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Abstract
We study the problem of closeness testing for continuous distributions and its implications for
causal discovery. Specifically, we analyze the sample complexity of distinguishing whether two
multidimensional continuous distributions are identical or differ by at least ϵ in terms of Kullback-
Leibler (KL) divergence under non-parametric assumptions. To this end, we propose an estimator
of KL divergence which is based on the von Mises expansion. Our closeness test attains opti-
mal parametric rates under smoothness assumptions. Equipped with this test, which serves as
a building block of our causal discovery algorithm to identify the causal structure between two
multidimensional random variables, we establish sample complexity guarantees for our causal dis-
covery method. To the best of our knowledge, this work is the first work that provides sample
complexity guarantees for distinguishing cause and effect in multidimensional non-linear models
with non-Gaussian continuous variables in the presence of unobserved confounding.

1. Introduction

The observation of a correlation between two variables A and B raises a fundamental question in
causal inference: Does one variable cause the other, or is the correlation merely the result of a
hidden confounding factor? As depicted in Figure 1, the explanation generally falls into one of
three possibilities: A causes B, B causes A, or a hidden variable U causes both.

Distinguishing among these causal structures is challenging. It is well known that knowing the
observational joint distribution P (A,B) is not sufficient for this task, and it is necessary to perform
interventions. In the framework of Pearl’s do-calculus (Pearl, 1995), an intervention do(A = a)
forces A to a specific value a, allowing us to observe changes in the distribution of B. If the true
structure is A → B, intervening on A will affect B, but not vice versa. For B → A, the reverse
is true. In the case of A ← U → B, interventions on A or B will not influence the other, as their
correlation is only due to U .

A considerable body of work in the causal structure learning literature focuses on minimiz-
ing the number of required interventions for determining the causal structure (e.g., Eberhardt, 2007,
2012; Hauser and Bühlmann, 2012; Shanmugam et al., 2015; Kocaoglu et al., 2017; Lee and Barein-
boim, 2018; Greenewald et al., 2019; Squires et al., 2020; Mokhtarian et al., 2022). However, most

© 2025 F. Jamshidi, S. Akbari & N. Kiyavash.



JAMSHIDI AKBARI KIYAVASH

A

B

A

B A B

U

Figure 1: Three causal relationships between correlated variables A and B.

do so assuming access to an infinite number of samples, while in practice, the available data is of-
ten limited. Therefore, to ensure the reliability and applicability of causal discovery methods, it is
necessary to establish sample complexity guarantees. A key question in this context is: How many
samples are required to reliably infer the causal direction? In order to answer this question, we will
begin by analyzing the sample complexity of estimating a measure of closeness between certain
distributions, for instance, to distinguish between the observed distribution of B and the interven-
tional distribution of B under do(A = a). This will allow us to test whether there is indeed a causal
influence from one variable to the other. Existing methods for closeness testing offer theoretical
guarantees in discrete or structured domains (Diakonikolas et al., 2015, 2021, 2024). However, ex-
tending these guarantees to continuous variables remains challenging due to the infinite support and
the complexity of estimating densities. Our work fills this gap by developing a closeness testing
framework for continuous densities with theoretical guarantees. More specifically, we characterize
the sample complexity of our test which allows us to apply it for causal discovery in the case of
continuous, multidimensional variables.
Contributions Our main contributions are as follows:

(i) We derive an exponential concentration inequality for an estimator of KL divergence based on
Von Mises expansion when the joint densities are estimated through kernel density estimation
(KDE).

(ii) Building on this result, we design a closeness test to decide whether two continuous probabil-
ity densities are equal or differ by at least a given amount ϵ in terms of their KL divergence.

(iii) We harness this test to identify the causal structure between two multidimensional random
variables and provide sample complexity guarantees for our approach, in the presence of
hidden confounding.

Outline of the paper In Section 2, we briefly review the necessary background. In Section 3, we
establish the exponential concentration properties of a Von Mises estimator and propose a closeness
test using this estimator for KL divergence. In Section 4, we discuss how our closeness test can
be harnessed to learn the causal relationship between d-dimensional continuous variables A and B
and provide sample complexity guarantees for it. As a result of space constraints, some proofs are
deferred to Appendix C.

1.1. Related Work

Learning the causal structure between variables of a system has been the focus of intense research
for decades (Chickering et al., 1997; Spirtes et al., 2000; Glymour et al., 2019; Scanagatta et al.,

2



SAMPLE COMPLEXITY OF NONPARAMETRIC CLOSENESS TESTING

2019; Gong et al., 2023). Given the difficulty of the problem, these approaches, for the most part,
assume ideal conditions, such as access to an infinite number of samples, which is rarely met in
real-world scenarios. In recent years, attention has shifted toward the challenge of finite sample
complexity in causal discovery. Several works have empirically studied the impact of sample size
on the accuracy of causal inference (Eberhardt et al., 2010; Mooij et al., 2016; Yang et al., 2018).
From the theoretical standpoint, Compton et al. (2022) provided formal finite-sample guarantees for
two-variable systems under assumptions of causal sufficiency and an assumption on the entropy of
the exogenous variable. Wadhwa and Dong (2021) studied the sample complexity of causal discov-
ery for a network of discrete variables by integrating finite-sample conditional independence tests,
proposed in (Canonne et al., 2018) into the causal framework of (Pearl and Verma, 1995). This
result does not extend to the continuous setting. Recent work by Acharya et al. (2023) character-
ized the sample complexity required to distinguish cause from effect in bivariate one-dimensional
discrete settings, with a success probability of at least 2/3. They showed that the necessary number
of interventional samples depends on the domain size and characterized the trade-off between ob-
servational and interventional data. Their work builds on the techniques developed by Diakonikolas
et al. (2021), who focused on testing the closeness of discrete distributions with high probability,
optimizing sample complexity as a function of parameters such as the error probability and domain
size. While these studies offer valuable insights, they do not apply to the continuous setting of our
interest. Indeed, causal discovery in continuous settings remains less explored, particularly in the
finite-sample setting.

