

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ETA: DUAL EVIDENCE-AWARE UNCERTAINTY LEARNING FOR OPEN-SET GRAPH DOMAIN ADAPTATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Graph Neural Networks (GNNs) have shown great promise in node classification tasks, but their performance is often hindered by the scarcity of labeled nodes. Recently, graph domain adaptation has emerged as a promising solution to transfer knowledge from a labeled source graph to an unlabeled target graph. However, most existing methods typically rely on a closed-set assumption, which fails when unknown classes exist in the target domain. Toward this end, in this paper, we investigate the challenging open-set graph domain adaptation problem and propose a dual evidence-aware uncertainty learning framework ETA that simultaneously identifies unknown target nodes and enhances knowledge transfer under the evidential learning theory. Specifically, we adopt a dual-branch encoder to capture both implicit local structures and explicit global semantic consistency within the graph, and leverage evidential deep learning to integrate the evidence from both branches, where the resulting evidence is parameterized by a Dirichlet distribution to estimate class probabilities and enable uncertainty quantification. Based on the identified unknown target node, we further construct cross-domain neighborhoods and perform MixUp-based virtual sample generation in the latent space. Then, we introduce evidential adjacency-consistent uncertainty to evaluate uncertainty consistency across neighborhoods, which serves as auxiliary guidance for robust domain alignment. Extensive experiments on benchmark datasets demonstrate that ETA significantly outperforms state-of-the-art baselines in open-set graph domain adaptation tasks. Our code is available at anonymous.4open.science/r/ETA-FA1C/.

1 INTRODUCTION

Graph Neural Networks (GNNs) have emerged as a *de facto* paradigm for learning on graph-structured data, thanks to their powerful ability to capture both node-level features and relational dependencies through message passing mechanisms (Gilmer et al., 2017; Kipf & Welling, 2017), GNNs have achieved state-of-the-art results in numerous graph-based tasks (Wu et al., 2020b; Ju et al., 2024). In particular, node classification, which aims to predict the labels of nodes in a graph by jointly leveraging their features and topology information, has served as a fundamental task for a wide range of applications, including molecular property prediction (Guo et al., 2021; Zhuang et al., 2023), social behavior analysis (Liu et al., 2024; Wan et al., 2024), and cross-modal retrieval (Li et al., 2024). Nevertheless, the performance of GNNs largely hinges on the availability of abundant labeled data, which is often costly and time-consuming.

Graph transfer learning, which transfers knowledge from the well-annotated source graphs to an unlabeled target graph, has attracted increasing attention (Han et al., 2021; Zhu et al., 2021; 2024). Among various strategies in this paradigm, graph domain adaptation (GDA) has emerged as a key approach to mitigate distribution shifts between graphs, enabling the GNNs trained on the source domain graph to better adapt to the target domain graph (Qiao et al., 2023). Current efforts about GDA can be generally categorized into two main branches: Discrepancy-based methods aim to explicitly minimize the statistical divergence (i.e., Maximum Mean Discrepancy (MMD) (Shen et al., 2020) and graph subtree discrepancy (Wu et al., 2023)) between source and target domains for encouraging the alignment of their latent feature distributions. In contrast, adversarial-based methods use a domain discriminator to differentiate source and target graphs, generating indistinguishable node embeddings for domain alignment (Dai et al., 2022; Qiao et al., 2023).

Despite the effectiveness of these GDA methods, they typically focus on the closed-set assumption where all target domain nodes belong to one of the known classes from the source domain, which often does not hold true in a real-world scenario. In practice, target graphs may contain nodes from previously unseen classes, making it difficult for traditional GDA methods to generalize and leading to potential negative transfer (Wang et al., 2024; Yin et al., 2024). Towards this end, in this paper, we study the problem of *open-set graph domain adaptation*, which differs from closed-set adaptation by requiring the model to not only classify target nodes from known classes but also identify out-of-distribution (OOD) nodes belonging to unknown classes.

Actually, this problem is quite challenging due to the following twofold: (1) *Unknown Class Identification*. Traditional GDA approaches typically rely on pseudo-labeling to exploit unlabeled target data. However, under open-set scenarios, these methods often fail to distinguish unknown target nodes from known ones, resulting in incorrect label assignments that propagate errors and ultimately hinder effective knowledge transfer. (2) *Domain Alignment under Inadequate Supervision* The presence of unknown classes exacerbates the label scarcity issue in the target domain, making it challenging to establish reliable alignment between source and target domains. Existing GDA methods typically aim to learn domain-invariant representations through global feature alignment, yet these approaches often overlook the semantic discrepancies introduced by unknown classes. **Besides, prior work (Wang et al., 2024) predominantly relies on predictive entropy for identifying unknown classes, which may vary substantially across different open-set GDA scenarios, thereby leading to unstable performance.**

In this paper, we propose ETA illustrated as Figure 1, a novel Dual Evidence-Aware Uncertainty Learning framework for Open-SeT graph domain Adaption (ETA), which identifies the unknown nodes and facilitates knowledge transfer from labeled source graph to the unlabeled target graph under the evidential learning theory (Sensoy et al., 2018). **Specifically, our ETA incorporates a dual-branch architecture composed of an edge-oriented encoder and a path-oriented encoder to fully leverage the complementary information encoded in node attributes and graph topology.** The edge-oriented encoder implicitly captures local topological semantics through message passing over immediate node neighborhoods, while the path-oriented encoder explicitly aggregates information across diverse relational paths. **Then, to reliably identify unknown classes, we introduce an evidence-aware classification module to facilitate uncertainty quantification, enabling stable identification of unknown target nodes based on the principles of evidential learning.** Furthermore, to mitigate domain shift under the open-set scenario, we construct cross-domain neighborhoods by retrieving the k -nearest neighbors across domains. For each node, we perform latent space MixUp with its cross-domain neighbors to generate informative virtual samples. To quantify the alignment reliability, we introduce evidential adjacency-consistent uncertainty estimation, which assesses the consistency of uncertainty across different adjacency sets. Based on this, we provide auxiliary supervision and promote more robust cross-domain alignment. Extensive experiments are conducted on several benchmark datasets to evaluate the performance of our proposed ETA, and the results highlight the superiority of the framework for open-set graph domain adaptation.

2 METHODOLOGY

2.1 PROBLEM DEFINITION

Source Domain Graph. Let the source domain graph be denoted as $\mathcal{G}^s = \{\mathcal{V}^s, \mathcal{E}^s, \mathbf{X}^s, \mathbf{Y}^s\}$, where \mathcal{V}^s and \mathcal{E}^s represents the node and edge set respectively. Each node $v \in \mathcal{V}^s$ is associated with a d -dimensional attribute vector, and the collective node features are represented by the matrix $\mathbf{X}^s \in \mathbb{R}^{|\mathcal{V}^s| \times d}$. The structure of the graph can be characterized by the adjacency matrix $\mathbf{A}^s \in \{0, 1\}^{|\mathcal{V}^s| \times |\mathcal{V}^s|}$, where $\mathbf{A}_{ij}^s = 1$ if there is an edge $(v_i, v_j) \in \mathcal{V}_s$ between node v_i and v_j , otherwise $\mathbf{A}_{ij}^s = 0$. The corresponding degree matrix $\mathbf{D} \in \mathbb{R}^{|\mathcal{V}^s| \times |\mathcal{V}^s|}$ is diagonal, with each entry $\mathbf{D}_{ii} = \sum_{j=1}^{|\mathcal{V}^s|} \mathbf{A}_{ij}^s$ indicating the degree of node v_i . We denote the label matrix as $\mathbf{Y}^s \in \mathbb{R}^{|\mathcal{V}^s| \times |\mathcal{C}_s|}$, where each node label \mathbf{y}_v corresponds to one of the $|\mathcal{C}_s|$ classes in the source domain label space \mathcal{C}_s .

Target Domain Graph. Similarly, the target domain graph is denoted as $\mathcal{G}^t = \{\mathcal{V}^t, \mathcal{E}^t, \mathbf{X}^t\}$ with completely unlabeled node set \mathcal{V}^t and edge set \mathcal{E}^t . The node feature and adjacency matrix are denoted as $\mathbf{X}^t \in \mathbb{R}^{|\mathcal{V}^t| \times d}$ and $\mathbf{A}^t \in \mathbb{R}^{|\mathcal{V}^t| \times |\mathcal{V}^t|}$. Let \mathcal{C}_t represent the label space of the target domain graph. To facilitate alignment, we construct a unified feature space across the source and target domains.

Figure 1: Illustration of the proposed framework ETA, it consists of three components as follows. (1) *Dual-Branch Encoder*, which jointly captures local structural and global semantic information. (2) *Evidence-Aware Classifier*, which employs a Dirichlet-based evidential framework to quantify uncertainty and identify unknown nodes. (3) *Evidential Adjacency-MixUp*, which constructs cross-domain neighborhoods and performs consistency-aware MixUp in latent space for robust alignment.

Open-Set Graph Domain Adaptation. We consider the open-set graph domain adaptation (OSGDA) problem, which involves a labeled source graph \mathcal{G}^s and an unlabeled target graph \mathcal{G}^t . Unlike conventional GDA settings that assume identical label spaces across domains, the open-set scenario allows for the presence of unknown classes exclusive to the target domain, such that $\mathcal{C}_s \subset \mathcal{C}_t$. We denote the shared class set as $\mathcal{C}_s = \mathcal{C}_s \cap \mathcal{C}_t$ and the unknown class set as $\bar{\mathcal{C}}_t = \mathcal{C}_t \setminus \mathcal{C}_s$. The objective is to transfer knowledge from the source domain to correctly classify target nodes into $|\mathcal{C}_s| + 1$ classes with nodes from $\bar{\mathcal{C}}_t$ as an additional unknown class. The predictive model is formalized as $f = h(g(\mathbf{x}_v))$, where $g(\cdot)$ extracts features and $h(\cdot)$ performs classification.

2.2 DUAL-BRANCH ENCODER FOR CONSISTENCY DELVING

To comprehensively capture both node-centric local and high-order global consistency relationships within the graph, we construct a dual-branch encoder from two complementary perspectives, consisting of an implicit edge-oriented branch and an explicit global path-oriented branch, thus enrich the semantic aggregation from multiple perspectives.

Edge-Oriented Graph Encoder. Given the adjacency matrix \mathbf{A}^* and node feature matrix \mathbf{X}^* ($* \in \{s, t\}$) of the source and target domain graphs, the edge-oriented branch is designed to capture local structural patterns by aggregating information from immediate neighbors. Specifically, we utilize a message-passing scheme to encode local consistency knowledge (i.e., neighboring nodes are more likely to share the same label) in an implicit manner. The update rule can be:

$$\mathbf{Z}_{edge}^{*,(l)} = \sigma(\tilde{\mathbf{D}}^{*-1/2} \tilde{\mathbf{A}}^* \tilde{\mathbf{D}}^{*-1/2} \mathbf{Z}_{edge}^{*,(l-1)} \mathbf{W}_{edge}^{(l)}), \quad (1)$$

where $\mathbf{Z}_{edge}^{*,(l)}$ and $\mathbf{W}_{edge}^{(l)}$ denote the node embeddings and filter weight at l -th layer. $\tilde{\mathbf{A}} = \mathbf{A} + \mathbf{I}$ and $\tilde{\mathbf{D}}$ is the corresponding degree matrix. By stacking L layers, the encoder gradually enlarges each node's receptive field, enabling the model to capture local topological dependencies $\mathbf{Z}_{edge}^{*,(L)}$.

