et al., 2023) demon-
strates superior control over text-to-image diffusion models’
outputs under various conditions. However, it’s important
to note that the model architecture of ControlNet is intri-
cately designed for UNet-based diffusion models, and we
observe that a direct replication of it into a Transformer
model proves less effective. Consequently, we propose
a novel ControlNet-Transformer architecture customized
for the Transformer model. Our ControlNet-Transformer
achieves explicit controllability and obtains high-quality
image generation.

2. LCM in PIXART-δ
In this section, we employ Latent Consistency Distilla-
tion (LCD) (Luo et al., 2023a) to train PIXART-δ on 120K
internal image-text pairs. In Sec. 2.1, we first provide a
detailed training algorithm and ablation study on specific
modifications. In Sec. 2.2, we illustrate the training effi-
ciency and the speedup of LCM of PIXART-δ. Lastly, in
Sec. B.1, we present the training details of PIXART-δ.

2.1. Algorithm and modification

LCD Algorithm. Deriving from the original Consis-
tency Distillation (CD) (Song et al., 2023) and LCD (Luo
et al., 2023a) algorithm, we present the pseudo-code for
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PIXART-δ with classifier-free guidance (CFG) in Algo-
rithm 1. Specifically, as illustrated in the training pipeline
shown in Fig. 1, three models – Teacher, Student, and EMA
Model – function as denoisers for the ODE solver Ψ(·, ·, ·, ·),
fθ, and fθ− , respectively. During the training process, we
begin by sampling noise at timestep tn+k, where the Teacher
Model is used for denoising to obtain ẑTt0

. We then utilize
a ODE solver Ψ(·, ·, ·, ·) to calculate ẑΨ,ω

tn from ztn+k
and

ẑTt0
. EMA Model is then applied for further denoising, re-

sulting in ẑEt0
. In parallel, the Student Model denoises the

sample ztn+k
at tn+k to derive ẑSt0

. The final step involves
minimizing the distance between ẑSt0

and ẑEt0
, also known

as optimizing the consistency distillation objective.

Different from the original LCM, which selects variable
guidance scale ω from a designated range [ωmin, ωmax], in
our implementation, we set the guidance scale as a constant
ωfix, removing the guidance scale embedding operation in
LCM (Luo et al., 2023a) for convenience.
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Figure 1: Training pipeline of PIXART-δ. The upper section
of the diagram offers a high-level overview of the training
process, depicting the sequential stages of noise sampling
and denoising along a specific ODE trajectory. Sequence
numbers are marked on the mapping lines to clearly indicate
the order of these steps. The lower section delves into the
intricate roles of the pre-trained (teacher) model and the
student model, revealing their respective functions within
the upper block’s training process, with corresponding se-
quence numbers also marked for easy cross-referencing.

Effect of Hyper-parameters. Our study complements two
key aspects of the LCM training process, CFG scale and
batch size. These factors are evaluated using FID and CLIP
scores as performance benchmarks. The terms ‘bs’, ‘ω fix’,
and ‘ω Embed’ in the Fig. 2 represent training batch size,
fixed guidance scale, and embedded guidance scale, respec-
tively.

• CFG Scale Analysis: Referencing Fig. 2, we examine
three distinct CFG scales: (1) 3.5, utilized in our ab-
lation study; (2) 4.5, which yieldes optimal results in
PIXART-α; and (3) a varied range of CFG scale embed-
dings (ω Embed), the standard approach in LCM. Our

research reveals that employing a constant guidance
scale, instead of the more complex CFG embeddings
improves performance in PIXART-δ and simplifies the
implementation.

• Batch Size Examination: The impact of batch size
on model performance is assessed using two config-
urations: 2 V100 GPUs and 32 V100 GPUs; each
GPU loads 12 images. As illustrated in Fig. 2, our re-
sults indicate that larger batch size positively influences
FID and CLIP scores. However, as shown in Fig. 8,
PIXART-δ can also converge fast and get comparable
image quality with smaller batch sizes.

• Convergence: Finally, we observe that the training pro-
cess tends to reach convergence after approximately
5,000 iterations. Beyond this phase, further improve-
ments are minimal.

