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Abstract

The level of autonomy is increasing in systems spanning multiple domains, but
these systems still experience failures. One way to mitigate the risk of failures is
to integrate human oversight of the autonomous systems and rely on the human
to take control when the autonomy fails. In this work, we formulate a method
of collaborative decision making through action suggestions that improves action
selection without taking control of the system. Our approach uses each suggestion
efficiently by incorporating the implicit information shared through suggestions to
modify the agent’s belief and achieves better performance with fewer suggestions
than naively following the suggested actions. We assume collaborative agents
share the same objective and communicate through valid actions. By assuming
the suggested action is dependent only on the state, we can incorporate the sug-
gested action as an independent observation of the environment. The assumption
of a collaborative environment enables us to use the agent’s policy to estimate the
distribution over action suggestions. We propose two methods that use suggested
actions and demonstrate the approach through simulated experiments. The pro-
posed methodology results in increased performance while also being robust to
suboptimal suggestions. '

1 Introduction

Autonomous systems and humans have different strengths. Moravec [1] claimed in 1988 that “It
is comparatively easy to make computers exhibit adult level performance on intelligence tests or
playing checkers, and difficult or impossible to give them the skills of a one-year-old when it comes
to perception and mobility.” Thirty years later, computers have achieved superhuman level per-
formance on many games like Go and StarCraft II [2], [3]. Despite major strides in perception,
algorithms still exhibit brittleness and struggle with consistency in tasks that most would consider
trivial for a young adult, like reliably generating a plausible sentence from a list of words [4]-[7].

Humans often make suboptimal decisions; however, they are exceptionally good at finding ways to
accomplish tasks, balance risk, reason through unstructured problems, and incorporate new infor-
mation into decisions without prior experience in a situation. Systems integrating autonomy often
take advantage of human strengths by using a human-on-the-loop structure. This framework allows
for humans to use their experience to recognize situations where the autonomy might struggle or is
failing and to take control [8], [9]. We hypothesize that instead of requiring the human to assume
control, an agent can use occasional control inputs from the human-on-the-loop in the form of action
suggestions to improve its understanding of the environment.

!Code is available at https://github.com/sisl/action_suggestions.
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In this work, we explore a method of collaboration that enables combining benefits of heterogeneous
systems like humans and machines through action suggestions versus direct control. Our approach
was inspired by the way that we see humans incorporate action suggestions in daily life. A real world
example is a pilot flying an aircraft while coordinating with air traffic control (ATC). In the United
States, there are various services ATC provides to ensure safety. Many of these services provide
suggestions to pilots, but do not mandate an action or remove responsibilities from the pilot (e.g.
radar assistance to VFR aircraft) [10]. Consider a situation where a pilot is flying at low altitude,
has knowledge of another aircraft to the left, and an ATC controller recommends a turn to the left.
This action suggestion would cause the pilot to consider situations where a left turn towards traffic
would be optimal (e.g. terrain ahead) and reassess their belief about the environment.

In our problem of interest, we are assuming the agent has the same objective as a suggester and
use action suggestions as additional information about the environment to increase the quality of
the action selection. We avoid having to share exact belief states between agents by treating the
suggested action as an observation. Using the assumption that the suggester is collaborative, we use
the agent’s policy to infer a distribution over suggested actions and use this distribution to update
the agent’s belief. This approach allows collaboration between different types of systems and avoids
explicit translation of complex belief spaces.

In this paper, we first review related work in section 2 and discuss how our approach differs from
previous methods. Our primary contributions are in section 3. We first provide an overview of
a partially observable Markov decision process (POMDP) and then outline the problem setting.
Section 3.3 demonstrates how we can view action suggestions as independent observations and
modify the belief update process. We then provide two methods to estimate the distribution over
suggested actions using the agent’s policy in order to update the belief in section 3.4. Section 4
presents the experiments and discusses key results demonstrating the effectiveness of our approach.

2 Previous Work

Collaborative sequential decision making between two agents is a form of shared autonomy. The
exact definition of shared autonomy and control varies in the literature [11]. A common theme
among the approaches is combining inputs between two agents to achieve performance better than
the agent’s acting alone. The problems often involve one of two main categories: 1) assistance from
an autonomous agent to a human or 2) assistance from a human to the autonomous system. The
problem framework we are considering aligns with the second category.