KL Divergence and Von Mises Estimators Over recent decades, considerable attention has fo-
cused on estimating KL divergence. Many of the existing methods are plug-in methods, i.e., they
estimate the densities and evaluate the KL divergence functional based on these estimates. Singh
and Póczos (2014) among others established convergence rates for plug-in estimators for KL diver-
gence. In practice, evaluating the KL divergence numerically through its plug-in estimator becomes
increasingly computationally expensive as the dimensionality of the variables grows. These estima-
tors also suffer from slow convergence rates. Another simple yet effective method for the estimation
of KL divergence is the k-nearest neighbors (kNN) based method (Wang et al., 2009; Póczos and
Schneider, 2011, see e.g.,) although most of the work in this literature lacked convergence rate
analyses. In this context, Noshad et al. (2017) provided convergence rate guarantees for a method
of estimating Rényi and f -divergence measures via a graph-theoretic approach using kNN on joint
data (A,B). However, both (Singh and Póczos, 2014) and (Noshad et al., 2017) have slower con-
vergence rates and require stronger smoothness conditions than our approach in order to achieve
similar convergence rates, a point we shall further discuss in the upcoming Section 3. More re-
cently, Zhao and Lai (2020) among others studied the sample complexity of kNN-based estimators
and showed that they are asymptotically optimal under different assumptions than ours, such as
weak tail distribution conditions. Plug-in and kNN methods require undersmoothing the density
estimate to achieve the best rate, and this smoothing parameter is in general unknown (Kandasamy
et al., 2015).

The Von Mises estimators have become a valuable tool for estimating statistical functionals,
such as entropy, mutual information, and divergence measures under nonparametric assumptions.
These estimators, designed using the theory of influence functions and semi-parametric estimation
(Fernholz, 2012; vd Vaart, 1998), are comprehensively studied for functionals of a single proba-
bility distribution (such as entropy). Kandasamy et al. (2015) proposed and analyzed estimators

3



JAMSHIDI AKBARI KIYAVASH

for functionals of two densities (such as KL divergence) based on the Von Mises expansion. This
approach, previously applied in semiparametric settings (Birgé and Massart, 1995; Robins et al.,
2009), corrects for the first-order bias terms in estimation, resulting in faster convergence rates.
Recently, building on this, Jamshidi et al. (2023) applied the nonparametric Von Mises estimator
to estimate mutual information specifically to conditional independence (CI) testing, the core com-
ponent of constraint-based causal discovery algorithms. Their work focused on recovering causal
graphs up to the Markov equivalence class using only observational data. However, their framework
is restricted to independence testing based on mutual information estimates with access to joint den-
sities. This limitation prevents its application in our setting, where we need to test the closeness of
two distributions using samples gathered under distinct conditions (e.g., either observational and
interventional samples or two different interventions).

Sample complexity in closeness testing and causal discovery A line of work has focused on
the sample complexity of closeness testing for discrete distributions to determine whether two dis-
tributions are identical or different. Diakonikolas et al. (2021) studied the sample complexity of
distinguishing if two discrete distributions (with a constant support size) are identical or their to-
tal variation distance is greater than ϵ with probability at least 1 − δ for given parameters ϵ, δ and
provided sample-optimal algorithms for this task.

In testing the closeness of two discrete distributions, sample complexity is largely dictated by
the size of the domain. Testing for continuous distributions poses a significant challenge due to
infinite domain size. In particular, if p and q are arbitrary continuous distributions, it is theoretically
impossible to develop a finite-sample closeness tester with a constant probability of success (Batu
et al., 2001). To address this challenge, two main approaches are commonly used in the literature.
The first involves imposing structural assumptions on p and q. For instance, significant research
has focused on closeness testing under Gaussianity and linearity assumptions (Diakonikolas et al.,
2023; Ingster and Suslina, 2012; Verzelen and Villers, 2010). The second approach is to approxi-
mate the closeness measure through techniques such as discretizing continuous densities to achieve
a finite domain size. For instance, the Ak distance measures the maximum l1-distance between the
reduced distributions derived from p and q over all partitions of the domain into at most k intervals.
Diakonikolas et al. (2015) proposed a sample-optimal algorithm for closeness testing within univari-
ate distribution families based onAk distance. Following this, Diakonikolas et al. (2024) developed
a closeness tester for multidimensional distributions, establishing upper and nearly-matching lower
bounds for the sample complexity using tools from the Ramsey theory. In this work, we will follow
the first approach by imposing smoothness assumptions on the densities.

2. Background

We will use kernel density estimators (KDE) throughout this work. For clarity, we include the for-
mal definitions and properties of KDEs in Appendix A. We refer the interested reader to (Terrell
and Scott, 1992; Chen, 2017) for further details. Here, we begin by reviewing a well-known expo-
nential concentration result for these estimators. Building on this, we shall establish an exponential
concentration inequality for a Von Mises estimator of KL divergence in the next section.

Before stating the concentration result, let us define a relevant notion, namely, the Hölder class,
which is frequently used in the non-parametric estimation literature. For a tuple s = (s1, . . . , sd) of
non-negative integers, we define |s| =

∑d
i=1 si and let the operator Ds denote Ds := ∂|s|

∂x
s1
1 ···∂xsd

d

.
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Definition 1 (Hölder class) For L > 0 and β > 0, the Hölder class Σ(β, L) on X ⊆ Rd is the set
of functions f : X → R that are ⌊β⌋ times differentiable and satisfy

|Dsf(x)−Dsf(y)| ≤ L∥x− y∥β−|s|

for all s = (s1, . . . , sd) such that |s| ≤ ⌊β⌋. A function f is called β-Hölder smooth if f ∈ Σ(β, L)
for some L > 0.

Let P be a probability measure on a compact space X that is absolutely continuous with respect to
the Lebesgue measure, and let p denote its density function. Let Kd : Rd → R be a kernel and let
p̂h be the corresponding kernel density estimator with bandwidth h (see Eq. 13.) Under standard
assumptions extensively studied in the literature (for instance, Assumption 3 in Appendix A), p̂h is
guaranteed to achieve minimax optimal rates of convergence to p. Assumption 3 results in optimal
convergence rates, specifically outlined below. The proof of this result follows from standard bias
analysis and results of (Rinaldo and Wasserman, 2010) – see (Jamshidi et al., 2023) for instance.

Proposition 1 (Exponential concentration of ∥p− p̂h∥∞) Assume that p belongs to the Hölder
class Σ(β, L) on X for some β, L > 0 and that Kd satisfies Assumption 3. Let h = hn =

Θ(n
− 1

2β+d ). Then, there exist C1, C2, ε0 > 0 and n0 ≥ 0 such that for all n−
β

2β+d (log n)1/2 ≤
εn ≤ ε0:

∀n ≥ n0, P (∥p− p̂h∥∞ > εn) ≤ C1 exp(−C2n
2β

2β+d ε2n) .