(a) FID v.s. Iteration (b) CLIP score v.s. Iteration

Figure 2: Ablation study of FID and CLIP Score on various
strategies for classifier-free guidance scale (ω) and their
impact on distillation convergence during training.

Noise Schedule Adjustment. Noise schedule is one of
the most important parts of the diffusion process. Follow-
ing (Hoogeboom et al., 2023; Chen, 2023), we adapt the
noise schedule function in LCM to align with the PIXART-α
noise schedule, which features a higher logSNR (signal-to-
noise ratio) during the distillation training. Fig. 3 visual-
izes the noise schedule functions under different choices
of PIXART-δ or LCM, along with their respective logSNR.
Notably, PIXART-δ can parameterize a broader range of
noise distributions, a feature that has been shown further to
enhance image generation (Hoogeboom et al., 2023; Chen,
2023).

(b) Noise schedule v.s. Time step (c) LogSNR v.s. Time step(a) Beta v.s. Time step

Figure 3: Instantiations of βt, noise schedule function and
the corresponding logSNR between PIXART-δ and LCM.
βt is the coefficient in the diffusion process zt =

√
ᾱtz0 +√

1− ᾱtϵ, αt = 1− βt.
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2.2. Training efficiency and inference speedup

For training, as illustrated in Tab. 1, we successfully conduct
the distillation process within a 32GB GPU memory con-
straint, all while retaining the same batch size and support-
ing image resolution up to 1024 × 1024 with SDXL-LCM.
Such training efficiency remarkably enables PIXART-δ to
be trained on a wide array of consumer-grade GPU speci-
fications. In light of the discussions in Sec.2.1, regarding
the beneficial impact of larger batch size, our method no-
tably makes it feasible to utilize larger batch size even on
GPUs with limited memory capacity. Refer to B.1 for more
training details.

For inference, as shown in Tab. 2 and Fig. 7, we present a
comparative analysis of the generation speed achieved by
our model, PIXART-δ, against other methods like SDXL
LCM-LoRA, PIXART-α, and the SDXL standard across
different hardware platforms. Consistently, PIXART-δ
achieves 1024x1024 high resolution image generation
within 0.5 seconds on an A100, and also completes the
process in a mere 3.3 seconds on a T4, 0.8 seconds on a
V100, all with a batch size of 1. This is a significant im-
provement over the other methods, where, for instance, the
SDXL standard takes up to 26.5 seconds on a T4 and 3.8
seconds on an A100. The efficiency of PIXART-δ is evident
as it maintains a consistent lead in generation speed with
only 4 steps, compared to the 14 and 25 steps required by
PIXART-α and SDXL standard, respectively. Notably, with
the implementation of 8-bit inference technology, PIXART-
δ requires less than 8GB of GPU VRAM. This remarkable
efficiency enables PIXART-δ to operate on a wide range of
GPU cards, and it even opens up the possibility of running
on a CPU.

Table 1: Illustration of the training setting between LCM
on PIXART-δ and Stable Diffusion models. (* stands for
Stable Diffusion Dreamshaper-v7 finetuned version)

Methods PIXART-δ SDXL LCM-LoRA SD-V1.5-LCM*

Data Volume 120K 650K 650K
Resolution 1024px 1024px 768px
Batch Size 12× 32 12× 64 16× 8

GPU Memory ∼32G ∼80G ∼80G

Table 2: Illustration of the generation speed we achieve on
various devices. These tests are conducted on 1024× 1024
resolution with a batch size of 1 in all cases. Corresponding
image samples are shown in the Fig. 7

Hardware PIXART-δ SDXL LCM-LoRA PIXART-α SDXL standard

4 steps 4 steps 14 steps 25 steps

T4 3.3s 8.4s 16.0s 26.5s
V100 0.8s 1.2s 5.5s 7.7s
A100 0.5s 1.2s 2.2s 3.8s
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Figure 4: PIXART-δ integrated with ControlNet. (b):
ControlNet-UNet. Base blocks are categorized into “en-
coder” and “decoder” stages. The controlnet structure is
applied to each encoder level of PIXART-δ, and the output
is connected to the decoder stage via skip-connections. (c):
ControlNet-Transformer. The ControlNet is applied to the
first several blocks. The output of each block is added to
the output of the corresponding frozen block, serving as the
input of the next frozen block.