In the first category, an autonomous agent is seeking to perform actions to assist the other agent
(often a human). Dragan and Srinivasa [12] discuss key aspects of this category and decompose it
into prediction of the user’s intent and arbitration between the user’s inputs and the action chosen by
the autonomous system. Nguyen ef al. [13] propose a method that decomposes a game into subtasks
that can be modelled as a Markov decision process. The autonomous agent then infers the subtask
the other agent is attempting to accomplish and selects actions to assist. Others model this category
as a POMDP where the uncertainty is around the goal of the assisted agent [14]-[16].

The second category often involves forms of corrections. Losey and O’Malley [17] use aspects of
optimal control to learn from physical human interventions. Nemec et al. [18] first learn from human
demonstrations and then refine the policy through incremental learning from kinesthetic guidance
of the autonomous agent. Other approaches perform the corrections in an iterative cycle during a
planning process. Reardon et al. [19] present a method that allows a human to interactively provide
feedback during planning. The feedback is in the form of hints or suggestions and is used to modify
the optimization process. This approach is similar to the concept of reward shaping in reinforcement
learning.

Cognetti et al. [20] provide a method that allows for real time modifications of a path while Hagenow
et al. [21] present a method that permits an outside agent to modify key robot state variables. These
changes are then blended with the original control. The concept of following guidance versus acting
independently and how to blend the two was explored by Evrard and Kheddar [22] where they use
two controllers and alternate roles of following and leading. Medina et al. [23] present a method
that selects between two strategies depending on the level of disagreement between agents.



Another related area of research is imitation learning. Within this field, there are methods to learn
from feedback by querying the expert during training or expert intervention real-time [24], [25].
These methodologies are a form of human-machine collaboration by using the expert knowledge of
the human to train or correct the system and then letting the system perform the task autonomously.
These approaches generally rely on strict assumptions or an explicit model of the other agent so
the autonomous system can interpret inputs in a way to reason how to integrate them. In the first
category, Jeon et al. [26] propose a model structure to map human inputs to different actions based
on the robot’s confidence in the goal. Reddy et al. [27] deviate from the use of model based methods
by using human-in-the-loop deep reinforcement learning to map from observations and user inputs
to an agent action.

Our approach builds on the concept of mapping user inputs to an agent action. However, we differ
from other methods in that we do not build an explicit model of the suggester nor learn a mapping
that might be suggester dependent. We achieve this mapping by assuming the suggester is collab-
orative and shares the same objective when providing inputs. This assumption enables the use of
the key insight from Spencer et al. [25], ... any amount of expert feedback ... provides information
about the quality of the current state, the quality of the action, or both”, and we build an implicit
model of the suggester using only the agent’s knowledge of the environment and the agent’s policy.

3 Action Suggestions as Observations

3.1 Background

A partially observable Markov decision process (POMDP) is a mathematical framework to model
sequential decision making problems under uncertainty [28]. A POMDP is represented as a tuple
(8,A4,0,T,0,R,~), where S is a set of states, A is a set of actions, and O is a set of observations.
At each time step, an agent starts in state s € S and chooses an action, a € A. The agent transitions
from state s to state s’ based on the transition function T'(s, a, s’) = p(s’ | s, a), which represents the
conditional probability of transitioning to state s’ from state s after choosing action a. The agent does
not directly observe the state, but receives an observation o € O based on the observation function
O(s',a,0) = p(o | §',a), which represents the conditional probability of observing observation o
given the agent chose action a and transitioned to state s’.

At each time step the agent receives a reward, R(s, a) € R for choosing action a from state s. For
infinite horizon POMDPs, the discount factor v € [0, 1) is applied to the reward at each time step.
The goal of an agent is to maximize the total expected reward E [>~,° ;7' R (s, a;)], where s; and
a; are the state and action at time ¢. One method to solve a POMDP is to infer a belief distribution
b € B over S and then solve for a policy 7 that maps the belief to an action where B is the set of
beliefs over S [29]. Executing with this type of policy requires maintaining b through updates after
each time step.