Path-Oriented Graph Encoder. While the edge-oriented branch effectively encodes local consistency knowledge, it remains limited in modeling high-order structural dependencies inherent in graph data (Ma et al., 2020; Wang et al., 2025). To address this, we incorporate a path-oriented encoder that explicitly captures global semantics through multi-hop paths. Instead of relying solely on immediate neighbors, this encoder aggregates information along multiple paths between node pairs thus emphasizing long-range dependencies. The global consistency knowledge can be formally updated as:

$$\mathbf{Z}_{path}^{*,(l)} = \sigma \left(\mathbf{M}^{*-1/2} \sum_{p=0}^P e^{-\frac{E_p}{\tau}} \mathbf{A}^{*p} \mathbf{M}^{*-1/2} \mathbf{Z}_{path}^{*,(l-1)} \mathbf{W}_{path}^{(l)} \right), \quad (2)$$

162 where M^* denotes the normalization matrix and A^{*p} denotes the p -th power of adjacency matrix,
 163 capturing p -hop connectivity among nodes. By aggregating over multi-hop paths with learnable path
 164 weight $e^{-\frac{E_p}{\tau}}$, the encoder explicitly integrates high-order topological dependencies based on their
 165 structural importance. Here, E_p denotes the energy assigned to the p -length path, τ is a temperature
 166 parameter, and similarly, $W_{path}^{(l)}$ is the weight matrix at the l -th layer. We can also stack L path
 167 convolutional layers and the global topological dependencies can be $Z_{path}^{*,(L)}$.
 168

170 2.3 EVIDENCE-AWARE CLASSIFIER WITH UNCERTAINTY QUANTITATION

172 Given the encoded consistency knowledge from two branches, we employ evidential deep learning
 173 (Sensoy et al., 2018) (EDL) to quantify classification uncertainty by modeling both the likelihood
 174 of each class and the overall uncertainty in the prediction to identify unknown nodes in target graph.

175 **Evidence-Aware Uncertainty Prediction.** The Dempster–Shafer Theory of Evidence (DST) extends
 176 the traditional Bayesian approach by incorporating subjective probabilities (Dempster, 1968), which
 177 assigns belief masses to the set of all possible states. Subjective Logic (SL) (Jang, 2018) formalizes
 178 DST using a Dirichlet distribution (defined in Appendix A.1). In multi-class classification, these
 179 belief masses can be distributed across both known and potentially unknown classes. By assigning a
 180 portion of the belief mass to the entire frame, the model expresses uncertainty by indicating that the
 181 true class is unknown (Sensoy et al., 2018). Specifically, for each node v in the graph, we consider a
 182 frame of $|\mathcal{C}_t|$ mutually exclusive singletons (class labels), where the model assigns a belief mass b_v^k
 183 to each class $k \in \mathcal{C}_s$, along with an overall uncertainty mass $u_v \in \mathcal{C}_t$ reflecting insufficient evidence
 184 for known classes. Accordingly, these masses satisfy the constraint:
 185

$$u_v + \sum_{k=1}^{|\mathcal{C}_s|} b_v^k = 1. \quad (3)$$

186 Let $e_v = [e_v^1, \dots, e_v^K]$ be the *evidence* vectors, with each element $e_v^k \geq 0$ corresponds to the evidence
 187 of k -th class. The parameters of the Dirichlet distribution $\alpha_v = [\alpha_v^1, \dots, \alpha_v^K]$ can be induced from
 188 e_v , i.e., $\alpha_v = e_v + 1$. Then, the belief and the uncertainty mass can be calculated as:

$$b_v^k = \frac{e_v^k}{S_v} = \frac{\alpha_v^k - 1}{S_v}, \quad u_v = \frac{K}{S_v}, \quad (4)$$

191 where $S_v = \sum_{k=1}^K (e_v^k + 1) = \sum_{k=1}^K \alpha_v^k$ denotes the Dirichlet strength, reflecting the total amount
 192 of evidence. Intuitively, a higher e_v^k leads to a greater belief mass b_v^k , indicating stronger support
 193 for class k , while a smaller total evidence results in higher uncertainty u_v , representing limited
 194 confidence in all classes. Therefore, we leverage the extracted consistency knowledge of each node
 195 to construct corresponding multinomial opinions. Taking the local consistency knowledge as an
 196 example, the evidence vector is computed as $e_{v,edge}^* = h(Z_{v,path}^{*,(L)})$, where $h(\cdot)$ is a fully connected
 197 evidence projection head followed by a non-negative activation. Accordingly, the parameters of the
 198 Dirichlet distribution can be expressed as $\alpha_{v,edge}^* = e_{v,edge}^* + 1$.
 199

200 **Dempster’s Rule of Combination.** Considering that the presence of unknown classes in OSGDA
 201 introduces noise, the knowledge obtained from the two complementary perspectives may exhibit
 202 certain conflicts. To address this, we adopt the principled framework provided by the Dempster–Shafer
 203 theory to fuse the evidence from both branches, enabling the model to derive a more comprehensive
 204 and reliable representation of the underlying knowledge. The core principle of the rule is to retain
 205 only the parts where both branches provide consistent support and treat the inconsistent portions as
 206 conflict mass, which is subsequently normalized. And the detailed definition is in Appendix A.2

207 Based on the Dempster’s Rule of combination, the joint evidence for the node v and corresponding
 208 parameters of the Dirichlet distribution from two complementary perspectives can be induced as:

$$S_v = \frac{K}{u_v}, \quad e_v^k = b_v^k \times S_v, \quad \text{and} \quad \alpha_v^k = e_v^k + 1. \quad (5)$$

211 The predictive opinion probabilities $p_v = \{p_v^1, \dots, p_v^K\}$ are obtained by the mean of the Dirichlet
 212 distribution, namely probability of the k -th singleton can be $p_v^k = \frac{\alpha_v^k}{S_v}$. Note that we generate the
 213 uncertainty mass for the nodes in target graph and quantify the node with an unknown class label as:
 214

$$\hat{y}_v^{|C_s|+1} = \begin{cases} 1, & \text{if } u_v > \eta \\ 0, & \text{otherwise} \end{cases}, \quad (6)$$

216 where η is the threshold. To investigate whether the value of u_v can effectively distinguish OOD
 217 samples from known classes in OSGDA tasks, we conduct a theoretical analysis of the properties of
 218 u_v in EDL and present the following theorem.

219 **Theorem 1.** *In the graph node-level classification task, let $\mathbf{g} : \mathbf{X} \rightarrow \mathbf{Z} \subset \mathbb{R}^d$ be the GNN
 220 feature extractor, and let $\mathbf{h} : \mathbf{Z} \rightarrow \mathbb{R}_{\geq 0}^K$ be the evidence projection head. According to EDL, we
 221 have following evidence input of node v and corresponding parameters of Dirichlet distribution:*

$$223 \quad e_v = \mathbf{h}(\mathbf{g}(X_v)) \in \mathbb{R}_{\geq 0}^K, \alpha_v = e_v + \mathbf{1}, S_v = \sum_{k=1}^K \alpha_v^k = \sum_{k=1}^K e_v^k + K, u_v = \frac{K}{S_v}. \quad (7)$$

225 Then, for any sample v satisfying $\min_{c \in \mathcal{C}_s} \|Z_v - m_c\| \geq d$, we have

$$227 \quad S_v \leq G(d), u_v = \frac{K}{S_v} \geq \frac{K}{G(d)}, \quad (8)$$

230 where $G(d) := K + \max_{c \in \mathcal{C}_s} \sum_{k=1}^K \varphi_{c,k}(d)$, $d \geq 0$, $\varphi_{c,k}(\cdot)$ is a non-negative, non-increasing
 231 function, and m_c is a prototype. Since $G(d)$ is nonincreasing in d , the lower bound $\frac{K}{G(d)}$ is
 232 nondecreasing in d . Thus, the farther a sample is from all known prototypes, the larger its
 233 uncertainty is guaranteed to be.

235 The proof is in Appendix B.1. Theorem 1 guarantees that the u_v is highly related to the distance in
 236 the embedding space, thus for the OOD samples which are far way from the known prototypes in
 237 the embedding space, we can set a threshold to distinguish them from the known classes, which is
 238 reasonable in the OSGDA tasks. For other nodes with known class labels, we generate the pseudo
 239 label $\hat{\mathbf{y}}_v$ by assigning 1 to the class with the highest belief mass $\hat{y}_v^k = \arg \max_k p_v^k$.

240 **Learning to Form Opinions.** We design and train neural networks to express their predictive
 241 opinions as Dirichlet distributions. For each node v , the network estimates the non-negative evidence
 242 vector e_v , based on which the Dirichlet parameters are computed as $\alpha_v = e_v + \mathbf{1}$. We treat the
 243 Dirichlet distribution $D(\mathbf{p}_v | \alpha_v)$ as a prior on the multinomial likelihood $\text{Mult}(\mathbf{y}_v | \mathbf{p}_v)$, and the loss
 244 function can be formulated as:

$$246 \quad \mathcal{L}_{ace}(v, \mathbf{y}_v) = \int \|\mathbf{y}_v - \mathbf{p}_v\|_2^2 \frac{1}{B(\alpha_v)} \prod_{k=1}^K (p_v^k)^{\alpha_v^k - 1} d\mathbf{p}_v = \sum_{k=1}^K ((y_v^k)^2 - 2y_v^k \mathbb{E}[p_v^k] + \mathbb{E}[(p_v^k)^2]). \quad (9)$$

248 According to EDL, the above loss function can be rewritten in a more interpretable form as:

$$250 \quad \mathcal{L}_{ace}(v, \mathbf{y}_v) = \sum_{k=1}^K \underbrace{(y_v^k - \frac{\alpha_v^k}{S_v})^2}_{(\mathcal{L}_v^k)^{err}} + \underbrace{\frac{\alpha_v(S_v - \alpha_v)}{S_v^2(S_v + 1)}}_{(\mathcal{L}_v^k)^{var}}. \quad (10)$$

253 And we have following three propositions that present the properties of the loss function above:

255 **Proposition 1.** For any $\alpha_v^k \geq 1$, the inequality $(\mathcal{L}_v^k)^{var} < (\mathcal{L}_v^k)^{err}$ satisfied.

257 **Proposition 2.** For a given sample v with the correct label k , L_v^{err} decreases when new evidence
 258 is added to α_v^k and increases when evidence is removed from α_v^k .

259 **Proposition 3.** For a given sample v with the correct class label j , L_v^{err} decreases when some
 260 evidence is removed from the biggest Dirichlet parameter α_v^l such that $l \neq j$.

