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Abstract: Surgical automation can improve the consistency and accessibility of

life-saving procedures. Most surgeries require separating layers of tissue to ac-

cess the surgical site, and suturing to re-attach incisions. These tasks involve

deformable manipulation to safely identify and alter tissue attachment (bound-

ary) topology. Due to poor visual acuity and frequent occlusions, surgeons tend

to carefully manipulate the tissue in ways that enable inference of the tissue’s

attachment points without causing unsafe tearing. In a similar fashion, we pro-

pose JIGGLE, a framework for estimation and interactive sensing of unknown

boundary parameters in deformable surgical environments. This framework has

two key components: (1) a probabilistic estimation to identify the current attach-

ment points, achieved by integrating a differentiable soft-body simulator with

an extended Kalman filter (EKF), and (2) an optimization-based active control

pipeline that generates actions to maximize information gain of the tissue attach-

ments, while simultaneously minimizing safety costs. The robustness of our es-

timation approach is demonstrated through experiments with real animal tissue,

where we infer sutured attachment points using stereo endoscope observations.

We also demonstrate the capabilities of our method in handling complex topolog-

ical changes such as cutting and suturing.

Keywords: CoRL, Robots, Learning, Active Sensing, Surgical Automation, De-

formable Manipulation

1 Introduction

Surgical automation has the potential to improve the accessibility of life-saving procedures in under-

served communities. In recent years, the robotics community has made strides in surgical automa-

tion with the development of dVRK [1], works like STAR [2], and advancements in the automation

of deformable manipulation [3, 4, 5], suturing [6, 7], blood suction [8], cutting [9] and dissection

[10].

Deformable manipulation is a significant component of all surgical tasks. Large portions of surgical

procedures involve safely cutting tissue to detach regions and access the surgical site, as well as

suturing tissue back together. These actions actively change the structure of the surgical scene. A key

step towards realizing surgical autonomy is enabling robots to understand and track these changing

structures. Many previous works have aimed to take this step solely through 3D scene reconstruction

[11, 12, 13, 14]. However, these works are insufficient to enable safe interaction as they fail to

estimate and track the change in underlying tissue structures and provide an understanding of how

aggressively the tissue is being manipulated.

The key to enabling safer surgical autonomy is an interactive approach to track and control the tissue.

Previous approaches like [15] that consider the joint problem of estimation and active sensing are
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limited in the resolution of the attachment regions they can detect. Safety is not considered, and

behaviors are limited to hand-tuned motion primitives.Additionally, previous works do not show

their results on real tissue data and fail to consider topological changes like cutting and suturing.
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Figure 1: JIGGLE conducts probabilistic estimation of soft
tissue attachment points from image data and manipulation
of the tissue. The estimated boundary, i.e. the suture lo-
cations, are shown in purple. A corresponding confidence
metric is shown in blue.

In this work, our goal is to real-

ize an interactive approach to esti-

mating, manipulation, and tracking

of a deformable thin-shell tissue for

safer, more intelligent tissue control.

Specifically, we propose the Joint

Interactive Guided Gaussian Likeli-

hood Estimation (JIGGLE) method:

a novel active sensing framework

for estimating boundary attachment

points in deformable surgical envi-

ronments. We leverage a differen-

tiable physics simulator to develop

an efficient probabilistic estimation

framework for deformable environ-

ments with a high degree of freedom

(DOF). Our estimation framework re-

lies solely on stereo camera obser-

vations which is typically the only

available feedback modality during

surgery. We demonstrate the robust-

ness of this estimation in real tissue

manipulation experiments, as shown

in Fig. 1. We take advantage of the

probabilistic nature of the estimation framework to build an active sensing pipeline that selects ac-

tions to maximize information gain while minimizing a safety cost to avoid tissue tearing. We show-

case the complete JIGGLE framework in simulations involving topological changes like cutting and

suturing.