Policies can be generated offline or computed online during execution. In this work, we focus on
applying our method to policies generated offline and leave the application to online solvers for
future work. Many approximate offline solvers involve point-based value iteration. The idea is to
sample the belief space and perform backup operations on the sampled points of the belief space,
iteratively applying the Bellman equation until the value function converges. PBVI [30], HSVI2
[31], FSVI [32], and SARSOP [33] are examples of such an approach, though they differ in the
selection of initial belief points, the generation of points at each iteration, and the choice of which
points to backup. These algorithms represent the policy as a set of alpha vectors. In this work, we
used SARSOP to generate the policies; however, any algorithm that produces a policy where the
utility of a belief can be calculated could be implemented with little change to our methods.

3.2 Problem Formulation

For a given problem of sequential decision making under uncertainty, we choose to model the prob-
lem as a POMDP and use a point-based solution method. In this work, we assume discrete state,
action, and observation spaces but the methods can be generalized to continuous spaces. Our prob-
lem involves two entities: an autonomous system using the POMDP policy to perform actions and
interact with the environment that we will refer to as the agent, and a suggester providing action
suggestions to the agent. The suggester can observe the environment, but not interact or affect the



state except to provide recommended actions to the agent. The suggester is not required to provide
suggestions but can provide a maximum of one action suggestion at each time step.

The agent and suggester are collaborative and share the same objective of maximizing the total ex-
pected reward. The agent and suggester can receive different information and maintain separate
beliefs of the environment. The separation of the actors allows each to process and receive informa-
tion independently and capitalize on strengths differently. An example problem is an expert human
receiving observations not modeled by an autonomous robot and providing intermittent suggestions.

3.3 Incorporating Action Suggestions

There are different ways for the agent to use action suggestions. One approach would be to model
the suggester in the original POMDP. This approach is similar to previous shared autonomy work
(section 2). Modeling the suggester within the POMDP would provide a fundamental way of incor-
porating suggestions, but would require a priori knowledge of the suggester to develop an explicit
model to solve for the policy and also require maintaining a belief over the model during execution.
A simple method that does not require a model of the suggester would be for the agent to naively
follow each suggestion. A similar and more robust method would be to follow a suggestion if it
meets some defined criteria, thus potentially disregarding suboptimal suggestions (e.g. only follow
a suggestion if it is a specific action). These approaches are simple and can incorporate suggestions;
however, they do not benefit from incorporating implied information contained with each suggested
action.

Applying our inspirations we introduced in the flight example to our problem, each action suggestion
contains information related to the suggester’s belief of the environment. We propose treating each
action suggestion as an observation of the state in order to update the agent’s belief. This idea enables
the suggester to influence the agent while the agent remains autonomous. Our problem assumes the
suggester and the agent maintain independent beliefs. If we further assume the suggested action is
not influenced by the agent’s previous action, the suggested action is only dependent on the state.
The independence of the agent’s previous action and the suggester allows a modification of our belief
update process that only involves the probability of receiving the suggested action given the current
state. The suggested action is not always independent of the agent’s action, but the assumption that
it only depends on the current state is often reasonable.

Our belief at time ¢ over state s € S with observations 0 € O and action suggestions 0° € A is
(St | ap:t—1, 001, 05, ). Using Bayes’ theorem, we can rewrite our expression as

p(st | ag:t— 5 00:t, O(S):t) X p(Of | St, Ap:t—5 00:t— 5 OS:t_ )p(ot | St, A0:t—5 00:t— Og:t)
p(st | aO:t_voo:t_vOS:t—) (1)

where the subscript 0:¢ refers to all instances of that variable from O to ¢, and t~ = ¢t — 1. This
expression can be simplified using the independence assumption, the law of total probability, and
the Markov property to

p(st | ag:e—, 00:t,05.1) o< p(o] | se)p(o | ¢, ae-) Z p(se | si—,a-)p(se- | ap-, 04~ 08— ).
s,— €S

2)

Equation (2) is a simple modification to our standard belief update procedure with POMDPs and is
an expression of updating a belief with two independent observations.

3.4 Inferring the Distribution over Suggested Actions

We can update the agent’s belief based on p(o; | s;). However, the agent cannot calculate this
distribution directly. We propose using the assumption that the agents are collaborative and estimate
p(0F | st) by using the agent’s policy. In our flight example, when the pilot receives the suggestion to
turn left they would use their experience to reason through what scenarios they would have provided
that same suggestion.

