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Abstract

Although recent foundation models trained in a self-supervised setting have shown promise in cel-
lular image analysis, they often produce biologically impossible predictions when handling multiple
concurrent abnormalities. This is a problem, as the biological information that may be needed
for the different clinical-oriented problems is not directly presented in the images. In this study,
we present a novel and modular approach to enforce biological constraints in multi-label medi-
cal imaging classification. Building on the powerful and rich representations of the DinoBloom
hematological foundation model, our method combines learnable constraint matrices with adaptive
thresholding, effectively preventing contradictory predictions while maintaining high sensitivity.
Extensive experiments on three datasets, two public and one in-house on neutrophil classification,
demonstrate significant improvements over different foundation models and the state-of-the-art
methods. Through detailed ablation studies and hyperparameter interpretation, we show that our
approach successfully captures biological relationships between different abnormalities.

1. Introduction

Recent advances in foundation models have revolutionized medical image analysis, with DinoBloom
emerging as a powerful foundation model specifically designed for hematological image analysis (10).
However, while DinoBloom excels at general feature extraction from blood cell images, integrating
explicit biological constraints and handling multiple concurrent abnormalities remains an open
challenge. This limitation is particularly evident in clinical settings where predictions must adhere
to known biological impossibilities and relationships.

Neutrophils are a type of white blood cells, and they form the most abundant type of granu-
locytes of all white blood cells in humans. Neutrophil morphology analysis plays a crucial role in
hematological diagnosis, serving as a fundamental tool for identifying various blood disorders and
infections (12). Traditional manual classification of neutrophil abnormalities is time-consuming
and subject to significant inter-observer variability, with reported concordance rates as low as 60%
among experts (13). While recently deep learning approaches have shown remarkable promise in
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medical image analysis (14), existing methods fail to address two critical challenges unique to neu-
trophil classification: (1) the complex interdependencies between multiple concurrent abnormalities,
and (2) the need to enforce explicit biological constraints in predictions (15).

In this study, we propose a novel, differentiable framework that enhances foundation models
with learnable biological constraints. The main contributions of this study are two folds: (i)
we introduce a learnable constraint satisfaction module that automatically discovers and enforces
biological relationships while maintaining end-to-end differentiability, (ii) we propose an adaptive
thresholding mechanism that dynamically adjusts to varying degrees of abnormality manifestation.
Our extensive experiments and ablations using the DinoBloom foundation model for neutrophil
morphology analysis, which included three different datasets with varying numbers of abnormalities,
highlight the superiority of our method with respect to the state of the art.

2. Related Work

Foundation Models in Hematology. Hematological image analysis has recently embraced large-
scale self-supervision and transformers. Early efforts, such as Matek et al. (15) employed supervised
convolutional networks on smaller datasets. More recent approaches leverage large data corpora and
attention mechanisms: DinoBloom (11) emerged as a specialized foundation model for white blood
cell (WBC) morphology, while Wang et al. (3) proposed unsupervised contrastive transformers for
histopathological images. The introduction of domain-specific transformer architectures by Filiot
et al. (2) further advanced the field through masked image modeling. Although these approaches
learn strong representations, they do not explicitly incorporate domain-specific constraints or handle
biologically impossible co-occurrences.
Multi-Label Classification in Medical Imaging. Many medical tasks inherently involve multi-
label outputs, as conditions often co-exist or overlap. Traditional solutions like binary relevance
overlook label correlations, which has prompted research into more holistic methods. Wang et al.
(3) proposed unsupervised contrastive transformers for histopathological images, while Wang et
al. (19) proposed clustering-guided contrastive learning for cell images. Chen et al. (8) explored
attention mechanisms, yet such methods often assume static or binary inter-label relationships, and
do not address clinical uncertainty where co-occurrence can be probabilistic.
Domain-Constrained Learning. Incorporating domain knowledge into deep models has gained
traction in medical imaging (6; 5), showing that enforcing biologically meaningful constraints can
improve both performance and interpretability. However, many techniques rely on rigid rules or
postprocessing steps.(15) have shown the importance of incorporating morphological constraints
in leukemia cell classification. Beyond hematology, these studies have demonstrated the value of
domain constraints across various medical imaging applications, though they often lack the flexibil-
ity to capture probabilistic relationships that arise in real-world clinical settings. In contrast, our
approach unifies a powerful transformer-based hematology backbone with learnable constraint ma-
trices and adaptive thresholding, thus capturing both deterministic incompatibilities and nuanced,
uncertain relationships that arise in real-world clinical settings.

