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ABSTRACT

We employ an inversion-based approach to examine CLIP models. Our examination
reveals that inverting CLIP models results in the generation of images that exhibit
semantic alignment with the specified target prompts. We leverage these inverted
images to gain insights into various aspects of CLIP models, such as their ability
to blend concepts and inclusion of gender biases. We notably observe instances
of NSFW (Not Safe For Work) images during model inversion. This phenomenon
occurs even for semantically innocuous prompts, like ‘a beautiful landscape,’ as
well as for prompts involving the names of celebrities.

Warning: This paper contains sexually explicit images and language, offensive visuals and terminol-
ogy, discussions on pornography, gender bias, and other potentially unsettling, distressing, and/or
offensive content for certain readers.

Figure 1: Inverted Images from CLIP. Prompts from left to right: “Floating castle held by balloons in
the sky," “Panda mad scientist mixing sparkling chemicals," “Johnny Depp," “An astronaut exploring
an alien planet, discovering a mysterious ancient artifact," “A mechanic in the busy auto repair shop,"
“A shiba inu wearing a beret and black turtleneck," “Enchanted forest with watching tree eyes," “A
bustling market in a bustling city, showcasing diverse cultures and exotic goods"

1 INTRODUCTION

CLIP (Contrastive Language-Image Pre-training) models (Radford et al., 2021) have gained significant
attention in the field of artificial intelligence. Serving as a link between textual and visual data, these
models have found application in numerous deep learning contexts (Nichol et al., 2021), (Rombach
et al., 2022), (Chegini & Feizi, 2023)). They not only demonstrate zero-shot performance comparable
to fully supervised classification models but also exhibit resilience to distribution shifts. A key factor
contributing to this resilience is their training on extensive web-scale datasets, which exposes them to
a diverse array of signals within the input data.
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0 100 900 1400 1800 3000 3400

Figure 2: Progression of Inverted Images for prompts “A peaceful sunset," “Professor Albus Dumble-
dore," and “A loving couple". We start with resolution 64 and increase the resolution to 128, and 224
at iterations 900, and 1800 respectively.

While large-scale training offers numerous advantages, little is known about the content of the
proprietary dataset used to train the original CLIP model, or the biases this data may impart on the
model. Despite prior exploration into the knowledge acquired by CLIP models (Ghiasi et al., 2022a),
(Goh et al., 2021), our work is the first attempt to analyze them through the lens of model inversion.

Most of our knowledge about model biases comes from generative models for which we can explicitly
observe and interpret their outputs. But how do we study the knowledge of a non-generative model
like CLIP? Model inversion is the process of generating content, either images or text, that minimizes
some function of a neural network’s activations. When applied to classification tasks, model inversion
is used to find inputs that are assigned a chosen class label with high confidence. In this study, we
put a different twist on model inversion, using it to invert the CLIP model by finding images whose
embeddings closely align with a given textual prompt. Unlike inverting image classification models
that have a limited number of classes, the inversion of CLIP models provides us the freedom to invert
a wide range of prompts and gain insights into the knowledge embedded within these models.

By utilizing the extensive set of prompts available for inverting CLIP models, we delve into analyzing
various aspects of this family of models. Our contributions are summarized as follows: I. In recent
years, generative models like DALLE (Ramesh et al., 2021) and IMAGEN (Saharia et al., 2022)
have shown the capability to blend concepts. We demonstrate that the same holds true for CLIP
models, and the knowledge embedded inside CLIP models is capable of blending concepts. II.
We demonstrate that through inversion, seemingly harmless prompts, such as celebrity names, can
produce NSFW images. This is particularly true for women celebrities, who the CLIP model seems
to strongly associated with sexual content. Certain identities, like “Dakota Johnson", are close to
many NSFW words in the embedding space. This may be problematic since the embeddings of
CLIP models are being used in many text-to-image generative models. Addressing this issue requires
more meticulous curation of data during the training of large-scale models. III. We demonstrate that
CLIP models display gender bias in their knowledge through inversions applied to prompts related
to professions, status, parental roles, and educational pursuits. IV. We investigate the scale of the
training data on the quality of the inversions, and we show that more training data leads to better
inversions. V. Finally, we examine the presence of textual components within the inverted images, a
phenomenon that occurs more pronouncedly when TV regularization is not used in the loss function.
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2 RELATED WORK

2.1 CLASS INVERSION

Class inversion is the procedure of finding images that activate a target class maximally. The process
starts by initializing input x randomly and utilizing gradient descent to optimize the expression

max
x

L(f(x), y) +R(x),

where f denotes a trained classification neural network, L is the classification loss function (typically
cross-entropy), and y is the target label. Regularization term R aims to prevent the optimized image
from devolving into meaningless noise by incorporating priors associated with natural images. Deep-
Dream (Mordvintsev et al., 2015) uses two regularization terms: Rℓ2(x) = ∥x∥22 which penalizes
the magnitude of the optimized image, and Rtv(x) which penalizes Total Variation forcing adjacent
pixels to have similar values. DeepInversion (Yin et al., 2020) uses an additional regularization term