2.1. Causal preliminaries

We use structural causal models (SCMs) as the semantic framework of our work (Pearl, 2009).
In this framework, causal relationships between variables can be described through deterministic
functions and independent noise terms. For instance, for the three structures in Figure 1, the fol-
lowing hold. If the causal structure is A → B, the variables are generated by the SCM given
as: A := NA, B := fB(A,NB) where NA and NB are independent noise variables, and fB
is a deterministic function. The reverse structure, B → A, can similarly be conceptualized as:
B := NB, A := fA(B,NA). In the presence of a hidden confounder U , causing both A and B,
the model can be described as: U := NU , A := fA(U,NA), B := fB(U,NB) where NU , NA,
and NB are independent noise terms, with U as the latent variable inducing the correlation between
A and B.

An intervention on the variable A refers to setting A to a specific value a, overriding the nat-
ural value it would have taken. This can be conceptualized as a modified SCM whereby fA(·) is
replaced by a constant function outputting the value a. We will use Pearl’s do notation to represent
interventions. In particular, P (B|do(A = a)) represents the probability distribution induced over
the variable B in a modified SCM where the value of A is fixed at a. We will sometimes use the
shorthand Pa(B) when clear from context. Analogously, Pb(A) = P (A|do(B = b)) represents the
interventional distribution of A under an intervention setting the value of B to b.

3. Exponential Concentration for KL Divergence Estimation

Here, we present our first main result: the exponential concentration bound for a KL divergence
estimator based on Von Mises expansion. Let P and Q be two probability measures on a compact
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set X ⊆ Rd that are absolutely continuous with respect to the Lebesgue measure, with continuous
densities p and q. The KL divergence between p and q is defined as

DKL(p∥q) := EP

[
log

p(x)

q(x)

]
=

∫
X
p(x) log

p(x)

q(x)
dx, (1)

and DKL(p∥q) = 0 if and only if p = q almost everywhere. One common approach to estimating
DKL(p∥q) is to first estimate the distributions and then plug them into the above integral, formally:

D̂
plug-in
KL (p̂∥q̂) =

∫
X
p̂(x) log

p̂(x)

q̂(x)
dx,

where p̂ and q̂ denote the estimates of p and q, respectively. This method, although intuitive, be-
comes computationally intractable especially in higher dimensions d. Moreover, it results in slow
convergence rates – see Remark 4. To address these issues, we will use an estimator based on the
Von Mises expansion of KL divergence, which corrects for the first-order bias term, and, as we shall
see, exhibits faster convergence rates. Suppose we have n and m i.i.d. samples, {xi1}1≤i≤n and
{xj2}1≤j≤m from p and q, respectively. We will use an estimation procedure based on data split as
follows. The dataset is divided into two subsets. Density estimates p̂ and q̂ are constructed using
the first subset {xi1}

n/2
i=1 and {xj2}

m/2
j=1 , respectively. These density estimates are plugged into the

following Von Mises estimator using the second half of the data:

D̂VM
KL (p̂∥q̂) =

( 2
n

n∑
i=n/2+1

log
p̂(xi1)

q̂(xi1)

)
+
(
1− 2

m

m∑
j=m/2+1

p̂(xj2)

q̂(xj2)

)
. (2)

Note that D̂VM
KL (p∥q) in Eq. (2) can be read off as the sample analogue of∫

X
p(x) log

p̂(x)

q̂(x)
dx+ 1−

∫
X
q(x)

p̂(x)

q̂(x)
dx, (3)

which is equal to DKL(p∥q) when p̂ = p and q̂ = q. In Appendix B, we explain in detail the
derivation of the estimator in Eq. (2) based on the theory of influence functions (Newey, 1990;
Ichimura and Newey, 2022), and show that this estimator corrects for the first-order bias terms in
the estimation of KL divergence. In particular, using the Von Mises expansion of DKL at (p, q),

DKL(p∥q) =DKL(p̂∥q̂) +
∫ (
−DKL(p̂∥q̂) + log

p̂(x)

q̂(x)

)
p(x) dx+

∫ (
1− p̂(x)

q̂(x)

)
q(x) dx

+O(∥p− p̂∥22) +O(∥q − q̂∥22)

=

∫
p(x) log

p̂(x)

q̂(x)
dx+ 1−

∫
q(x)

p̂(x)

q̂(x)
dx+O(∥p− p̂∥22) +O(∥q − q̂∥22),

(4)

which motivates the estimation of DKL(p∥q) based on the form given in Eq. (2), the sample ana-
logue of Eq. (3). In what follows, we will use kernel density estimators p̂ = p̂h, and q̂ = q̂h. To
ensure that estimation is feasible, we require certain smoothness assumptions on the densities as
follows.

Assumption 1 (Assumptions on the densities p and q.) Densities p and q belong to the Hölder
classes Σ(βp, L) and Σ(βq, L), respectively, for some L > 0. Moreover, p and q are lower-bounded
on X by some pmin > 0 and qmin > 0.
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Remark 1 Next theorem shows that assuming both p and q are bounded below by some positive
constant pmin is essential to ensuring that the estimator D̂VM

KL achieves an exponential convergence
rate. When dealing with densities that do not meet this lower bound naturally, a practical solution
is to truncate p and q on a sufficiently large compact interval, keeping the KL divergence close to
its true value.

Theorem 2 (Exponential concentration of D̂VM
KL in Eq. 2) Suppose that Kd satisfies Assumption

3 and that densities p and q both meet Assumption 1. Let the bandwidth of the kernel estimates for

densities p and q equal hp(n) = Θ(n
− 1

2βp+d ) and hq(m) = Θ(m
− 1

2βq+d ), respectively. Then there
exist positive constants n0,m0, {Ci, C

′
i}1≤i≤4 and ϵ0 > 0 such that for any n > n0, m > m0, and

max{n−2βp/(2βp+d) log n, n−1/2,m−2βq/(2βq+d) logm,m−1/2} ≤ ϵ ≤ ϵ0 such that

Pr
( ∣∣∣D̂VM

KL (p̂hp∥q̂hq)−DKL(p∥q)
∣∣∣ > ϵ

)
≤ C1 exp

(
− C ′

1n
1/2ϵ

)
+ C2 exp

(
− C ′

2m
1/2ϵ

)
+ C3 exp

(
− C ′

3n
2βp

2βp+d ϵ
)
+ C4 exp

(
− C ′

4m
2βq

2βq+d ϵ
)
.

(5)

The proof of Theorem 2 is given in Appendix C.

Remark 2 When the smoothness parameters satisfy βp, βq > d
2 , the estimator D̂VM

KL achieves the
optimal parametric convergence rate of O(n−1/2 +m−1/2) which is the best possible rate (Birgé
and Massart, 1995; Laurent, 1996).