262 The proofs of the propositions are in Appendix B.2. The propositions guarantee the above loss
 263 function can effectively generate more evidence for the known samples while reverting to high
 264 uncertainty when encountering incomprehensible samples (e.g., OOD samples), thereby achieving
 265 strong alignment with the OSGDA tasks. Besides, we further encourage the model to generate less
 266 evidence for incorrect classes by introducing the following KL divergence term:

$$267 \quad \mathcal{L}_{kl}(v, \mathbf{y}_v) = KL[D(\mathbf{p}_v | \tilde{\alpha}_v) \| D(\mathbf{p}_v | \mathbf{1})]$$

$$268 \quad = \log \left(\frac{\Gamma(\sum_{k=1}^K \tilde{\alpha}_v^k)}{\Gamma(K) \prod_{k=1}^K \Gamma(\tilde{\alpha}_v^k)} \right) + \sum_{k=1}^K (\tilde{\alpha}_v^k - 1) \left[\psi(\tilde{\alpha}_v^k) - \psi \left(\sum_{k'=1}^K \tilde{\alpha}_v^{k'} \right) \right], \quad (11)$$

270 where $\psi(\cdot)$ denotes the digamma function, and $\tilde{\alpha}_v = \mathbf{y}_v + (1 - \mathbf{y}_v) \odot \boldsymbol{\alpha}_v$ is a modified Dirichlet
 271 parameter that preserves the evidence for the ground-truth class, ensuring them not mistakenly shrink
 272 to 0. The evidence-aware loss can be:

$$\mathcal{L}_{evi}(v, \mathbf{y}_v) = \mathcal{L}_{ace}(v, \mathbf{y}_v) + \lambda \mathcal{L}_{kl}(v, \mathbf{y}_v), \quad (12)$$

275 where λ is the balance factor to adjust the impact of the regularization term.

276 2.4 EVIDENTIAL ADJACENCY-MIXUP FOR DOMAIN ALIGNMENT

278 Despite the generation of pseudo labels, the challenge of severe domain shift remains, which may
 279 lead to unreliable supervision signals. To mitigate this, we introduce an evidential adjacency-MixUp
 280 to provide auxiliary supervision for domain alignment.

282 **Evidential Domain Adjacency-MixUp.** We identify a cross-domain neighborhood to facilitate
 283 knowledge transfer and promote semantic consistency across domains. In detail, we take the edge-
 284 oriented branch as an example, and retrieve k mutual nearest cross-domain neighbors for node
 285 $v \in \mathcal{V} = \mathcal{V}_s \cup \mathcal{V}_t \setminus \{v' | \hat{y}_{v'}^{|\mathcal{C}_s|+1} = 1\}$. Then, for each node sample, we take a combination of all
 286 neighbors as the virtual MixUp informative virtual samples v' , defined as:

$$\mathbf{Z}_{v',edge}^{(L)} = \sum_{u \in \mathcal{T}(v)} \lambda_v^u \mathbf{Z}_{u,edge}^{*(L)}, \quad (13)$$

289 where $\mathcal{T}(v)$ is the cross-domain neighbors. $\lambda_v^u = s(\mathbf{Z}_{v,edge}^{*(L)}, \mathbf{Z}_{u,edge}^{*(L)}) / \sum_{u'} s(\mathbf{Z}_{v,edge}^{*(L)}, \mathbf{Z}_{u',edge}^{*(L)})$ is
 290 the MixUp weight with $*=t, *'=s$ for $v \in \mathcal{V}_s$, otherwise $*=s, *'=t$; $s(\cdot)$ denotes cosine similarity.

292 **Adjacency-Consistent Uncertainty for Domain Alignment.** To select samples with minimal noise
 293 and ensure that the transferred knowledge occurs with high confidence between instances of the same
 294 class across domains, we propose a strategy that integrates both individual and interaction-based
 295 evidence characteristics to quantify the adjacency-consistent uncertainty. Specifically, we define two
 296 components: (1) an individual term *Ind*, which captures evidential characteristics of a virtual node v'
 297 through the maximum Dirichlet parameter $\max_k(\boldsymbol{\alpha}_{v'})$ and the residual $S_{v'} - \max_k(\boldsymbol{\alpha}_{v'})$, and (2)
 298 an interaction term *Int*, which models the discrepancy between a node and its neighbors. Then, we
 299 maximize the evidential consistency between node v and its virtual sample v' , which can be defined
 300 as:

$$\mathcal{L}_{da}(v) = Ind \cdot Int, \quad \text{where } Ind = \log \left(\frac{S_{v'} - \max_k(\boldsymbol{\alpha}_{v'})}{\max_k(\boldsymbol{\alpha}_{v'})} \right), Int = \left\| \frac{\boldsymbol{\alpha}_v}{S_v} - \frac{\boldsymbol{\alpha}_{v'}}{S_{v'}} \right\|_1. \quad (14)$$

303 2.5 FRAMEWORK SUMMARIZATION

305 The final objective consists of the evidence-aware and auxiliary consistency loss on the source domain
 306 graph and the target domain graph with the known pseudo label, summarized as:

$$\mathcal{L} = \sum_{v \in \mathcal{V}_s} \mathcal{L}_{evi}(v, \mathbf{y}_v) + \sum_{v \in \mathcal{V} \setminus \mathcal{V}_s} \mathcal{L}_{evi}(v, \hat{\mathbf{y}}_v) + \sum_{v \in \mathcal{V}} \mathcal{L}_{da}(v) \quad (15)$$

309 **Time Complexity.** Assume the number of nodes and edges in the source and target domains are
 310 $\mathcal{V}^s, \mathcal{V}^t, \mathcal{E}^s, \mathcal{E}^t$, respectively. We adopt GCN and PAN as the backbones of the two branches. The time
 311 complexity for the embedding stage is $\mathcal{O}(\mathcal{V}^s + \mathcal{V}^t + \mathcal{E}^s + \mathcal{E}^t)$. The evidence fusion process has a time
 312 complexity of $\mathcal{O}(\mathcal{V}^s + \mathcal{V}^t)$, and computing the evidence loss for both source and target domains also
 313 requires $\mathcal{O}(\mathcal{V}^s + \mathcal{V}^t)$. The time complexity of domain alignment is $\mathcal{O}(\mathcal{V}^s \cdot \mathcal{V}^t)$. In practice, to reduce
 314 computational cost, we select anchor nodes from the source domain for cross-domain alignment. Let
 315 the number of anchor nodes be c ; then, this part has a time complexity of $\mathcal{O}(c \cdot \mathcal{V}^t)$. Thus, the overall
 316 time complexity is: $\mathcal{O}(\mathcal{E}^s + \mathcal{E}^t + \mathcal{V}^s + \mathcal{V}^t + c \cdot \mathcal{V}^t)$.

317 3 EXPERIMENT

319 3.1 EXPERIMENT SETTINGS

322 **Datasets.** Our experiments involve three widely used citation network datasets from (Tang et al.,
 323 2008): ACMv9 (A), Citationv1 (C), and DBLPv7 (D), and we follow the data preprocessing proce-
 324 dures proposed by (Qiao et al., 2023). For the OSGDA task using these three citation networks, we

324 Table 1: Performance of various methods across six open-set domain adaptation tasks (ACC (%)) and
 325 HS (%)). The best performance is marked in **bold**, and the second-best is underlined.

Methods	A⇒D		D⇒A		A⇒C		C⇒A		C⇒D		D⇒C		Average	
	ACC	HS												
GCN	45.10	41.80	38.95	39.52	46.36	43.91	44.14	43.66	48.45	44.61	42.26	41.25	44.21	42.46
GraphSAGE	48.26	46.22	43.14	42.84	50.60	49.04	48.13	46.36	51.72	48.66	47.20	46.70	48.17	46.64
DANN	33.30	28.07	34.58	36.53	39.64	41.22	34.47	34.42	36.92	41.88	35.20	35.46	35.68	34.16
CDAN	31.13	21.65	29.03	27.76	30.99	26.00	31.72	30.91	35.69	30.47	28.62	21.82	31.20	26.44
OSBP	28.56	11.27	26.20	12.91	29.32	11.15	27.80	7.34	33.81	18.89	28.63	14.16	29.05	12.62
DANCE	60.54	25.99	53.27	39.53	63.23	39.15	60.44	35.88	64.29	28.98	57.62	39.50	59.90	34.84
UDAGCN	36.20	26.59	31.90	12.31	37.44	32.01	35.64	22.76	41.88	36.48	35.50	25.09	36.43	25.87
ASN	56.40	37.55	47.49	43.93	59.88	49.82	57.51	47.87	56.65	45.62	56.97	46.19	55.81	45.16
SDA	61.60	49.22	51.36	<u>50.86</u>	64.47	<u>55.27</u>	<u>61.67</u>	<u>55.89</u>	67.51	55.35	57.74	54.72	<u>60.73</u>	53.55
UAGA	58.44	56.28	52.97	47.40	64.13	53.66	55.17	54.17	62.18	61.17	62.58	58.00	59.25	<u>55.11</u>
ETA	61.87	60.96	54.21	53.76	62.76	62.57	61.82	58.17	64.78	63.50	<u>59.96</u>	<u>55.90</u>	60.90	59.15

337
 338 sequentially select one as the source domain and the other two as target domains. In each setting, two
 339 classes are removed from the source domain as unknown classes, while the remaining three classes
 340 are treated as known classes for the experiments. More details are provided in Appendix F.

341
 342 **Baselines and evaluation criteria.** We select several classical GNN models as well as state-of-the-
 343 art methods in open-set and domain adaptation tasks as baselines for comparison: 1) GCN (Kipf
 344 & Welling, 2017) and GraphSAGE (Hamilton et al., 2017); 2) DANN (Ganin et al., 2016) and
 345 CDAN (Long et al., 2018); 3) OSBP (Saito et al., 2018) and DANCE (Saito et al., 2020); 4)
 346 UDAGCN (Wu et al., 2020a) and ASN (Zhang et al., 2021); 5) SDA (Wang et al., 2024) and
 347 UAGA (Shen et al., 2025). More details about the datasets are provided in Appendix G. To evaluate
 348 the performance of different methods on the OSGDA task, we adopt four metrics as evaluation
 349 criteria: average class accuracy on known classes (ACC_k), accuracy on unknown classes (ACC_u),
 350 average per-class accuracy over the entire domain (ACC), and the H-score (HS) (Fu et al., 2020).

351
 352 **Implementation details.** We adopt a 2-layer GCN (Kipf & Welling, 2017) and PAN (Ma et al., 2020)
 353 as the backbones for our two branches, with the feature embedding dimension of both networks
 354 set to 512. The hyperparameters are configured as: $\eta=0.65$, $\lambda=0.5$, $k=3$, learning rate=0.005, and
 355 weight decay=0.001. Across the six domain adaptation tasks constructed from the three datasets, we
 356 randomly select two out of the five labels as unknown classes for each task and train the model for
 357 200 epochs. Each task is repeated 10 times, and we record average performance as final results.