3. Methods

3.1. Problem Formulation

Given an input image x ∈ RH×W×3, where H and W represent the height and width of the image
respectively, we aim to predict a set of binary labels y = [y1, ..., yK ] ∈ {0, 1}K , where K is the
number of possible classes. The prediction must satisfy two types of biological constraints: (i)
mutual exclusivity constraints: defined as Cmu = {(i, j)|yi · yj = 0}, where (i, j) represents pairs
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of classes that cannot co-exist, and (ii) co-occurrence constraints: defined as Cco = {(i, j, c)|yi =
1 =⇒ P (yj) ≥ c}, where c ∈ [0, 1] is a threshold probability and models the increased or decreased
likelihood of the presence of one class with respect to the rest.

Traditional approaches perform classification in isolation, without considering the rich domain
knowledge that biologists leverage in their decision-making process (24; 7). However, in practice,
experts rely on their deep understanding of biological relationships and manifestations - they know
that certain abnormalities often co-occur, that some conditions are mutually exclusive, and that
the same abnormality can present with varying degrees of severity (13; 12). Moreover, biologists
can discover new relationships between conditions through observations and adjust their confidence
based on the strength of different markers (4; 6). Our method aims to emulate this expert reasoning
by incorporating learnable biological constraints and adaptive decision thresholds. Our method
addresses these limitations by integrating the C = Cmu + Cco into the training process through
learnable constraint and uncertainty-aware adaptive thresholding. An overview of the entire method
is presented in Figure 1.
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Figure 1: Biologically-Constrained Multi-Label Classification Architecture. The pro-
posed model consists of three main components within the constraint module: (A) Fea-
ture projection with pooling and normalization, (B) Constraint matrix generation using
attention mechanism, and (C) Adaptive thresholding with Monte Carlo sampling.

3.2. Learnable Constraint Module

We introduce a learnable constraint module that enhances the model’s ability to capture and enforce
biological relationships. This module consists of three key components designed to work together:

Projection Layer. The feature projection layer transforms high-dimensional features into a space
more suitable for learning biological constraints. We start with the features hL ∈ RN×d, where
N is the number of image patches (196 for 224×224 images with 16×16 patches) and d is the
feature dimension. These features are processed through a projection layer to obtain f ∈ Rd, which
represents a condensed feature vector: f = LayerNorm(GELU(WpPool(hL) + bp)). where Pool(·)
performs mean pooling over the N patches to create a single d-dimensional feature vector, Wp ∈
Rd×d is a learnable weight matrix that projects the pooled features while preserving dimensionality
and bp ∈ Rd is a learnable bias vector, GELU (Gaussian Error Linear Unit) is a smooth activation
function that helps maintain gradient flow and LayerNorm normalizes the features across the feature
dimension, stabilizing training by ensuring consistent feature scales. In practice, f is a d-dimensional
feature vector that aggregates the patch-level information from DinoBloom into a single vector
representing the entire cell, and it projects the features into a space where biological relationships
can be more easily learned through the constraint mechanism.

Constraint Matrix Generation. For the constraint matrix, we employ a transformer-based
multi-head attention mechanism to learn the relationships between different abnormalities. This
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mechanism allows the model to learn both positive (co-occurrence) and negative (mutual exclusiv-
ity) relationships dynamically: Q = Wqf , K = Wkf , V = Wvf , where Wq,Wk,Wv ∈ RK×d

are learnable parameter matrices that transform the features into query, key, and value representa-
tions and K is the number of possible abnormalities. The constraint matrix R ∈ RK×K captures
pairwise relationships between abnormalities and it is then computed using scaled dot-product,

R = softmax
(
QKT
√
d

)
V.