Rfeat(x) =
∑
k

(
∥µk(x)− µ̂k∥2 + ∥σ2

k(x)− σ̂2
k∥2

)
where µk, σ

2
k are the batch mean and variance statistics of the k-th convolutional layer, and µ̂k, σ̂

2
k are

the running mean and running variance of the k-th convolutional layer. The Rfeat is only applicable
to architectures using batch normalization (Ioffe & Szegedy, 2015), restricting its application for
other networks, such as ViTs (Dosovitskiy & Brox, 2016) and MLPs (Tolstikhin et al., 2021). In this
study, we explore the inversion of CLIP models. Unlike traditional models with predefined classes
during training, CLIP models undergo training with language supervision, wherein specific classes
are not explicitly specified.

2.2 CLIP VISUALIZATION

Exploring CLIP models from a visualization standpoint has been previously undertaken, and we
present a brief summary of the insights derived from such examinations. A study conducted by
(Ghiasi et al., 2022a) revealed that CLIP features exhibit activation based on semantic features
rather than visual characteristics. For instance, they identified features activated by concepts such
as death and music despite the absence of visual similarity among the images that triggered these
features. Additionally, (Goh et al., 2021) found that akin to the human brain, CLIP models possess
multi-modal neurons that respond to the same concept in photographs, drawings, and images of their
name. However, our investigation in this work focuses on unraveling the knowledge embedded in
CLIP models through the lens of model inversion.

2.3 BIAS AND NSFW CONTENT

Recent research in deep learning has aimed at tackling biases and NSFW content in large multimodal
datasets like LAION-400M and text-to-image generative models. Concerns raised by (?) highlight
explicit and problematic content in LAION-400M, with (Birhane et al., 2023) indicating a 12%
increase in hateful content with the growth of the LAION dataset. This underscores the crucial need
for dataset curation practices to minimize harmful biases.

In the realm of Text-to-Image generative models, (Perera & Patel, 2023) delves into bias within
diffusion-based face generation models, particularly regarding gender, race, and age attributes. Their
findings reveal that diffusion models exacerbate bias in training data, especially with smaller datasets.
Conversely, GAN models trained on balanced datasets exhibit less bias across attributes, emphasizing
the necessity to address biases in diffusion models for fair outcomes in real-world applications. A
promising solution introduced by (Gandikota et al., 2023) is the Erased Stable Diffusion (ESD)
method, designed to permanently remove unwanted visual concepts from pre-trained text-to-image
models. ESD fine-tunes model parameters using only text descriptions, effectively erasing concepts
such as nudity and artistic styles. This approach surpasses existing methods and includes a user study,
providing code and data for exploration.

Additionally, (Luccioni et al., 2023) proposes an assessment method focusing on gender and ethnicity
biases, revealing the under-representation of marginalized identities in popular systems like Stable
Diffusion and Dall·E 2. Furthermore, the “Safe Latent Diffusion (SLD)" method presented in

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(Schramowski et al., 2023) actively suppresses NSFW content in text-conditioned image models,
addressing challenges posed by NSFW image prompts.

3 METHOD

RN50 RN101 RN50x4

RN50x16 ViT-B-16 ViT-B-32

ViT-L-14 ViT-H-14 ViT-g-14

convnext-base convnext-large convnext-xxlarge

Figure 3: Inverted images for prompt “An astronaut
exploring an alien planet, discovering a mysterious
ancient artifact" for different models.

A CLIP model consists of two key networks.
The first is the visual encoder network, denoted
as V , responsible for creating image embed-
dings. The second is the text encoder network,
marked as T , which generates embeddings for
textual content. The training process of a CLIP
model is guided by a contrastive loss function
designed to both increase the similarity between
an image and its associated caption and reduce
the similarity between that image and all other
captions in the same batch. To invert a CLIP
model for a prompt p, we solve the following
optimization problem starting from a random
noise:

max
x

cos(V (A(x)), T (p)) +Reg(x)

which cos(.) is the cosine similarity, A is a ran-
dom augmentation chosen at each iteration step,
and Reg are regularization terms used.

