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ABSTRACT

Graph Neural Networks (GNNs) have shown great promise in node classification
tasks, but their performance is often hindered by the scarcity of labeled nodes.
Recently, graph domain adaptation has emerged as a promising solution to transfer
knowledge from a labeled source graph to an unlabeled target graph. However,
most existing methods typically rely on a closed-set assumption, which fails when
unknown classes exist in the target domain. Toward this end, in this paper, we
investigate the challenging open-set graph domain adaptation problem and propose
a dual evidence-aware uncertainty learning framework ETA that simultaneously
identifies unknown target nodes and enhances knowledge transfer under the evi-
dential learning theory. Specifically, we adopt a dual-branch encoder to capture
both implicit local structures and explicit global semantic consistency within the
graph, and leverage evidential deep learning to integrate the evidence from both
branches, where the resulting evidence is parameterized by a Dirichlet distribution
to estimate class probabilities and enable uncertainty quantification. Based on the
identified unknown target node, we further construct cross-domain neighborhoods
and perform MixUp-based virtual sample generation in the latent space. Then,
we introduce evidential adjacency-consistent uncertainty to evaluate uncertainty
consistency across neighborhoods, which serves as auxiliary guidance for robust
domain alignment. Extensive experiments on benchmark datasets demonstrate that
ETA significantly outperforms state-of-the-art baselines in open-set graph domain
adaptation tasks. Our code is available at anonymous.4open.science/r/ETA-FA1C/,

1 INTRODUCTION

Graph Neural Networks (GNNs) have emerged as a de facto paradigm for learning on graph-structured
data, thanks to their powerful ability to capture both node-level features and relational dependencies
through message passing mechanisms (Gilmer et al., 2017} [Kipf & Welling,, 2017), GNNs have
achieved state-of-the-art results in numerous graph-based tasks (Wu et al., [2020b; Ju et al., |2024)).
In particular, node classification, which aims to predict the labels of nodes in a graph by jointly
leveraging their features and topology information, has served as a fundamental task for a wide range
of applications, including molecular property prediction (Guo et al.,2021;|Zhuang et al.,2023), social
behavior analysis (Liu et al., 2024} Wan et al.| [2024)), and cross-modal retrieval (Li et al.| [2024]).
Nevertheless, the performance of GNNs largely hinges on the availability of abundant labeled data,
which is often costly and time-consuming.

Graph transfer learning, which transfers knowledge from the well-annotated source graphs to an
unlabeled target graph, has attracted increasing attention (Han et al., [2021; [Zhu et al.| 2021} 2024)).
Among various strategies in this paradigm, graph domain adaptation (GDA) has emerged as a key
approach to mitigate distribution shifts between graphs, enabling the GNNs trained on the source
domain graph to better adapt to the target domain graph (Qiao et al., 2023)). Current efforts about GDA
can be generally categorized into two main branches: Discrepancy-based methods aim to explicitly
minimize the statistical divergence (i.e., Maximum Mean Discrepancy (MMD) (Shen et al.| 2020) and
graph subtree discrepancy (Wu et al.| 2023))) between source and target domains for encouraging the
alignment of their latent feature distributions. In contrast, adversarial-based methods use a domain
discriminator to differentiate source and target graphs, generating indistinguishable node embeddings
for domain alignment (Dai et al., [2022} |Qiao et al., 2023)).
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Despite the effectiveness of these GDA methods, they typically focus on the closed-set assumption
where all target domain nodes belong to one of the known classes from the source domain, which
often does not hold true in a real-world scenario. In practice, target graphs may contain nodes
from previously unseen classes, making it difficult for traditional GDA methods to generalize and
leading to potential negative transfer (Wang et al., 2024} |Yin et al., [2024). Towards this end, in this
paper, we study the problem of open-set graph domain adaptation, which differs from closed-set
adaptation by requiring the model to not only classify target nodes from known classes but also
identify out-of-distribution (OOD) nodes belonging to unknown classes.

Actually, this problem is quite challenging due to the following twofold: (1) Unknown Class Identifi-
cation. Traditional GDA approaches typically rely on pseudo-labeling to exploit unlabeled target data.
However, under open-set scenarios, these methods often fail to distinguish unknown target nodes
from known ones, resulting in incorrect label assignments that propagate errors and ultimately hinder
effective knowledge transfer. (2) Domain Alignment under Inadequate Supervision The presence of
unknown classes exacerbates the label scarcity issue in the target domain, making it challenging to
establish reliable alignment between source and target domains. Existing GDA methods typically
aim to learn domain-invariant representations through global feature alignment, yet these approaches
often overlook the semantic discrepancies introduced by unknown classes. Besides, prior work (Wang
et al.|[2024) predominantly relies on predictive entropy for identifying unknown classes, which may
vary substantially across different open-set GDA scenarios, thereby leading to unstable performance.

In this paper, we propose ETA illustrated as Figure |1} a novel Dual Evidence-Aware Uncertainty
Learning framework for Open-SeT graph domain Adaption (ETA), which identifies the unknown
nodes and facilitates knowledge transfer from labeled source graph to the unlabeled target graph
under the evidential learning theory (Sensoy et al., |2018)). Specifically, our ETA incorporates a
dual-branch architecture composed of an edge-oriented encoder and a path-oriented encoder to
fully leverage the complementary information encoded in node attributes and graph topology. The
edge-oriented encoder implicitly captures local topological semantics through message passing over
immediate node neighborhoods, while the path-oriented encoder explicitly aggregates information
across diverse relational paths. Then, to reliably identify unknown classes, we introduce an evidence-
aware classification module to facilitate uncertainty quantification, enabling stable identification
of unknown target nodes based on the principles of evidential learning. Furthermore, to mitigate
domain shift under the open-set scenario, we construct cross-domain neighborhoods by retrieving
the k-nearest neighbors across domains. For each node, we perform latent space MixUp with its
cross-domain neighbors to generate informative virtual samples. To quantify the alignment reliability,
we introduce evidential adjacency-consistent uncertainty estimation, which assesses the consistency
of uncertainty across different adjacency sets. Based on this, we provide auxiliary supervision and
promote more robust cross-domain alignment. Extensive experiments are conducted on several
benchmark datasets to evaluate the performance of our proposed ETA, and the results highlight the
superiority of the framework for open-set graph domain adaptation.

2 METHODOLOGY

2.1 PROBLEM DEFINITION

Source Domain Graph. Let the source domain graph be denoted as G° = {V* €% X Y *},
where V° and £° represents the node and edge set respectively. Each node v € V? is associated
with a d-dimensional attribute vector, and the collective node features are represented by the matrix
X ¢ RIV'IX4 The structure of the graph can be characterized by the adjacency matrix A® €
{0, 1}V X1Vl where Aj; = 1if there is an edge (v;,v;) € Vs between node v; and v;, otherwise
Afj = 0. The corresponding degree matrix D € RIV'I*IV"I is diagonal, with each entry D;; =
leill A; indicating the degree of node v;. We denote the label matrix as Y* € RIV'IXICI, where
each node label y, corresponds to one of the |C;| classes in the source domain label space Cs.

Target Domain Graph. Similarly, the target domain graph is denoted as G = {V*, £, X'} with
completely unlabeled node set V! and edge set £!. The node feature and adjacency matrix are denoted
as X' € RV'Ixd and At € RIV'IXIV'I Let C, represent the label space of the target domain graph.
To facilitate alignment, we construct a unified feature space across the source and target domains.
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Figure 1: Illustration of the proposed framework ETA, it consists of three components as follows.
(1) Dual-Branch Encoder, which jointly captures local structural and global semantic information.
(2) Evidence-Aware Classifier, which employs a Dirichlet-based evidential framework to quantify
uncertainty and identify unknown nodes. (3) Evidential Adjacency-MixUp, which constructs cross-
domain neighborhoods and performs consistency-aware MixUp in latent space for robust alignment.