Remark 3 In the remainder of the paper, we assume βp = βq = β to simplify the presentation.

Remark 4 From Theorem 2, we directly obtain the well-established convergence rate O(n−λ +
m−λ) where λ = min{12 ,

2β
2β+d} for the Von Mises KL divergence estimator (see Kandasamy et al.,

2015). In comparison, Singh and Póczos (2014) and Noshad et al. (2017) obtain the slower rate of

O(n−min{ β
β+d

,1/2}
) for n samples from p, q.

3.1. Closeness Testing of Two Continuous Distributions

In this section, we use Theorem 2 to devise a test to distinguish between the following two hypothe-
ses

H0 := DKL(p∥q) = 0 vs. H1 := DKL(p∥q) > ϵ .

We will use the Von Mises estimator of Eq. (2) to estimate DKL(p∥q) given n and m samples from
p and q, respectively, and use the following test criterion:

CTVM(n,m, ϵ) :=

{
H1 if D̂VM

KL (p̂∥q̂) > ϵ/2,

H0 otherwise.
(6)

The following corollary is straightforward to verify using Theorem 2.
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Corollary 3 (Sample Complexity of Closeness Testing) Under the conditions in Theorem 2, given
n andm i.i.d. samples drawn from p and q, respectively, CTVM(n,m, ϵ) distinguishes correctly be-
tween p = q and DKL(p∥q) > ϵ with probability at least 1− δ where ϵ and δ are positive constants
as long as:

n,m = Ω

(
(
1

ϵ
log

1

δ
)τ
)
,

where τ = max{2, 2β+d
2β }.

4. Determining Causal Relationships

We now turn our focus to the problem of identifying the causal structure between two correlated
continuous d-dimensional random variables A and B using both observational and interventional
data. In Subsection 4.3, we consider the case where only interventional data is accessible. We
formalize the correlation between A and B as follows.

Assumption 2 A and B are correlated. Formally, DKL (P (A,B)∥P (A)P (B)) > ϵ for some
ϵ > 0.

Our goal is to determine whether the relationship between A and B is that of direct causation, that
is A → B or B → A, or an unobserved confounder U influences both variables, resulting in
the structure A ← U → B (See Figure 1). We will determine the causal structure by examining
changes in the distributions under interventions. We explain this below.

Suppose the true causal relationship is A → B. In this case, the interventional distribution
Pa(B) := P (B|do(A = a)) matches P (B|A = a) for every a. To test for the latter, we can
use interventional samples drawn from Pa(B) and observational samples drawn from P (A,B) to
estimate the densities and use the hypothesis testing procedure outlined in Section 3.1. On the
other hand, if there is no causal edge from A to B, i.e., A ̸→ B, then Pa(B) coincides with P (B)
for every a, which can be tested similarly. In case our analysis does not imply A → B, we can
analogously test for B → A by estimating the KL divergence between Pb(A) and P (A|B = b). If
neither direction is implied by these tests, we conclude that the relationship is likely A← U → B,
where U is an unobserved variable causing both A and B. To present our formal study, we will
make use of two preliminary lemmas:

Lemma 1 Under Assumption 2,

EA [DKL (P (B|A)∥P (B))] > ϵ and EB [DKL (P (A|B)∥P (A))] > ϵ.

See Appendix C for the proof.

Lemma 2 (Levin, 1985; see also Fact A.2 in Goldreich, 2014) Let P be a probability measure,
and let h : supp(P ) → [0, 1] be a function with E[h(t)] > ϵ for some ϵ ∈ (0, 1]. Define k =

⌈log2 2
ϵ ⌉, ϵj = 2−j , and rj = 2jϵ

(k+5−j)2
. Then, there exists j ∈ [k] such that Pr(h(t) > ϵj) > rj .

We begin by outlining the procedure for testing whether the edge A→ B exists below.
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4.1. Testing for A→ B Using Observational and Interventional Data

If A ̸→ B, then A has no causal effect on B, and Pa(B) = P (B) for every a. Clearly,

EA [DKL (P (B|do(A))∥P (B))] = 0

in this case. Conversely if A→ B, i.e., A causally affects B, then Pa(B) = P (B|A = a) for every
a and hence from Lemma 1, EA [DKL (P (B|do(A))∥P (B))] > ϵ. This brings us to the following
criterion for testing the edge A→ B:{

A→ B ⇔ E [h(A)] > ϵ,

A ̸→ B ⇔ E [h(A)] = 0,
(7)

where
h(a) := DKL (P (B|do(A = a)∥P (B)) . (8)

In the sequel, we show how the criterion of Eq. (7) can be verified with high probability, using the
hypothesis testing procedure of Section 3.1 and Lemma 2. Before moving forward, we note that
Lemma 2 requires h(·) to take values in [0, 1]. KL divergence is non-negative, but can be unbounded
in general. However, under Assumption 1, KL divergence remains upper-bounded due to p and q
being bounded away from zero. Hence, Lemma 2 remains valid with an appropriate scaling of h
based on the constants pmin and qmin, which does not affect our asymptotic analysis.

Let k, ϵj , and rj be defined as in Lemma 2. If the edge A → B exists, then Lemma 2 implies
that there exists an index j∗ ∈ [k] for which:

Pr (DKL (P (B|a)∥P (B)) > ϵj∗) > rj∗ ,

since E[h(A)] > ϵ. This implies the following lemma.

Lemma 3 Suppose the causal structure is A→ B, and let k, ϵj , and rj be defined as in Lemma 2.

There exists an index j∗ ∈ [k] such that for any c > 0 and given lj∗ = 2c+2
rj∗

i.i.d. samples {ai}
lj∗
i=1

from P (A), at least one of these samples satisfies h(ai) > rj∗ with probability 1− e−c.

The proof of this lemma, which is included in Appendix C for the sake of completeness, goes
through an application of the Chernoff inequality. Note that in the alternative case, i.e., A ̸→ B,
h(ai) is always zero. Therefore, our algorithm tests whether there is an edge A → B as follows:
for each j ∈ [k], we draw lj = c+2

rj
i.i.d. samples from A; for each sample ai, we draw nj and

mj samples from p = P (B(A = ai)) and q = P (B), respectively; we run the hypothesis test
of Section 3.1 to test whether h(ai) > ϵj or h(ai) = 0; finally, if any of these tests return the
hypothesis H1 (i.e., h(ai) > ϵj) then we conclude the edge A → B exists; otherwise we conclude
A ̸→ B. The pseudocode for this algorithm is presented as Algorithm 1.