Adaptive Thresholding. We introduce an uncertainty-aware adaptive thresholding mechanism
that adjusts decision boundaries based on prediction confidence and Monte Carlo dropout sampling.
During inference, we apply dropout (with rate 0.5) to the feature vector f and perform M stochastic
forward passes through the classification layer: ŷ(m) = σ(WcDropout(f)+bc) where m = 1, . . . ,M
with M = 50 Monte Carlo samples. The predictive uncertainty for each class is computed as:

Ui = 1
M

∑M
m=1(ŷ

(m)
i − ȳi)

2, where ȳi = 1
M

∑M
m=1 ŷ

(m)
i is the mean prediction for class i. The

adaptive threshold for each class is then calculated as: ti = αi · tbase + βi · Ui + δi · pi, where each
term serves a specific purpose: tbase provides a starting point that can be adjusted up or down,
Ui incorporates model uncertainty to require higher confidence thresholds when predictions are
uncertain, and pi accounts for class frequency in the training data to adjust for class imbalance.
The learnable parameters αi, βi, δi allow the model to fine-tune the importance of each component
for different abnormalities - crucial since some morphological features require more certainty for
positive prediction than others (e.g., subtle chromatin changes versus obvious hypersegmentation).

3.3. Training Strategy

We employ a single training phase where the backbone is frozen while other components are trained
end-to-end with distinct learning rates. The total loss function combines multiple terms:

Ltotal = LBCE + λ1Lcon + λ2Lunc + λ3Lentropy (1)

where:

LBCE = − 1

N

N∑
i=1

K∑
k=1

[yik log(ŷik) + (1 − yik) log(1 − ŷik)] (2)

Lcon = ∥RRT −C∥2F + α∥R∥1 (3)

Lunc =
1

NK

N∑
i=1

K∑
k=1

[KL(pik∥p̂ik) + β max(0, Uik − τ)] (4)

Lentropy = − 1

K2

K∑
i=1

K∑
j=1

[Rij log(Rij)] (5)

Here, C ∈ RK×K is the prior constraint matrix encoding known biological relationships where
Cij = −1 for mutually exclusive pairs (e.g., hypersegmentation vs hyposegmentation), cij for co-
occurring abnormalities with cij being their co-occurrence strength, and cij = 0 for unrelated pairs.
The product RRT captures both direct and indirect (transitive) relationships between abnormali-
ties through matrix multiplication, which when compared to C using the Frobenius norm ensures
these learned relationships match known biological constraints. The L1 norm ∥R∥1 encourages the
model to learn sparse relationships by pushing non-essential elements of R towards zero. Given the
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inherent uncertainty in biological relationships, we deliberately set small values for the hyperpa-
rameters λ1, λ2, λ3 to prevent the model from enforcing strong associations when there is no clear
biological evidence. This conservative approach is particularly important as relationships between
morphological features can be context-dependent and vary across different pathological conditions.
Similarly, α and β are set to small values to maintain flexibility in the learned relationships while
still providing enough regularization to prevent spurious correlations.

3.4. Implementation Details

For this study and for efficiency, we utilize DinoBloom-S (10) as our feature extraction backbone,
which consists of a Vision Transformer (ViT) architecture pretrained on a large corpus of hema-
tological images. The hL for the DinoBloom-S model has an embedding dimension of d = 384.
For more details, please check the original DinoBloom paper. Moreover, the uncertainty threshold
τ was set to 0.2 in our experiments, the base threshold tbase was set to 0.5, the loss weights as
λ1 = 0.1, λ2 = 0.1, λ3 = 0.01 and the hyperparameters α = 0.01, β = 0.1 respectively. During
training, different learning rates are employed for each component while keeping the DinoBloom
feature extractor frozen: the constraint module uses ηc = 1e− 4, the uncertainty estimation com-
ponents use ηu = 5e − 5, and the classification head uses ηh = 1e − 4. For the training, we used
an AdamW optimizer, and the training was performed on 1 NVIDIA A100 GPUs, taking approxi-
mately 30 minutes for convergence. Finally, all the information about the constraint matrices (C)
per dataset is presented in Appendix A.