3.2 PERFORMANCE AND DISCUSSION

359
 360 To verify the superiority of our method,
 361 Table 1 record the ACC and HS of our
 362 ETA and competitive baselines. Overall,
 363 our ETA consistently achieves the
 364 best performance, followed by SDA and
 365 UAGA. Classical GNNs perform moderately,
 366 while OSBP, CDAN, and DANN perform
 367 worst, indicating that closed-set and
 368 open-set graph domain adaptation methods
 369 perform better than unsupervised domain
 370 adaptation approaches in visions. We
 371 speculate that in open-set scenarios, unknown
 372 nodes would cause disruption to known
 373 node classification, making cross-domain transfer even more difficult. SDA and UAGA performs
 374 almost better than other baselines, showing their effectiveness for OSGDA tasks. However, while
 375 SDA and UAGA achieves competitive ACC, their HS is relatively low, indicating imbalance between
 376 known and unknown classes. In contrast, our ETA attains higher ACC in nearly all OSGDA tasks
 377 and significantly outperforms SDA and UAGA in HS (average improvement of 4.04%), showing our
 378 model could learn more balanced semantic features, thus demonstrating our approach’s superiority.

379 Figure 2a shows the loss curve of our ETA during training, illustrating rapid convergence. Figure 2b
 380 shows the impact on performance when different pairs of labeled classes are removed as unknown

381 Figure 2: Convergence analysis and impact of different
 382 unknown class under different setups.

Figure 4: Sensitivity analysis of two key hyperparameters.

classes (e.g., every column indicates a different experiment with different unknown classes), where ETA consistently achieves stable, balanced performance across different experiments, demonstrating strong robustness of our ETA. The detailed results and analysis are supplied in Appendix C.

3.3 ABLATION STUDY AND SENSITIVITY ANALYSIS

1) Ablation Study.

We conduct ablation studies to investigate the effectiveness of each component in our method, with partial results shown in Figure 3. It can be observed that removing any component leads to a certain degree of performance degradation. In particular, the most significant drops occur when removing target domain evidence loss (w/o \mathcal{L}_{evi}) and domain alignment (w/o \mathcal{L}_{da}), with the removal of evidence loss causing a more pronounced decline. This highlights the importance of leveraging evidence to distinguish unknown-class nodes in order to prevent interference with the training of known classes, as well as the necessity of selecting high-confidence consistent neighbors for effective domain adaptation. In addition, replacing the dual-branch structure with a single-branch one (w/o PAN and w/o GCN) also results in performance degradation, indicating that the fused evidence from multiple branches is more reliable than that from a single branch, which enhances the model’s ability to accurately characterize node classification, and plays a more trustworthy role in distinguishing known and unknown nodes in the OSGDA tasks.

2) Sensitivity Analysis. To investigate the impact of different values of hyperparameters of our ETA, we conduct a series of hyperparameter analysis as follows.

Effect of k . We study the range of $k \in \{1, 3, 5\}$ which controls the number of neighbors involved in the domain alignment, and the results are presented in Figures 4a and 4b. As can be observed, the performance first improves and then declines as k increases. When k is too small, few neighbor samples are incorporated, resulting in insufficient cross-domain alignment due to limited sample diversity. Conversely, when k is too large, the probability of including inconsistent neighbors rises, thereby introducing noise that disrupts the adaptation process and reduces performance. To strike a balance between sufficient information and minimal noise, we finally set $k = 3$ for our approach.

Effect of η . Here we study η range from $\{0.55, 0.60, 0.65, 0.70, 0.75\}$, which distinguishes unknown-class nodes based on node uncertainty, and the results are presented in Figures 4c and 4d. It shows that as η increases, performance first rises and then declines. When η is too small, many known-class nodes are misclassified as unknown, weakening the model’s ability to identify unknown nodes and reducing performance. Conversely, a large η causes too many unknown nodes to be treated as known, introducing noise into training and degrading performance. To achieve a balanced threshold, we set $\eta = 0.65$ to maintain a clear decision boundary between known and unknown classes. **Besides, we adopt a dynamically evolving thresholding strategy for our method: the threshold is first initialized with a predefined value, and then gradually increased as training progresses. This dynamic scheme enables the model to incorporate a relatively large set of unknown class samples during the early phase of training, while focusing on fewer but more reliable unknown samples in later stages. Such progression helps our method better adapt to a wide range of OSGDA scenarios.**

Figure 5: T-SNE visualization of source and target domain node embedding. Each pair, left: ACMv9 (source domain) and right: Citationv1 (target domain), corresponds to one method.

3.4 VISUALIZATION ANALYSIS

To further demonstrate the effectiveness of our ETA in domain adaptation, we perform t-SNE visualization on the node representations learned by our ETA and two competitive baselines. The results are shown in Figure 5. It is evident that in the source domain, all three methods produce clear separations among different classes, indicating an effective representation learning. However, in the target domain, the node representations learned by the two baselines lack clear class boundaries, suggesting that the presence of unknown classes in the open-set setting disrupt their ability to learn effective representations. In contrast, our ETA yields well-separated clusters even in the target domain, which clearly demonstrates its ability to capture domain-invariant and discriminative node representations, thereby enabling more effective cross-domain knowledge transfer.

3.5 EFFECTIVE DIFFERENTIATION BETWEEN KNOWN AND UNKNOWN CLASSES

To further highlight the advantages of our method over existing approaches on the OSGDA task, we record the accuracy on both known and unknown classes for our method and two baseline methods across various open-set tasks. The results are shown in Figure 6. As illustrated, while the accuracy on unknown classes is comparable across methods, our ETA consistently achieves higher accuracy on known classes. In contrast, baseline methods often suffer a sharp performance drop on known classes, indicating their inability to learn balanced node representations (which also explains their lower HS scores). In comparison, our ETA maintains a more balanced accuracy between known and unknown classes, highlighting its effectiveness in learning more generalizable class representations under open-set scenarios.

Figure 6: Differentiation results between known and unknown classes in various experiments.

Figure 7: Impact of uncertainty across node types.

3.6 QUANTIFICATION OF UNCERTAINTY

To demonstrate that uncertainty can serve as a reliable indicator to distinguish unknown nodes from known nodes, we record the corresponding uncertainty values of source-domain known nodes S_k , target-domain known nodes T_k , and target-domain unknown nodes T_u over 10 OSGDA experiments. The results are shown in Figure 7. We can clearly observe that the uncertainty of known nodes in both the source and target domains is generally low, while the uncertainty of unknown nodes in the target domain is significantly higher. This indicates that node uncertainty effectively captures the inherent properties of known and unknown classes of nodes in OSGDA scenarios, making it a reliable indicator for distinguishing unknown class nodes, further aligning with our theoretical insights in Section 2.3.

486 4 CONCLUSION
487

488 This paper addresses the challenging open-set graph domain adaptation problem, where the target
489 domain contains previously unseen classes. We propose a novel dual evidence-aware uncertainty
490 learning framework ETA, which first adopts a dual-branch encoder to capture both local structures and
491 global semantics, while integrating evidential deep learning to quantify uncertainty through Dirichlet
492 distributions. Based on this uncertainty, our ETA detects unknown target nodes and builds cross-
493 domain neighborhoods via latent MixUp, creating more informative and transferable virtual samples.
494 We also introduce evidential adjacency-consistent uncertainty to measure neighborhood consistency,
495 providing auxiliary supervision for robust domain alignment. Extensive experiments demonstrate that
496 our proposed ETA consistently outperforms existing approaches. **In future work, we plan to extend**
497 **ETA to more challenging learning paradigms, such as label-noised learning and class-imbalanced**
498 **learning, and further explore its applicability in inherent real-world OSGDA scenarios such as**
499 **dynamic graph systems (e.g., cybersecurity intrusion detection) or under multi-modal scenarios.**

500 REFERENCES
501

502 Wentao Bao, Qi Yu, and Yu Kong. Evidential deep learning for open set action recognition. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 13349–13358,
503 2021.

504 Mengyuan Chen, Junyu Gao, Shicai Yang, and Changsheng Xu. Dual-evidential learning for weakly-
505 supervised temporal action localization. In *European conference on computer vision*, pp. 192–208.
506 Springer, 2022.

507 Quanyu Dai, Xiao-Ming Wu, Jiaren Xiao, Xiao Shen, and Dan Wang. Graph transfer learning via
508 adversarial domain adaptation with graph convolution. *IEEE Transactions on Knowledge and*
509 *Data Engineering*, 35(5):4908–4922, 2022.

510 Arthur P Dempster. A generalization of bayesian inference. *Journal of the Royal Statistical Society: Series B (Methodological)*, 30(2):205–232, 1968.

511 Bo Fu, Zhangjie Cao, Mingsheng Long, and Jianmin Wang. Learning to detect open classes for
512 universal domain adaptation. In *Computer vision–ECCV 2020: 16th European conference, glasgow,
513 UK, August 23–28, 2020, proceedings, part XV 16*, pp. 567–583. Springer, 2020.

514 Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
515 Laviolette, Mario March, and Victor Lempitsky. Domain-adversarial training of neural networks.
516 *Journal of machine learning research*, 17(59):1–35, 2016.

517 Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
518 message passing for quantum chemistry. In *Proceedings of the International Conference on
519 Machine Learning*, pp. 1263–1272, 2017.

520 Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola. A
521 kernel two-sample test. *The Journal of Machine Learning Research*, 13(1):723–773, 2012.

522 Zhichun Guo, Chuxu Zhang, Wenhao Yu, John Herr, Olaf Wiest, Meng Jiang, and Nitesh V Chawla.
523 Few-shot graph learning for molecular property prediction. In *Proceedings of the Web Conference*,
524 pp. 2559–2567, 2021.

525 Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
526 *Advances in neural information processing systems*, 30, 2017.

527 Xuetong Han, Zhenhuan Huang, Bang An, and Jing Bai. Adaptive transfer learning on graph neural
528 networks. In *Proceedings of the International ACM SIGKDD Conference on Knowledge Discovery
529 & Data Mining*, pp. 565–574, 2021.

530 Audun Jøsang. *Subjective Logic: A formalism for reasoning under uncertainty*. Springer Publishing
531 Company, Incorporated, 2018.

540 Wei Ju, Zheng Fang, Yiyang Gu, Zequn Liu, Qingqing Long, Ziyue Qiao, Yifang Qin, Jianhao Shen,
 541 Fang Sun, Zhiping Xiao, et al. A comprehensive survey on deep graph representation learning.
 542 *Neural Networks*, pp. 106207, 2024.

543 Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
 544 In *Proceedings of the International Conference on Learning Representations*, 2017.

545 Fengling Li, Bowen Wang, Lei Zhu, Jingjing Li, Zheng Zhang, and Xiaojun Chang. Cross-domain
 546 transfer hashing for efficient cross-modal retrieval. *IEEE Transactions on Circuits and Systems for*
 547 *Video Technology*, 2024.