Open-Set Graph Domain Adaptation. We consider the open-set graph domain adaptation (OSGDA)
problem, which involves a labeled source graph G° and an unlabeled target graph G*. Unlike
conventional GDA settings that assume identical label spaces across domains, the open-set scenario
allows for the presence of unknown classes exclusive to the target domain, such that C; C C;. We
denote the shared class set as Cs = Cs N C; and the unknown class set as C; = C; \ Cs. The objective
is to transfer knowledge from the source domain to correctly classify target nodes into |Cs| + 1
classes with nodes from C; as an additional unknown class. The predictive model is formalized as
f = h(g(x,)), where g(-) extracts features and h(-) performs classification.

2.2 DUAL-BRANCH ENCODER FOR CONSISTENCY DELVING

To comprehensively capture both node-centric local and high-order global consistency relationships
within the graph, we construct a dual-branch encoder from two complementary perspectives, consist-
ing of an implicit edge-oriented branch and an explicit global path-oriented branch, thus enrich the
semantic aggregation from multiple perspectives.

Edge-Oriented Graph Encoder. Given the adjacency matrix A* and node feature matrix X*
(x € {s,t}) of the source and target domain graphs, the edge-oriented branch is designed to capture
local structural patterns by aggregating information from immediate neighbors. Specifically, we
utilize a message-passing scheme to encode local consistency knowledge (i.e., neighboring nodes are
more likely to share the same label) in an implicit manner. The update rule can be:
X ~ 1/2 2o~ —1/2 (-
z:0 — oD A Pz ), 1)

edge

where Z*\) and We(cll)g . denote the node embeddings and filter weight at [-th layer. A=A+Tand

5 edge
D is the corresponding degree matrix. By stacking L layers, the encoder gradually enlarges each

node’s receptive field, enabling the model to capture local topological dependencies Z(:i(qlc;)'

Path-Oriented Graph Encoder. While the edge-oriented branch effectively encodes local con-
sistency knowledge, it remains limited in modeling high-order structural dependencies inherent in
graph data (Ma et al., 2020; Wang et al., [2025). To address this, we incorporate a path-oriented
encoder that explicitly captures global semantics through multi-hop paths. Instead of relying solely
on immediate neighbors, this encoder aggregates information along multiple paths between node
pairs thus emphasizing long-range dependencies, The global consistency knowledge can be formally
updated as:

path —

. . P _Ep *— *,(1—
)=o) e
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where M* denotes the normalization matrix and A*? denotes the p-th power of adjacency matrix,
capturing p-hop connectivity among nodes. By aggregating over multi-hop paths with learnable path

E,
weight e~ =, the encoder explicitly integrates high-order topological dependencies based on their
structural importance. Here, £, denotes the energy assigned to the p-length path, 7 is a temperature

parameter, and similarly, w)

patn 18 the weight matrix at the [-th layer. We can also stack L path

(L)

convolutional layers and the global topological dependencies can be Z path -

2.3 EVIDENCE-AWARE CLASSIFIER WITH UNCERTAINTY QUANTITATION

Given the encoded consistency knowledge from two branches, we employ evidential deep learn-
ing (Sensoy et al.,|2018) (EDL) to quantify classification uncertainty by modeling both the likelihood
of each class and the overall uncertainty in the prediction to identify unknown nodes in target graph.

Evidence-Aware Uncertainty Prediction. The Dempster—Shafer Theory of Evidence (DST) extends
the traditional Bayesian approach by incorporating subjective probabilities (Dempster} |1968)), which
assigns belief masses to the set of all possible states. Subjective Logic (SL) (Jsang, [2018)) formalizes
DST using a Dirichlet distribution (defined in Appendix [A.I). In multi-class classification, these
belief masses can be distributed across both known and potentially unknown classes. By assigning a
portion of the belief mass to the entire frame, the model expresses uncertainty by indicating that the
true class is unknown (Sensoy et al., 2018)). Specifically, for each node v in the graph, we consider a
frame of |C;| mutually exclusive singletons (class labels), where the model assigns a belief mass b”
to each class k € Cg, along with an overall uncertainty mass u,, € C; reflecting insufficient evidence
for known classes. Accordingly, these masses satisfy the constraint:
(e |

wty 3)

Lete, = [el, ..., ek] be the evidence vectors, w1th each element e® > 0 corresponds to the evidence
of k-th class. The parameters of the Dirichlet distribution o, = [a}), ..., aX] can be induced from

e, i.e., o, = e, + 1. Then, the belief and the uncertainty mass can be calculated as:

ek ok —1 K
bk = iCA = v v = 5 4
vT S, T s, TS, @

where S, = Z?Zl(e’,j +1)= Zle a¥ denotes the Dirichlet strength, reflecting the total amount
of evidence. Intuitively, a higher e* leads to a greater belief mass b*, indicating stronger support
for class k, while a smaller total evidence results in higher uncertainty wu,, representing limited
confidence in all classes. Therefore, we leverage the extracted consistency knowledge of each node
to construct corresponding multinomial opinions. Taking the local consistency knowledge as an

example, the evidence vector is computed as €j, ;.. = =nZz, 1(952 ,), where h(-) is a fully connected
evidence projection head followed by a non- negatlve activation. Accordingly, the parameters of the

%
Dirichlet distribution can be expressed as a; .4 ge = €4 edge T 1-

Dempster’s Rule of Combination. Considering that the presence of unknown classes in OSGDA
introduces noise, the knowledge obtained from the two complementary perspectives may exhibit
certain conflicts. To address this, we adopt the principled framework provided by the Dempster-Shafer
theory to fuse the evidence from both branches, enabling the model to derive a more comprehensive
and reliable representation of the underlying knowledge. The core principle of the rule is to retain
only the parts where both branches provide consistent support and treat the inconsistent portions as
conflict mass, which is subsequently normalized. And the detailed definition is in Appendix [A.2]

Based on the Dempster’s Rule of combination, the joint evidence for the node v and corresponding
parameters of the Dirichlet distribution from two complementary perspectives can be induced as:
K
SU——e—b xSv,andoz —e + 1. (®)]
Uy
The predictive opinion probabilities p, = {p?,...,pX} are obtained by the mean of the Dirichlet

distribution, namely probability of the k-th singleton can be p¥ = o . Note that we generate the
uncertainty mass for the nodes in target graph and quantify the node Wlth an unknown class label as:

glCH‘l ].7 1fuv>77
v 0, otherwise ’

(©)
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where 7 is the threshold. To investigate whether the value of u, can effectively distinguish OOD
samples from known classes in OSGDA tasks, we conduct a theoretical analysis of the properties of
u,, in EDL and present the following theorem.

Theorem 1. In the graph node-level classification task, let g : X — Z C R% be the GNN
feature extractor, and let h : Z — Ré{o be the evidence projection head. According to EDL, we
have following evidence input of node v and corresponding parameters of Dirichlet distribution:

K K K
— K _ _ k_ k _
ev = h(g(Xy)) € RSg,ap =€, + 1,8, = E oy Y0 = E k:16v+K,uv— 5 7

Then, for any sample v satisfying micn||Zv —me| > d, we have
cels

K K
Sy <G(d yUpy = o 2 s 8
where G(d) = K + max sz:l 0er(d),d > 0, 9. r(+) is a non-negative, non-increasing

Sunction, and m,. is a prototype. Since G(d) is nonincreasing in d, the lower bound % is

nondecreasing in d. Thus, the farther a sample is from all known prototypes, the larger its
uncertainty is guaranteed to be.

The proof is in Appendix [B.I] Theorem 1 guarantees that the u, is highly related to the distance in
the embedding space, thus for the OOD samples which are far way from the known prototypes in
the embedding space, we can set a threshold to distinguish them from the known classes, which is
reasonable in the OSGDA tasks. For other nodes with known class labels, we generate the pseudo

label g, by assigning 1 to the class with the highest belief mass §* = arg max p~.
k

Learning to Form Opinions. We design and train neural networks to express their predictive
opinions as Dirichlet distributions. For each node v, the network estimates the non-negative evidence
vector e,, based on which the Dirichlet parameters are computed as o, = e, + 1. We treat the
Dirichlet distribution D(p,|c,) as a prior on the multinomial likelihood Mult(y, |p,,), and the loss

function can be formulated as:
K K

1 C 5—1
Lace(v,yy) = / [ —pv\@m II @™ dpy = (Wh)* - 2R + E[(p5)%]). 9)
Y k=1 k=1
According to EDL, the above loss function can be rewritten in a more interpretable form as:
K . ak ay (Sy — )
ﬁace yYov) = iy £ M 4 . 10
(y) =) W IR TI (10)
(£f)err (Lkyvar

And we have following three propositions that present the properties of the loss function above:

Proposition 1. For any o > 1, the inequality (LF)v" < (LK) satisfied.