3. ControlNet in PIXART-δ
3.1. Architecture

ControlNet, designed for UNet architecture, employed skip
connections to enhance the integration of control signals.
Incorporating ControlNet into Transformer-based models
like PIXART-δ poses a unique challenge, as Transformers
lack distinct ”encoder” and ”decoder” blocks, making con-
ventional connections inappropriate. To address this, we
propose ControlNet-Transformer for effective integration
with Transformers.

PIXART-δ contains 28 Transformer blocks. We replace
the original zero-convolution in ControlNet with a zero
linear layer, that is, a linear layer with both weight and bias
initialized to zero. We explore the following networks:

• ControlNet-UNet (Zhang et al., 2023). To follow
the original ControlNet design, we treat the first 14
blocks as the “encoder” level of PIXART-δ, and the
last 14 blocks as the “decoder” level of PIXART-δ.
We use ControlNet to create a trainable copy of the
14 encoding blocks. Subsequently, the outputs from
these blocks are integrated by addition into the 14 skip-
connections, which link to the last 14 decoder blocks.
The network design is shown in Fig. 4 (b).

It is crucial to note that this adaptation, referred to as
ControlNet-UNet, encounters challenges due to the
absence of explicit “encoder” and “decoder” stages
and skip-connections in the original Transformer de-
sign. This adaptation departs from the conventional
architecture of the Transformer, which hampers the
effectiveness and results in suboptimal outcomes.
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• ControlNet-Transformer. To address these chal-
lenges, we propose a novel and specifically tailored
design for Transformers, illustrated in Fig. 4 (c). This
innovative approach aims to seamlessly integrate the
ControlNet structure with the inherent characteristics
of Transformer architectures. We selectively apply the
ControlNet structure to the initial N base blocks. In
this context, we generate N trainable copies of the
first N base blocks. The output of ith trainable block
is intricately connected to a zero linear layer, and the
resulting output is then added to the output of the cor-
responding ith frozen block. Subsequently, this com-
bined output serves as the input for the subsequent
(i + 1)th frozen block. This design adheres to the
original data flow of PixArt, and our observations un-
derscore the significant enhancement in controllability
and performance achieved by ControlNet-Transformer.
This approach represents a crucial step toward harness-
ing the full potential of Transformer-based models in
such applications. The ablation study of N is described
in Sec. 3.3, and we use N = 13 as the final model.

3.2. Experiment Settings

We use a HED edge map in PIXART-δ as the condition and
conduct an ablation study on 512px generation, focusing on
network architecture variations. Specifically, we conduct
ablations on both the ControlNet-UNet and ControlNet-
Transformer. Other conditions, such as canny, will be a
future work. For ControlNet-Transformer, we ablate the
number of copied blocks, including 1, 4, 7, 13, and 27.
We extract the HED on the internal data, and the gradient
accumulation step is set as 4 following (Zhang et al., 2023)
that recommends that larger gradient accumulation leads to
improved results. The optimizer and learning rate are set
as the same setting of PIXART-δ. All the experiments are
conducted on 16 V100 GPUs with 32GB. The batch size
per GPU for experiment ControlNet-Transformer (N = 27)
is set as 2. For all other experiments, the batch size is set as
12. Our training set consists of 3M HED and image pairs.

3.3. Ablation Study

As shown in Fig. 5, ControlNet-Transformer generally out-
performs by demonstrating faster convergence and improved
performance. This superiority stems from its seamless align-
ment with the inherent data flow of Transformer architec-
tures. In contrast, ControlNet-UNet introduces an artificial
information flow between non-existent “encoder” and “de-
coder” stages, deviating from the Transformer’s natural data
processing pattern.

In our ablation study concerning the number of copied
blocks, we observe that for the majority of scenarios, such
as scenes and objects, satisfactory results can be achieved
with merely N = 1. However, in challenging edge condi-

HED
ControlNet

-UNet
Copy Block=1 Copy Block=4 Copy Block=7 Copy Block=13 Copy Block=27

ControlNet-Transformer

Copy Block=14

oil painting of a beautiful woman, funny, kind, caring, nurturing, very motherly, sweet, understanding, compassionate, forgiving.