2 Methods

Time step 50

Time step 50 Time step 400

Time step 50Time step 400 Time step 400

Time step 300Time step 100 Time step 200

Time step at VIOLATION

Start point Reference

Attachment

Time Step

E
n
tr

o
p
y

B
o
u
n
d
a
ry

 E
n
e
rg

y

Figure 2: Results from our active sensing experiments with 4 different strategies: SL-D (blue) is
our method, LG-H (green) and LG-D (red) are local gradient variations of our method, and PMP
(yellow) is a baseline. The red color on the tissue highlights the reference attachment, and the
blue shows the confidence, inverse of variance, of the estimated boundary. The dotted line in the
boundary energy graph denotes the safety threshold. SL-D achieves more entropy reduction than
all other baselines while keeping a safe boundary energy profile. In comparison, local controllers
LG-H and LG-D get trapped in local minima, resulting in higher entropy. PMP results in quick
safety violations. Additional active sensing results can be found in Fig. 7 of the appendix.
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Problem Statement: In this paper we consider a deformable thin shell tissue T represented by

a mesh with n particles with positions xt = [x1
t . . .x

n
t ] ∈ R

n×3 at time t. A subset of the tissue

Tb ⊆ T is attached to the environment by boundary constraints of varying strength parameterized

by bt = [b1
n . . .b

n
t ] ∈ R

n×1. The tissue is controlled by moving a fixed point on the tissue with

actions ut ∈ R
3. Our goal for the estimation task is to estimate the true boundary constraints b∗

given observations of a real reference tissue Tref. For active sensing, we aim to maximize information

gain and find the best actions to estimate b∗.

Estimation: To solve the above problem statement we represent Extended Position-based Dynam-

ics (XPBD) [16]. We control the tissue with actions ut that specify the position of an infinite-mass

virtual control particle that is connected to a local neighborhood of points on the tissue mesh. We

formulate our boundary constraints as zero resting length spring attachments between each tissue

particle and infinite-mass virtual particles that are fixed to the tissue particle’s initial resting posi-

tions x0 = [x1
0 . . .x

n
0 ].

We propose a probabilistic estimation framework to track boundary constraint distributions, bt, over

the true boundary parameters. The differentiability of the XPBD simulation allows us to locally

linearize the tissue model. This in conjunction with a multivariate Gaussian representation of bt ∼

N (b̂t,Σt) allows us to easily track bt with an extended Kalman Filter (EKF) formulation. The

motion model of our EKF describes the change in the boundary estimate bt between the time steps.

We use δbt ∈ R
n to represent topology-changing actions, such as suturing or cutting, that directly

modify the boundary parameters.

bt+1 = m(bt, δbt, wt) = bt + δbt + wt

wt ∼ N (0,Wt)
(1)

During topology changing actions δbt is non-zero with Wt having larger covariance values near the

modified regions.

As the boundary parameters are not directly visible, we observe them indirectly through the tissue

xref
t :

xt+1 = h(bt+1,x
ref
t , ut, vt) = f(xref

t , ut,bt+1) + vt+1

vt+1 ∼ N (0, Vt+1)
(2)

Here, we initialize the XPBD simulation, f , with the last observed tissue state, xref
t , and forward

simulate with the belief the boundary constraints from the motion model.

Using equations 1 and 2 we can track the changes to the boundary parameter belief, represented by

b̂t and Σt.

Prediction :

b̂t+1|t = b̂t|t + δbt, Σt+1|t = Σt|t +Wt (3)

Update :

b̂t+1|t+1 = b̂t+1|t +Kt+1ỹt+1

Σt+1|t+1 = (I −Kt+1Jt+1)Σt+1|t

(4)

where the observation residual ỹt+1, and the Kalman gain Kt+1 are given by:

ỹt+1 = xref
t+1 − h(b̂t+1|t,x

ref
t , ut, vt)

Kt+1 = Σt+1|tJ
⊤
t+1S

−1

t+1

(5)

with the residual covariance St+1, the observation Jacobians Jt+1, and covariance Jacobians Rt+1

as:

St+1 = Jt+1Σt+1|tJ
⊤
t+1 +Rt+1Vt+1R

⊤
t+1

Rt+1 =
∂h

∂v

∣∣∣∣
b̂t+1|t

= I

Jt+1 =
∂h

∂b

∣∣∣∣
b̂t+1|t

=
∂f(xref

t , ut,bt+1)

∂b

∣∣∣∣
b̂t+1|t

(6)
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Table 1: Comparison of boundary estimation accuracy after 4 grasp sequences. Results demonstrate
our method outperforms the baseline Adam Optimizer.