Proposition 2. For a given sample v with the correct label k, LS™" decreaces when new evidence
8 D v
is added to of and increases when evidence is removed from o

Proposition 3. For a given sample v with the correct class label j, L."™" decreases when some
evidence is removed from the biggest Dirichlet parameter o, such that | # j.

The proofs of the propositions are in Appendix The propositions gaurantee the above loss
function can effectively generate more evidence for the known samples while reverting to high
uncertainty when encountering incomprehensible samples (e.g., OOD samples), thereby achieving
strong alignment with the OSGDA tasks. Besides, we further encourage the model to generate less
evidence for incorrect classes by introducing the following KL divergence term:

Li1(v,y) = KL[D(po|&,)|| D(pu]1)]

K ~ K K
~ log (F(F@“ &) k)) 3@ [wmﬁ) —y (Z d’;’)] B

K ~
K) Hk:l F(au k=1 k'=1
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where () denotes the digamma function, and &, = y, + (1 — y,) @ «, is a modified Dirichlet
parameter that preserves the evidence for the ground-truth class, ensuring them not mistakenly shrink
to 0. The evidence-aware loss can be:

£evi(U7yv) = Lace(vvyv) +)\£kl(vayv)a (12)
where ) is the balance factor to adjust the impact of the regularization trem.

2.4 EVIDENTIAL ADJACENCY-MIXUP FOR DOMAIN ALIGNMENT

Despite the generation of pseudo labels, the challenge of severe domain shift remains, which may
lead to unreliable supervision signals. To mitigate this, we introduce an evidential adjacency-MixUp
to provide auxiliary supervision for domain alignment.

Evidential Domain Adjacency-MixUp. We identify a cross-domain neighborhood to facilitate
knowledge transfer and promote semantic consistency across domains. In detail, we take the edge-
oriented branch as an example, and retrieve £ mutual nearest cross-domain neighbors for node

veV =V UV\{v |y‘c o1 _ = 1}. Then, for each node sample, we take a combination of all
neighbors as the virtual MixUp informative virtual samples v’, defined as:

— u rz*, (L)
v’ edge — ZUET(U) )\U Zu,edge’ (13)

where 7 (v) is the cross-domain neighbors. A% = s(Z, éEnge, z; ig;e)/ Yo s(Z, éfiz)e, z, (ed)ge) is

the MixUp weight with x=t¢, ' = s for v € Vs, otherwise x =3, x’ =t; s(-) denotes cosine similarity.

Adjacency-Consistent Uncertainty for Domain Alignment. To select samples with minimal noise
and ensure that the transferred knowledge occurs with high confidence between instances of the same
class across domains, we propose a strategy that integrates both individual and interaction-based
evidence characteristics to quantify the adjacency-consistent uncertainty. Specifically, we define two
components: (1) an individual term Ind, which captures evidential characteristics of a virtual node v’
through the maximum Dirichlet parameter maxy (cv,) and the residual S;,; — maxy (e, ), and (2)
an interaction term Int, which models the discrepancy between a node and its neighbors. Then, we
maximize the evidential consistency between node v and its virtual sample v’, which can be defined
as:

SU' — v’ v v’
Lgo(v) = Ind - Int, where Ind = log ( max (o )> JInt = ‘ X &

maxk(avl) SU SU/ (14)

1
2.5 FRAMEWORK SUMMARIZATION

The final objective consists of the evidence-aware and auxiliary consistency loss on the source domain
graph and the target domain graph with the known pseudo label, summarized as:

L= Z’UEVS evt ’U yv +Z vEV\V, em 7yv +Z Eda (15)

Time Complexity. Assume the number of nodes and edges in the source and target domains are
Vs V€5 E, respectively. We adopt GCN and PAN as the backbones of the two branches. The time
complexity for the embedding stage is O(V* + V! + £% 4+ £'). The evidence fusion process has a time
complexity of O(V* + V'), and computing the evidence loss for both source and target domains also
requires O(V* + V*). The time complexity of domain alignment is O(V* - V). In practice, to reduce
computational cost, we select anchor nodes from the source domain for cross-domain alignment. Let
the number of anchor nodes be c¢; then, this part has a time complexity of O(c - Vt). Thus, the overall
time complexity is: O(ES + E + V¥ + V! 4 ¢ V).

3 EXPERIMENT

3.1 EXPERIMENT SETTINGS

Datasets. Our experiments involve three widely used citation network datasets from (Tang et al.,
2008): ACMv9 (A), Citationvl (C), and DBLPv7 (D), and we follow the data preprocessing proce-
dures proposed by (Qi1ao et al.} [2023). For the OSGDA task using these three citation networks, we



Under review as a conference paper at ICLR 2026

Table 1: Performance of various methods across six open-set domain adaptation tasks (ACC (%) and
HS (%) ). The best performance is marked in bold, and the second-best is underlined.

\ A=D D=A A=C C=A C=D D=-C |  Average
| ACC HS ACC HS ACC HS ACC HS ACC HS ACC HS | ACC HS

GCN 45.10 41.80 3895 39.52 4636 4391 44.14 43.66 4845 44.61 4226 4125 4421 4246
GraphSAGE | 4826 46.22 43.14 4284 50.60 49.04 48.13 4636 51.72 48.66 4720 46.70 | 48.17 46.64
DANN 3330 28.07 3458 36.53 39.64 4122 3447 3442 3692 4188 3520 3546 35.68 34.16
CDAN 31.13  21.65 29.03 2776 30.99 2600 31.72 3091 3569 3047 28.62 21.82 | 31.20 2644
OSBP 28.56 1127 2620 1291 2932 11.15 27.80 7.34 3381 18.89 28.63 14.16 29.05 12.62
DANCE 60.54 2599 5327 39.53 6323 39.15 6044 3588 6429 2898 57.62 39.50 | 59.90 34.84
UDAGCN | 36.20 26.59 3190 1231 3744 3201 35.64 2276 4188 3648 3550 2509 3643 25.87
ASN 5640 3755 4749 4393 59.88 49.82 57.51 47.87 56.65 45.62 5697 46.19 | 5581 45.16
SDA 61.60 4922 5136 50.86 64.47 5527 61.67 5589 67.51 5535 57.74 5472 60.73 53.55
UAGA 5844 5628 5297 4740 64.13 53.66 5517 54.17 62.18 61.17 62.58 58.00 | 59.25 55.11

ETA 61.87 60.96 5421 53.76 62.76 62.57 61.82 58.17 64.78 63.50 59.96 5590 60.90 59.15

Methods

sequentially select one as the source domain and the other two as target domains. In each setting, two
classes are removed from the source domain as unknown classes, while the remaining three classes
are treated as known classes for the experiments. More details are provided in Appendix

Baselines and evaluation criteria. We select several classical GNN models as well as state-of-the-
art methods in open-set and domain adaptation tasks as baselines for comparison: 1) GCN (Kipf]
& Welling, |2017)) and GraphSAGE (Hamilton et al.l 2017); 2) DANN (Ganin et al., [2016) and
CDAN (Long et al.l [2018); 3) OSBP (Saito et al., 2018) and DANCE (Saito et al., 2020); 4)
UDAGCN (Wu et al., 2020a) and ASN (Zhang et al.| [2021); 5) SDA (Wang et al., [2024) and
UAGA (Shen et al | [2025). More details about the datasets are provided in Appendix |G| To evaluate
the performance of different methods on the OSGDA task, we adopt four metrics as evaluation
criteria: average class accuracy on known classes (ACCy), accuracy on unknown classes (ACC,,),
average per-class accuracy over the entire domain (ACC), and the H-score (HS) (Fu et al., 2020).