The following result presents the sample complexity of our method.

Theorem 4 Suppose Assumption 2 holds, kernelKd satisfies Assumption 3, and that observational
and interventional densities satisfy Assumption 1. For any c > 0, Algorithm 1 correctly distin-
guishes between A → B and A ̸→ B with probability 0.9(1 − e−c), using O

(
c
ϵτ

)
observational

and O
(

c
ϵτ

)
interventional samples, where τ = max{2, (2β + d)/2β}.

9
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Algorithm 1: Algorithm for Testing the Edge A→ B Using Observational Data
Input: parameter c, smoothness β, threshold ϵ, sample access to distributions P (B) & PA(B)
Output: Determine whether the causal structure is A→ B
Set params τ = max{2, 2β+d

2β }, k = log
(
2
ϵ

)
, ϵj = 2−j , rj = 2jϵ

(k+5−j)2
, δj = 2j−k

(2c+2)(k+5−j)4
;

Define sample sizes: nj = mj = ( 1
ϵj
log 1

δj
)τ ;

for j = 1 to k do
for i = 1 to

⌊
2c+2
rj

⌋
do

Draw sample ai ∼ P (A);
if CTVM (nj ,mj , ϵj) = H1 for p = Pai(B) and q = P (B) then

return A→ B
return A ̸→ B;

The number of interventional samples used throughout the algorithm is

ϵτ

ϵτ

∑
j∈[k]

2c+ 2

rj
nj =

2c+ 2

ϵτ

k∑
j=1

(
ϵ

ϵj

)τ−1

(k + 5− j)2 logτ (2c+ 2)(k + 5− j)4

2j−k

=
20

ϵτ

k∑
j=1

2−j(τ−1)(j + 5)2 logτ
(
(2c+ 2)(j + 5)42j

)
=

20× 25(τ−1)

ϵτ

k∑
j=6

j2

(2τ−1)j
logτ

(
(2c+ 2)j42j−5

)
=

1

ϵτ
×O(c) = O( c

ϵτ
).

(9)

Similarly, the number of observational samples of P (B) is the same. Finally, the number of obser-
vational samples from P (A) is

∑
j∈[k]

2c+2
rj

, which is fewer than that required for P (B) and can be
bounded in a similar fashion.

Error analysis To evaluate the probability of error, note that the total number of closeness tests
performed is bounded by

∑
j∈[k]

2c+2
rj

, where each has an error probability of at most δj = 2j−k

(2c+2)(k+5−j)4
.

Using union bound, the probability of event E that at least one test results in an error is at most

Pr(E) ≤
∑
j∈[k]

2c+ 2

rj
· δj

=
∑
j∈[k]

(2c+ 2)(k + 5− j)2

2jϵ
· 2j−k

(2c+ 2)(k + 5− j)4

=
1

2

∑
j∈[k]

1

(k + 5− j)2
=

1

2

k+6∑
j=5

1

j2

<
1

2

∫ ∞

5

1

x2
dx = 0.1,

(10)
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which implies that all tests return correct answers with probability at least 0.9. Finally, from Lemma
3, if the true structure is A→ B, then at least one test will return H1 with probability 1− e−c, and
therefore the output of the algorithm is correct with probability at least 0.9(1− e−c). Conversely, if
A ̸→ B, all tests return H0 and the algorithm returns the correct output with probability 0.9.

4.2. Complete Causal Discovery Algorithm

We presented the procedure for deciding between A→ B and A ̸→ B. The same procedure can be
used to decide between A← B and A ̸← B. Finally, if we conclude that none of the edges A→ B
and A← B exist, the correlation between A and B is explained through the hidden confounder U :
A ← U → B. Based on Theorem 4 and a symmetrical result for B → A versus B ̸→ A, along
with an application of union bound we obtain the following result.

Corollary 5 Under Assumption 1 for observational and interventional densities, Assumption 2,
and Assumption 3 for the kernel, for any c > 0, the causal structure among {A → B,A ←
B,A ← U → B} can be correctly identified with probability at least 0.8(1 − 2.25e−c) given
O(ϵ−τ ) observational and interventional samples, where τ = max{2, (2β + d)/2β}.

Remark 5 Note that although this causal discovery method is initially presented for a constant
probability of success, it can be boosted to achieve a success rate of 1 − δ for any δ > 0 by
employing the median trick (Jerrum et al., 1986). This approach involves enumerating the possible
causal structures and running our causal discovery method log(1/δ) times and returning the median
result, achieving an arbitrarily high probability of success with only a logarithmic factor increase
in sample complexity.

4.3. Testing for A→ B Without Observational Samples

In certain applications such as online learning, observational samples might not be available. Herein,
we analyze how the causal structure can be identified using only interventional data. Analogous to
the previous section, we begin by presenting a method to decide between A → B and A ̸→ B,
which can be combined with its counterpart for the reverse direction (B → A versus B ̸→ A)
to form a complete causal discovery algorithm. We will use the following lemma, which is the
analogue of Lemma 1. The proof is deferred to Appendix C.

Lemma 4 Under Assumption 2,

E(A,Ã)∼P (A)×P (A)

[
DKL

(
P (B|A)∥P (B|Ã)

)]
> ϵ, and

E(B,B̃)∼P (B)×P (B)

[
DKL

(
P (A|B)∥P (A|B̃)

)]
> ϵ.

As discussed before, if the true structure is A→ B, then P (B|do(A = a)) = P (B|A = a) and
therefore E(A,Ã)∼P (A)×P (A)

[
DKL

(
P (B|do(A))∥P (B|do(Ã))

)]
> ϵ. Otherwise, i.e., if A ̸→ B,

this expectation is 0 since simply P (B|do(A)) = P (B). In this setting, we have the following
criterion for testing the existence of the edge A→ B (analogue of Eq. 7):{

A→ B ⇔ E
[
h2(A, Ã)

]
> ϵ,

A ̸→ B ⇔ E
[
h2(A, Ã)

]
= 0,

(11)
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Algorithm 2: Algorithm for Testing the Edge A→ B Without Observational Data
Input: parameter c, smoothness β, threshold ϵ, sample access to distributions PB(A) &

PA(B)
Output: Determine whether the causal structure is A→ B
Set params τ = max{2, 2β+d

2β }, k = log
(
2
ϵ

)
, ϵj = 2−j , rj = 2jϵ

(k+5−j)2
, δj = 2j−k

(2c+2)(k+5−j)4
;

Define sample sizes: nj = mj = ( 1
ϵj
log 1

δj
)τ ;

for j = 1 to k do
for i = 1 to

⌊
2c+2
rj

⌋
do

Draw i.i.d. samples ai, ãi ∼ Pb(A);
if CTVM (nj ,mj , ϵj) = H1 for p = Pai(B) and q = Pãi(B) then

return A→ B
return A ̸→ B;

where
h2(a, ã) := DKL

(
P (B|do(A = a)∥P (B|do(A = ã))

)
. (12)

Based on this criterion, we adopt a similar testing method, outlined as Algorithm 2. The workings
of this algorithm is similar to Algorithm 1. The following result presents the sample complexity of
this algorithm.