4. Experimental Results

4.1. Datasets

We evaluate our method on three datasets, two public and one in-house. AML Matek Dataset.
(15) consists of 18,365 expert-labeled single-cell images with 15 morphological classes and multiple
concurrent abnormalities. Following the original split, we use 15,827 images from 100 AML and
100 non-AML patients for training, with the remaining 2,538 images from 40 patients held out for
testing. BMC Dataset. (16) contains 171,373 cells from bone marrow smears of 945 patients,
annotated with 21 distinct cell types. The dataset is divided following the original paper’s protocol:
137,098 cells (756 patients) for training and 34,275 cells (189 patients) for testing. This split ensures
patient-level separation between train and test sets. The dataset is highly imbalanced, with some
rare cell types having as few as 8 samples. GR-Neutro Dataset. Our dataset comprises 1,934
high-resolution microscopy images of neutrophils, including both normal cells (878 images) and
various abnormalities (582 images) without any patient level information. The dataset was split
into training (1,455 images) and test (479 images) sets using stratified sampling to maintain class
distribution. More details about the dataset and its classes are presented in Appendix B.

All datasets were preprocessed following the same protocol: images were resized to 224×224
pixels and normalized using mean and standard deviation computed from the training set. To
handle class imbalance, we employed a combination of techniques including oversampling of mi-
nority classes using SMOTE (Synthetic Minority Over-sampling Technique) (9), undersampling of
majority classes using random undersampling, and class weights in the loss function proportional
to the inverse of class frequencies. For DinoBloom comparison, we used their recommended prepro-
cessing pipeline. Standard augmentations including random horizontal flips, rotations, and color
jittering were applied during training, with more aggressive augmentation strategies applied to
underrepresented classes to further address imbalance.
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Method Normal Chromatin Dohle Hypergr. Hyperseg. Hypogr. Hyposeg. Overall
wF1 bAcc wF1 bAcc wF1 bAcc wF1 bAcc wF1 bAcc wF1 bAcc wF1 bAcc wF1 bAcc

DINOv2 ViT-S/14 0.72 0.70 0.43 0.41 0.76 0.74 0.94 0.92 0.79 0.77 0.80 0.78 0.84 0.82 0.68 0.66
DINOv2 ViT-B/14 0.71 0.69 0.48 0.46 0.77 0.75 0.92 0.90 0.81 0.79 0.82 0.80 0.83 0.81 0.70 0.68
DINOv2 ViT-L/14 0.72 0.70 0.49 0.47 0.77 0.75 0.89 0.87 0.83 0.81 0.81 0.79 0.84 0.82 0.71 0.69

DinoBloom-S 0.86 0.84 0.55 0.53 0.86 0.84 0.94 0.92 0.89 0.87 0.90 0.88 0.84 0.82 0.85 0.83
DinoBloom-B 0.87 0.85 0.61 0.59 0.87 0.85 0.92 0.90 0.91 0.89 0.91 0.89 0.83 0.81 0.86 0.84
DinoBloom-L 0.88 0.86 0.63 0.61 0.87 0.85 0.91 0.89 0.91 0.89 0.90 0.88 0.84 0.82 0.86 0.84

CTransPath 0.80 0.78 0.52 0.50 0.83 0.81 0.88 0.86 0.80 0.78 0.82 0.80 0.83 0.81 0.74 0.72
Phikon ViT-B 0.83 0.81 0.54 0.52 0.85 0.83 0.88 0.86 0.82 0.80 0.85 0.83 0.83 0.81 0.76 0.74

Ours 0.99 0.97 0.87 0.85 0.95 0.93 1.00 1.00 0.97 0.95 0.90 0.88 0.90 0.88 0.94 0.92

Table 1: Performance comparison on the GR-Neutro dataset showing both weighted F1-score (wF1)
and balanced accuracy (bAcc) for each cell type. Best results are shown in bold, second
best are underlined.

Dataset Metric DINOv2 ViT-S/14 DINOv2 ViT-B/14 DINOv2 ViT-L/14 CTransPath Phikon ViT-B DinoBloom-L Ours

AML Matek
wF1 0.88 0.88 0.89 0.88 0.88 0.91 0.95
bAcc 0.82 0.82 0.84 0.83 0.83 0.86 0.91

BMC
wF1 0.68 0.71 0.71 0.74 0.73 0.85 0.89
bAcc 0.45 0.49 0.48 0.52 0.54 0.64 0.75

Method Zunair et al.(17) Chang et al.(18) Garćıa-Garćıa et al. (20) Kassahun et al.(21) Wang et al. (22) Li et al.(23) Ours

AML Matek
wF1 0.93 0.94 0.94(a) — — — 0.95
bAcc — — — — — — 0.91

BMC
wF1 — — — 0.85 0.87 0.86 0.89
bAcc — — — 0.73 0.74 0.73 0.75

Table 2: Performance on the AML Matek (15) and BMC (16) datasets. Comparisons with different
methods and models are provided. (a) This refers to blast vs. non-blast classification, not the full
15-class AML Matek scheme.