PCD ➡ PUG ➡

Cases Adam Ours Adam Ours

Arc 82.1 100 59.3 87.1
Line 85.7 100 40.0 43.3
Line-dot 68.0 96.0 34.7 48.9
Arc-line 83.8 97.3 51.8 65.5
U-shape 87.3 97.5 52.9 76.0

Here, f(xref
t , b̂t+1|t, ut) outputs the expected tissue surface after using the XPBD simulator to for-

ward simulate one timestep with action ut, using the mean of the current estimated boundary belief,

b̂t+1|t. To enhance the robustness of our estimation, we modify the EKF to use k uniform samples

of previous observations up until the last topology changing action. We use the multiple shooting

method to encode previous observations [17]; this approach samples from previously observed tra-

jectories, forward simulates from those samples using the current belief and penalizes the deviation

of predicted particle states from the reference observations. To get accurate observations of the tis-

sue state, xref
t , for real world experiments, we introduce an observation-matching condition into the

XPBD simulation’s iterative constraint solving procedure, similar to [18]. As this condition uses the

current boundary constraint estimate, bt, we combine the EKF update and state estimation into one

joint estimation problem where both are iteratively estimated.

Active Sensing: For the active sensing problem, we want to solve for actions that minimize the

entropy of the boundary constraint belief distribution, bt, while minimizing the boundary energy

to prevent the tissue from experiencing unsafe forces. In place of the computationally complex

entropy minimization objective we introduce a heuristic to maximize D: Uncertainty-Weighted Dis-

placement (UWD).

D(xref
t , ut, b̂t) = ∆̇xt+1 ·Σt (7)

xt+1 = f
Ä
xref
t , ut, b̂t+1|t

ä
, ∆xt+1 = xt+1 − x0

∆̇xt+1 =

n∑

i

eie
⊤
i ⊗ [∆xt+1]i.

(8)

Here ei is the ith standard basis vector and ⊗ is the kronecker product. This effectively maximizes

information gain by encouraging more displacement in regions that are more uncertain as weighted

by Σt. We prevent unsafe actions by adding objectives to minimize the energy on the tissue’s

boundary constraints and limit the range of the actions.

Optimizing the above objectives for the best actions using a local gradient based controller suffers

from local minima as well as vanishing gradient issues. Evaluating a multi-step trajectory also

imposes computational challenges. To address these challenges we introduce a sampling-based

large step controller. We first uniformly sample several large-step control actions. We refine these

actions through gradient step updates with respect to the optimization objectives. We then select the

action that best optimizes our objective before taking a small step in its direction and re-planning.

We encourage smoothness by carrying over the top 10 samples across each sampling iteration.

3 Experimental Results

We evaluate our estimation method in simulation over 5 different environments. We repeat 4 grasp

sequences on the 4 corners of the tissue while running our estimation framework. We record the

percentage of correct detections of attachment points (PCD) and the percentage of the uncovered

ground truth (PUG). Table 1 summarizes our results with our method performing the baseline of

updating the boundary parameters using gradient updates: "adam". The environments and experi-

ments are visualized in Fig. 8 and 9 in the appendix.

4



Table 2: Real world estimation results. The number after the metrics corresponds to the dilation
factor applied.

PCD ➡ PCD-1 PCD-2 PUG ➡ PUG-1 PUG-2

Case1-BANet 0 0 0 0 0 0
Case1-Adam 46.2 84.6 84.6 54.5 100.0 100.0
Case1-Ours 47.4 84.2 89.5 81.8 100.0 100.0

Case1-Ours-σ=0.1 60 93.3 100 81.8 100.0 100.0

Case2-BANet 0 0 7.1 0 0 7.5
Case2-Adam 0.0 2.1 10.4 0.0 2.5 17.5
Case2-Ours 33.3 83.3 100.0 5.0 27.5 37.5

Case2-Ours-σ=0.1 40.0 100 100.0 11.1 55.6 72.2

We also evaluate our estimation framework in a real world experiment shown in Fig. 1 and Fig. 10

in the appendix. We create boundary constraints by suturing chicken skin to a chicken thigh. We are

able to successfully recover the tissue’s boundary constraints from endoscopic camera observations

of manipulating the tissue using tweezers. We compare the PCD and PUG of our method, "adam"

baseline and BANet [19] in Table 2. Visual comparisons can be found in Fig. 11

To evaluate active sensing, we compare four different variants of our proposed framework:

1. LG-H: Local gradient-based action, minimizing entropy. Only refines actions with local

gradient based updates.