Scaled Rational. One approach is to assume the suggester is perfectly rational and has a policy
identical to the agent. The suggester would only give actions that would maximize the total expected



reward using the agent’s policy 7. In other words, p(of | s;) = 1(of = m(s;)) where 1(-) is the
indicator function. To relax the assumption of a perfectly rational agent and an identical policy, we
introduce a scaling factor, 7 € (0, 1]. With a scaling factor, we assume the suggester acts rationally
and with the agent’s policy a fraction 7 of the time and uses a random policy otherwise. The scaled
rational update can be expressed as

if of = m(s¢)
otherwise.

N, 3)

[A[-1>

p(og | s1) ~ {

Noisy Rational. Another approach is to assume the likelihood of the suggested action is related
to the total expected reward of choosing that action. Shepard [34] developed a noisy rational model
from a psychological perspective, and this model has been widely used in robotics to model subop-
timal decision making [35]-[37]. With this model, the suggester is most likely to choose the action
with the highest expected return and less likely to choose suboptimal actions. This model requires
calculating the total expected return of each action.

The action value function Q(s, a) returns the expected value of performing action a in state s and
then executing optimally thereafter. We can use the agent’s policy and the reward function and
perform a one step look ahead to calculate the Q-function [29]. Using a policy represented with
alpha vectors, we can calculate (s, a) by performing a one step look ahead using a belief that the
agent is in state s. The noisy rational model has the same form as the Boltzmann distribution and
the softmax function. We can express this model as

exp (AQ(st, 0¢))
aeA XD (AQ(st, a))
where A € [0, 00) is a hyperparameter often referred to as the rationality coefficient. The distribu-

tion approaches a uniform distribution as A\ approaches 0. As X increases, the model approaches a
perfectly rational agent.

p(of | 1) = 5 “4)

4 Experiments

The proposed methodology to incorporate action suggestions as observations was evaluated on two
classic POMDP problems, Tag [30] and RockSample [38]. These domains are relatively simple
but provide a way to evaluate the merits of the approach by removing domain-specific variables
that might influence performance. The simulations were constructed to first evaluate the effective-
ness and efficiency of the proposed approach and then to test the robustness to suboptimal action
suggestions.

4.1 Environments

The two environments chosen to evaluate our approach have discrete action, state, and observation
spaces. The structure of the problems allow for the visualization of the belief space while also
providing a modest scalability problem.

Tag. The Tag environment was first introduced by Pineau et al. [30]. The layout of the environ-
ment can be seen in fig. 1. The agent and an opponent are initialized randomly in the grid. The
goal of the agent is to tag the opponent by performing the fag action while in the same square as
the opponent. The agent can move in the four cardinal directions or perform the tag action. The
movement of the agent is deterministic based on its selected action. A reward of —1 is imposed
for each motion action and the tag action results in a 410 for a successful tag and —10 otherwise.
The agent’s position is fully observable but the opponent’s position is unobserved unless both actors
are in the same cell. The opponent moves stochastically according to a fixed policy away from the
agent. The opponent moves away from the agent 80 % of the time and stays in the same cell other-
wise. Our implementation of the opponent’s movement policy varies slightly from the original paper
allowing more movement away from the agent, thus making the scenario slightly more challenging.
Section B.1 provides more details of the differences.



RockSample. The RockSample environment consists of a robot that must explore an environment
and sample rocks of scientific value [38]. Each rock can either be good or bad and the robot receives
rewards accordingly. The robot also receives a reward for departing the environment by entering an
exit region. The robot knows the positions of every rock and its own location exactly, but does not
know whether each rock is good or bad. The robot has a noisy sensor to check if a rock is good
or bad and the accuracy of the sensor depends on the distance to the rock. Upon each use of the
sensor, the robot receives a negative reward. In the following sections, a RockSample problem will
be designated as RockSample(n, k, sr, sp) where n designates a grid size of n X n, k is the number
of rocks, sr is the sensor range efficiency, and sp is the penalty for using the sensor. The reward for
sampling a good rock and exiting the environment is +10 and the penalty for sampling a bad rock
is —10.