We adopt using augmentations from (Ghiasi
et al., 2022b) into our methodology. These aug-
mentations are employed to invert classification
models and serve as image priors. Specifically,
if an image is classified as a bird, its augmen-
tation is also expected to be classified as a bird.
Similarly, in CLIP inversion, if an image aligns
with a given prompt, its augmentations must
align with that prompt as well. The main aug-
mentation used in (Ghiasi et al., 2022b) is Col-
orShift; however, we incorporate random affine
and color jitter as augmentations in our experi-
ments. Using random affine transformation in-
stead of ColorShift has a significant impact on the quality of the inverted images, as showcased in
Figure 15. More Details can be found in Section 6.

We also integrate the ensembling technique outlined in (Ghiasi et al., 2022b), where we concurrently
optimize b augmented versions of the input to align with the prompt, with b representing the batch
size.

We use Total Variation (TV) and L1 loss as regularization terms as also been used in (Mordvintsev
et al., 2015).

Reg(x)) = αTV (x) + β||x||1.

The sequence of images, evolving from random noise, is illustrated in Figure 2. We begin at a
resolution of 64 and gradually increase to 128 and then to 224 at iterations 900 and 1800, respectively.
The optimization process encompasses a total of 3400 steps.

4 ANALYSIS

In this section, we investigate the varied insights enabled by model inversion for CLIP models. We
begin by exploring the capacity of model inversion to generate novel concepts. Following this, we
provide an analysis of NSFW content detected within these inversions. Next, we probe gender biases
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present in CLIP models and also their limitations in making accurate associations. Lastly, we explore
the impact of the scale of training data.

4.1 BLENDING CONCEPTS

Figure 4: Inverting prompts “A beautiful land-
scape", “The map of the African continent", and “A
scientist conducting groundbreaking research" re-
sults in NSFW imagery. All these images with red
squares were flagged as NSFW when processed
through a stable diffusion safety checker.

The initial observation we make regarding CLIP
model inversions is their capacity to merge con-
cepts. As highlighted in (Ramesh et al., 2021),
text-to-image generative models possess the no-
table ability to blend different concepts convinc-
ingly. Interestingly, we notice this phenomenon
in the inverted images generated by CLIP mod-
els, even though these models aren’t primarily
intended for generation. Instances of these com-
binations can be seen in Figure 1. Take the
prompt “panda mad scientist mixing sparkling
chemicals" as an example; the resulting inverted
image perfectly captures its intended meaning.
The majority of the visualizations presented
throughout the paper originate from the ViT-B16
model (Dosovitskiy et al., 2020). However, as
depicted in Figure 3, the blending concept capa-
bility is also observable in other model variants.

It is important to highlight the refined nature of
CLIP model inversions beyond their capability
to blend concepts. For instance, when inverting
prompts related to celebrity names, as depicted
in Figure 11, the resulting images are completely
recognizable. For example, consider the prompt
“Hugh Jackman"; we can readily identify this ac-
tor from the inverted image, which also portrays
him as a fit individual.

Figure 6: Inverting the prompt “A person jumping
in a park"

In another instance, we employ model inversion
to explore prompts associated with emotions, as
illustrated in Figures 9 and 10. These inverted
images provide fascinating insights into how the
model perceives emotions. For instance, when
given the prompt “an interested person," the re-
sulting image emphasizes enlarged ears, imply-
ing attentiveness and careful listening. Addi-
tionally, our examinations yield further notable
observations. For instance, as shown in Figure
6, the model effectively portrays the concept of

jumping by deliberately blurring the image of the jumper. Another example, illustrated in Figure 13,

Zendaya Jennifer Anniston Dakota Johnson Matthew McConaughey

Figure 5: Inverted images of certain celebrity names lead to NSFW imagery.
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Table 1: In the first row, we see words closely associated with “A beautiful landscape" within the embedding
space. In the second row, we see words that are proximate to the embedding of the inverted image.

Prompt
landscape, scenic, landscapes, beautifully, beautiful, beauty, nature, lovely, wonderful,
peaceful, enjoying, land, gorgeous, pretty, environment, stunning, mountains, paradise,
perfectly, home

Image
zipperhead, zip, raghead, raghead, dickhead, shithappens, slopehead, shithead, dripdick,
headf**k, dink, dickbrain, upper, prickhead, limpdick, titlicker, mosshead, bitchez, jizm,
killer

Table 2: The words closest to the names of the celebrities in the embedding space.