2. LG-D: Local gradient-based, maximizing displacement

3. SL-D: Our proposed method

4. PMP: Predefined motion primitives: An exhaustive search to minimize entropy over mo-

tion primitives of (±x,±y,±z). [15]

Our method, SL-D, consistently achieves greater entropy reduction while keeping a safe boundary

energy profile. Results of this are shown in Fig. 2. Using motion model m, our framework can also

handle topological changes, and be used to estimate the success of suturing or cutting. Examples of

these procedures are shown Fig. 12 and 13 in the appendix.

4 Conclusion

In this paper we proposed a novel framework for active sensing and boundary parameter estimation

in deformable surgical environments. We demonstrated the estimation capabilities of our method

in both simulation and real world experiments. Our active sensing experiments showcased our

method’s ability to manipulate the tissue to maximize information gain while respecting safety con-

straints.

5 Limitations

While our work introduces a novel approach for boundary parameter estimation in deformable en-

vironments, we demonstrate its effectiveness primarily on thin-shell tissue models. Extending this

framework to more complex three-dimensional deformable structures remains an important direc-

tion for future work. Such scenarios introduce additional challenges, including self-occlusion, where

portions of the tissue obscure critical features and limit the quality of observations available to

the EKF. Furthermore, three-dimensional structures may exhibit heterogeneous internal properties,

making it difficult for observations from a single viewpoint to fully capture the boundary conditions

throughout the tissue.
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6 Appendix

6.1 Relationship Between Uncertainty-Weighted Displacement (UWD) and Boundary
Entropy

In this section we present the following proposition, and provide a proof tying the relationship

between the UWD, i.e., displacement, D, of the tissue particles from their initial position, and the

reduction in boundary entropy H(bt+1) at the next timestep t+ 1.

The active sensing objective of maximizing the uncertainty-weighted deformation displacement, i.e.,

D in Eq. 7, is designed to decrease the entropy H(bt+1) of boundary estimation and uncover more

unknown information. That is,

minH(bt+1) ∝ maxD (9)

To prove it, we first establish a connection to entropy, H, via the observation Jacobian Jt+1 = ∂h
∂b

,

defined in Eq. 6 of the EKF equations in section 6.1.1. Second, we derive the relationship between

the Jacobian J and the tissue displacement in section 6.1.2. Third, we combine these results to show

proposition 1 in section 6.1.3.

6.1.1 Boundary Entropy Regarding the Observation Jacobian

As defined in Eq. ??, it is evident that the entropy H(bt+1) is directly proportional to the deter-

minant of the covariance matrix outputted by the Extended Kalman Filter (EKF) estimator. Since

Σt|t,Wt, Vt are all positive semi-definite covariance matrices, they allow the following factoriza-

tion:

Σt+1|t = Σt|t +Wt = Σ
1
2Σ

1
2 (10)

Combining this fact with the Extended Kalman Filter (EKF) equations, as defined in Eq. 3 and 4,

and for the sake of simplicity, neglecting the subscripts of observation Jacobian Jt+1 and Kalman

gain Kt+1, we obtain:

H(bt+1) ∝
∣∣∣Σt+1|t+1

∣∣∣

∝
∣∣∣
(
I −KJ

)
Σt+1|t

∣∣∣

∝
∣∣∣
(
I −Σt+1|tJ

⊤
[
JΣt+1|tJ

⊤ + Vt

]−1
J
)
Σt+1|t

∣∣∣

∝
∣∣∣
(
I −Σ

1
2Σ

1
2 J⊤

[
JΣ

1
2Σ

1
2 J⊤ + Vt

]−1
J
)
Σ

1
2Σ

1
2

∣∣∣

∝
∣∣∣
(
I −Σ

1
2 J⊤

[
JΣ

1
2Σ

1
2 J⊤ + Vt

]−1
JΣ

1
2

)∣∣∣
∣∣∣Σ

1
2Σ

1
2

∣∣∣

(11)

Denoting A = JΣ
1
2 and Σt+1|t = Σ = Σ

1
2Σ

1
2 , we can perform singular value decomposition

(SVD) where D is a matrix with singular values λi on its diagonal, UUT = UTU = I , and

QQT = QTQ = I .