4.2 Simulation Details

The simulation environment was built using the POMDPs.jl framework [39]. The Tag environment
used the standard parameters and was simulated until the first of the agent tagging the opponent or
100 steps. The RockSample environment was simulated until the agent exited the environment. The
SARSOP algorithm was used to generate policies for the agent. All of the agents used the same
policies for the environment but incorporated the action suggestions differently. If the suggested
action was the same as the selected action with the current belief, no modification of the belief was
performed. This implementation decision potentially prohibits valuable information to be passed
when actions align. However, simulations with the RockSample and Tag environments showed
differences were negligible and the slight decrease in computation time allowed for more simulations
to be performed. Performing belief updates with aligned suggestions would likely be critical in
different scenarios.

In RockSample, the rocks were randomly initialized based on a uniform distribution. The agent’s
belief was initialized with a uniform distribution over the state space in Tag and a uniform distri-
bution over the rocks in RockSample. The number of simulations for a given scenario varied and
we provide the 95 % confidence interval for each value reported in the results section. The rewards
reported are the mean value over all simulations for a given scenario. The number of suggestions
refers to the number of times the suggested action differed from the action initially selected by the
agent before considering the suggestion. To simulate a suggester that was not always present or
could not communicate actions reliably, the simulation also supported varying the percentage of
suggestions passed to the agent.

One suggester was used but the quality and consistency of the action suggestions varied. Different
agents were simulated to evaluate our proposed approach and establish baselines in each scenario.
Details of each agent are provided below.

» Suggester. The suggester is a combination of an all-knowing agent and a purely random
suggester. The rate of randomness is adjusted to scale from purely random to completely
all-knowing. If the suggester is sending a non-random suggestion, the action is selected
from the POMDP policy using the true state of the environment.

* Normal Agent. The normal agent executes in the environment using the policy without
considering any action suggestions. This agent provides a baseline when action suggestions
are not considered.

 Perfect Agent. The perfect agent is initialized and executed with perfect knowledge of the
state. At each time step an action is selected from the policy given the true state of the
system. This agent provides and upper bound on the total expected reward executing with
the given policy.

* Random Agent. The random agent chooses an action from a uniform distribution over the
action space at each time step. This agent provides a lower bound on the total expected
reward when investigating robustness to suboptimal and random action suggestions.

* Naive Agent. The naive agent executes in the environment using the POMDP policy. When
action suggestions are received, it follows the action suggestions naively, and performs no
modifications to its belief state. The rate at which the naive agent follows the suggestions
was adjusted to investigate robustness. The rate of following the suggestion is depicted by
v in the results.



Table 1: Simulation results of various agents using an all-knowing suggester.

Agent Type Tag RS(7,8,20,0) RS(8,4,10,-1)
Reward # Sugg Reward # Sugg Reward # Sugg
Normal —10.7+£0.3 - 21.5+0.6 - 10.1+0.1 -
Perfect —1.7+0.2 - 28.4+0.5 - 16.7+0.1 -
Naive
v =1.00 —1.6+0.2 3.7+0.1 285+0.6 15.3+0.3 16.9+0.1 84+0.1
v =0.75 —3.84+0.2 6.1+0.3 26.0£0.2 15.34+0.2 14.6+0.1 7.7£0.1
v =0.50 —6.84+0.3 15.2£0.9 23.8+0.3 15.14+0.2 12.7+0.2 7.8+£0.2
Scaled
T=20.99 —1.8+0.2 3.1+0.1 274+ 0.5 6.4+0.1 16.4+0.1 2.84+0.1
7T =0.75 —2.44+0.2 3.3+0.1 27.3+£0.5 6.8+0.1 16.2+0.1 2.8+0.1
7 =0.50 —3.6+0.2 3.9+0.1 27.0+0.4 7.8+0.1 16.3+£0.1 3.240.1
Noisy
A=5.0 —1.8+0.2 3.2+0.1 27.5+0.4 7.8+0.1 16.4+0.1 4.6+0.1
A=20 —2.0+0.2 3.3+0.1 27.8+0.6 9.1+0.2 16.3+0.1 4.5+£0.1
A=1.0 —2.4+0.2 3.6+0.1 26.8+0.6 10.6+0.2 16.2+0.2 5.2+£0.1

» Scaled Agent. The scaled agent incorporates the methodology outlined in section 3.4 and
uses eq. (3) to estimate p(of | s;). The hyperparameter 7 is kept constant for each sim-
ulation and the value used is shown with the presented results. The value for 7 was not
adjusted to fine-tune performance. It was broadly changed to show overall effects of the
hyperparameter in different situations.