Prompts

Dakota Johnson

dakota, emma, lisa, sexy, maria, fit, petite, hot, latina, ana, melissa, mia, eva, busty, cute, shakira, joy, dana, brunette,
lauren, mariah, xx, victoria, dylan, d, seo, boobs, julia, mm, slut, bon, nsfw, jap, dog, to, elegant, j, sarah, barbara,
me, rebecca, ooo, bikini, booty, k, titty, yea, jessica, honk, yes, ero, dat, yo, liberal, erotic, nicole, oh, ye, wow, eh,
l, pamela, xxx, bmw, jo, tits, big tits, z, aw, dammit, clara, abs, ya, tb, cocktease, h, cia, je, nastyslut, jj, oo, new,
linda, ah, f**kable, ha, hi, dm, deluxe, qt, t, ecchi, di, amanda, b, um, jesus, katrina, o

Miley Cyrus

mariah, ye, sexy, melissa, lauren, mm, yea, hot, marilyn, dylan, yo, ya, ha, mia, nsfw, oh, fit, nicole, cute, me, to,
my, um, y, michelle, ah, eh, fuckin, im, wow, assfuck, yes, , uh, shit, oo, fuck, so, i, dat, cuntfuck, shitty, hey,
ooo, xxx, xx, liberal, rm, buttfuck, yet, ok, but, lol, aw, eminem, h, hi, fucked, shakira, nastyslut, fuckinright,
suckmyass, shitfuck, o, fucking, how, stolen, af, britney, and, emma, fucks, gay, zum, slut, latina, mac, mem, on,
ho, goddamnmuthafucker, fw, fr, or, madonna, sh, old, m, mothafucking, mothafuckin, kinda, oc, aye, dammit,
for, badfuck, of, smut, l,

Emma Stone

emma, joy, shakira, petite, maria, lindsay, sexy, lisa, marilyn, dakota, melissa, hot, fit, cute, amanda, busty, barbara,
nicole, dylan, linda, rebecca, belle, clara, mariah, lauren, latina, elegant, eva, chevy, liberal, boobs, cat, jessica, booty,
mia, mercedes, wendy, laura, ecchi, tiffany, female, sarah, slut, liz, ana, karen, me, pamela, ann, victoria, em, ero,
mm, yu, eerotic, sie, chen, eminem, es, nastyslut, eh, jim, sara, benz, wow, bikini, sg, to, nsfw, jesus, abs, b, big tits,
erotica, smut, oscar, yo, gmc, e, yea, ya, yes, dog, h, lou, ooo, hq, aw, l, enormous, angel, oh, qt, tiger, seo, k, ron,
pornprincess, man, god

Shakira

shakira, mariah, britney, melissa, pamela, dylan, barbara, latina, sarah, emma, maria, mia, sara, madonna, dakota,
lauren, linda, sh, dat, sandra, hot, mm, lisa, que, michelle, ia, ya, shited, , rica, she, shitty, to, diego, sexy, yea, da, si,
ali, es, yes, shit, stephanie, wow, i, shitola, clara, o, eh, ah, fit, amanda, shitf**k, oh, oo, pam, sierra, ooo, ha, nicole,
las, aka, carlos, pocha, af, suckme, k, my, marco, sg, sd, solar, d, suckmyass, yo, y, jesus, ok, persian, jo, jim, dale,
hi, yet, shitdick, marilyn, me, f**k, re, liz, s, ye, karen, hey, f**ked, por, rat, allah, laura, so

demonstrates prompts related to shapes, indicating that CLIP models possess a comprehensive visual
understanding of various shapes. These examples represent only a fraction of the investigations that
can be made with the help of model inversion, illustrating its potential to understand various aspects
of CLIP models.

4.2 NSFW CONTENT ANALYSIS

Recently, researchers discovered instances of child abuse material within the LAION dataset, leading
to its public removal. This underscores the urgent need for improved detection methods for sensitive
content and better NSFW (Not Safe For Work) filters. When we apply model inversion on a CLIP
model, specific prompts generate NSFW imagery, even those seemingly innocuous, such as using
celebrity names, “A beautiful landscape," “The map of the African continent," and “A scientist
conducting groundbreaking research." In Figure 4, examples of these images and their associated
prompts are depicted. This emphasizes the critical necessity for robust content filtering during CLIP
model training.

As depicted in Figure 4, when we invert the prompt “A beautiful landscape," it produces NSFW
visuals. Our verification through the Stable Diffusion safety checker confirms NSFW detection in
three separate inversion attempts, each initialized with different random noise. We speculated that this
could stem from the prompt’s nearness to NSFW language. Similar to (Rando et al., 2022), we utilize
a word list including 10,000 most common English words1, Naughty, Obscene, and Otherwise Bad

1Most common English Words
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Words2, Names for body parts 3, Offensive/Profane Word List 4, 11913 words in total, to identify the
20 words most closely associated with the prompt in the embedding space. However, upon reviewing
the list of words as shown in Table 1, none of them seemed NSFW upon examination. Yet, when
we examined words whose embeddings closely matched those of the inverted image, several NSFW
words emerged, as detailed in Table 1.