Close up of a happy average looking Finnish older person eyes closed in bright apartment living room with a laptop computer, 
filled with beautiful flowers, youthful vitality, flowers in the ceiling

the clown has a face covered in various metal elements, in the style of highly detailed illustrations, dark white and light gray, 
symmetrical chaos, airbrush art, traincore, carving, gothcore

Figure 5: The ablation study of ControlNet-UNet and
ControlNet-Transformer. ControlNet-Transformer yields
much better results than ControlNet-UNet. The controllabil-
ity of ControlNet-Transformer increases as the number of
copy blocks increases.

tions, such as the outline edge of human faces and bodies,
performance tends to improve as N increases. Considering
a balance between computational burden and performance,
we find that N = 13 is the optimal choice in our final de-
sign. Besides, we also analyze the training steps and observe
the “sudden converge” phenomenon during the experiment.
Refer to C.1 for more details.

3.4. 1024px Results

Building upon the powerful text-to-image generation frame-
work of PixArt, our proposed PixArt-ControlNet extends
these capabilities to produce high-resolution images with
a granular level of control. This is vividly demonstrated in
the detailed visualizations presented in Fig. 9 and Fig. 10.
Upon closer inspection of these figures, it is apparent that
PixArt-ControlNet can exert precise control over the geomet-
ric composition of the resultant images, achieving fidelity
down to individual strands of hair.

4. Conclusion
In this paper, we present PIXART-δ, a better text-to-image
generation model integrating Latent Consistency Models
(LCM)for 4-step sampling acceleration while maintaining
high quality. We also propose Transformer-based Control-
Net, designed specifically for Transformer architectures,
enabling precise control over generated images. Through
extensive experiments, we demonstrate PIXART-δ’s faster
sampling and ControlNet-Transformer’s effectiveness in
high-resolution and controlled image generation. Our model
can generate high-quality 1024px and fine-grained control-
lable images in 1 second. PIXART-δ pushes the state-of-the-
art in faster and more controlled image generation, unlock-
ing new capabilities for real-time applications.
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A. Background
A.1. Consistency Model

Consistency Model (CM) and Latent Consistency Model (LCM) have made significant advancements in the field of
generative model acceleration. CM, introduced by (Song et al., 2023) has demonstrated its potential to enable faster
sampling while maintaining the quality of generated images on ImageNet dataset (Deng et al., 2009). A key ingredient of
CM is trying to maintain the self-consistency property during training (consistency mapping technique), which allows for
the mapping of any data point on a Probability Flow Ordinary Differential Equation (PF-ODE) trajectory back to its origin.

LCM, proposed by (Luo et al., 2023a), extends the success of CM to the current most challenging and popular LDMs, Stable
Diffusion (Rombach et al., 2022) and SD-XL (Podell et al., 2023) on Text-to-Image generative task. LCM accelerates the
reverse sampling process by directly predicting the solution of the augmented PF-ODE in latent space. LCM combines
several effective techniques (e.g, One-stage guided distillation, Skipping-step technique) to achieve remarkable rapid
inference speed on Stable Diffusion models and fast training convergence. LCM-LoRA (Luo et al., 2023b), training LCM
with the LoRA method (Hu et al., 2021), demonstrates strong generalization, establishing it as a universal Stable Diffusion
acceleration module. In summary, CM and LCM have revolutionized generative modeling by introducing faster sampling
techniques while preserving the quality of generated outputs, paving the way for real-time generation applications.

A.2. ControlNet

ControlNet (Zhang et al., 2023) demonstrates superior control over text-to-image diffusion models’ outputs under various
conditions (e.g., canny edge, open-pose, sketch). It introduces a special structure, a trainable copy of UNet, that allows
for the manipulation of input conditions, enabling control over the overall layout of the generated image. During training,
ControlNet freezes the origin text-to-image diffusion model and only optimizes the trainable copy. It integrates the outputs
of each layer of this copy by skip-connections into the original UNet using “zero convolution” layers to avoid harmful noise
interference.