Implementation details. We adopt a 2-layer GCN (Kipf & Welling, 2017) and PAN (Ma et al.|[2020)
as the backbones for our two branches, with the feature embedding dimension of both networks
set to 512. The hyperparameters are configured as: n=0.65, A=0.5, k=3, learning rate=0.005, and
weight decay=0.001. Across the six domain adaptation tasks constructed from the three datasets, we
randomly select two out of the five labels as unknown classes for each task and train the model for
200 epochs. Each task is repeated 10 times, and we record average performance as final results.

3.2 PERFORMANCE AND DISCUSSION

To verify the superiority of our method, _ b e —— an | A pleuasomnbseneslaabs 8
Table [I] record the ACC and HS of our D e S ch IR R (0

ETA and competitive baselines. Over- ‘ [
all, our ETA consistently achieves the gm “HESEEESE T |,
best performance, followed by SDA and 20 \ “ SN SEEE s
UAGA. Classical GNNs perform moder- = C2D- 085533 5038 suos d0sd o e e svasosi
ately, while OSBP, CDAN, and DANN per- Lo I ]2; ]40]6;;00 pac ot o B e o 1 be2f 50
form worst, indicating that closed-set and Epochs i T acew

open-set graph domain adaptation methods
perform better than unsupervised domain
adaptation approaches in visions. We spec-
ulate that in open-set scenarios, unknown
nodes would cause disruption to known
node classification, making cross-domain transfer even more difficult. SDA amd UAGA performs
almost better than other baselines, showing their effectiveness for OSGDA tasks. However, while
SDA and UAGA achieves competitive ACC, their HS is relatively low, indicating imbalance between
known and unknown classes. In contrast, our ETA attains higher ACC in nearly all OSGDA tasks
and significantly outperforms SDA amd UAGA in HS (average improvement of 4.04%), showing our
model could learn more balanced semantic features, thus demonstrating our approach’s superiority.
Figure [2a] shows the loss curve of our ETA during training, illustrating rapid convergence. Figure [2b]
shows the impact on performance when different pairs of labeled classes are removed as unknown

(a) Training loss (b) Different unknown class

Figure 2: Convergence analysis and impact of different
unknown class under different setups.
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Figure 4: Sensitivity analysis of two key hyperparameters.

classes (e.g., every column indicates a different exoeriment with different unknown classes), where
ETA consistently achieves stable, balanced performance across different experiments, demonstrating
strong robustness of our ETA. The detailed results and analysis are supplied in Appendix [C|

3.3 ABLATION STUDY AND SENSITIVITY ANALYSIS

1) Ablation Study. We conduct ablation T moer B Wo Ley “wloPAN HETA
studies to investigate the effectiveness of : W Cgy Mwio GN WoLos Mo GON

each component in our method, with par-
tial results shown in Figure[3] It can be ob-
served that removing any component leads

to a certain degree of performance degra- % —zm DA A% 00—G3A D B3C
dation. In particular, the most significant ) ) )
drops occur when removing target domain Figure 3: Ablation analysis (ACC).

evidence loss (w/o L.,;) and domain align-

ment (w/o Lg4,), with the removal of evidence loss causing a more pronounced decline. This highlights
the importance of leveraging evidence to distinguish unknown-class nodes in order to prevent in-
terference with the training of known classes, as well as the necessity of selecting high-confidence
consistent neighbors for effective domain adaptation. In addition, replacing the dual-branch structure
with a single-branch one (w/o PAN and w/o GCN) also results in performance degradation, indicating
that the fused evidence from multiple branches is more reliable than that from a single branch,
which enhances the model’s ability to accurately characterize node classification, and plays a more
trustworthy role in distinguishing known and unknown nodes in the OSGDA tasks.

2) Sensitivity Analysis. To investigate the impact of different values of hyperparameters of our ETA,
we conduct a series of hyperparameter analysis as follows.

Effect of k. We study the range of k € {1, 3,5} which controls the number of neighbors involved
in the domain alignment, and the results are presented in Figures faland[4b] As can be observed,
the performance first improves and then declines as k increases. When k is too small, few neighbor
samples are incorporated, resulting in insufficient cross-domain alignment due to limited sample
diversity. Conversely, when £ is too large, the probability of including inconsistent neighbors rises,
thereby introducing noise that disrupts the adaptation process and reduces performance. To strike a
balance between sufficient information and minimal noise, we finally set £ = 3 for our approach.

Effect of 7). Here we study 7 range from {0.55, 0.60, 0.65, 0.70, 0.75}, which distinguishes unknown-
class nodes based on node uncertainty, and the results are presented in Figures [fcjand[Ad] It shows
that as 7 increases, performance first rises and then declines. When 7 is too small, many known-class
nodes are misclassified as unknown, weakening the model’s ability to identify unknown nodes and
reducing performance. Conversely, a large 1 causes too many unknown nodes to be treated as known,
introducing noise into training and degrading performance. To achieve a balanced threshold, we set
1 = 0.65 to maintain a clear decision boundary between known and unknown classes. Besides, we
adopt a dynamically evolving thresholding strategy for our method: the threshold is first initialized
with a predefined value, and then gradually increased as training progresses. This dynamic scheme
enables the model to incorporate a relatively large set of unknown class samples during the early
phase of training, while focusing on fewer but more reliable unknown samples in later stages. Such
progression helps our method better adapt to a wide range of OSGDA scenarios.
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s

(a) SDA (b) UDAGCN (c) ETA

Figure 5: T-SNE visualization of source and target domain node embedding. Each pair, left: ACMv9
(source domain) and right: Citationv] (target domain), corresponds to one method.

3.4 VISUALIZATION ANALYSIS

To further demonstrate the effectiveness of our ETA in domain adaptation, we perform t-SNE
visualization on the node representations learned by our ETA and two competitive baselines. The
results are shown in Figure[3] It is evident that in the source domain, all three methods produce clear
separations among different classes, indicating an effective representation learning. However, in the
target domain, the node representations learned by the two baselines lack clear class boundaries,
suggesting that the presence of unknown classes in the open-set setting disrupt their ability to learn
effective representations. In contrast, our ETA yields well-separated clusters even in the target
domain, which clearly demonstrates its ability to capture domain-invariant and discriminative node
representations, thereby enabling more effective cross-domain knowledge transfer.

3.5 EFFECTIVE DIFFERENTIATION BETWEEN KNOWN AND UNKNOWN CLASSES

To further highlight the advantages of our
method over existing approaches on the OSGDA
task, we record the accuracy on both known and
unknown classes for our method and two base-
line methods across various open-set tasks. The
results are shown in Figure [} As illustrated,
while the accuracy on unknown classes is com-
parable across methods, our ETA consistently
achieves higher accuracy on known classes. In
contrast, baseline methods often suffer a sharp (a) Known Classes (b) Unknown Classes
performance drop on known classes, indicat-

ing their inability to learn balanced node rep- Figure 6: Differentiation results between known
resentations (which also explains their lower HS ~and unknown classes in various experiments.
scores). In comparison, our ETA maintains a

more balanced accuracy between known and unknown classes, highlighting its effectiveness in
learning more generalizable class representations under open-set scenarios.