* Noisy Agent. The noisy agent also incorporates the ideas from section 3.4. This agent uses
eq. (4) to estimate p(o; | s;). The hyperparamter \ is kept constant for each simulation
and the value is shown with the respective results. Like the scaled agent, the parameter
A was not fine-tuned for performance. Coarse adjustments were made to depict how the
hyperparameter influenced the algorithm.

4.3 Effectiveness and Efficiency Results

The different agents were compared using an all-knowing suggester with a 100 % message recep-
tion rate. Simulations were ran on Tag, RockSample(7, 8, 20,0), and RockSample(8,4, 10, —1).
RockSample(8, 4,10, —1) was designed with the rocks near the corners of the environment. This
layout emphasized the importance of each movement direction. The results are summarized in ta-
ble 1. We also compared the different agents using suggesters with partial views of the state and
provide those results in section A.

As expected, incorporating actions suggestions from an all-knowing suggester improves perfor-
mance across all scenarios. Despite not directly following the suggested action, the Scaled and
Noisy agents were able to reach a near perfect reward. A key metric to note with these results is
the number of suggestions. The naive agent was able to achieve perfect scores by simply following
the suggestions; however, it did not integrate any information contained from each suggestion and
resulted in requiring more suggestions to achieve similar scores. While the scores for all assisted
agents decrease when the hyperparameters change (become less trusting of the suggester) the naive
agent’s score decreases at a faster rate. Again, this difference is an artifact of the benefit of updating
the belief of the agent with each suggestion.

A visual depiction of the change in the belief state of an agent in the Tag environment after incorpo-
rating an action suggestion is depicted in fig. 1. Figure 1a shows the belief the agent has of where the
target is located. With that belief, the best action according to the agent’s policy would be to move
north. However, the agent receives a suggestion from a suggester to move west. Figure 1b shows
the updated belief after using the noisy rational approach with A = 1. There are multiple states to
the west of the agent where the target might be located. The update process was able to incorporate



0.01 0.04 0.17 0.01 0.02 0.07
0.01 0.03 0.05 0.01 0.02 0.02
0.02 0.02 0.02 0.01
0.01 0.01 0.01 (Q 0.01 0.01 0.01 0.03 0.03 0.02 0.01 (@ 0.01
0.15 0.06 0.06 0.03 0.01 0.02 0.02 0.04 0.05 0.15 0.3 0.12 0.11 0.04 0.01 0.03 0.02 0.03 0.07
(b) = north m(V') = west
(a) Before received action suggestion. (b) After belief update with 0 = west.

Figure 1: Changes in the belief state of an agent after incorporating a recommended action. Using the original
belief b the agent’s policy 7 returns an action of north. The recommended action was to move west. Figure 1b
depicts the updated belief b’ after incorporating the suggested action. After the update, the policy produces an
action of west. The belief update used a noisy rational approach with A = 1.
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Figure 2: Tag performance with varying message reception rates.

the implied information of the west suggestion by shifting the distribution towards the west side of
the grid.

Collaborators often are not capable of continuously providing suggestions to an agent. The percent-
age of suggestions received was varied to investigate the effectiveness of the agents in the presence
of intermittent action suggestions. A suggester with perfect state knowledge was used but the mes-
sage reception rate was varied. The results for the Tag environment are shown in fig. 2. The change
in reward is shown in fig. 2a. Figure 2b shows how the ratio of the number of suggestions to the
number of steps required to tag changes. The increased reward and lower suggestion ratio further
emphasizes the benefit of our approach.

4.4 Robustness Results

The previous results assumed a perfectly rational suggester, but this is not always realistic. We
evaluated the robustness of the different agents by adjusting the randomness of the suggester. The
chance of a random action suggestion (uniformly picked from the action space) was varied from
0 to 1 representing a perfect suggester to a completely random suggester. The results from these
simulations are shown for both the Tag environment and RockSample(8, 4, 10, —1) in fig. 3.