This innovative approach effectively prevents overfitting while preserving the quality of the pre-trained UNet models,
initially trained on an extensive dataset comprising billions of images. ControlNet opens up possibilities for a wide range of
conditioning controls, such as edges, depth, segmentation, and human pose, and facilitates many applications in controlling
image diffusion models.

B. LCM in PIXART-δ
B.1. Training Details

As discussed in Sec. 2.1, we conduct our experiments in two resolution settings, 512×512 and 1024×1024, utilizing a
high-quality internal dataset with 120K images. We smoothly train the models in both resolutions by leveraging the
multi-scale image generation capabilities of PIXART-α, which supports 512px and 1024px resolutions. For both resolutions,
PIXART-δ yields impressive results before reaching 5K iterations, with only minimal improvements observed thereafter.
The training is executed on 2 V100 GPUs with a total batch size of 24, a learning rate of 2e-5, EMA rate µ = 0.95, and
using AdamW optimizer (Loshchilov & Hutter, 2017). We employ DDIM-Solver (Song et al., 2023) and a skipping step
k = 20 (Luo et al., 2023b) for efficiency. As noted in Sec. 2.1 and illustrated in Fig. 3, modifications are made to the original
LCM scheduler to accommodate differences between the pre-trained PIXART-α and Stable Diffusion models. Following
the PIXART-α approach, we alter the βt in the diffusion process from a scaled linear to a linear curve, adjusting βt0 from
0.00085 to 0.0001, and βtT from 0.012 and to 0.02 at the same time. The guidance scale ωfix is set to 4.5, identified as
optimal in PIXART-α. While omitting the Fourier embedding of ω in LCM during training, both PIXART-α and PIXART-δ
maintain identical structures and trainable parameters. This allows us to initialize the consistency function fθ(ẑ, ωfix, c, tn)
with the same parameters as the teacher diffusion model (PIXART-α) without compromising performance. Building on the
success of LCM-LoRA (Luo et al., 2023b), PIXART-δ can further easily integrate LCM-LoRA, enhancing its adaptability
for a more diverse range of applications.
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Algorithm 1 PixArt - Latent Consistency Distillation (LCD)

Input: datasetD, initial model parameter θ, learning rate η, ODE solver Ψ(·, ·, ·, ·), distance metric d(·, ·), EMA rate µ, noise schedule
α(t), σ(t), guidance scale ωfix, skipping interval k, and encoder E(·)
Encoding training data into latent space: Dz = {(z, c)|z = E(x), (x, c) ∈ D}
θ− ← θ
repeat

Sample (z, c) ∼ Dz , n ∼ U [1, N − k]
Sample ztn+k ∼ N (α(tn+k)z;σ

2(tn+k)I)

ẑ
Ψ,ωfix
tn

← ztn+k + (1 + ωfix)Ψ(ztn+k , tn+k, tn, c)− ωfixΨ(ztn+k , tn+k, tn,∅)

L(θ,θ−; Ψ)← d(fθ(ztn+k , ωfix, c, tn+k),fθ−(ẑ
Ψ,ωfix
tn

, ωfix, c, tn))

θ ← θ − η∇θL(θ,θ−)
θ− ← stopgrad(µθ− + (1− µ)θ)

until convergence

C. ControlNet in PIXART-δ
C.1. Convergence

As described in Fig. 12, we analyze the effect of training steps. The experiment is conducted on ControlNet-Transformer
(N = 13). From our observation, the convergence is very fast, with most edges achieving satisfactory results at around 1,000
training steps. Moreover, we note a gradual improvement in results as the number of training steps increases, particularly
noticeable in enhancing the quality of outline edges for human faces and bodies. This observation underscores the efficiency
and effectiveness of ControlNet-Transformer.

We observe a similar “sudden converge” phenomenon in our model, as also observed in the original ControlNet work, where
it “suddenly” adapts to the training conditions. Empirical observations indicate that this phenomenon typically occurs
between 300 to 1,000 steps, with the convergence steps being influenced by the difficulty level of the specified conditions.
Simpler edges tend to converge at earlier steps, while more challenging edges require additional steps for convergence. After
“sudden converge”, we observe an improvement in details as the number of steps increases.