548 Jundong Li, Xia Hu, Jiliang Tang, and Huan Liu. Unsupervised streaming feature selection in
 549 social media. In *Proceedings of the 24th ACM International Conference on Information and*
 550 *Knowledge Management*, pp. 1041–1050, 2015.

551 Shikun Liu, Tianchun Li, Yongbin Feng, Nhan Tran, Han Zhao, Qiang Qiu, and Pan Li. Structural
 552 re-weighting improves graph domain adaptation. In *International conference on machine learning*,
 553 pp. 21778–21793. PMLR, 2023.

554 Zewen Liu, Guancheng Wan, B Aditya Prakash, Max SY Lau, and Wei Jin. A review of graph neural
 555 networks in epidemic modeling. In *Proceedings of the International ACM SIGKDD Conference*
 556 *on Knowledge Discovery & Data Mining*, pp. 6577–6587, 2024.

557 Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan. Conditional adversarial
 558 domain adaptation. *Advances in neural information processing systems*, 31, 2018.

559 Zheng Ma, Junyu Xuan, Yu Guang Wang, Ming Li, and Pietro Liò. Path integral based convolution
 560 and pooling for graph neural networks. In *Proceedings of the Conference on Neural Information*
 561 *Processing Systems*, pp. 16421–16433, 2020.

562 Andrey Malinin and Mark Gales. Predictive uncertainty estimation via prior networks. *Advances in*
 563 *neural information processing systems*, 31, 2018.

564 Jiangbo Pei, Aidong Men, Yang Liu, Xiahai Zhuang, and Qingchao Chen. Evidential multi-source-
 565 free unsupervised domain adaptation. *IEEE Transactions on Pattern Analysis and Machine*
 566 *Intelligence*, 46(8):5288–5305, 2024.

567 Ziyue Qiao, Xiao Luo, Meng Xiao, Hao Dong, Yuanchun Zhou, and Hui Xiong. Semi-supervised
 568 domain adaptation in graph transfer learning. In *Proceedings of the International Joint Conference*
 569 *on Artificial Intelligence*, pp. 2279–2287, 2023.

570 Yang Qin, Dezhong Peng, Xi Peng, Xu Wang, and Peng Hu. Deep evidential learning with noisy
 571 correspondence for cross-modal retrieval. In *Proceedings of the 30th ACM International Conference*
 572 *on Multimedia*, pp. 4948–4956, 2022.

573 Leonardo FR Ribeiro, Pedro HP Saverese, and Daniel R Figueiredo. struc2vec: Learning node
 574 representations from structural identity. In *Proceedings of the 23rd ACM SIGKDD international*
 575 *conference on knowledge discovery and data mining*, pp. 385–394, 2017.

576 Kuniaki Saito, Shohei Yamamoto, Yoshitaka Ushiku, and Tatsuya Harada. Open set domain adaptation
 577 by backpropagation. In *Proceedings of the European conference on computer vision (ECCV)*, pp.
 578 153–168, 2018.

579 Kuniaki Saito, Donghyun Kim, Stan Sclaroff, and Kate Saenko. Universal domain adaptation through
 580 self supervision. *Advances in neural information processing systems*, 33:16282–16292, 2020.

581 Murat Sensoy, Lance Kaplan, and Melih Kandemir. Evidential deep learning to quantify classification
 582 uncertainty. In *Proceedings of the Conference on Neural Information Processing Systems*, pp.
 583 3183–3193, 2018.

584 Murat Sensoy, Lance Kaplan, Federico Cerutti, and Maryam Saleki. Uncertainty-aware deep
 585 classifiers using generative models. In *Proceedings of the AAAI conference on artificial intelligence*,
 586 volume 34, pp. 5620–5627, 2020.

594 Glenn Shafer. *A mathematical theory of evidence*, volume 42. Princeton university press, 1976.
 595

596 Xiao Shen, Quanyu Dai, Sitong Mao, Fu-lai Chung, and Kup-Sze Choi. Network together: Node
 597 classification via cross-network deep network embedding. *IEEE Transactions on Neural Networks
 598 and Learning Systems*, 32(5):1935–1948, 2020.

599 Xiao Shen, Zhihao Chen, Shirui Pan, Shuang Zhou, Laurence T Yang, and Xi Zhou. Open-set
 600 cross-network node classification via unknown-excluded adversarial graph domain alignment. In
 601 *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 20398–20408, 2025.

602 Weishi Shi, Xujiang Zhao, Feng Chen, and Qi Yu. Multifaceted uncertainty estimation for label-
 603 efficient deep learning. *Advances in neural information processing systems*, 33:17247–17257,
 604 2020.

605 Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. Arnetminer: extraction
 606 and mining of academic social networks. In *Proceedings of the International ACM SIGKDD
 607 Conference on Knowledge Discovery & Data Mining*, pp. 990–998, 2008.

608 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
 609 Bengio. Graph attention networks. In *International Conference on Learning Representations*,
 610 2018.

611 Guancheng Wan, Zewen Liu, Max SY Lau, B Aditya Prakash, and Wei Jin. Epidemiology-aware
 612 neural ode with continuous disease transmission graph. *arXiv preprint arXiv:2410.00049*, 2024.

613 Pengyun Wang, Yadi Cao, Chris Russell, Siyu Heng, Junyu Luo, Yanxin Shen, and Xiao Luo.
 614 Delta: Dual consistency delving with topological uncertainty for active graph domain adaptation.
 615 *Transactions on Machine Learning Research*, 2025.

616 Yu Wang, Ronghang Zhu, Pengsheng Ji, and Sheng Li. Open-set graph domain adaptation via
 617 separate domain alignment. In *Proceedings of the AAAI Conference on Artificial Intelligence*, pp.
 618 9142–9150, 2024.

619 Jun Wu, Jingrui He, and Elizabeth Ainsworth. Non-iid transfer learning on graphs. In *Proceedings of
 620 the AAAI Conference on Artificial Intelligence*, pp. 10342–10350, 2023.

621 Man Wu, Shirui Pan, Chuan Zhou, Xiaojun Chang, and Xingquan Zhu. Unsupervised domain
 622 adaptive graph convolutional networks. In *Proceedings of the Web Conference*, pp. 1457–1467,
 623 2020a.

624 Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu. A
 625 comprehensive survey on graph neural networks. *IEEE Transactions on Neural Networks and
 626 Learning Systems*, 32(1):4–24, 2020b.

627 Nan Yin, Mengzhu Wang, Zhenghan Chen, Li Shen, Huan Xiong, Bin Gu, and Xiao Luo. Dream:
 628 Dual structured exploration with mixup for open-set graph domain adaption. In *Proceedings of the
 629 International Conference on Learning Representations*, 2024.

630 Xiaowen Zhang, Yuntao Du, Rongbiao Xie, and Chongjun Wang. Adversarial separation network for
 631 cross-network node classification. In *Proceedings of the 30th ACM international conference on
 632 information & knowledge management*, pp. 2618–2626, 2021.

633 Qi Zhu, Carl Yang, Yidan Xu, Haonan Wang, Chao Zhang, and Jiawei Han. Transfer learning of
 634 graph neural networks with ego-graph information maximization. In *Proceedings of the Conference
 635 on Neural Information Processing Systems*, pp. 1766–1779, 2021.

636 Yun Zhu, Yaoke Wang, Haizhou Shi, Zhenshuo Zhang, Dian Jiao, and Siliang Tang. Graphcontrol:
 637 Adding conditional control to universal graph pre-trained models for graph domain transfer learning.
 638 In *Proceedings of the Web Conference*, pp. 539–550, 2024.

639 Xiang Zhuang, Qiang Zhang, Bin Wu, Keyan Ding, Yin Fang, and Huajun Chen. Graph sampling-
 640 based meta-learning for molecular property prediction. In *Proceedings of the International Joint
 641 Conference on Artificial Intelligence*, pp. 4729–4737, 2023.

648
649

A DEFINITION

650

A.1 DIRICHLET DISTRIBUTION

651

Definition 1. (Dirichlet distribution) The Dirichlet distribution is a multivariate probability distribution parameterized by a vector $\alpha = [\alpha_1, \dots, \alpha_K]$, where each $\alpha_k > 0$. The probability density function (PDF) of the Dirichlet distribution is defined as:

652

$$D(\mathbf{p}|\alpha) = \begin{cases} \frac{1}{B(\alpha)} \prod_{k=1}^K p_k^{\alpha_k-1} & \text{for } \mathbf{p} \in \mathcal{S}_K, \\ 0 & \text{otherwise,} \end{cases} \quad (16)$$

653

where \mathcal{S}_K denote the K -dimensional unit simplex, which can be defined as

654

$$\mathcal{S}_K = \left\{ \mathbf{p} \mid \sum_{i=1}^K p_i = 1 \text{ and } 0 \leq p_1, \dots, p_K \leq 1 \right\}, \quad (17)$$

655

and $B(\alpha)$ denotes the K -dimensional multinomial beta function. The Dirichlet distribution can be considered as the conjugate prior of the multinomial distribution.

656

A.2 DEMPSTER'S COMBINATION RULE

657

Definition 2. (Dempster's Combination Rule) Given the belief and the uncertainty mass assignments from two sets $\mathcal{M}_{v,\text{edge}} = \{\{b_{v,\text{edge}}^k\}_{k=1}^K, u_{v,\text{edge}}\}$ and $\mathcal{M}_{v,\text{path}} = \{\{b_{v,\text{path}}^k\}_{k=1}^K, u_{v,\text{path}}\}$, the joint mass $\mathcal{M}_v = \{\{b_v^k\}_{k=1}^K, u_v\}$ can be calculated as:

658

$$\mathcal{M}_v = \mathcal{M}_{v,\text{edge}} \oplus \mathcal{M}_{v,\text{path}}. \quad (18)$$

659

The calculation rule can be formulated as:

660

$$b_v^k = \frac{1}{1-C} (b_{v,\text{edge}}^k b_{v,\text{path}}^k + b_{v,\text{edge}}^k u_{v,\text{path}} + b_{v,\text{path}}^k u_{v,\text{edge}}), u_v = \frac{1}{1-C} u_{v,\text{edge}} u_{v,\text{path}}, \quad (19)$$

661

where $C = \sum_{i \neq j} b_{v,\text{edge}}^i b_{v,\text{path}}^j$ quantifies the conflict between the two mass sets. The normalization is achieved by applying a scaling factor $\frac{1}{1-C}$.

662

B PROOF OF THEOREM

663

B.1 PROOF OF THEOREM 1

664

Proof. Assume the following:

665

(A1) For each known class $c \in \mathcal{C}_s$, there exists a prototype $m_c \in Z$.