A = JΣ
1
2 = UDQ⊤ (12)

For simplification and to maintain a straightforward representation of observation uncertainty, we

assume Vt = αI , with α denotes the maximum expected observation noise variance. This diagonal

covariance matrix implies that the observation noise is isotropic and of uniform magnitude across
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different dimension. Substituting them into Eq. 11, we get:

H(bt+1) ∝

∝
∣∣∣I − A

⊤
[
AA

⊤ + αI
]−1

A

∣∣∣
∣∣∣Σ

∣∣∣

∝
∣∣∣QQ⊤ −QD⊤U⊤

[
UDD⊤U⊤ + αI

]−1
UDQ⊤

∣∣∣
∣∣∣Σ

∣∣∣

∝
∣∣∣Q

∣∣∣
∣∣∣I −D⊤U⊤

[
UDD⊤U⊤ + αI

]−1
UD

∣∣∣
∣∣∣Q⊤

∣∣∣
∣∣∣Σ

∣∣∣

∝
∣∣∣Q

∣∣∣
∣∣∣Q⊤

∣∣∣
∣∣∣I −D⊤U⊤

[
UDD⊤U⊤ + αI

]−1
UD

∣∣∣
∣∣∣Σ

∣∣∣

∝
∣∣∣I −D⊤U⊤

[
UDD⊤U⊤ + αI

]−1
UD

∣∣∣
∣∣∣Σ

∣∣∣

∝
∣∣∣I −D⊤U⊤

[
UDD⊤U⊤ + αUU⊤

]−1
UD

∣∣∣
∣∣∣Σ

∣∣∣

∝
∣∣∣I −D⊤U⊤U

[
DD⊤ + αI

]−1
U⊤UD

∣∣∣
∣∣∣Σ

∣∣∣

∝
∣∣∣(I −D⊤(DD⊤ + αI)−1D)

∣∣∣
∣∣∣Σ

∣∣∣

∝ |Σ|
N∏

i

(
1−

λi
2

λi
2 + α

)

(13)

In Eq. 13 and Eq. 10, the only term influenced by our control actions at time t is the observation

Jacobian J , as Σ only depends on the estimation from the previous step. These equations show that

selecting J in a manner that increases the magnitudes of the singular values ||λi||2 of JΣ
1
2 will

result in a reduction of the entropy within the belief distribution.

After establishing the correlation between the Jacobian and entropy reduction, we need to link

the uncertainty-weighted displacement (UWD) of particles to the Jacobian. We must identify the

choices of UWD that lead to entropy reduction. Demonstrating these connections will validate that

our Proposition 9.

6.1.2 Observation Jacobian Regarding the Uncertainty-Weighted Displacement (UWD)

To link the Jacobian, J , at the next timestep t+1, to displacement we derive an analytical form of J .

To derive the exact form of observation Jacobian, we illustrate the simulated mesh with a simplified

graph in Fig. 3. Hence, we partition our whole tissue state representation x = {xB
t+1,x

U
t+1} into

particles related to boundary constraints xB
t+1 and other particles denoted as xU

t+1. Of the n total

particles, we assume that there are m particles in xB
t+1 and q particles in xU

t+1 such that m+ q = n.

From the definition in Eq. ??, the XPBD simulation involves minimizing the total energy potential

of constraints:

argmin
x

U(x,b) = argmin
x

U1(x
B

t+1,b) + U2(x
U

t+1,x
B

t+1) (14)

where the first term, U1(x
U
t+1,x

B
t+1), representing the energy only related to the current boundary

constraints, b and U2(x
U
t+1,x

B
t+1) denotes the energy term associated with both xU

t+1 and xB
t+1.