Theorem 6 Suppose Assumption 2 holds, the kernel Kd satisfies Assumption 3, and that interven-
tional densities satisfy Assumption 1. For any c > 0, Algorithm 2 correctly distinguishes between
A → B and A ̸→ B with probability 0.9(1 − e−c), using O

(
c
ϵτ

)
interventional samples, where

τ = max{2, (2β + d)/2β}.

The proof is identical to Theorem 4. Note that as before, the median trick can be applied to
achieve arbitrarily low error probabilities. Furthermore, the edge B → A can be tested in a similar
fashion, and if neither A → B nor B → A are confirmed, we conclude that A ← U → B is the
true causal structure.

5. Conclusion

We presented an exponential concentration bound for a first-order Von Mises estimator of KL diver-
gence. We developed a hypothesis testing procedure based on this estimator and analyzed its sample
complexity. We then studied the problem of causal discovery involving multidimensional contin-
uous variables in the presence of hidden confounding and developed an algorithm that correctly
identifies the true causal structure with a constant probability and analyzed its sample complexity.
Boosting approaches can be applied to achieve higher success probabilities at the cost of logarithmic
factor increase in sample complexity.
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Alain Hauser and Peter Bühlmann. Characterization and greedy learning of interventional markov
equivalence classes of directed acyclic graphs. The Journal of Machine Learning Research, 13
(1):2409–2464, 2012.

Hidehiko Ichimura and Whitney K Newey. The influence function of semiparametric estimators.
Quantitative Economics, 13(1):29–61, 2022.

Yuri Ingster and Irina A Suslina. Nonparametric goodness-of-fit testing under Gaussian models,
volume 169. Springer Science & Business Media, 2012.

Fateme Jamshidi, Luca Ganassali, and Negar Kiyavash. On sample complexity of conditional in-
dependence testing with von mises estimator with application to causal discovery. arXiv preprint
arXiv:2310.13553, 2023.

Mark R Jerrum, Leslie G Valiant, and Vijay V Vazirani. Random generation of combinatorial
structures from a uniform distribution. Theoretical computer science, 43:169–188, 1986.

Larry Wasserman John Lafferty, Han Liu. Lecture notes: Statistical methods for machine learning,
2008-2010. URL https://www.stat.cmu.edu/˜larry/=sml/Concentration.
pdf. (Chapter 7, concentration of measure).

Kirthevasan Kandasamy, Akshay Krishnamurthy, Barnabas Poczos, Larry Wasserman, et al. Non-
parametric von mises estimators for entropies, divergences and mutual informations. Advances
in Neural Information Processing Systems, 28, 2015.

14

https://www.stat.cmu.edu/~larry/=sml/Concentration.pdf
https://www.stat.cmu.edu/~larry/=sml/Concentration.pdf


SAMPLE COMPLEXITY OF NONPARAMETRIC CLOSENESS TESTING

Murat Kocaoglu, Alex Dimakis, and Sriram Vishwanath. Cost-optimal learning of causal graphs.
In International Conference on Machine Learning, pages 1875–1884. PMLR, 2017.
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Appendix A. Multivariate Kernel Density Estimation

Multivariate kernel density estimation (KDE) provides an approximation of the density p given by
of the following form. For all

p̂h(x) :=
2

n

n/2∑
i=1

1

hd
Kd

(
xi − x
h

)
, (13)

where x = (x1, . . . , xd) in X . Here, h := h(n) > 0 is the bandwidth and Kd : Rd → R is a kernel
function with

∫
Kd(x) dx = 1, ensuring

∫
X p̂h(x) dx = 1. Recall that for this estimation we only

use the first half of the samples, i.e., (xi)1≤m≤n/2.
While the selection of Kd remains flexible, higher-order kernels (order ℓ > 0) are particularly

effective for approximating smooth densities. We provide their formal definition below.

Definition 2 (Kernels of given order) Let ℓ be a positive integer. We say that a kernel Kd : Rd →
R is a kernel of order ℓ if x 7→ xsK(x) is integrable for all |s| ≤ ℓ and∫

K(x)dx = 1 and
∫
xsK(x)dx = 0 for |s| = 1, . . . , ℓ .

In particular, a kernel of order ℓ is orthogonal to any polynomial of degree ≤ ℓ with no constant
term.

Assumption 3 (Assumptions on the kernel Kd) The kernel Kd satisfies the following:

(1a) Kd is uniformly upper bounded by some κ > 0,

(1b) Kd is of order β (see Definition 2),

(1c) The class of functions

F :=

{
Kd

(
x− ·
h

)
, x ∈ Rd, h > 0

}
satisfies supQN(F , L2(Q), ε∥F∥L2(Q)) ≤

(
A
ε

)v
,

where A and v are two positive numbers, N(T, d, ε) denotes the ε-covering number (see, e.g.
John Lafferty, 2008-2010) of the metric space (T, d), F is the envelope function of F (i.e. F (x) :=
supf∈F |f(x)|), and the supremum is taken over the set of all probability measures on Rd. The
quantity v is called the V C dimension of F .

Assumption (1c) is a widely used condition, appearing in works such as Giné and Guillou (2002);
Rinaldo and Wasserman (2010) and is fundamental to deriving the exponential inequality in Liu
et al. (2012). This assumption holds for a broad class of kernels, such as polynomial kernels with
compact support and Gaussian kernels (van der Vaart and Wellner, 1996; Nolan and Pollard, 1987).
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Appendix B. Von Mises Expansion for KL Divergence

We review a few formal definitions from the theory of influence functions here and derive our
estimator for DKL(·∥·) based on the Von Mises expansion. The definitions are often given for
functionals of a single distribution. Since DKL is a functional of two distributions, we require the
extended definitions that apply to functionals of multiple distributions. We follow (Kandasamy
et al., 2015) for this purpose.