666

(A2) For each class c and each evidence dimension k , there exists a nonnegative, nonincreasing function $\varphi_{c,k} : [0, \infty) \rightarrow [0, \infty)$ such that

667

$$e_z^k \leq \varphi_{c,k}(\|z - m_c\|), \quad \text{whenever } c = \arg \min_{c'} \|z - m_{c'}\|.$$

668

For each node v , let $c^* = \arg \min_c \|Z_v - m_c\|$, with radius $r = \|Z_v - m_{c^*}\|$. By assumption (A2), for each evidence k we have

669

$$e_v^k \leq \varphi_{c^*,k}(r). \quad (20)$$

670

Summing over k evidence gives

671

$$\sum_{k=1}^K e_v^k \leq \sum_{k=1}^K \varphi_{c^*,k}(r) \leq \max_c \sum_{k=1}^K \varphi_{c,k}(r). \quad (21)$$

672

Hence

673

$$S_v = \sum_{k=1}^K e_v^k + K \leq K + \max_c \sum_{k=1}^K \varphi_{c,k}(r) = G(r). \quad (22)$$

If $\min_c \|z - m_c\| \geq d$, then $r \geq d$, and since each $\varphi_{c,k}$ is nonincreasing, $G(r) \leq G(d)$. Thus $S_v \leq G(d)$, which implies

$$u_v = \frac{K}{S_v} \geq \frac{K}{G(d)}. \quad (23)$$

□

Remark 1. This theorem provides a formal link between embedding space geometry and evidential uncertainty. It shows that if a target node v lies far away from all source class prototypes, then its total evidence S_v is provably bounded above, leading to a provable lower bound on uncertainty u_v . This theoretical guarantee supports the use of uncertainty threshold for node detection in ETA.

Corollary 1 (Quadratic decay under local curvature). Suppose further that the evidence projection head h is twice differentiable near each prototype m_c , and that for every component h^k the Hessian at m_c satisfies

$$\nabla^2 h^k(m_c) \preceq -\mu_k I, \mu \succ \mathbf{0}. \quad (24)$$

Then there exist $r_0 > 0$ and $C > 0$ such that for all $0 \leq r \leq r_0$,

$$\sum_{k=1}^K e_{m_\delta}^k \leq \sum_{k=1}^K e_{m_c}^k - Cr^2, \forall \|\delta\| = r. \quad (25)$$

Where $m_\delta := m_c + \delta$, denotes a node that near the prototype m_c . Consequently, for any node v with $\min_c \|Z_v - m_c\| = d \leq r_0$ we have

$$u_v \geq \frac{K}{\max_c (S_{m_c} - Cd^2)}. \quad (26)$$

Proof. Fix a component k and a vector δ with $\|\delta\| = r \leq r_0$. By Taylor's theorem with the Hessian evaluated at an intermediate point, there exists $\theta \in (0, 1)$ such that

$$h^k(m_c + \delta) = h^k(m_c) + \nabla h^k(m_c)^\top \delta + \frac{1}{2} \delta^\top \nabla^2 h^k(m_c + \theta\delta) \delta. \quad (27)$$

By assumption $\nabla h^k(m_c) = 0$, hence the linear term disappears. Using the Hessian upper bound in the ball $\|\delta\| \leq r_0$, we get

$$\delta^\top \nabla^2 h^k(m_c + \theta\delta) \delta \leq -\frac{\mu_k}{2} \|\delta\|^2. \quad (28)$$

By substituting the former in the equation 28, we can get

$$h^k(m_c + \delta) \leq h^k(m_c) - \frac{\mu_k}{4} \|\delta\|^2. \quad (29)$$

Summing the above inequality over all evidence $k = 1, \dots, K$ gives

$$\sum_{k=1}^K e_{m_\delta}^k \leq \sum_{k=1}^K e_{m_c}^k - \frac{1}{4} \left(\sum_{k=1}^K \mu_k \right) r^2, \quad (30)$$

where $m_\delta := m_c + \delta$. Set $C = \frac{1}{4} \sum_{k=1}^K \mu_k > 0$ to conclude the stated bound, and we can get

$$S_{m_\delta} = \sum_{k=1}^K e_{m_\delta}^k + K \leq \sum_{k=1}^K e_{m_c}^k + K - Cr^2 \leq \max_c (S_{m_c} - Cd^2). \quad (31)$$

Since $u_v = \frac{K}{S_v}$ and for $\max_c (S_{m_c} - Cd^2)$, we can get the final result as

$$u_v = \frac{K}{S_v} \geq \frac{K}{\max_c (S_{m_c} - Cd^2)}. \quad (32)$$

□

756

Remark 2. The corollary shows that for a neighborhood v of a prototype m_c , the total evidence S_v decays at least quadratically in the distance $r = \|Z_v - m_c\|$. Since uncertainty is defined as $u_v = K/S_v$, this quadratic decay in S_v implies a quantitative increase in uncertainty:

757

758

759

760

761

762

763

764

765

766

767

768

This bound has three important implications. First, it formalizes the intuition that the nodes farther away from known prototypes must be assigned larger epistemic uncertainty. Second, the rate of increase is explicit: uncertainty grows at least inversely with a quadratic function of distance, providing a concrete mechanism to separate known and unknown classes in OSGDA settings. Third, the condition $S_{m_c} - Cr^2 > 0$ restricts the guarantee to a finite neighborhood, beyond this region, the theoretical bound may become vacuous, though empirically the same monotonic trend often persists.

769

770

B.2 PROOF OF PROPOSITIONS

771

Proposition 1. For any $\alpha_v^k \geq 1$, the inequality $(\mathcal{L}_v^k)^{var} < (\mathcal{L}_v^k)^{err}$ satisfied.

772

773

774

775

Proof. When $y_v^k = 0$, then $(\mathcal{L}_v^k)^{err} = \frac{(\alpha_v^k)^2}{S_v^2}$. As $\frac{(S_v - \alpha_v^k)}{(S_v + 1)} < 1$ and $\frac{\alpha_v^k}{S_v^2} \leq \frac{(\alpha_v^k)^2}{S_v^2}$ we obtain

776

777

778

$$\frac{\alpha_v^k(S_v - \alpha_v^k)}{S_v^2(S_v + 1)} < \frac{(\alpha_v^k)^2}{S_v^2}. \quad (33)$$

779

Now consider the case $y_v^k = 1$. Then

780

781

782

$$(\mathcal{L}_v^k)^{err} = \left(1 - \frac{\alpha_v^k}{S_v}\right)^2 = \frac{(S_v - \alpha_v^k)^2}{S_v^2}. \quad (34)$$

783

784

As $(S_v - \alpha_v^k) > \frac{\alpha_v^k}{S_v + 1}$, we attain

785

786

787

$$\frac{\alpha_v^k(S_v - \alpha_v^k)}{S_v^2(S_v + 1)} < \frac{(S_v - \alpha_v^k)^2}{S_v^2}. \quad (35)$$

788

789

Thus in both cases $(\mathcal{L}_v^k)^{var} < (\mathcal{L}_v^k)^{err}$. \square

790

791

792

Proposition 2. For a given sample v with the correct label k , L_v^{err} decreases when new evidence is added to α_v^k and increases when evidence is removed from α_v^k

793

794

795

Proof. Let δ denote additional evidence added to the Dirichlet parameter α_v^k . Then L_v^{err} is updated as

796

797

798

$$\hat{L}_v^{err} = \left(1 - \frac{\alpha_v^k + \delta}{S_v + \delta}\right)^2 + \sum_{l \neq k} \left(\frac{\alpha_v^l}{S_v + \delta}\right)^2. \quad (36)$$

799

For $\delta > 0$ we have

800

801

802

$$\left(1 - \frac{\alpha_v^k + \delta}{S_v + \delta}\right)^2 < \left(1 - \frac{\alpha_v^k}{S_v}\right)^2 \quad (37)$$

and

803

804

805

$$\sum_{l \neq k} \left(\frac{\alpha_v^l}{S_v + \delta}\right)^2 < \sum_{l \neq k} \left(\frac{\alpha_v^l}{S_v}\right)^2. \quad (38)$$

806

807

Hence $\hat{L}_v^{err} < L_v^{err}$. Similarly, for $\delta < 0$ the inequalities reverse, so $\hat{L}_v^{err} > L_v^{err}$. \square

808

809

Proposition 3. For a given sample v with the correct class label j , L_v^{err} decreases when some evidence is removed from the biggest Dirichlet parameter α_v^l such that $l \neq j$.

810 *Proof.* Let the expected value of the predicted Dirichlet distribution for sample v be $\hat{p}_v =$
 811 $(\hat{p}_v^1, \dots, \hat{p}_v^k)$. When some evidence is removed from α_v^l , \hat{p}_v^l decreases by $\delta_v^l > 0$. As a result,
 812 \hat{p}_v^k for all $k \neq l$ increases by $\delta_v^k > 0$ with $\sum_{k \neq l} \delta_v^k = \delta_v^l$, since the expectations must sum to one.
 813 Let \tilde{p}_v^l denote the updated expected value for the l^{th} component of the Dirichlet distribution after
 814 removal of evidence. Then, before the removal L_v^{err} can be written as
 815

$$816 L_v^{err} = (1 - \hat{p}_v^j)^2 + \left(\tilde{p}_v^l + \sum_{k \neq l} \delta_v^k \right)^2 + \sum_{k \notin \{j, l\}} (\hat{p}_v^k)^2. \quad (39)$$

818 After the removal of evidence, it is updated as
 819

$$820 \tilde{L}_v^{err} = (1 - \hat{p}_v^j - \delta_v^j)^2 + (\hat{p}_v^j)^2 + \sum_{k \notin \{j, l\}} (\hat{p}_v^k + \delta_v^k)^2. \quad (40)$$

823 The difference of $L_v^{err} - \tilde{L}_v^{err}$ is
 824

$$825 L_v^{err} - \tilde{L}_v^{err} = \underbrace{2(1 - \hat{p}_v^j)\delta_v^j}_{\geq 0} + 2 \left(\tilde{p}_v^l \sum_{k \neq l} \delta_v^k - \sum_{k \notin \{j, l\}} \hat{p}_v^k \delta_v^k \right) + \underbrace{\left(\left(\sum_{k \neq l} \delta_v^k \right)^2 - \sum_{k \neq l} (\delta_v^k)^2 \right)}_{\geq 0}, \quad (41)$$

829 which is always positive provided $\tilde{p}_v^l > \hat{p}_v^l \geq \hat{p}_v^k$ for $k \neq j$, and is maximized as \tilde{p}_v^l increases. \square
 830

831 C SUPPLEMENTAL EXPERIMENT RESULTS AND ANALYSIS

834 Table 1: Details of various experiments with different unknown classes (ACC (%) and HS (%)).

836 Removed labels	A⇒D		D⇒A		A⇒C		C⇒A		C⇒D		D⇒C	
	ACC	HS										
{0, 1}	68.65	66.34	52.06	51.94	69.33	68.91	60.01	59.13	73.03	71.39	62.07	61.71
{0, 2}	60.34	59.49	58.28	58.56	66.96	66.20	59.09	56.93	58.33	51.32	68.05	68.03
{0, 3}	62.01	60.74	47.53	49.37	60.97	59.82	64.21	59.01	56.38	59.38	57.75	59.43
{0, 4}	55.00	55.94	47.38	47.32	59.69	57.86	65.32	58.74	58.08	58.85	54.24	52.46
{1, 2}	62.98	63.23	70.89	68.74	67.73	67.23	69.65	62.63	70.64	68.45	70.89	68.74
{1, 3}	57.37	57.59	53.69	54.54	58.93	59.72	60.74	45.70	68.91	68.02	62.66	57.04
{1, 4}	60.08	61.80	51.76	44.74	60.97	60.80	59.63	58.88	70.06	69.66	57.28	49.65
{2, 3}	60.31	59.23	60.68	61.26	61.47	63.37	60.22	62.05	68.34	62.21	59.27	53.33
{2, 4}	64.57	61.84	53.03	51.68	56.44	56.86	58.33	57.56	57.75	58.42	53.11	31.35
{3, 4}	67.34	63.42	46.78	49.43	65.11	64.96	61.07	61.11	66.31	67.32	54.27	57.30
Average	61.87	60.96	54.21	53.76	62.76	62.57	61.83	58.17	64.78	63.50	59.96	55.90