3.6 QUANTIFICATION OF UNCERTAINTY

To demonstrate that uncertainty can serve as an
reliable indicator to distinguish unknown nodes
from known nodes, we record the correspond-
ing uncertainty values of source-domain known
nodes Sy, target-domain known nodes T}, and
target-domain unknown nodes 7;, over 10 OS-
GDA experiments. The results are shown in
Figure[7] We can clearly observe that the uncer-
tainty of known nodes in both the source and
target domains is generally low, while the uncer- (a) ACC (b) HS

tainty of unknown nodes in the target domain is

significantly higher. This indicates that node un- Figure 7: Impact of uncertainty across node types.
certainty effectively captures the inherent prop-

erties of known and unknown classes of nodes in OSGDA scenarios, making it a reliable indicator for
distinguishing unknown class nodes. further aligning with our theoretical insights in Section[2.3]

3 4 Sy
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4 CONCLUSION

This paper addresses the challenging open-set graph domain adaptation problem, where the target
domain contains previously unseen classes. We propose a novel dual evidence-aware uncertainty
learning framework ETA, which first adopts a dual-branch encoder to capture both local structures and
global semantics, while integrating evidential deep learning to quantify uncertainty through Dirichlet
distributions. Based on this uncertainty, our ETA detects unknown target nodes and builds cross-
domain neighborhoods via latent MixUp, creating more informative and transferable virtual samples.
We also introduce evidential adjacency-consistent uncertainty to measure neighborhood consistency,
providing auxiliary supervision for robust domain alignment. Extensive experiments demonstrate that
our proposed ETA consistently outperforms existing approaches. In future work, we plan to extend
ETA to more challenging learning paradigms, such as label-noised learning and class-imbalanced
learning, and further explore its applicability in inherent real-world OSGDA scenarios such as
dynamic graph systems (e.g., cybersecurity intrusion detection) or under multi-modal scenarios.
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A DEFINITION

A.1 DIRICHLET DISTRIBUTION

Definition 1. (Dirichlet distribution) The Dirichlet distribution is a multivariate probability
distribution parameterized by a vector o = |av, . . ., ai|, where each oy, > 0. The probability
density function (PDF) of the Dirichlet distribution is defined as:

e — 1
D(plev) —{ sy i P2 fore € Sic (16)
otherwise,
where Sk denote the K -dimensional unit simplex, which can defined as
K
SK_{PZPi_landOSPh"',PKﬁl}, a7
i=1

and B(a) denotes the K-dimensional multinomial beta function. The Dirichlet distribution can
be considered as the conjugate prior of the multinomial distribution.

A.2 DEMPSTER’S COMBINATION RULE

Definition 2. (Dempster’s Combination Rule) Given the belief and the uncertainty
mass assignments from two sets M cqge {{bv Edge}]C 15 Uy, edge} and My patn =

{{ Jmth}k 19 W path} the joint mass M, = {{bk}k s uv} can be calculated as:
Mv = Mv,edge @ Mv,path' (18)
The calculation rule can be formulated as:

1 1
k _ k _
bv T 1-C (bv edgebv path + bv ,edgeWv,path + bv pathWu, edge) v muv,edgeuv,pathv
(19)
quantifies the conflict between the two mass sets. The normal-

where C =3, . b, edqebv ;path
ization is achieved by applying a scaling factor 5.

B PROOF OF THEOREM

B.1 PROOF OF THEOREM 1

Proof. Assume the following:

(A1) For each known class ¢ € Cs, there exists a prototype m. € Z.

(A2) For each class c and each evidence dimension k, there exists a nonnegative, nonincreasing
function ¢,k : [0, 00) — [0, 00) such that

el; < @c,k(”z - mc”) ’ whenever ¢ = arg n'él,n ”Z - mc’”'

For each node v, let ¢* = arg min|| Z, — m.||, with radius r = ||Z, — mc«||. By assumption (A2),
C

for each evidence k& we have

er < v k(7). (20)
Summing over k evidence gives
K K K
Doer <Y e k(r) Smax Y ger(r). 1)
k=1 k=1 T k=1
Hence
K K
Sy = Zeﬁ +K <K+ maxz e r(r) = G(r). (22)
k=1 k=1
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If min||z — mc|| > d, then r > d, and since each . is nonincreasing, G(r) < G(d). Thus
Sy < G(d), which implies

= G 2

Uy =

5 K
Sy

O

Remark 1. This theorem provides a formal link between embedding space geometry and
evidential uncertainty. It shows that if a target node v lies far away from all source class
prototypes, then its total evidence S, is provably bounded above, leading to a provable lower
bound on uncertainty w,,. This theoretical guarantee supports the use of uncertainty threshold
for node detection in ETA.

Corollary 1 (Quadratic decay under local curvature). Suppose further that the evidence
projection head h is twice differentiable near each prototype m., and that for every component
h¥ the Hessian at m.. satisfies

V2hF(me) < —pwl, = 0. (24)

Then there exist ro > 0 and C' > 0 such that for all 0 < r < rq,

K K
doeh, <> ek —Crr V|l =7 (25)
k=1 k=1

Where mgs := m. + 6, denotes a node that near the prototype m.. Consequently, for any node

K

> O 26)

Uy

Proof. Fix a component k and a vector ¢ with ||| = r < rq. By Taylor’s theorem with the Hessian
evaluated at an intermediate point, there exists 6 € (0, 1) such that

K (me +6) = h¥(me) + VAF(me) 76 + 16T V2RF (m, + 65) 6. (27)

By assumption VA*(m,.) = 0, hence the linear term disappears. Using the Hessian upper bound in
the ball ||0]| < ro, we get

§TV2hF (me + 00) 5 < f% 11612. (28)
By substituting the former in the equation 28, we can get

B (me +8) < B (me) — B 6] 29)
Summing the above inequality over all evidence k = 1, ..., K gives

K K 1 K
Soeh, <D b = (X m) (30)
k=1 k=1 k=1

where mgs := m. + 6. Set C = i Zszl i > 0 to conclude the stated bound, and we can get

K K
Sy = Zefns + K< Zeﬁ% + K — Cr? < max(S,,, — Cd?). 31)
Since u,, = s and for max( — Cd?), we can get the final result as
K K
Yy = > . 32
TS, T max(Sy, — Cd?) 32)
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Remark 2. The corollary shows that for a neighborhood v of a prototype m., the total evidence
S, decays at least quadratically in the distance r = || Z, — m.||. Since uncertainty is defined
as u, = K/S,, this quadratic decay in S, implies a quantitative increase in uncertainty:

= K
Uy 2 G A~ 9>
S, — Cr?

This bound has three important implications. First, it formalizes the intuition that the nodes
farther away from known prototypes must be assigned larger epistemic uncertainty. Second, the
rate of increase is explicit: uncertainty grows at least inversely with a quadratic function of
distance, providing a concrete mechanism to separate known and unknown classes in OSGDA
settings. Third, the condition S,,, — Cr? > 0 restricts the guarantee to a finite neighborhood,
beyond this region, the theoretical bound may become vacuous, though empirically the same
monotonic trend often persists.

for all v such that S,,, — Cr? > 0.

B.2 PROOF OF PROPOSITIONS

Proposition 1. For any o > 1, the inequality (LF)"" < (LF)er™ satisfied.

k _ kyerr _ (@5)2 (Sv—@f) a’j (aﬁ)z :
Proof. When y,; = 0, then (L)' = ~g5—. As o1 < land g5 < g~ we obtain

ay(Sy —ay) _ (af)?

v v 33
25, +1) 8 53
Now consider the case y* = 1. Then
kN 2 k)2
kyerr @y (SU — av)
=\1l-—=) =—F5 34
whr = (1-50) =B 64
As (S, — aF) > %, we attain
k S — k S — k\2
av( v av) < ( v av) (35)
S2(S, +1) S2
Thus in both cases (£¥)va" < (L£k)err, O

Proposition 2. For a given sample v with the correct label k, L™ decreaces when new evidence
is added to o and increases when evidence is removed from o*

Proof. Let § denote additional evidence added to the Dirichlet parameter o. Then L™ is updated
as

. ok 4+ 6\° al ?
Ly =(1-=" L . 36
! ( Sv+5) +Z<Sv+ ) 0
l#k
For § > 0 we have , ,
ak +6 ak
1- =7 <|1-= 37
( Sut 6) ( Su> GD
and
al 2 al\?
“ < = - 38
>(s) <2 () o
I#k I#k
Hence Ei” < Lg™. Similarly, for § < 0 the inequalities reverse, so ﬁi” > Lo, O

Proposition 3. For a given sample v with the correct class label j, L™ decreases when some
evidence is removed from the biggest Dirichlet parameter o', such that | # j.
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Proof. Let the expected value of the predicted Dirichlet distribution for sample v be p, =
(pL,...,p%). When some evidence is removed from !, p! decreases by &/ >
since the expectations must sum to one.

p¥ for all k # [ increases by 6F > 0 with Zk# 5k = ¢!