Let X be a compact metric space. LetM denote the set of all probability measures that are ab-
solutely continuous with respect to Lebesgue1, and with Radon-Nikodym derivities lying in L2(X ).
For P,Q,H ∈M and a functional T :M×M→ R, the maps T ′

P , T
′
Q :M×M→ R where

T ′
P (H;P,Q) =

∂T (P + tH,Q)

∂t

∣∣∣
t=0

, T ′
Q(H;P,Q) =

∂T (P,Q+ tH)

∂t

∣∣∣
t=0

,

are called the Gâteaux derivatives at (P,Q) if the derivatives exist and are linear in H . We say
T (·, ·) is Gâteaux differentiable at (P,Q) if the Gâteaux derivatives exist at (P,Q). For a functional
T that is Gâteaux differentiable at (P,Q), functions ψP , ψQ : X → R which satisfy the following
equations are said to be the influence functions of T with respect to P and Q:

T ′
P (H1 − P ;P,Q) =

∫
X
ψP (x;P,Q)dH1(x), T ′

Q(H2 −Q;P,Q) =

∫
X
ψQ(x;P,Q)dH2(x).

It can be shown that the influence functions calculated below satisfy the equation above (Fernholz,
2012):

ψP (x;P,Q) = T ′
P (δx − P ;P,Q) =

∂T ((1− t)P + tδx, Q)

∂t

∣∣∣
t=0

,

ψQ(x;P,Q) = T ′
Q(δx −Q;P,Q) =

∂T (P, (1− t)Q+ tδx)

∂t

∣∣∣
t=0

.

Below, we derive these influence functions for T ≡ DKL. We further restrict our attention to
measures with continuous densities. In what follows, p, q denote the densities corresponding to
P,Q ∈M.

ψp(x; p, q) =
∂DKL ((1− t)p+ tδx∥q)

∂t

∣∣∣∣
t=0

=
∂

∂t

∫
X
((1− t)p+ tδx) log

(
(1− t)p+ tδx

q

)
dx̃

∣∣∣∣
t=0

=

∫
X
(−p+ δx) log(

p

q
) +

∫
X
(−p+ δx) dx̃

= −DKL(p∥q) + log
p(x)

q(x)
.

Similarly,

ψq(x; p, q) =
∂DKL (p∥(1− t)q + tδx)

∂t

∣∣∣∣
t=0

=
∂

∂t

∫
X
p log

(
p

(1− t)q + tδx

)
dx̃

∣∣∣∣
t=0

=

∫
X
p− p

q
δx dx̃ = 1− p(x)

q(x)
.

1. In general, the definitions can be adapted to an arbitrary measure µ. We work with the Lebesgue measure for
simplicity.
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Given these influence functions and approximations p̂ and q̂ of p and q, the first-order Von Mises
expansion can be written as

DKL(p∥q) =DKL(p̂∥q̂) +
∫
ψp̂(x; p̂, q̂)p(x) dx+

∫
ψq̂(x; p̂, q̂)q(x) dx

+O(∥p− p̂∥22) +O(∥q − q̂∥22)

=DKL(p̂∥q̂) +
∫ (
−DKL(p̂∥q̂) + log(

p̂

q̂
)

)
p(x) dx+

∫ (
1− p̂

q̂

)
q(x) dx

+O(∥p− p̂∥22) +O(∥q − q̂∥22)

=

∫
p(x) log

p̂(x)

q̂(x)
dx−

∫
q(x)

p̂(x)

q̂(x)
dx+ 1

+O(∥p− p̂∥22) +O(∥q − q̂∥22).

(14)

It is clear from this expansion that the difference between DKL(p∥q) and

∫
p(x) log

p̂(x)

q̂(x)
dx−

∫
q(x)

p̂(x)

q̂(x)
dx+ 1 (15)

is bounded by second-order remainder terms. To construct an estimator based on Von Mises expan-
sion, we use data split. In particular, we estimate p̂, q̂ using one half of the data, while using the
other half to compute the sample analogue of Eq. (15). Specifically, given iid samples {xi1}mi=1 and
{xj2}nj=1 drawn from p and q respectively, our data-split estimator based on Von Mises expansion is

D̂VM
KL =

2

n

n∑
i=n/2+1

log
p̂(xi1)

q̂(xi1)
− 2

m

m∑
j=m/2+1

p̂(xj2)

q̂(xj2)
+ 1,

where samples {xi1}
m/2
i=1 and {xj2}

n/2
j=1 are used to estimate p̂ and q̂, respectively.

Appendix C. Omitted Proofs

Theorem 2 (Exponential concentration of D̂VM
KL in Eq. 2) Suppose thatKd satisfies Assumption 3

and that densities p and q both meet Assumption 1. Let the bandwidth of the kernel estimates for

densities p and q equal hp(n) = Θ(n
− 1

2βp+d ) and hq(m) = Θ(m
− 1

2βq+d ), respectively. Then there
exist positive constants n0,m0, {Ci, C

′
i}1≤i≤4 and ϵ0 > 0 such that for any n > n0, m > m0, and

max{n−2βp/(2βp+d) log n, n−1/2,m−2βq/(2βq+d) logm,m−1/2} ≤ ϵ ≤ ϵ0 such that

Pr
( ∣∣∣D̂VM

KL (p̂hp∥q̂hq)−DKL(p∥q)
∣∣∣ > ϵ

)
≤ C1 exp

(
− C ′

1n
1/2ϵ

)
+ C2 exp

(
− C ′

2m
1/2ϵ

)
+ C3 exp

(
− C ′

3n
2βp

2βp+d ϵ
)
+ C4 exp

(
− C ′

4m
2βq

2βq+d ϵ
)
.

(5)
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Proof. In order to avoid the notational burden, we drop the subscripts and denote the kernel density
estimators simply by p̂ and q̂ throughout this proof. From Eq. (14) and by definition of D̂VM

KL ,

D̂VM
KL −DKL(p∥q) =

( 2
n

n∑
i=n/2+1

log
p̂(xi)

q̂(xi)
−
∫
p(x) log

p̂(x)

q̂(x)
dx
)

−
( 2

m

m∑
j=m/2+1

p̂(yj)

q̂(yj)
−
∫
q(x)

p̂(x)

q̂(x)
dx
)

+O(∥p− p̂∥22) +O(∥q − q̂∥22).