4.2. Comparison with other models

We compare our approach with several state-of-the-art methods, including DINOv2 (1) models
(ViT-S/14, ViT-B/14, ViT-L/14) pretrained on general image data, DinoBloom (10) models (S,
B, L) specifically trained on hematological data, CTransPath (3) trained on pathology image data
and the Phikon ViT-B (2) trained on histopathology images. For the comparison of these models
we used weighted F1-score (wF1) and balanced accuracy (bAcc). We summarize the results in
Table 1 for the GR-Neutro and Table 2 for the public dataset. Our proposed method consistently
outperforms all the baselines compared in all datasets. Please note that our method can be adapted
to any backbone presented before, making it very modular and easy to use.

Moreover, Table 2 summarize the comparison of our approach against several state-of-the-
art methods on AML Matek (15) and BMC (16), including recent Transformer-based techniques
(17; 18; 20), multi-task and self-supervised methods (21; 22; 23). Our approach on AML Matek
achieves a wF1-score of 0.95 and a bAcc of 0.91, outperforming prior methods such as Chang et
al. (18) and Garc’ıa-Garc’ıa et al. (20), both of which reported wF1 up to 0.94. Notably, those
references do not report balanced accuracy, making our 0.91 bAcc a strong indicator of performance
on less frequent cell types. In addition, for the BMC we obtain with our method a wF1 of 0.89
with a 0.75 of bAcc. This outperforms multi-task and self-supervised approaches like Kassahun et
al. (21) (0.85 wF1, 0.73 bAcc) and Wang et al. (22) (0.87 wF1, 0.74 bAcc), confirming that our
constraint-based approach manages the extensive class imbalance of the BMC dataset effectively.

The per-class performance analysis on the GR-Neutro dataset presented in Table 1 and Ap-
pendix C reveals the robustness of our approach across different abnormality types. Most notably,
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our method achieves perfect accuracy for hypergranulation detection and near-perfect performance
for normal cell classification. The substantial improvements in challenging cases like chromatin
condensation (0.87 vs 0.63 in DinoBloom-L) and Dohle bodies (0.95 vs 0.87) demonstrate the ef-
fectiveness of our constraint-based learning approach in handling subtle morphological variations.
The consistent performance across all classes, including traditionally challenging ones like hyposeg-
mentation and hypogranulation, highlights the balanced nature of our approach. Some examples
from the attention maps obtained by the constraint attention are presented in Appendix D.

4.3. Ablation Study

Model Variant Accuracy F1 AUC Spec. Sens.

Base Model 0.81 0.79 0.83 0.82 0.80
+ Learnable constraints 0.88 0.87 0.90 0.89 0.88
+ Adaptive Thresholds 0.94 0.93 0.95 0.93 0.94

Constraint Layer Variants
Fixed Rules 0.85 0.83 0.86 0.84 0.85
Binary Constraints 0.86 0.84 0.87 0.85 0.86
Soft Constraints (Ours) 0.88 0.87 0.90 0.89 0.88

Threshold Mechanism
Static Threshold 0.89 0.88 0.90 0.88 0.89
Class-Specific 0.90 0.89 0.91 0.90 0.90
Uncertainty-Aware (Ours) 0.94 0.93 0.95 0.93 0.94

Figure 2: Left: Ablation study analysis showing the impact of each model component. Right:
Evolution of learned constraint relationships during training, showing how the model
discovers biologically meaningful patterns - mutual exclusivity constraints converge to
strong negative values, while co-occurrence relationships stabilize at different positive
strengths based on their biological significance.