Furthermore, using celebrity names as prompts can lead to the generation of NSFW images through
inversion. We can see examples of these images in Figure 5. We count the NSFW-flagged images
out of 100 inverted images using the stable diffusion safety checker for each of these prompts to
quantify the extent of potentially NSFW content generated through inversion. As depicted in table 3,
there is a notable prevalence of NSFW-flagged images for female celebrities. For example, for the
prompt “Dakota Johnson" 94 images out of 100 images are flagged as NSFW. Providing analysis on
this prompt, we find the closest words in the embedding space to the embedding of “Dakota Johnson".
Surprisingly, as shown in Table 2, we can find many NSFW words present in the list of words. More
examples are in table 8. This situation can present challenges, particularly since CLIP models serve
as text encoders in numerous text-to-image generative models.

Prompt CLIP OpenC2B OpenC400M
Jennifer Anniston 9 6 50
Dakota Johnson 94 43 53
Demi Lovato 80 11 29
Zendaya 60 7 20
Jennifer Lopez 88 19 32
Johnny Depp 18 14 18
Leonardo DiCaprio 22 1 4
Brad Pitt 9 25 19
George Clooney 7 2 3

Table 3: The number of NSFW-flagged images determined
from 100 images identified by a stable diffusion safety
checker for ViT-B/16 OpenAI CLIP and ViT-B/16 Open-
CLIP trained on Laion2b, and ViT-B/16 OpenCLIP trained
on Laion400B.

The proximity of a celebrity name’s
embedding to NSFW words can be un-
desirable. In a separate experiment, as
illustrated in Table 5, we identify the
words closest to the embedding of an
image featuring “Dakota Johnson" on
the internet. Once more, among the
first 200 closest words, there are sev-
eral instances of NSFW words. This
underscores the existence of NSFW
content during the training of CLIP
models, emphasizing the necessity for
enhanced curation of training data, es-
pecially when involving authentic hu-
man images.

Initial experiments counting the num-
ber of NSFW images for celebrity
names utilized a ViT-B16 OpenAI

CLIP model trained on a web-scale dataset not known to the public. Upon conducting the same
experiment with a ViT-B16 OpenCLIP model (Ilharco et al., 2021) trained on Laion2b (Schuhmann
et al., 2022), the incidence of inappropriate NSFW-flagged images notably decreases. However, when
utilizing models trained on Laion400M (Schuhmann et al., 2021), the number of NSFW flagged
images rises once more. The presence of troublesome explicit images in Laion400M is investigated
by Birhane et al. (2021). Once again, this underscores the critical importance of meticulously curating
training data for CLIP models. The results are shown in Table 3.

4.3 GENDER BIASES

Works like (Perera & Patel, 2023) have analyzed biases and stereotypes in generative models. This
analysis is possible with generative models because we can see the generations. However, in non-
generative models like CLIP, this is not possible. (Agarwal et al., 2021) investigated biases and
stereotypes in CLIP models.

In this work, we use model inversion to conduct bias and stereotype analyses on CLIP models.
We focus on examining gender bias. Inverting 100 images from a ViT-B16 model with various
initializations for the prompt “A successful student in university," we then employ a different CLIP
model (ViT-B32) to classify the inverted images into “man" and “woman" categories. The outcome
reveals that 98% of the examples are classified as “man." However, when specifying a prompt where
gender is indicated, such as “a successful male/female student in university," the inversions are nearly

2List of Dirty Naughty Obscene and Otherwise Bad Words
3List of Body Parts
4Offensive/Profane Word List
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Prompt Man Woman Man Woman Man Woman
STATUS RELATED NEUTRAL FEMALE MALE
A thief, dangerous person, criminal 96 4 0 100 99 1
A person with a low-paying job 97 3 0 100 98 2
A person with a high-paying job 96 4 0 100 99 1
A successful student in university 98 2 0 100 100 0
PROFESSION RELATED
A nurse in the pediatric ward 0 100 0 100 100 0
A kindergarten teacher in the colorful classroom 0 100 0 100 100 0
A midwife in the delivery room 0 100 0 100 100 0
A firefighter at the scene of a blazing fire 99 1 0 100 100 0
A construction worker at a bustling construction site 99 1 0 100 100 0
A mechanic in the busy auto repair shop 97 3 0 100 99 1

Table 4: For each prompt, we generate 100 inverted images and conduct classification to determine
whether these inverted images are associated with a man or a woman. The classification is performed
using a separate CLIP model. The “Neutral" column indicates prompts as shown in the table. The
“FEMALE" and “MALE" columns represent scenarios where gender specification is added to the
prompt. For instance, using “A male nurse in the pediatric ward."
entirely (more than 99%) classified according to the prompt’s specification. This suggests that when
the prompt is neutral, the inversions tend to exhibit bias toward a specific gender, reflecting the bias
present in the model. Examples of these inversions are visible in Figure 7. The top row displays
images inverted from a neutral prompt, all depicting a male student. In contrast, the bottom row
showcases inversions where the prompt specifies the gender as female. Remarkably, upon closer
inspection, numerous images in the latter category feature bras and partial nudity. We can see more
examples of the second row in Figure 12 in the Appendix.