847 Table 2: Detailed ACC (%) of known classes and unknown classes of OSGDA experiments.

850 Removed labels	A⇒D		D⇒A		A⇒C		C⇒A		C⇒D		D⇒C	
	ACC _k	ACC _u										
{0, 1}	58.00	77.50	54.61	49.52	75.93	63.08	67.29	52.47	64.23	80.34	58.00	65.93
{0, 2}	73.37	50.03	54.41	63.41	58.54	76.18	65.84	50.15	74.31	39.20	68.34	67.72
{0, 3}	60.30	61.18	43.91	56.38	62.93	57.01	53.62	65.61	49.85	73.42	52.28	68.83
{0, 4}	49.70	63.97	38.82	60.60	46.50	76.57	50.31	70.57	49.41	72.75	41.98	69.93
{1, 2}	65.85	60.80	59.51	81.34	72.46	62.70	48.20	89.36	61.00	77.98	59.51	81.34
{1, 3}	50.18	68.60	48.00	62.91	56.99	62.73	78.29	32.27	71.50	64.86	70.08	48.09
{1, 4}	69.97	55.34	69.35	33.02	53.79	69.92	52.16	67.58	63.78	76.74	73.08	37.60
{2, 3}	70.25	51.20	59.66	62.96	57.59	70.45	56.03	69.52	59.12	65.64	65.80	44.83
{2, 4}	55.24	70.23	57.20	47.13	53.57	60.57	46.86	74.57	53.16	64.84	76.27	19.73
{3, 4}	74.05	55.46	40.53	63.34	60.58	70.03	62.93	59.41	83.54	56.38	49.11	68.76

861 C.1 DETAILED OSGDA EXPERIMENTS RESULTS

862 Our open-set graph domain adaptation (OSGDA) experiments are conducted on three benchmark
 863 datasets (ACMv9, Citationv1, DBLPv7). In each experiment, one dataset is selected as the source

domain, while the other two serve as target domains. To simulate the open-set scenario, we remove two out of five classes in turn. We present the detailed results of ETA on the OSGDA task here, including average class accuracy on known classes (ACC_k), accuracy on unknown classes (ACC_u), average per-class accuracy over the entire domain (ACC), and the H-score (HS), as shown in Tables 1 and Table 2. We also provide visualization analyses in Figure 1. From the figures, we can observe some performance variations under different open-set settings (i.e., different combinations of source and target domains and unknown categories). In certain cases, the model scores are relatively lower, indicating that domain adaptation becomes particularly challenging under specific open-set scenarios. Nevertheless, our method maintains stable performance across different settings — for example, ACC consistently remains within the range [50, 70] — demonstrating the effectiveness and robustness of our approach in various open-set domain adaptation situations.

Figure 1: ACC (%), HS (%) of OSGDA experiments ((a) and (b)) and ACC (%) of known and unknown classes of OSGDA experiments ((c) and (d)). Every column represents various experiment with different unknown classes while the vertical axis represents different source and target pairs.

C.2 ABLATION STUDY

Table 3: The results of ablation study experiments (ACC (%) and HS (%)).

Methods	A⇒D		D⇒A		A⇒C		C⇒A		C⇒D		D⇒C	
	ACC	HS										
w/o \mathcal{L}_{da}	55.54	54.47	44.65	43.31	52.34	50.06	48.82	46.68	55.58	54.42	50.06	48.84
w/o \mathcal{L}_{evi}	45.54	42.21	40.01	38.85	44.43	42.31	38.84	34.41	46.68	40.06	45.53	44.48
w/o PAN	59.86	57.40	47.18	46.51	62.47	56.31	52.54	50.01	65.58	62.94	56.65	54.49
w/o GCN	60.33	55.34	45.42	42.23	60.03	54.46	50.51	46.65	63.31	58.84	54.49	52.28
ETA_{entropy}	60.32	56.63	50.83	47.66	60.33	57.76	55.54	52.28	63.38	60.28	56.64	53.36
ETA	68.65	66.34	52.06	51.94	69.33	68.91	60.01	59.13	73.03	71.39	62.07	61.71

Figure 2: Visualization of ablation study on six data pairs (HS (%)).

To investigate the effectiveness of each component of ETA, we conducted ablation studies, with detailed results presented in Table 3 and a corresponding visualization analysis shown in Figure 2. As illustrated in the Table 3, modifying or removing any part of our method results in a noticeable performance drop in both ACC and HS. The most significant degradation occurs when the evidence loss is removed, highlighting the importance of leveraging evidential values to distinguish unknown-class nodes and prevent them from negatively affecting the training of known-class nodes. Figure 2 shows the HS visualization from the ablation study, clearly demonstrating that the trend of HS aligns

918 with that of ACC. This consistency further validates the effectiveness of each component in ETA. In
 919 addition, to quantify the benefit of evidential deep learning in OSGDA, we conduct an ablation study
 920 comparing ordinary predictive entropy (ETA_{entropy}) with uncertainty mass (ETA). The results clearly
 921 show that replacing the uncertainty mass with entropy leads to noticeable performance degradation,
 922 further validating the superiority of evidence-based uncertainty modeling in OSGDA.
 923

924 C.3 SENSITIVITY ANALYSIS

925 To investigate the impact of various hyperparameter values on our method, we conducted a series of
 926 hyperparameter sensitivity experiments.
 927

928 Table 4: Sensitivity analysis of different k (ACC (%)) and HS (%)).
 929

k	A⇒D		D⇒A		A⇒C		C⇒A		C⇒D		D⇒C	
	ACC	HS										
1	65.33	61.74	48.18	47.86	66.34	62.30	56.32	55.98	68.89	66.32	55.34	54.80
3	68.65	66.34	52.06	51.94	69.33	68.91	60.01	59.13	73.03	71.39	62.07	61.71
5	66.37	62.38	49.34	48.52	67.90	64.48	58.83	57.46	68.04	67.76	57.79	55.80

930
 931
 932
 933
 934
 935
 936 **Impact of k :** Table 4 shows the model’s performance with different values of k (i.e., $k = \{1, 3, 5\}$).
 937 As observed from both the table, the model achieves the best performance when $k = 3$. As discussed
 938 in 3.3, setting k too small leads to insufficient neighbor information, while setting it too large increases
 939 the likelihood of introducing noisy, inconsistent neighbors. Choosing $k = 3$ strikes a balance between
 940 information sufficiency and noise control, thereby facilitating more effective domain alignment.
 941

942 Table 5: Sensitivity analysis of different uncertainty threshold η (ACC (%)) and HS (%)).
 943

η	A⇒D		D⇒A		A⇒C		C⇒A		C⇒D		D⇒C	
	ACC	HS										
0.55	58.84	56.62	45.34	44.47	55.53	54.43	54.43	54.09	63.38	62.01	54.48	54.08
0.60	62.48	62.01	48.84	46.65	63.34	61.09	58.84	56.65	68.21	66.74	59.91	55.56
0.65	68.51	65.10	55.71	54.42	73.50	71.94	60.06	59.99	71.81	68.70	57.43	55.51
0.70	66.63	62.01	47.74	46.96	66.63	64.41	57.86	54.43	69.01	68.04	60.01	56.62
0.75	62.34	59.89	44.43	54.42	64.43	60.81	55.58	54.69	64.45	63.31	55.18	53.29

950
 951 **Impact of η :** We conducted experiments with $\eta = \{0.55, 0.60, 0.65, 0.70, 0.75\}$, with the results
 952 presented in Table 5. The table reveals that extreme values of η (either too high or too low) degrade
 953 the model’s performance. As analyzed in 3.3, an overly small η causes many known-class nodes
 954 to be mistakenly treated as unknown, while an overly large η results in too many unknown-class
 955 nodes being classified as known, both introducing noise into the training process. Thus, we select
 956 $\eta = 0.65$ to achieve a clearer boundary between known and unknown classes, thereby enhancing
 957 model performance on the OSGDA task.
 958

959 C.4 PERFORMANCE WITH DIFFERENT BACKBONES

960 To verify the generalizability of ETA, we conducted experiments using various classic GNNs
 961 (GCN (Kipf & Welling, 2017), GAT (Veličković et al., 2018), GraphSAGE (Hamilton et al., 2017),
 962 and PAN (Ma et al., 2020)) as the backbone networks for the two branches. The results are shown in
 963 Table 6 and Figure 3. As illustrated, for the same OSGDA task, different backbone networks yield
 964 comparable performance; similarly, the same backbone combination performs well across different
 965 tasks. These results demonstrate that our method consistently achieves strong performance regardless
 966 of the underlying GNN architecture, effectively enhancing the ability to capture node information in
 967 open-set scenarios, and validating the generalizability of our approach.
 968

969 C.5 VISUALIZATION ANALYSIS

970 To further explore the effects of domain alignment, we present the t-SNE visualization of the nodes’
 971 embedding before and after alignment learned by SDA, UAGA and our ETA, and the results are

Figure 3: Performance of ETA with different backbones (ACC (%)) and HS (%)).

Table 6: Detailed results of ETA with different backbones (ACC (%)) and HS (%)).

Backbone	A⇒D		D⇒A		A⇒C		C⇒A		C⇒D		D⇒C	
	ACC	HS										
GCN+PAN	68.65	66.34	52.06	52.94	69.33	68.91	60.01	59.13	73.03	71.39	62.07	61.71
GAT+PAN	66.88	65.57	53.21	52.04	67.72	65.56	59.91	57.79	68.82	66.64	60.23	58.84
GraphSAGE+PAN	68.85	66.67	51.14	52.39	68.86	67.72	59.94	58.86	70.04	68.45	61.29	61.03
GCN+GAT	67.74	65.58	51.14	50.09	69.43	67.76	61.02	60.04	72.29	71.09	61.10	60.01
GCN+GraphSAGE	66.87	66.02	51.19	50.09	68.68	66.37	58.86	58.03	72.13	70.34	61.09	60.89

Figure 4: T-SNE visualization of source (left) and target (right) domain node embedding before domain alignment (upper) and after domain alignment (lower).

shown in Figure 4. From the t-SNE visualizations, we observe that all three methods are able to learn reasonably good representations on the source domain, both before and after domain alignment. However, the situation differs on the target domain. Prior to alignment, the representations learned by all methods on the target domain appear highly scattered and unstructured. After applying domain alignment, both UAGA and ETA exhibit noticeably clearer cluster boundaries in the target domain, whereas SDA still produces relatively disordered representations. Moreover, across both the source and target domains, our ETA learns the most well-separated class boundaries. This demonstrates that domain alignment module of our framework is more effective at capturing cross-domain invariant knowledge and achieving robust domain-level alignment.