To highlight the effectiveness of each component of our method, we conducted an extensive ab-
lation study summarized in Figure 2 (Left). The results are presented in three distinct evaluation
settings to demonstrate both the cumulative and individual impacts of our key components. First,
we evaluate the progressive addition of components, starting with a base model (0.81 accuracy),
then adding learnable constraints (improving to 0.88), and finally incorporating adaptive thresh-
olds (reaching 0.94). This demonstrates the cumulative benefit of our complete architecture. For
constraint mechanisms, we compare three variants in isolation: (i) fixed rules, which uses manually
predefined constraints (e.g., hardcoding that hyper/hyposegmentation cannot co-occur), achieving
0.85 accuracy, (ii) binary constraints, where relationships between abnormalities are limited to strict
0/1 values, reaching 0.86 accuracy, and (iii) our soft constraints approach, which learns continuous
values between 0 and 1 to represent relationship strengths, achieving 0.88 accuracy. Similarly, for
thresholding mechanisms, we evaluate three approaches: (i) static threshold, using a fixed thresh-
old (0.5) for all classes, achieving 0.89 accuracy, (ii) class-specific threshold, where each class has
its own learned threshold, improving to 0.90 accuracy, and (iii) our uncertainty-aware approach,
which dynamically adjusts thresholds based on prediction confidence, reaching 0.94 accuracy when
integrated with the full model. These results demonstrate that both components contribute sig-
nificantly to model performance, with each achieving their best results when combined in the full
architecture.

The evolution of constraints during training (Figure 2, Right) demonstrates how our model
discovers and enforces biological relationships in the GR-Neutro Dataset. The mutual exclusiv-
ity constraints between hypersegmentation and hyposegmentation converge to strong negative

7



Mouadden Verge Arbab Micol Bernard Renneville Christodoulidis Vakalopoulou

0 10 20 30 40 50
Number of Epochs

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Th
re

sh
ol

d 
Va

lu
es

Evolution of Threshold Values

Normal Neutrophil
Chromatin Condensation
Dohle Bodies
Hypergranulation
Hypersegmentation
Hypogranulation
Hyposegmentation

0.0 0.2 0.4 0.6 0.8
Prediction Uncertainty

0.0

0.2

0.4

0.6

0.8

1.0

C
on

fid
en

ce

Confidence vs Prediction Uncertainty
correct
incorrect

Figure 3: Left: Evolution of class-specific adaptive thresholds during training, showing how thresh-
olds adapt to different neutrophil abnormalities based on their characteristics for the GR-
Neutro, and Right: Relationship between model uncertainty and prediction confidence,
showing clear separation between correct (blue) and incorrect (yellow) predictions for the
GR-Neutro Dataset.

values ≤-0.8, indicating the model’s clear understanding of incompatible cell states. Moreover,
(Figure 2, Right), co-occurrence constraints show more nuanced behavior (≥ 0.45 for chromatin-
hypergranulation, ≥0.35 for chromatin-Döhle, and ≥0.25 for chromatin-hypersegmentation), re-
flecting the varying strengths of these biological associations. This hierarchy of learned constraints
aligns with clinical observations, where mutual exclusivity represents fundamental biological im-
possibilities while co-occurrences represent more flexible, probabilistic relationships.

Figure(3, Left) shows the evolution of class-specific adaptive thresholds during training. The
thresholds start from a common base value (0.5) and gradually diverge based on class-specific char-
acteristics. Normal neutrophils converge to higher threshold values (around 0.7), reflecting the need
for higher confidence when classifying normal cells. In contrast, abnormality thresholds settle at
different levels (between 0.4-0.6), with chromatin condensation requiring the lowest threshold (0.4)
due to its subtle nature, and more obvious features like hypersegmentation maintaining moderate
thresholds (0.55). This adaptive behavior enables the model to account for varying degrees of mor-
phological distinctiveness across different abnormalities while maintaining high specificity. Finally,
Figure(3, Right) shows the relationship between prediction confidence and uncertainty, where cor-
rect predictions (shown in blue) are clearly separated from incorrect ones (shown in yellow). The
model demonstrates high confidence (≥0.8) and low uncertainty (≤0.2) for correct predictions,
while incorrect predictions show higher uncertainty (≥0.4) and lower confidence values (≤0.6),
validating the effectiveness of our uncertainty estimation approach.