Figure 7: Top row: Inverting the
prompt “A successful student in univer-
sity" yields 100 images, all classified as
depicting a man. Bottom row: Invert-
ing the prompt “A successful female stu-
dent in university" for 100 trials results
in all images being classified as depict-
ing a woman. Interestingly, for the latter
prompt, as demonstrated in the second
row, some of these inversions exhibit par-
tial nudity despite no mention of it in the
prompt.

We conducted this experiment for four categories of
prompts: status, profession, parental roles, and educa-
tional pursuits, as shown in Table 4 and 6. For example, in
the profession category, professions such as nurse, kinder-
garten teacher, and midwife are predominantly categorized
as female, whereas professions like firefighter, construc-
tion worker, and mechanic are mainly categorized as male.

4.4 EFFECT OF TRAINING DATA SCALE

The impact of the training dataset on the quality of in-
verted images is significant. Comparing to inversions
performed on classification models like in papers (Ghiasi
et al., 2022b), the inversions done on CLIP models are
much better. We speculate that this might be because of
the scale of the training dataset. For example ImageNet
(Deng et al., 2009) only contains 1M images, and Ima-
genet22k only contains 14M images. This also holds true
for CLIP models. When a CLIP model is trained on a
limited dataset, the resulting image quality is poor. We ob-
serve instances of inverted images from RestNet50 CLIP
models that were trained on three different datasets: Ope-
nAI CLIP training data with 400 million image-caption

pairs, CC12M (Changpinyo et al., 2021) with 12M images, and yfcc15M (Thomee et al., 2016) with
15M images. We hypothesize that the success of inversions is closely tied to the scale of the training
data. We can see examples of these inversions in Figure 8.

5 TEXTUAL APPEARANCE

As seen in many of the inverted images, such as those in Figure 9, there are numerous instances of
text appearing within the images. For example, in response to the prompt “A sad person," the word
“sad" appears in the images. This effect is more pronounced when TV regularization is not used

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

in the inversion loss function, as shown in Figure 14. In all these images, a part of the prompt is
typographed within the inverted image. This may explain why typographic attacks, as discussed by
Goh et al. (2021), are so effective on CLIP models. We hypothesize that instances within the training
data where the same text appears both in the caption and the image can facilitate the CLIP model in
learning these associations more easily.

6 EXPERIMENTAL DETAILS

Figure 8: Impact of training data scale on
inversion quality: 400M images (left col-
umn), YFCC15M dataset (middle column),
and CC12M dataset (right column).

We utilize Adam as our optimizer with a learning
rate set to 0.1. To implement various random aug-
mentations for different inputs within the batch, we
employ the Kornia library. Unlike PyTorch’s default
augmentations, which use the same augmentation for
all images in a batch, we require different augmen-
tations for each element in the batch due to identical
inputs. In our experiments, we employ random affine,
and color jitter.. We apply random affine and color
jitter with a probability of 1. For random affine, we
configure degrees, translate, and scale parameters to
30, [0.1, 0.1], and [0.7, 1.2], respectively. Regarding
color jitter, we set the parameters for brightness, con-
trast, and saturation to 0.4 each and hue to 0.1. We
complete a total of 3400 optimization steps. Initially,
we begin with a resolution of 64, then increase it to
128 at iteration 900, and finally to 224 at iteration
1800. Each inversion experiment was conducted us-
ing a single RTX 4000 GPU, taking approximately
14 minutes per experiment.

7 DISCUSSION AND LIMITATIONS

We present a method for studying biases and knowl-
edge inherent in CLIP models using qualitative methods that are typically only available for generative
models. While the dataset used to train the original CLIP model is proprietary, visualization methods
give us a glimpse into its construction. The strong tendency of the CLIP model to produce NSFW
imagery across a wide range of contexts suggests that the dataset is not carefully curated, and it likely
contains a considerable amount of NSFW content.

A notable limitation of this study is that we use generative strategies to extract conclusions from a
model that is not typically operated in a generative way. While model inversion gives us a powerful
window into CLIP’s behaviors, and we argue that is the least biased approach known to date, these
behaviors do not have to be represented in other operational modes.

8 REPRODUCIBILITY

We have made our code publicly accessible at https://github.com/who-must-n0t-be-
named/CLIPInversion.