As expected, the naive agent that follows all suggestions performs poorly as the randomness of the
suggester increases. Decreasing v increases the robustness, but sacrifices performance. The scaled
and noisy approaches perform well even with high trust parameter settings (7 and v). These results
demonstrate the value of not naively following suggestions and the benefit of balancing the agent’s
initial belief state with the information received from the action suggestion.
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Figure 3: Robustness to suboptimal action suggestions.

5 Conclusion

We developed a new method to increase collaboration between heterogeneous agents through the
use of action suggestions. Based on the idea that a suggested action conveys information about
the suggester’s belief, we used the agent’s current policy to transform the suggested action into a
distribution that we used to update the agent’s belief. We applied this approach in simulation and
demonstrated the increased efficiency by requiring fewer suggestions and suggestion rate. We fur-
ther demonstrated our approach was robust to suboptimal decisions and could still perform better
than an unassisted agent with more than 50 % of the suggestions being random. This methodol-
ogy does not rely on knowledge of other agents. The only requirement is a shared objective and
communication through the agent’s set of actions. This low threshold of coordination increases
collaboration opportunities with other systems including humans.

Integrating action suggestions as observations requires a change to the belief update process of the
agent. The independence of the observations allow the update process to occur simultaneously or in
any order which allows for asynchronous and unreliable suggestions without added complexity. This
approach also scales linearly with the number of suggesters because the agent must only approximate
the distribution over action suggestions for each suggester.

A critical assumption that enables this process with no knowledge of the suggester is that the sug-
gester is collaborative. The scaled and noisy rational approaches do factor in suboptimal decisions
but ultimately assume the suggester is providing actions in the best interest of the agent. If a sug-
gester was maleficent, the belief would be skewed towards distributions that would explain the sug-
gestions. The proposed approach is designed to be robust to suboptimal suggestions, but not resilient
to bad actors.

There are many opportunities of future work expanding on these ideas. As previously discussed, this
approach was formalized and applied to offline methods, but the same concept can be extended to
online solvers. Online approaches also offer unique opportunities to use a suggested action to help
balance exploration and exploitation while searching for an action. The experiment results demon-
strated a trade-off of performance and robustness when changing the hyperparameters. Finding a
way to learn the quality of the suggester and adjust the parameters real time is a promising idea.
The benefit of modifying the agent’s belief through an action suggestion is not limited to situations
when the subsequent, updated belief is more accurate. A modified belief could be beneficial if the
resulting actions are optimal regardless of the accuracy of the belief. This idea opens up possibili-
ties of using action suggestions to increase performance when an agent’s policy does not match the
environment.
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Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] Section 3.3 and section 3.3 provide the key contribu-
tions and section 4 documents the experimentation results.

(b) Did you describe the limitations of your work? [Yes] Key assumptions were docu-
mented when applying them and a key limitation of being robust and not resilient was
revisited in section 5.

(c) Did you discuss any potential negative societal impacts of your work? This paper
provides a general approach to enable collaboration. Based on the guidelines and it
being more of a foundational research paper, we did not discuss societal impacts as
the list would include most applications of collaboration using a POMDP framework.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] The step to in-
tegrate the action suggestion as an independent observation was shown in section 3.3.
The assumption of dependence only on the state was mentioned in that section as well.

(b) Did you include complete proofs of all theoretical results? [N/A| The derivation of an
independent update in a Bayes’ filter is well established, but the key steps were shown
in section 3.3.

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] The link to the
code is provided in the footnote on page 1. All policies for the environments were not
provided based on file size, but the policies can be generated with a provided script.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Experiment details are documented in section 4.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See section 4.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? Our approach does not require a lot
of computation. Computation time and amount was not a concern and not provided.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] Experiments were
built on the POMDPs.jl framework and documented in section 4.2.

(b) Did you mention the license of the assets? POMDPs.jl is available free to use,
copy, modify, merge, publish, distribute, and/or sublicense and is distributed with an
MIT "Expat" License.

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data
you’re using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifi-
able information or offensive content? [N/A |

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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