5. Conclusion

We presented a novel approach for learning and enforcing biological constraints in multi-label
classification of neutrophil abnormalities. Our method not only improves classification accuracy but
also provides valuable insights into morphological relationships through learned constraints. The
adaptive thresholding mechanism effectively handles varying degrees of abnormality manifestation,
while the learnable constraint satisfaction layer prevents biologically impossible predictions. Future
work will focus on expanding to larger, multi-center datasets and incorporating temporal dynamics
in neutrophil analysis.
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Appendix A. Constraint Prior Matrices for Each Dataset

In this appendix, we provide details on the prior constraint matrices C used for each dataset (AML
Matek, BMC, and GR-Neutro). Recall that Cij = −1 indicates mutual exclusivity between classes
i and j, Cij = 0 indicates no direct relationship, and Cij = cij > 0 indicates a soft co-occurrence
with strength cij ∈ [0, 1].

A.1 GR-Neutro Dataset (7× 7)
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Table 3: Constraint matrix C for the GR-Neutro dataset.
Normal Chromatin Döhle Hypergran. Hyperseg. Hypogran. Hyposeg.

Normal 0 -1 -1 -1 -1 -1 -1
Chromatin -1 0 0.3 0.4 0.3 0.2 0.3
Döhle -1 0.3 0 0.3 0.2 0.2 0.2
Hypergran. -1 0.4 0.3 0 0.3 -1 0.2
Hyperseg. -1 0.3 0.2 0.3 0 0.2 -1
Hypogran. -1 0.2 0.2 -1 0.2 0 0.2
Hyposeg. -1 0.3 0.2 0.2 -1 0.2 0

A.2 AML Matek Dataset (15× 15)

Table 4: Constraint matrix C for the AML Matek dataset.
Myelo. Promyelo. Myelo. Meta. Band Segm. Eos. Baso. Mono. Lymph. Plasma Erythro. RBC/Plt Rare Art.

Myeloblast 0 0.3 -1 -1 -1 -1 -1 -1 0.2 -1 -1 0 -1 0.2 0
Promyelocyte 0.3 0 0.3 -1 -1 -1 0.2 0.2 -1 -1 -1 0 -1 0.2 0
Myelocyte -1 0.3 0 0.3 -1 -1 0.2 0.2 -1 -1 -1 0 -1 0.2 0
Metamyelocyte -1 -1 0.3 0 0.3 -1 -1 -1 -1 -1 -1 0 -1 0.2 0
Band Neut. -1 -1 -1 0.3 0 0.3 -1 -1 -1 -1 -1 -1 -1 0.2 0
Segm. Neut. -1 -1 -1 -1 0.3 0 -1 -1 -1 -1 -1 -1 -1 0.2 0
Eosinophil -1 0.2 0.2 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 0.2 0
Basophil -1 0.2 0.2 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 0.2 0
Monocyte 0.2 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 0.2 0
Lymphocyte -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0.2 -1 -1 0.2 0
Plasma Cell -1 -1 -1 -1 -1 -1 -1 -1 -1 0.2 0 -1 -1 0.2 0
Erythroblast 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 0 0.3 0.2 0
RBC/Platelet -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0.3 0 0.2 0
Rare/Atypical 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0 0.2
Artifact 0 0 0 0 0 0 0 0 0 0 0 0 0 0.2 0

A.3 BMC Dataset (21× 21)

Table 5: Constraint matrix C for the BMC dataset.
Myelo. Prom. Myelo. Meta. Band Seg. Eos. Baso. Mono. Lymph. Plas. Eryth. Mega. Pro-E Baso-E Poly-E Ortho-E RBC Art. Smudge Other