0. As a result,

Let !, denote the updated expected value for the [** component of the Dirichlet distribution after
removal of evidence. Then, before the removal L{" can be written as

) Y e

err __
Lv

(1_pv

After the removal of evidence, it is updated as

Terr __
Lyt =

(1—p) —8)°

The difference of L™ — Ei” is

Lirr o Ezrr — 2(1 _ pv 5] +2
ﬁ_/

>0

which is always positive provided p!, > p!, > p¥ for k # j, and is maximized as p!, increases.

P 8-

k#l

k£l

Ak
Pudy

k¢ {51}

k¢ {41}

+@E)+ D> (B + k)
k¢{5.l}

+ (Z6)

k#l

-6

k£l

C SUPPLEMENTAL EXPERIMENT RESULTS AND ANALYSIS

>0

(39)

(40)

(41)

O

Table 1: Details of various experiments with different unknown classes (ACC (%) and HS (%) ).

R \ A=D D=A A=C C=A C=D D=C
emoved labels
\ ACC HS ACC HS ACC HS ACC HS ACC HS ACC HS
{0,1} 68.65 6634 52.06 5194 6933 6891 60.01 59.13 73.03 71.39 62.07 61.71
{0,2} \ 60.34 59.49 5828 58.56 6696 6620 59.09 5693 5833 5132 68.05 68.03
{0,3} 62.01 60.74 47.53 49.37 6097 59.82 6421 59.01 56.38 5938 57.75 59.43
{0,4} \ 55.00 5594 4738 47.32 59.69 57.86 6532 58.74 58.08 58.85 5424 5246
{1,2} 6298 6323 70.89 68.74 67.73 6723 69.65 62.63 70.64 6845 70.89 68.74
{1,3} \ 5737 57.59 53.69 5454 5893 59.72 60.74 4570 6891 68.02 62.66 57.04
{1,4} 60.08 61.80 51.76 44.74 60.97 60.80 59.63 58.88 70.06 69.66 57.28 49.65
{2,3} \ 60.31 59.23 60.68 61.26 6147 6337 6022 6205 6834 6221 59.27 53.33
{2,4} 64.57 61.84 53.03 51.68 56.44 56.86 5833 57.56 57.75 5842 53.11 31.35
{3,4} \ 67.34 6342 46778 4943 65.11 6496 61.07 o6l.11 6631 6732 5427 5730
Average 61.87 60.96 5421 53.76 62776 6257 61.83 58.17 6478 63.50 59.96 55.90
Table 2: Detailed ACC (%) of known classes and unknown classes of OSGDA experiments.

Removed labels \ A=D D=A A=C C=A C=D D=C
| ACCk ACC, ACCy ACC, ACCyx ACC, ACCx ACC, ACCy ACC, ACCy ACC,
{0,1} 58.00 77.50 54.61 4952 7593 63.08 6729 5247 6423 80.34 58.00 6593
{0,2} 7337 5003 5441 6341 5854 7618 6584 50.15 7431 3920 6834 67.72
{0,3} 60.30 61.18 4391 5638 6293 57.01 53.62 6561 49.85 7342 5228 68.83
{0,4} 49.70  63.97 38.82 60.60 46.50 76.57 5031 70.57 4941 7275 4198 69.93
{1,2} 65.85 60.80 59.51 81.34 7246 6270 4820 89.36 61.00 77.98 59.51 81.34
{1,3} 50.18 68.60 48.00 6291 5699 6273 7829 3227 7150 6486 70.08 48.09
{1,4} 69.97 5534 6935 33.02 5379 69.92 5216 67.58 63.78 7674 73.08 37.60
{2,3} 7025 5120 59.66 6296 57.59 7045 5603 69.52 59.12 6564 6580 44.83
{2,4} 5524 70.23 5720 47.13 53.57 60.57 4686 7457 53.16 64.84 7627 19.73
{3,4} 7405 5546 4053 63.34 60.58 7003 6293 5941 8354 5638 49.11 68.76

C.1 DETAILED OSGDA EXPERIMENTS RESULTS

Our open-set graph domain adaptation (OSGDA) experiments are conducted on three benchmark
datasets (ACMvV9, Citationvl, DBLPv7). In each experiment, one dataset is selected as the source
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domain, while the other two serve as target domains. To simulate the open-set scenario, we remove
two out of five classes in turn. We present the detailed results of ETA on the OSGDA task here,
including average class accuracy on known classes (ACCy), accuracy on unknown classes (ACC,),
average per-class accuracy over the entire domain (ACC), and the H-score (HS), as shown in Tables|T]
and Table[2] We also provide visualization analyses in Figure[T} From the figures, we can observe
some performance variations under different open-set settings (i.e., different combinations of source
and target domains and unknown categories). In certain cases, the model scores are relatively lower,
indicating that domain adaptation becomes particularly challenging under specific open-set scenarios.
Nevertheless, our method maintains stable performance across different settings — for example, ACC
consistently remains within the range [50, 70] — demonstrating the effectiveness and robustness of
our approach in various open-set domain adaptation situations.

A2D-6865 6034 6201 55.00 6295 5737 6008 6031 6457 67.34

D2A-52.06 5828 47.53 47.35 J089 53.69 5176 6068 53.03 4678

A2C-69.33 6696 6097 59.69 67.73 58.93 60.97 6147 56.44 65.11

C2A-6001 59,09 6421 6532 69,65 60.74 59.63 60.22 5833 61.07

217308 5833 56,35 5808 70,64 6591 70,06 6834 57.75 6631

D2C-6207 6808 57.75 54.24 T089 62,66 57.28 5927 53.11 5427

A2D-66:34 5949 60.74 5594 6323 57.59 61.80 59.23 61.84 6342

D2A-51.04 5856 4937 47.32 6874 54.54 44.74 61.26 5168 49.43

A2C-6891 6620 5982 57.86 67.23 59.72 60.80 6337 36.86 6496

(C2A-59.13 5693 59.01 5874 62.63 45.70 5858 62,05 57.56 6111

(C2D-71.39 51,32 59.38 58,85 6845 68.02 69,66 6221 58.42 6732
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Figure 1: ACC (%), HS (%) of OSGDA experiments ( (a) and (b) ) and ACC (%) of known and

unknown classes of OSGDA experiments ( (c) and (d) ). Every column represents various experiment
with different unknown classes while the vertical axis represents different source and target pairs.

C.2 ABLATION STUDY

Table 3: The results of ablation study experiments (ACC (%) and HS (%) ).

Methods | A=D D=A A=C C=A C=D D=C
‘ ACC HS ACC HS ACC HS ACC HS ACC HS ACC HS
w/o Lga 55.54 5447 44.65 4331 5234 50.06 48.82 46.68 55.58 5442 50.06 48.84
W/0 Leyi 45.54 4221 40.01 38.85 4443 4231 38.84 3441 46.68 40.06 45.53 44.48
w/o PAN 59.86 57.40 47.18 46.51 6247 5631 5254 5001 6558 6294 56.65 54.49
w/o GCN 60.33 5534 4542 4223 60.03 5446 5051 46.65 6331 5884 5449 5228
ETAcntropy | 60.32  56.63 50.83 47.66 60.33 57.76 5554 5228 63.38 60.28 56.64 53.36
ETA 68.65 66.34 52.06 5194 69.33 6891 60.01 59.13 73.03 7139 62.07 61.71
w/0 Leyi w/o PAN ETA w/0 Leyi w/o PAN ETA
80.0 Wio Lgs  Mw/o GCN 80.0 Wio Lga  Mw/o GCN
$60.0 $60.0
a Y
T 40.0 T 40.0
20.0 I I 20.0
00— "0 ma A 99" A b D

Figure 2: Visualization of ablation study on six data pairs (HS (%) ).