In our XPBD simulator, all defined constraints are distance constraints between particles. For the

boundary energy, we are able to write:

U1(x
B

t+1,b) =
1

2
C⊤(xB

t+1)diag(b)C(xB

t+1)

=
1

2

m∑

i=1

bi

(
x
B,i
t+1 − x

B,i
0 2

− d
B,i
0

)2 (15)

b ∈ R
m where bi is the stiffness of the i-th boundary spring, of the total m springs. xB

t+1

,i
− x

B,i
0

is the displacement of particle i related to the boundary constraint from time 0 to the next time step

t+ 1. d
B,i
0 is the length of the boundary spring associated with particle i at rest time, t = 0. For our

9



Figure 3: This figure shows a simplified model of the XPBD simulation. The particles shown in
blue, xB

t+1, are related to the boundary constraints. We are trying to estimate the boundary parame-
ters associated with the boundary constraints on these particles. The remaining particles are shown
in orange, xU

t+1. The virtual particle u is used to apply control on the tissue. All constraints are im-
plemented as set distance constraints and are depicted using springs with different springs constants
set according to the associated constraint.

work, we consider a zero length spring at rest, d
B,i
0 = 0, ∀i, for all boundary springs. Similarly, we

describe the rest of spring potential energy by:

U2(x
U

t+1,x
B

t+1) =
1

2
C⊤(xU

t+1,x
B

t+1)diag(k)C(xU

t+1,x
B

t+1)

=
1

2

s∑

j=1

kj

(
x
j,1
t+1 − x

j,2
t+1 − d

1,2,j
0

)2 (16)

where x
j,1
t+1,x

j,2
t+1 ∈ {xB

t+1 ∪ xU
t+1} are a pair of two particles connected by the j-th spring within

the simulated mesh. d
1,2,j
0 is the distance of that j-th spring constraint between particle 1 and 2 at

rest, at time t = 0. Using this, we are able to define the matrices L ∈ R
3n×3n and P ∈ R

3n×3s as

follows:

L =

Å s∑

j=1

kjA
jAj,⊤

ã
⊗ I3

P =

Å s∑

j=1

kjA
jSj,⊤

ã
⊗ I3

d =
x
j,1
0 − x

j,2
0

x
j,1
0 − x

j,2
0 2

d
1,2,j
0

(17)

Here, Aj ∈ R
n is the connectivity vector of the j-th spring, i.e., Aj,1 = 1, Aj,2 = −1, and zero

otherwise. (j, 1) and (j, 2) denote the indices of the first and second particle, respectively, associated

with the j-th spring constraint. Sj ∈ R
s is j-th spring indicator, i.e., Sj = 1s, s is the number of

non-boundary related springs or edges, and ⊗ denotes Kronecker product. d can be interpreted as a

spring in the rest pose, at time t = 0, that is rotated in a specific direction, effectively behaving like

10



a constant. Eq. 18 can be re-factorized into:

U2(x
U

t+1,x
B

t+1) =
1

2
x⊤Lx− x⊤Pd (18)

The solution to the minimization function described in Eq. 14 can be regarded to satisfy:

∇xU(x,b) = ∇xU1(x
B

t+1,b) +∇xU2(x
U

t+1,x
B

t+1) = 0 (19)

Before moving forward we explicitly clarify the structure of our state x. Assuming a system with 2
particles, xB

t+1 = [xB
t+1[0],x

B
t+1[1],x

B
t+1[2]]

⊤ is the single particle related to boundary constraints

and xU
t+1 = [xU

t+1[0],x
U
t+1[1],x

U
t+1[2]]

⊤ is the single other particle. x is a flattened joint state of

the 2 particles in the following form: x = [xB
t+1[0],x

B
t+1[1],x

B
t+1[2],x

U
t+1[0],x

U
t+1[1],x

U
t+1[2]]

⊤.