9 IMPACT STATEMENT

We want to clarify that we have not intentionally sought to create any NSFW images during the
inversion process. The emergence of such behavior is inherent to CLIP models. Despite not using any
NSFW prompts, we have observed that specific prompts can still result in NSFW imagery. This raises
a significant concern that warrants attention within the community. It underscores the importance of
employing improved data filtering and curation techniques for training models on web-scale datasets.
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A APPENDIX

Dakota Johnson
dakota, emma, lisa, sexy, maria, fit, petite, hot, latina, ana, melissa, mia, eva, busty, cute,
shakira, joy, dana, brunette, lauren, mariah, xx, victoria, dylan, d, seo, boobs, julia, mm, slut,
bon, nsfw, jap, dog, to, elegant, j, sarah, barbara, me, rebecca, ooo, bikini, booty, k, titty, yea,
jessica, honk, yes, ero, dat, yo, liberal, erotic, nicole, oh, ye, wow, eh, l, pamela, xxx, bmw,
jo, tits, big tits, z, aw, dammit, clara, abs, ya, tb, cocktease, h, cia, je, nastyslut, jj, oo, new,
linda, ah, f–able, ha, hi, dm, deluxe, qt, t, ecchi, di, amanda, b, um, jesus, katrina, , o, og,
m, ja, cat, f**k, c, nip, erotica, dad, yu, belle, hey, uh, fat, beastiality, jd, tiffany, dan, es, p,
das, w, www, ban, you, retro, bo, af, x, bw, bra, vs, ok, titf**kin, f**kin, aye, shit, america,
shitty, le, avi, jpeg, benz, gas, hentai, laura, jade, f**ked, da, wet, sara, y, pussy, sg, i, kinda,
so, no, ez, yet, big, lol, sierra, f**king, mj, smut, erotism, fbi, boob, f**ks, que, old, ou, sad,
v, assf**k, doggy style, las, dildo, badf**k, jim, on, la, meta, karen, goddamnmuthaf**ker,
how, buttf**k, titf**k, boner, cuntf**k, cw, dp, kai, shitf**k, jun, god, te, ol, lit

eyes, ana, jennifer, jamie, lips, pupils, actress, lip, cute, regard, gorgeous, gap, turner,
contacts, rachel, sas, earrings, beauty, pretty, eyed, anne, stunning, beautiful, queen, focuses,
eyelash, expression, jo, closer, ri, kate, crop, tongue, hq, ellen, brunette, mia, vs, pearlneck-
lace, her, smile, julie, taylor, gif, jill, sarah, ro, liz, eye, bra, alex, lenses, boob, glance, she,
monica, acting, amy, premiere, beautifully, dame, mj, ada, profiles, sd, katie, lovely, bras,
qt, boobs, heart, israeli, precious, mel, woman, lucy, mo, face, jaw, cheek, fifty, wife, nose,
jewel, sg, susan, eve, spectacular, emily, bk, donna, arms, tom, rw, mouth, bisexual, sara,
enormous, teeth, ts, hot, natural, ww, bi, necklace, genes, claire, viii, carol, tits, herself,
sucker, vulva, princess, guess, hl, banner, las, breasts, katrina, dsl, wi, armpit, ai, looking,
sk, t, nat, neck, lucia, linda, angie, gd, rebecca, el, thyroid, j, joan, helen, attractive, eau, pd,
surprised, hearts, titbitnipply, loved, mrs, titty, jane, anna, isa, bosom, jordan, actor, evans,
screening, nipple, cf, elegant, nipples, kit, vulnerable, asset, hair, soc, belle, charming, you,
dsc, pin, nicole, judy, di, in, w

Table 5: In the initial word series, we see words closely associated with ’Dakota Johson’
within the embedding space. In the second word series, we see words that are proximate
to the embedding of the shown image.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A happy person

A sad person

A inspired person

Figure 9: Prompts inverted related to emotions
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A worried person

An interested person

Figure 10: Prompts inverted related to emotions

Brad Pitt Tom Cruise Robert Downey Jr Tom Hanks

Hugh Jackman Matthew McConaughey Jason Statham Bruce Willis

Figure 11: Prompts inverted from celebrity names
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Figure 12: Inverting images with the prompt “A successful female student in the university" using
various initializations. Interestingly, many of these images contain bras or partial nudity.

A photo of a cone A photo of a cube A photo of a cylinder A photo of a sphere

Figure 13: Prompts related to shapes.
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An angry person A confident person A curious person

A furious person An inspired person An interested person

A sad person A tired person A worried person

Figure 14: Prompts inverted without Total Variation regularization.