To investigate the effectiveness of each component of ETA, we conducted ablation studies, with
detailed results presented in Table [3]and a corresponding visualization analysis shown in Figure 2]
As illustrated in the Table 3] modifying or removing any part of our method results in a noticeable
performance drop in both ACC and HS. The most significant degradation occurs when the evidence
loss is removed, highlighting the importance of leveraging evidential values to distinguish unknown-
class nodes and prevent them from negatively affecting the training of known-class nodes. Figure[Z]
shows the HS visualization from the ablation study, clearly demonstrating that the trend of HS aligns
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with that of ACC. This consistency further validates the effectiveness of each component in ETA. In
addition, to quantify the benifit of evidential deep learning in OSGDA, we conduct an ablation study
comparing ordinary predictive entropy (ETAc,,¢y0py) With uncertainty mass (ETA). The results clearly
show that replacing the uncertainty mass with entropy leads to noticeable performance degradation,
further validating the superiority of evidence-based uncertainty modeling in OSGDA.

C.3 SENSITIVITY ANALYSIS

To investigate the impact of various hyperparameter values on our method, we conducted a series of
hyperparameter sensitivity experiments.

Table 4: Sensitivity analysis of different &k (ACC (%) and HS (%) ).

i \ A=D D=A A=C C=A C=D D=C
\ ACC HS ACC HS ACC HS ACC HS ACC HS ACC HS

1 | 6533 61.74 48.18 4786 6634 6230 5632 5598 6889 6632 5534 54.80
3| 68.65 6634 52.06 5194 69.33 6891 60.01 59.13 73.03 7139 62.07 61.71
5 | 6637 6238 4934 4852 6790 6448 5883 5746 68.04 67.76 57.79 55.80

Impact of k: TableE] shows the model’s performance with different values of k (i.e., k = {1, 3,5}).
As observed from both the table, the model achieves the best performance when k = 3. As discussed
in[3.3] setting k too small leads to insufficient neighbor information, while setting it too large increases
the likelihood of introducing noisy, inconsistent neighbors. Choosing k& = 3 strikes a balance between
information sufficiency and noise control, thereby facilitating more effective domain alignment.

Table 5: Sensitivity analysis of different uncertainty threshold 1 (ACC (%) and HS (%)).

\ A=D D=A A=C C=A C=D D=C
\ ACC HS ACC HS ACC HS ACC HS ACC HS ACC HS

0.55 | 58.84 56.62 4534 4447 5553 5443 5443 54.09 6338 62.01 5448 54.08
0.60 | 62.48 62.01 48.84 46.65 6334 61.09 5884 56.65 6821 6674 5991 5556
0.65 | 68.51 65.10 5571 5442 7350 7194 60.06 59.99 71.81 68.70 5743 55.51
0.70 | 66.63 62.01 47.74 4696 66.63 6441 57.86 5443 69.01 68.04 60.01 56.62
0.75 | 6234 59.80 4443 5442 6443 60.81 5558 5469 6445 6331 5518 53.29

Yl

Impact of 1: We conducted experiments with = {0.55,0.60,0.65,0.70,0.75}, with the results
presented in Table[5] The table reveals that extreme values of 7 (either too high or too low) degrade
the model’s performance. As analyzed in[3.3] an overly small 7 causes many known-class nodes
to be mistakenly treated as unknown, while an overly large 7 results in too many unknown-class
nodes being classified as known, both introducing noise into the training process. Thus, we select
1 = 0.65 to achieve a clearer boundary between known and unknown classes, thereby enhancing
model performance on the OSGDA task.

C.4 PERFORMANCE WITH DIFFERENT BACKBONES

To verify the generalizability of ETA, we conducted experiments using various classic GNNs
(GCN (Kipf & Welling, [2017), GAT (Velickovi€ et al.||2018])), GraphSAGE (Hamilton et al.| 2017),
and PAN (Ma et al.l |2020)) as the backbone networks for the two branches. The results are shown in
Table E] and Figure E} As illustrated, for the same OSGDA task, different backbone networks yield
comparable performance; similarly, the same backbone combination performs well across different
tasks. These results demonstrate that our method consistently achieves strong performance regardless
of the underlying GNN architecture, effectively enhancing the ability to capture node information in
open-set scenarios, and validating the generalizability of our approach.

C.5 VISUALIZATION ANALYSIS

To further explore the effects of domain alignment, we present the t-SNE visualization of the nodes’
embedding before and after alignment learned by SDA, UAGA and our ETA, and the results are
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A2D- 6865 6688 68.85 67.74  66.87 A2D- 6634 6557 66.67 6558  66.02 70
-70
D2A- 5206 5321 5114 5114 5119 D2A- 51.94 5204 5239 50.09 50.09
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-65
A2C- 6933 6772 6886 6943  68.68 A2C- 6891 6556 67.72 6776 6637
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Figure 3: Performance of ETA with different backbones (ACC (%) and HS (%) ).

Table 6: Detailed results of ETA with different backbones (ACC (%) and HS (%) ).

Backbone \ A=D D=A A=C C=A C=D D=C

\ ACC HS ACC HS ACC HS ACC HS ACC HS ACC HS
GCN+PAN 68.65 6634 5206 5294 6933 6891 6001 59.13 73.03 71.39 62.07 61.71
GAT+PAN 66.88 65.57 5321 52.04 6772 6556 5991 57779 6882 66.64 6023 58.84

GraphSAGE+PAN | 68.85 66.67 51.14 5239 68.86 67.72 5994 58.86 70.04 6845 6129 61.03
GCN+GAT 67.74 6558 51.14 50.09 6943 67.76 61.02 60.04 7229 71.09 61.10 60.01
GCN+GraphSAGE | 66.87 66.02 51.19 50.09 68.68 6637 58.86 58.03 7213 7034 61.09 60.89

-y

(d) SDA (e) UAGA (f) ETA

Figure 4: T-SNE visualization of source (left) and target (right) domain node embedding before
domain alignment (upper) and after domain alignment (lower).

shown in FigureEl From the t-SNE visualizations, we observe that all three methods are able to
learn reasonably good representations on the source domain, both before and after domain alignment.
However, the situation differs on the target domain. Prior to alignment, the representations learned by
all methods on the target domain appear highly scattered and unstructured. After applying domain
alignment, both UAGA and ETA exhibit noticeably clearer cluster boundaries in the target domain,
whereas SDA still produces relatively disordered representations. Moreover, across both the source
and target domains, our ETA learns the most well-separated class boundaries. This demonstrates that
domain alignment module of our framework is more effective at capturing cross-domain invariant
knowledge and achieving robust domain-level alignment.

D PERFORMANCE ON ADDITIONAL DATASETS

To further validate our ETA, we conduct experiments on three widely used airport datasets
and two blog datasets 2015), namely USA (U), Brazil (B), Europe (E) for
the airport datasets (totally 4 classes) and Blogl (B1), Blog2 (B2) for the blog datasets (totally 6
classes). For each experiment, we choose two classes as unknown classes, and the others remain
known. Besides, we choose some competitive baselines for comparison, the results are provided
in Table[7] As shown in the results, our method consistently outperforms the baselines on both the
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airport and blog datasets under the OSGDA setting, verifying the generality and generalization ability
of our framework. Meanwhile, consistent with our previous experiments, our method demonstrates
significant advantages on HS, which proves the robustness and superiority of our approach.

Table 7: Performance on airport and blog datasets.