For multiple particles we follow a similar structure where the flattened form of the boundary related

particles is stacked above the flattened form of the other particles. This gives us: xB
t+1 ∈ R

3m,

xU
t+1 ∈ R

3q , x ∈ R
3n

[Implicit-Function Theorem] Considering the solution function defined in Eq. 19,

L(x∗,b) = ∇xU(x
∗,b) = 0 (20)

with x∗ defined as an equilibrium point, the sensitivities of the solution with respect to the

parameter b can be can be computed as:

∂x∗

∂b
= −

Å
∂L

∂x

ã−1
∂L

∂b
(21)

In our EKF formulation, the observation Jacobian is given by

J =
∂h

∂b
=

∂f(xref, u,b)

∂b
=

∂x

∂b
(22)

Combining it with the implicit-function theorem in Eq. 21, we obtain the Jacobian as,

J = −

Å
∂L

∂x

ã−1
∂L

∂b
= −

Å
∂∇xU

∂x

ã−1
∂∇xU

∂b

= −

Å
∂2U

∂x∂x⊤

ã−1
∂2U

∂b∂x⊤

(23)

Given x = {xB
t+1,x

U
t+1}, we can computer the following gradients as,

∂U1

∂x
=
î
∆xB

t+1

⊤
diag(b) 0

ó
∈ R

3n×1

∂U2

∂x
=

ñ
xB
t+1

⊤
LBB + xU

t+1

⊤
LUB

xU
t+1

⊤
LUU + xB

t+1

⊤
LBU

ô⊤

− (Pd)⊤

∈ R
3n×1

∂2U1

∂x∂x⊤
=

ï
diag(b) 0

0 0

ò
∈ R

3n×3n

∂2U2

∂x∂x⊤
=

ï
LBB LBU

LUB LUU

ò
= L ∈ R

3n×3n

∂2U1

∂b∂x⊤
=

ñ
∆̇xB

t+1

0

ô
∈ R

3n×m

∂2U2

∂b∂x⊤
= 0 ∈ R

3n×m

(24)

11



∆xB

t+1 =
(
xB

t+1 − xB

0

)
∈ R

3m×1

∆̇xB
t+1 =

m∑

i

eie
⊤
i ⊗ [∆xB

t+1]i ∈ R
3m×m

(25)

∆xB
t+1 is the displacement of all boundary related particles from time 0 to time t. ∆̇xB

t+1 is a

concatenated matrix of the displacement of all boundary related particles. ei is the i-th column

vector of the standard basis of Rm, and [∆xB
t+1]i ∈ R

3×1 be the deformation displacement of the

i-th boundarry related particle from ∆xB
t+1. Note that this is the same expression from the UWD. It

should be noticed that L is symmetric and positive semi-definite. Given these partials we get:

∂2U

∂b∂x⊤
=

∂2U1

∂b∂x⊤
+

∂2U2

∂b∂x⊤

∂2U

∂x∂x⊤
=

∂2U1

∂x∂x⊤
+

∂2U2

∂x∂x⊤

(26)

Substituting the above into equation 21, we get an expression for the observation jacobian:

J = −

ï
LBB + diag(b) LBU

LUB LUU

ò−1
ñ
∆̇xB

t+1

0

ô
∈ R

3n×m (27)

The first term in this expression is a function of the current boundary estimate b, but is constant with

respect to the particle states xt. We refer to this term as R(b):

R(b) = −

ï
LBB + diag(b) LBU

LUB LUU

ò−1

(28)

For the ease of notation we will denote that D =
î
∆̇xB

t+1 0

óT
. Writing J = R(b)D we can see

that the jacobian given a specific boundary estimate b is a direct function of the displacement.

6.1.3 Boundary entropy Regarding the UWD

From section 6.1.1 and section 6.1.2, we see that to minimize entropy we have to maximize the

singular values, λi
2, of R(bt)DΣ

1
2 . Where R(bt) is a constant given the belief at time t, and Σ

1
2

is a constant at time t.