D PERFORMANCE ON ADDITIONAL DATASETS

To further validate our ETA, we conduct experiments on three widely used airport datasets (Ribeiro et al., 2017) and two blog datasets (Li et al., 2015), namely USA (U), Brazil (B), Europe (E) for the airport datasets (totally 4 classes) and Blog1 (B1), Blog2 (B2) for the blog datasets (totally 6 classes). For each experiment, we choose two classes as unknown classes, and the others remain known. Besides, we choose some competitive baselines for comparison, the results are provided in Table 7. As shown in the results, our method consistently outperforms the baselines on both the

1026 airport and blog datasets under the OSGDA setting, verifying the generality and generalization ability
 1027 of our framework. Meanwhile, consistent with our previous experiments, our method demonstrates
 1028 significant advantages on HS, which proves the robustness and superiority of our approach.
 1029

1030 Table 7: Performance on airport and blog datasets.
 1031

Method	U⇒B		U⇒E		B⇒E		B1⇒B2	
	ACC	HS	ACC	HS	ACC	HS	ACC	HS
Speg-Reg	33.24	22.41	28.32	22.87	27.18	13.24	29.67	18.52
SDA	49.06	40.53	42.89	33.38	45.69	35.31	52.35	43.96
ETA (Ours)	56.31	52.43	52.53	47.89	50.38	48.34	62.23	56.62

1038 E RELATED WORK

1039 E.1 GRAPH DOMAIN ADAPTATION

1040 As a branch of graph transfer learning, graph domain adaptation (GDA) enables knowledge to be
 1041 transferred from a source domain with abundant labels to a target domain with limited labels. This
 1042 often requires addressing the domain shift problem caused by structural or distributional differences
 1043 between domains to achieve cross-domain knowledge transfer (Dai et al., 2022; Liu et al., 2023).
 1044 Recently, GDA methods have generally followed two directions: metric-based and adversarial-based
 1045 approaches. Metric-based methods reduce the domain discrepancy by minimizing a predefined metric
 1046 (e.g., Maximum Mean Discrepancy, MMD) to align feature distributions across domains (Gretton
 1047 et al., 2012; Shen et al., 2020; Wu et al., 2023). In contrast, adversarial-based methods leverage
 1048 a generator-discriminator training scheme to help GNNs learn domain-invariant representations,
 1049 thereby enabling effective knowledge transfer (Dai et al., 2022; Qiao et al., 2023). For example,
 1050 UDAGCN (Wu et al., 2020a) employs dual graph convolution networks and attention mechanisms to
 1051 transfer knowledge across graphs, optimizing multiple loss functions to achieve domain adaptation in
 1052 node classification tasks. ASN (Zhang et al., 2021) reduces domain discrepancy by disentangling
 1053 domain-specific and domain-shared information and combining local and global consistency through
 1054 adversarial learning. However, most existing GDA techniques assume a shared label space between
 1055 the source and target domains (i.e., closed-set GDA). In real-world scenarios, this assumption
 1056 often does not hold, and domains may only partially share labels — a setting known as open-set
 1057 GDA (OSGDA). To address this, SDA and UAGA (Wang et al., 2024; Shen et al., 2025) was
 1058 proposed as a method tailored for OSGDA. Despite its effectiveness, SDA and UAGA suffers from
 1059 performance imbalance between shared and private classes. To overcome this limitation, we propose
 1060 a novel method inspired by evidence theory, which integrates dual-branch evidence representations
 1061 to accurately distinguish between shared and private classes. Based on this distinction, we perform
 1062 domain alignment, which mitigates the class imbalance issue observed in SDA and UAGA. Our
 1063 approach enables the model to learn more discriminative and balanced semantic representations for
 1064 different classes, thereby facilitating more effective knowledge transfer in OSGDA scenarios.
 1065

1066 E.2 EVIDENTIAL DEEP LEARNING

1067 Evidence theory, also known as Dempster-Shafer theory (Shafer, 1976), provides a general framework
 1068 for reasoning under uncertainty. Evidential Deep Learning (EDL) (Sensoy et al., 2018; Malinin &
 1069 Gales, 2018) introduces this theory into the neural network paradigm. Unlike the traditional softmax
 1070 output that produces deterministic probabilities, EDL outputs an “amount of evidence” for each
 1071 class, which parameterizes a Dirichlet distribution, enabling both class prediction and uncertainty
 1072 estimation. EDL employs a specialized evidential loss that encourages the model to produce high-
 1073 confidence predictions for correct classifications and high uncertainty for incorrect ones, thereby
 1074 reducing overconfident misclassifications, which is widely used in the tasks that requiring uncertainty
 1075 modeling (Sensoy et al., 2020; Shi et al., 2020; Chen et al., 2022). For example, (Bao et al., 2021)
 1076 use the uncertainty obtained by EDL to distinguish between the known and unknown samples for the
 1077 open set action recognition task; DECL (Qin et al., 2022) integrates a novel cross-modal evidential
 1078 learning paradigm that captures and models the uncertainty introduced by noise, thereby enhancing
 1079 the robustness and reliability of cross-modal retrieval. Recently, EAAF (Pei et al., 2024) achieves

1080 fine-grained meta-knowledge aggregation through evidential prediction uncertainty and ensures
 1081 reliable semantic propagation in the target domain via evidential adjacency-consistent uncertainty,
 1082 thereby demonstrating strong performance on multi-source unsupervised domain adaptation tasks.
 1083 Current research has rarely applied evidence theory to GNN tasks. However, graph-structured data
 1084 inherently involves complex relational uncertainties, and the presence of unknown classes in OSGDA
 1085 scenarios further amplifies the uncertainty in node classification. This makes the OSGDA scenario
 1086 particularly well-suited for integration with evidence theory. In this work, we propose a method that
 1087 incorporates the EDL framework into the OSGDA task. By leveraging evidence theory, we aim to
 1088 model node classification uncertainty from a new perspective, thereby enhancing model performance
 1089 in open-set graph domain adaptation settings.

F DATASETS

The datasets used in our experiments consist of three components:

- **ACMv9 (A):** The ACM dataset comprises computer science publications released after 2010, spanning diverse research areas including artificial intelligence, machine learning, data mining, computer networks, software engineering, and other related domains.
- **Citationv1 (C):** This dataset, derived from the Microsoft Academic Graph (MAG), centers on academic papers published before 2008. It provides rich metadata for each paper, including the title, authors, publication year, and citation links.
- **DBLPv7 (D):** This dataset is a subset of the DBLP (Digital Bibliography & Library Project), concentrating on computer science publications from 2004 to 2008. As one of the most comprehensive and widely utilized bibliographic resources in the field, DBLP indexes academic papers, authors, conferences, and journals across various computer science domains.

Each dataset represents a citation network (Tang et al., 2008), where nodes correspond to academic papers and edges indicate citation relationships between them. Node features are derived from sparse bag-of-words vectors extracted from paper titles, while node labels denote the research domain to which each paper belongs. All datasets share a common label space, each containing five categories, though they represent citation networks from different time periods, resulting in label distribution shifts across domains. To simulate the open-set scenario, we systematically remove two out of the five labels in each experiment to serve as unknown classes, reflecting various open-set conditions. [Detailed statistics of the datasets are provided in Table 8.](#)

Table 8: Statistics of citation networks.

Dataset	Nodes	Edges	Attributes	Label Proportion (%)
ACMv9	9,360	15,602	5,571	20.5/29.6/22.5/8.6/18.8
Citationv1	8,935	15,113	5,379	25.3/26.0/22.5/7.7/18.5
DBLPv7	5,484	8,130	4,412	21.7/33.0/23.8/6.0/15.5

G BASELINES AND EVALUATION CRITERIA

To validate the effectiveness of our method on the OSGDA task, we selected five categories of baseline models for comparison in our experiments: 1) *Classical GNNs*: GCN (Kipf & Welling, 2017) and GraphSAGE (Hamilton et al., 2017); 2) *Unsupervised domain adaptation (UDA) methods*: DANN (Ganin et al., 2016) and CDAN (Long et al., 2018); 3) *Open-set domain adaptation (OSDA) methods*: OSBP (Saito et al., 2018) and DANCE (Saito et al., 2020); 4) *Closed-set graph domain adaptation (CSGDA) methods*: UDAGCN (Wu et al., 2020a) and ASN (Zhang et al., 2021); 5) *OSGDA method*: SDA (Wang et al., 2024). Besides several criteria that are widely used in classification tasks such as ACC, we also select one criterion that is suitable for the open-set tasks called H-score (HS) (Fu et al., 2020). More details of baselines and HS are shown as follows:

- 1) The H-score can be calculated as:

$$HS = \frac{2 \times ACC_k \times ACC_u}{ACC_k + ACC_u} \quad (42)$$

1134
1135

2) More information of baselines:

1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

- **Classical GNNs:** GCN (Kipf & Welling, 2017) propagates information across neighbors, while GraphSAGE (Hamilton et al., 2017) generates embeddings inductively by aggregating local neighborhood features for unseen nodes, enabling effective node representation learning.
- **DANN** (Ganin et al., 2016): This method leverages a gradient reversal layer in neural networks to learn features that are discriminative for the source domain but invariant to domain shifts, enabling successful adaptation to target domains with unlabeled data
- **CDAN** (Long et al., 2018): A domain adaptation method that uses conditional adversarial learning, incorporating multilinear and entropy conditioning to improve discriminability and transferability.
- **OSBP** (Saito et al., 2018): An open-set domain adaptation method that uses adversarial training to separate unknown target samples from known ones.
- **DANCE** (Saito et al., 2020): It is a domain adaptation method that handles arbitrary category shifts by combining self-supervised neighborhood clustering and entropy-based feature alignment.
- **UDAGCN** (Wu et al., 2020a): An unsupervised domain adaptive graph convolutional network that leverages dual graph convolution and an attention mechanism to enable knowledge transfer between graphs, optimizing multiple loss functions for graph domain adaptation tasks.
- **ASN** (Zhang et al., 2021): It is a novel model for cross-network node classification that separates domain-private and domain-shared information, combining local and global consistency while using adversarial domain adaptation to reduce distribution discrepancy across networks.
- **SDA** (Wang et al., 2024): It is a novel approach for open-set domain adaptive node classification, which efficiently transfers knowledge from a labeled source graph to an unlabeled target graph, enabling both classification of known nodes and detection of unknown classes in the target domain.
- **UAGA** (Shen et al., 2025): It tackles the OSGDA problem using an unknown-excluded adversarial graph domain alignment approach, selectively aligning target nodes of known classes with the source domain while pushing target nodes of unknown classes away via an adaptation coefficient.