\ U=B U=E B=E B1=B2
| ACC HS ACC HS ACC HS ACC HS

Speg-Reg | 33.24 2241 2832 2287 2718 1324 29.67 18.52
SDA 49.06 40.53 42.89 3338 45.69 3531 5235 4396
ETA (Ours) | 56.31 52.43 52.53 47.89 5038 4834 62.23 56.62

Method

E RELATED WORK

E.1 GRAPH DOMAIN ADAPTATION

As a branch of graph transfer learning, graph domain adaptation (GDA) enables knowledge to be
transferred from a source domain with abundant labels to a target domain with limited labels. This
often requires addressing the domain shift problem caused by structural or distributional differences
between domains to achieve cross-domain knowledge transfer (Dai et al., 2022} [Liu et al., [2023]).
Recently, GDA methods have generally followed two directions: metric-based and adversarial-based
approaches. Metric-based methods reduce the domain discrepancy by minimizing a predefined metric
(e.g., Maximum Mean Discrepancy, MMD) to align feature distributions across domains (Gretton
et al.| 2012} |Shen et al.| 2020; |Wu et al.l [2023). In contrast, adversarial-based methods leverage
a generator-discriminator training scheme to help GNNs learn domain-invariant representations,
thereby enabling effective knowledge transfer (Dai et al., [2022; |Q1ao et al., [2023)). For example,
UDAGCN (Wu et al., 2020a) employs dual graph convolution networks and attention mechanisms to
transfer knowledge across graphs, optimizing multiple loss functions to achieve domain adaptation in
node classification tasks. ASN (Zhang et al., 2021} reduces domain discrepancy by disentangling
domain-specific and domain-shared information and combining local and global consistency through
adversarial learning. However, most existing GDA techniques assume a shared label space between
the source and target domains (i.e., closed-set GDA). In real-world scenarios, this assumption
often does not hold, and domains may only partially share labels — a setting known as open-set
GDA (OSGDA). To address this, SDA and UAGA (Wang et al., 2024; [Shen et al., 2025) was
proposed as a method tailored for OSGDA. Despite its effectiveness, SDA and UAGA suffers from
performance imbalance between shared and private classes. To overcome this limitation, we propose
a novel method inspired by evidence theory, which integrates dual-branch evidence representations
to accurately distinguish between shared and private classes. Based on this distinction, we perform
domain alignment, which mitigates the class imbalance issue observed in SDA and UAGA. Our
approach enables the model to learn more discriminative and balanced semantic representations for
different classes, thereby facilitating more effective knowledge transfer in OSGDA scenarios.

E.2 EVIDENTIAL DEEP LEARNING

Evidence theory, also known as Dempster-Shafer theory (Shafer,|1976), provides a general framework
for reasoning under uncertainty. Evidential Deep Learning (EDL) (Sensoy et al., 2018}, [Malinin &
Gales|, 2018)) introduces this theory into the neural network paradigm. Unlike the traditional softmax
output that produces deterministic probabilities, EDL outputs an “amount of evidence" for each
class, which parameterizes a Dirichlet distribution, enabling both class prediction and uncertainty
estimation. EDL employs a specialized evidential loss that encourages the model to produce high-
confidence predictions for correct classifications and high uncertainty for incorrect ones, thereby
reducing overconfident misclassifications, which is widely used in the tasks that requiring uncertainty
modeling (Sensoy et al., 2020; |Shi et al.| | 2020; [Chen et al.| 2022). For example, (Bao et al.,2021)
use the uncer-tainty obtained by EDL to distinguish between the known and unknown samples for the
open set action recognition task; DECL (Qin et al.| 2022)) integrates a novel cross-modal evidential
learning paradigm that captures and models the uncertainty introduced by noise, thereby enhancing
the robustness and reliability of cross-modal retrieval. Recently, EAAF (Pei et al., [2024) achieves
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fine-grained meta-knowledge aggregation through evidential prediction uncertainty and ensures
reliable semantic propagation in the target domain via evidential adjacency-consistent uncertainty,
thereby demonstrating strong performance on multi-source unsupervised domain adaptation tasks.
Current research has rarely applied evidence theory to GNN tasks. However, graph-structured data
inherently involves complex relational uncertainties, and the presence of unknown classes in OSGDA
scenarios further amplifies the uncertainty in node classification. This makes the OSGDA scenario
particularly well-suited for integration with evidence theory. In this work, we propose a method that
incorporates the EDL framework into the OSGDA task. By leveraging evidence theory, we aim to
model node classification uncertainty from a new perspective, thereby enhancing model performance
in open-set graph domain adaptation settings.

F DATASETS

The datasets used in our experiments consist of three components:

* ACMV9 (A): The ACM dataset comprises computer science publications released after 2010,
spanning diverse research areas including artificial intelligence, machine learning, data mining,
computer networks, software engineering, and other related domains.

* Citationvl (C): This dataset, derived from the Microsoft Academic Graph (MAG), centers on
academic papers published before 2008. It provides rich metadata for each paper, including the
title, authors, publication year, and citation links.

* DBLPv7 (D): This dataset is a subset of the DBLP (Digital Bibliography & Library Project), con-
centrating on computer science publications from 2004 to 2008. As one of the most comprehensive
and widely utilized bibliographic resources in the field, DBLP indexes academic papers, authors,
conferences, and journals across various computer science domains.

Each dataset represents a citation network (Tang et al., 2008, where nodes correspond to academic
papers and edges indicate citation relationships between them. Node features are derived from sparse
bag-of-words vectors extracted from paper titles, while node labels denote the research domain to
which each paper belongs. All datasets share a common label space, each containing five categories,
though they represent citation networks from different time periods, resulting in label distribution
shifts across domains. To simulate the open-set scenario, we systematically remove two out of the
five labels in each experiment to serve as unknown classes, reflecting various open-set conditions.
Detailed statistics of the datasets are provided in Table

Table 8: Statistics of citation networks.

Dataset | Nodes Edges Attributes  Label Proportion (%)

ACMv9 9,360 15,602 5,571 20.5/29.6/22.5/8.6/18.8
Citationvl | 8,935 15,113 5,379 25.3/26.0/22.5/7.7/18.5
DBLPv7 | 5484 8,130 4,412 21.7/33.0/23.8/6.0/15.5

G BASELINES AND EVALUATION CRITERIA

To validate the effectiveness of our method on the OSGDA task, we selected five categories of
baseline models for comparison in our experiments: 1) Classical GNNs: GCN (Kipf & Welling,
2017) and GraphSAGE (Hamilton et al., [2017); 2) Unsupervised domain adaptation (UDA) methods:
DANN (Ganin et al.,2016) and CDAN (Long et al., 2018)); 3) Open-set domain adaptation (OSDA)
methods: OSBP (Saito et al., 2018) and DANCE (Saito et al., [2020); 4) Closed-set graph domain
adaptation (CSGDA) methods: UDAGCN (Wu et al.,|2020a) and ASN (Zhang et al.,[2021); 5) OSGDA
method: SDA (Wang et al., |2024). Besides several criteria that are widely used in classification
tasks such as ACC, we also select one criterion that is suitable for the open-set tasks called H-score
(HS) (Fu et al., [2020). More details of baselines and HS are shown as follows:

1) The H-score can be calculated as:
HS — 2 x ACCy, x ACC,,
~ ACCy, + ACC,

(42)
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2) More information of baselines:

Classical GNNs: GCN (Kipf & Welling|, 2017) propagates information across neighbors, while
GraphSAGE (Hamilton et al,[2017) generates embeddings inductively by aggregating local neigh-
borhood features for unseen nodes, enabling effective node representation learning.

DANN (Ganin et al., 2016): This method leverages a gradient reversal layer in neural networks to
learn features that are discriminative for the source domain but invariant to domain shifts, enabling
successful adaptation to target domains with unlabeled data

CDAN (Long et al.,[2018): A domain adaptation method that uses conditional adversarial learning,
incorporating multilinear and entropy conditioning to improve discriminability and transferability.

OSBP (Saito et al.,[2018): An open-set domain adaptation method that uses adversarial training to
separate unknown target samples from known ones.

DANCE (Saito et al.,[2020): It is a domain adaptation method that handles arbitrary category shifts
by combining self-supervised neighborhood clustering and entropy-based feature alignment.

UDAGCN (Wu et al.| [2020a): An unsupervised domain adaptive graph convolutional network
that leverages dual graph convolution and an attention mechanism to enable knowledge transfer
between graphs, optimizing multiple loss functions for graph domain adaptation tasks.

ASN (Zhang et al.,[2021): It is a novel model for cross-network node classification that separates
domain-private and domain-shared information, combining local and global consistency while
using adversarial domain adaptation to reduce distribution discrepancy across networks.

SDA (Wang et al.| [2024): It is a novel approach for open-set domain adaptive node classification,
which efficiently transfers knowledge from a labeled source graph to an unlabeled target graph,
enabling both classification of known nodes and detection of unknown classes in the target domain.

UAGA (Shen et al. 2025): It tackles the OSGDA problem using an unknown-excluded adversarial
graph domain alignment approach, selectively aligning target nodes of known classes with the
source domain while pushing target nodes of unknown classes away via an adaptation coefficient.
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