100 steps 200 steps 300 steps 400 steps 500 steps 600 steps 700 steps 800 steps 900 stepsOrigin HED

Figure 6: Example of “Sudden Converge” during PixArt-ControlNet training. We empirically observe it happens before
1000 iterations.
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PIXART-δ: Fast and Controllable Image Generation

PixArt-δ (4 step) SDXL-LCM (4 step)

PixArt-δ (4 step) PixArt-α (14 step)

cherrypick 
scientist

transparent 
duck made in 
glass is flying in 
the sky

An astronaut 
capybara 
floating 
gracefully beside 
a spaceship, 
with the Earth's 
blue glow in the 
background

Pixel Art of 
Leonardo da 
Vinci's Last 
Supper Painting, 
8 bit

Figure 7: Examples of generated outputs. In the top half, the comparison is between PIXART-δ and SDXL-LCM, with 4
sampling steps. In the bottom half, the comparison involves PIXART-δ and PIXART-α (teacher model, using DPM-Solver
with 14 steps).
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PIXART-δ: Fast and Controllable Image Generation

Iter 100

A photo of beautiful mountain with realistic sunset and blue lake, highly detailed, masterpiece

Astronaut in a jungle, cold color palette, muted colors, detailed, 8k

Iter 300 Iter 1000 Iter 2500 Iter 5000

portrait photo of a girl, photograph, highly detailed face, depth of field

Self-portrait oil painting, a beautiful cyborg with golden hair, 8k

dog

Figure 8: The 4-step inference samples generated by PIXART-δ demonstrate fast convergence in LCD training on 2 V100
GPUs with a total batch size of 24. Remarkably, the complete fine-tuning process requires less than 24GB of GPU memory,
making it feasible on most contemporary consumer-grade GPUs.
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High detail PixArt-ControlNet (1024px)

Figure 9: High-resolution and fine-grained controllable image generation. The output is generated with the prompt “the map
of the final fantasy game’s main island, in the style of hirohiko araki, raymond swanland, monumental murals, mosaics,
naturalistic rendering, vorticism, use of earth tones.”
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High detail PixArt-ControlNet (1024px)

Figure 10: High-resolution and fine-grained controllable image generation. The output is generated with the prompt
“Multicultural beauty. Women of different ethnicity - Caucasian, African, Asian and Indian.”
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PIXART-δ: Fast and Controllable Image Generation

style Picasso, a boat on the river and some buildings 

painting of a port, colorful vehicles and buildingsIsometric clean pixel art image of a hidden luxury island 

drift game punk cyber style neon top view drifting car

colorful psychedelic mushrooms in a forest at night A palace entirely made of glass, anime style

Ancient girls, Look like about 20 years old

farm workers in the style of photorealistic detailing two towers mordor, terrifying, fantastic dark, foggy

A glossy beautiful young girl, diverse flowers on body

Figure 11: More examples of our PixArt-ControlNet generated images.
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HED 1K steps 3K steps 8K steps 18K steps 35K steps

photo of 4 smiling happy modern wives in the foreground, 4 men in the background Pastel Art

Origin No prompt

With prompt

child africa, double exposure

young woman is sitting on the sunned floor, in the style of miwa komatsu, dark blue and dark black, translucent color, 
mamiya rb67, asaf hanuka, exotic, katsushika ōi

Antique rare Asian, sticker style white background

the garden of eden ih the bible, religious lithograph style

Asian-inspired, 1920s aesthetic, featuring a moon goddess sitting on a crescent moon. The moon goddess is portrayed 
with her dress and hair flowing gracefully in the breeze, giving a sense of ethereal beauty. She sits on the crescent 

moon, radiating a serene and captivating presence. etc.

surreal painting of a futuristic typewriter, sitting on a desk, abstract acrylic, light and shadow, minimal

Capture the idea of humans establishing colonies on other planets or moons, with spaceports and habitats dotting 
extraterrestrial landscapes.

Figure 12: The influence of training steps. The convergence is fast, with details progressively improving and aligning more
closely with the HED edge map as the training steps increase.
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