(16)

We will bound each term on the right-hand side separately. First note that from Proposition 1, p̂ and
q̂ uniformly converge to p and q, respectively. Since p(x) > pmin and q(x) > qmin on the (compact)
set X , for large enough n and m (represented by constant thresholds n0 and m0, respectively), we
have that

p̂(x) > pmin/2, q̂(x) > qmin/2,

almost surely. Thus, every term in the sum
∑n

i=n/2+1
2
n log p̂(xi)

q̂(xi)
is almost surely bounded by c/n

where c is a positive constant. Azuma-Hoeffding inequality implies

Pr

∣∣∣∣∣∣ 2n
n∑

i=n/2+1

log
p̂(xi)

q̂(xi)
−
∫
p(x) log

p̂(x)

q̂(x)
dx

∣∣∣∣∣∣ > ϵ/4

 ≤ 2 exp

(
−( ϵ4)

2

2
∑n

i=n/2+1(
c
n)

2

)

≤ C1 exp
(
−C ′

1n
1/2ϵ

)
,

(17)

where the last inequality holds since n1/2ϵ > 1 by assumption.
With the same reasoning, we can conclude that each term in the sum

∑m
j=m/2+1

2
m

p̂(yj)
q̂(yj)

is
almost surely bounded by c′/m where c′ is a positive constant. Again, by Azuma-Hoeffding in-
equality we get

Pr

∣∣∣∣∣∣ 2m
m∑

j=m/2+1

p̂(yj)

q̂(yj)
−
∫
q(x)

p̂(x)

q̂(x)
dx

∣∣∣∣∣∣ > ϵ/4

 ≤ 2 exp

(
−( ϵ4)

2

2
∑m

j=m/2+1(
c′

m)2

)

≤ C2 exp
(
−C ′

2m
1/2ϵ

) (18)

where the last inequality holds since m1/2ϵ > 1 by assumption.
For the third term on the right-hand side of Eq. (16),

Pr(∥p− p̂∥22 > ϵ/4) = Pr

(∫
X
(p(x)− p̂(x))2 dx > ϵ/4

)
≤ Pr

(
sup
x∈X
|p(x)− p̂(x)| >

√
ϵ/4

Vol(X )

)
≤ C3 exp

(
−C ′

3n
2βp

2βp+d ϵ

)
,

(19)

where the last inequality follows from Proposition 1. In a similar way, we get:

Pr(∥q − q̂∥22 > ϵ/4) = Pr

(∫
X
(q(x)− q̂(x))2 dx > ϵ/4

)
≤ C4 exp

(
−C ′

4m
2βq

2βq+d ϵ

)
. (20)
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Finally, combining Equations (17), (18), (19), and (20) with a union bound, we arrive at the desired
inequality:

Pr
( ∣∣∣D̂VM

KL (p̂hp∥q̂hq)−DKL(p∥q)
∣∣∣ > ϵ

)
≤ C1 exp

(
− C ′

1n
1/2ϵ

)
+ C2 exp

(
− C ′

2m
1/2ϵ

)
+ C3 exp

(
− C ′

3n
2βp

2βp+d ϵ
)
+ C4 exp

(
− C ′

4m
2βq

2βq+d ϵ
)
.

Lemma 1 Under Assumption 2,

EA [DKL (P (B|A)∥P (B))] > ϵ and EB [DKL (P (A|B)∥P (A))] > ϵ.

Proof.
By Assumption 2 we have:

DKL (P (A,B)∥P (A)P (B)) > ϵ =

∫ ∫
P (a, b) log

P (a, b)

P (a)P (b)
dadb > ϵ.

Therefore, ∫ (∫
P (b|a) log P (b|a)

P (b)
db

)
P (a)da > ϵ

=⇒ EB [DKL (P (b|a)∥P (b))] > ϵ.

Similarly, we can conclude that:

EA [DKL (P (a|b)∥P (a))] > ϵ.

Lemma 3 Suppose the causal structure is A→ B, and let k, ϵj , and rj be defined as in Lemma 2.

There exists an index j∗ ∈ [k] such that for any c > 0 and given lj∗ = 2c+2
rj∗

i.i.d. samples {ai}
lj∗
i=1

from P (A), at least one of these samples satisfies h(ai) > rj∗ with probability 1− e−c.

Proof. Define event Ei = 1{h(ai) > 2−j∗}, E =
∑l∗j

i=1 Ei, and µ := E[E ]. From Lemma 2,
E[Ei] > r∗j for every i ∈ [lj∗ ], and therefore,

µ > lj∗rj∗ . (21)

Additionally, let γ := 2c+1−
√
2c(2c+ 2). Note that since (2c+1)2 > 2c(2c+2) therefore

γ > 0.
It can also be verified that:

(1− 1 + γ

2c+ 2
)2 =

c

c+ 1
. (22)

Now, set α = 1− 1+γ
µ . Observe that 0 < α < 1, since µ > lj∗rj∗ = 2c+ 2 > γ + 1.
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Next, we bound Pr(E < 1) as follows:

Pr(E < 1) ≤ Pr (E ≤ 1 + γ) = Pr (E ≤ (1− α)µ)
(a)

≤ exp(−µα
2

2
)

= exp

−µ
(
1− 1+γ

µ

)2
2

 (b)

≤ exp(−
lj∗rj∗(1− 1+γ

lj∗rj∗
)2

2
)

= exp

−(2c+ 2)
(
1− 1+γ

2c+2

)2
2


(c)
= exp

(
−
(2c+ 2) c

c+1

2

)
= e−c

Here, (a) follows from the Chernoff bound, (b) from (21), and (c) from (22).
Finally, we conclude that:

Pr (∃ sample ai that satisfies h(ai) > rj∗) = 1− Pr(E < 1) ≥ 1− e−c.

Lemma 4 Under Assumption 2,

E(A,Ã)∼P (A)×P (A)

[
DKL

(
P (B|A)∥P (B|Ã)

)]
> ϵ, and

E(B,B̃)∼P (B)×P (B)

[
DKL

(
P (A|B)∥P (A|B̃)

)]
> ϵ.

Proof.

E(A,Ã)∼P (A)×P (A)

[
DKL

(
P (B|A)∥P (B|Ã)

)]
(a)

≥ EA∼P (A)

[
DKL

(
P (B|A)∥EÃ∼P (A)

[
P (B|Ã)

])]
= EA∼P (A)

DKL

P (B|A)∥∑
Ã

P (Ã)P (B|Ã)


= EA∼P (A) [DKL (P (B|A)∥P (B))]

(b)
> ϵ.

Here, (a) follows from Jensen’s inequality and (b) holds by Lemma 1.
The proof of the second inequality is identical.
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