Myeloblast 0 0.3 -1 -1 -1 -1 -1 -1 0.2 -1 -1 0 0 0 0 -1 -1 -1 0 0.15 0
Promyelocyte 0.3 0 0.3 -1 -1 -1 0.2 0.2 -1 -1 -1 0 0 0 0 -1 -1 -1 0 0 0
Myelocyte -1 0.3 0 0.3 -1 -1 0.2 0.2 -1 -1 -1 0 0 0 0 -1 -1 -1 0 0 0
Metamyelocyte -1 -1 0.3 0 0.3 -1 -1 -1 -1 -1 -1 0 0 0 0 -1 -1 -1 0 0 0
Band Neut. -1 -1 -1 0.3 0 0.3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0
Segm. Neut. -1 -1 -1 -1 0.3 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0
Eosinophil -1 0.2 0.2 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0
Basophil -1 0.2 0.2 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0
Monocyte 0.2 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0
Lymphocyte -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0.2 -1 -1 -1 -1 -1 -1 -1 0 0.15 0
Plasma Cell -1 -1 -1 -1 -1 -1 -1 -1 -1 0.2 0 -1 -1 -1 -1 -1 -1 -1 0 0 0
Erythroblast 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 0 -1 0.3 0.3 0.3 0.3 0.3 0 0 0
Megakaryocyte 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 0.2 0 0 0
Pro-Erythro. 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 0.3 -1 0 0.3 -1 -1 -1 0 0 0
Baso-Erythro. 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 0.3 -1 0.3 0 0.3 -1 -1 0 0 0
Poly-Erythro. -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0.3 -1 -1 0.3 0 0.3 -1 0 0 0
Ortho-Erythro. -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0.3 -1 -1 -1 0.3 0 0.3 0 0 0
RBC -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0.3 0.2 -1 -1 -1 0.3 0 0 0 0
Artifact 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.2 0.2
Smudge 0.15 0 0 0 0 0 0 0 0 0.15 0 0 0 0 0 0 0 0 0.2 0 0.2
Other 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.2 0.2 0

Key relationships encoded in these matrices include: (i) sequential maturation stages have
positive co-occurrence (0.3), (ii) different lineages (myeloid, lymphoid, erythroid) are mutually
exclusive (-1), (iii) erythroid maturation shows strong sequential relationships (0.3), (iv) artifacts
and smudge cells show weak correlations (0.15-0.2) with specific cell types and (v) early precursors
can weakly co-occur with multiple lineages (0-0.2).
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Appendix B. Details about the GR-Neutro dataset

The GR-Neutro dataset is composed of 7 different classes including normal neutrophils, nuclear
chromatin condensation, Döhle bodies (basophilic cytoplasmic inclusions), hypergranulation (in-
creased cytoplasmic granulation), hypersegmentation (increased nuclear lobes), hypogranulation
(decreased cytoplasmic granulation), and hyposegmentation (decreased nuclear lobes). Table 6
includes the number of each class for the training and testing splits.

Split Normal Chromatin Dohle Hypergr. Hyperseg. Hypogr. Hyposeg.

# Train 658 277 56 45 46 279 253

# Test 220 93 19 15 16 93 84

Table 6: Distribution of samples across training and test splits in the GR-Neutro dataset.

Appendix C. Cross validation results for the GR-Neutro dataset

We performed comprehensive 5-fold cross-validation to the GR-Neutro dataset to ensure robust
evaluation of our approach. Table 7 presents detailed results across all folds. Results show consistent
performance improvements across all folds, with low variance in key metrics.

Table 7: 5-Fold Cross-Validation Results

Metric Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Accuracy 0.93 0.94 0.92 0.95 0.93
Macro F1 0.92 0.93 0.91 0.94 0.92
AUC-ROC 0.94 0.95 0.93 0.96 0.94

Per-Class F1-Scores
Normal 0.98 0.99 0.98 0.99 0.98
Chromatin 0.86 0.88 0.85 0.89 0.87
Döhle 0.94 0.96 0.93 0.97 0.95
Hypergran. 0.99 1.00 0.98 1.00 0.99
Hyperseg. 0.96 0.98 0.95 0.98 0.97
Hypogran. 0.89 0.91 0.88 0.92 0.90
Hyposeg. 0.89 0.91 0.88 0.92 0.90

Appendix D. Attention Heatmap Analysis

To provide insights into how our model focuses on different morphological features, we visualized
the attention heatmaps for various neutrophil abnormalities. Figure 4 shows the attention patterns
across different cell types, demonstrating how the model learns to focus on relevant morphological
features for each abnormality type.
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Figure 4: Attention heatmaps showing model focus areas for different neutrophil abnormalities.
The visualization demonstrates how the model attends to specific morphological features
characteristic of each abnormality type.
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