Prompt M W M W M W
Parental Roles N F M
A stay-at-home parent caring for the children 5 95 0 100 100 0
A working parent juggling career responsibilities and childcare duties 3 97 1 99 100 0
A parent nurturing and comforting her child during times of distress 1 99 0 100 100 0
Educational Pursuits
A young person studying engineering or computer science at university 88 12 0 100 100 0
A young person pursuing a degree in nursing or early childhood education 1 99 0 100 100 0
An artist expressing his creativity through painting, music, or theater 100 0 0 100 100 0
A mathematician solving complex equations and advancing mathematical theories 99 1 0 100 100 0

Table 6: For each prompt, we generate 100 inverted images and conduct classification to determine
whether these inverted images are associated with a man or a woman. The classification is performed
using a separate CLIP model. The “N" column (Neutral) indicates prompts as shown in the table.
The “F" (Female) and “M" (Male) columns represent scenarios where gender specification is added
to the prompt. For instance, using “A stay-at-home dad caring for the children."
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Figure 15: Contrasting Color Jitter augmentation with Random Affine, the left image is inverted
utilizing Color Jitter, while the right image is inverted using random affine transformations.

Prompt CLIP
Serena Williams 80
Maria Sharapova 77
Victoria Azarenka 46
Elena Rybakina 1
Roger Federer 13
Andy Murray 5
Rafael Nadal 44
Novak Djokovic 23
Alex Morgan 44
Kristie Mewis 8
Sophia Smith 1
Rose Lavelle 3
Lionel Messi 1
Cristiano Ronaldo 22
Karim Benzema 4

Table 7: The number of NSFW-flagged images determined from 100 images identified by a stable
diffusion safety checker for ViT-B/16 OpenAI CLIP. The initial 8 prompts consist of names of tennis
players, followed by the subsequent 6 prompts comprising names of soccer players.
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Table 8: The words closest to the names of the celebrities in the embedding space.

Prompts

Leonardo Dicaprio

leo, marco, ye, oscar, jesus, carlo, yea, dylan, yo, ben, oh, oo, sean, le, eminem, rl, ha, to, jim, eh, lol, lo, yet, ok, um,
uh, l, ooo, tom, ya, yes, man, og, louis, hi, liberal, wow, so, dan, osama, but, ah, mm, me, lit, aw, ian, cia, mem, dat,
rob, fr, apollo, o, aye, my, ob, xi, meta, latino, mac, ol, diego, kinda, hey, how, k, relevant, title, jpeg, bet, political,
america, paul, oc, he, f**kin, rp, on, tremendous, mariah, who, d, hh, carlos, and, apt, af, i, bc, h, usa, op, ou, ryan,
fa, lou, b, shit

Lindsay Lohan

lindsay, britney, maria, mariah, madonna, lauren, emma, tiffany, latina, shakira, nicole, marilyn, sexy, hot, eminem,
jessica, redhead, liz, dylan, louis, chuck, jigga, liberal, amanda, ashley, linda, sarah, christina, l, eva, li, yea, fit, ian,
nastyslut, harry, to, so, im, me, vids, lil, on, lib, wow, op, cute, i, barbara, goy, fuckin, bitching, shitty, woman,
pornprincess, oh, yo, blonde, petite, bad, pornking, covering, yes, and, wayne, italian, karen, lo, ml, ali, eh, but, ya,
wendy, lady, h, yet, goddamit, shit, oo, ez, uh, man, got, lit, my, , michelle, italiano, ln, old, ll, for, legendary, doggy
style, um, ha, libs, en, islam

Jennifer Lawrence

jennifer, lauren, melissa, emma, latina, sexy, fit, shakira, lisa, nicole, hot, michelle, busty, amanda, linda, petite,
pamela, lou, mariah, rebecca, dakota, britney, dylan, elegant, marilyn, cute, sarah, stephanie, leo, joy, wendy, eva, me,
maria, liberal, liz, laura, jon, yea, to, l, fat, yes, ye, jim, cat, nsfw, le, wow, jo, slut, avi, pic, oh, julia, mm, yang, j, yo,
solar, boobs, oo, sandra, eh, she, monica, ellen, ooo, nastyslut, chevy, janet, passengers, big, sg, fuckable, rica, um,
jessica, karen, jesus, pam, o, ecchi, titty, aw, ha, tom, america, lo, uh, how, i, ian, so, k, ah, mia, dog, hi

Timothée Chalamet
petite, dylan, eminem, to, hot, harry, samuel, ye, xx, he, yo, boy, aye, oscar, eh, sam, man, me, ya, yea, um, mm, oo,
yes, lit, lauren, fit, his, oh, emma, jesus, ooo, sexy, o, cute, matt, lil, ian, tom, of, tb, ah, h, aw, uh, i, liberal, adam, ha,
osama, hi, peterson, fw, dm, new, wow, hh, n–ga, ch, rob, mac, im, on, es, hey, shit, model, k, max, og, men, jon, rl,
jim, rt, fr, xxx, que, af, www, y, avi, santorum, yet, le, cho, shitty, t, cw, ok, pamela, f**k, x, b, oc, f**kin, je, tf, ho
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