The Frobenius norm of a matrix R(bt)DΣ
1
2 =

»∑n
i λi

2. Thus maximizing the frobenius norm

is equivalent to maximizing the magnitude of the λi
2 and decreasing entropy. Leveraging the sub-

multiplicative property of the frobenius norm, the known invertibility of matrix R(bt), and that

R(bt),Σ
1
2 are constant matrices we can write:

R(bt)
−1R(bt)DΣ

1
2Σ

1
2 ≤ R(bt)

−1R(bt)DΣ
1
2Σ

1
2

DΣ ≤ R(bt)
−1R(bt)DΣ

1
2Σ

1
2

DΣ

R(bt)−1
≤ R(bt)DΣ

1
2Σ

1
2

DΣ

R(bt)−1Σ
1
2

≤ R(bt)DΣ
1
2

ηDΣ ≤ R(bt)DΣ
1
2

η =
1

R(bt)−1Σ
1
2

(29)

Note that the Uncertainty weighted displacement (UWD) is defined as D = DΣ.

Combining Eq. 13, Eq. 27 and Eq. 29, we show that at a given timestep t, by maximizing this lower

bound DΣ we can maximize R(bt)DΣ
1
2 and thus increase the magnitude of the singular values

λi
2 and decrease entropy.

With this we have shown proposition 1: The active sensing objective of maximizing UWD is de-

signed to decrease entropy H(bt+1).
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Reference BANet Adam Ours

Figure 4: Estimated attachment regions of different method on test case U-shape. BANet is trained
to estimate hard boundary conditions therefore does not generalize to our data.
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Figure 5: Additional comparison of active sensing performance between all choices of predefined
motion primitives (PMP). They are up, forward, backward, left, right. Results from our proposed
Sampling-based Large step controller (SL-D) are included for comparsion. All PMPs result in safety
violation. Before violation, up and forward achieve more entropy reduction, but up achieves that
faster in general. In comparsion, the proposed method outperform all PMPs, achieving more entropy
reduction at the cost of smaller boundary energy.

6.2 Entropy loss implementation Details

In this section we discuss the implementation details for the entropy based loss from Eq. ??. This

loss is optimized in our active sensing algorithm, LG-H, to solve for the best next action.

The entropy of our belief is specified in Eq. ?? as :

H(bt+1) ∝ ln (|Σt+1|) (30)

The ln makes directly optimizing this quantity in our loss function challenging. As uncertainty

decreases and |Σt+1| approaches 0, ln(|Σt+1|) tends to − inf . This makes it hard to set the weights

to balance this loss with the other metrics from Eq. ?? during our unconstrained optimization.

As a result instead of directly minimizing entropy, H(bt+1), we minimize the term:

|I −Kt+1Jt+1| (31)

From equations Eq. ?? and Eq. 4 we get that: H(b̂t+1) ∝ ln
(
|(I −Kt+1Jt+1)Σt+1|t|

)
. We can

remove ln as ln(x) is monotonically increasing for x > 0. Thus minimizing x is equivalent to

minimizing ln(x). Σt+1|t is a constant at the given time step and the only term we can impact with

our actions is Kt+1. Additionally 0 ≤ |I −Kt+1Jt+1| ≤ 1, making this term easier to weight in an

unconstrained optimization. As a result we choose Eq. 31 in place of entropy when implementing

our entropy based loss.

6.3 Additional Estimation Results

BANet [19] Adaption and Comparison. In the main text, we only compared against previous

method BANet on the real world data. Here, we provide additional information about how BANet

was adapted for evaluation against our framework and also show additional comparisons against

BANet on simulation data.
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Table 3: Additional comparison of estimation accuracy in simulated cases between BANet, the
Adam optimizer, and the proposed method. Only one lift-up action is applied to all tissue because
BANet only handles a single input.

PCD ➡ PUG ➡

Cases BANet Adam Ours BANet Adam Ours

Arc 10.7 75.0 100.0 37.0 5.6 14.8
Arc-line 9.4 75.0 100.0 18.2 5.5 16.4
Line 2.5 75.0 100.0 16.7 10.0 16.7
Line-dot 6.4 / 100.0 13.3 0.0 5.1
U-shape 2.3 80.0 100.0 4.8 11.5 22.1

Time step 50 Time step 400Time step 300Time step 100 Time step 200

Start point Reference

Attachment

Figure 6: Active sensing performance of our framework with doubled amount of mesh particles
(1200) on test cases Line-dot. Our framework can still perform complex maneuvers such as switch-
ing directions and flipping for informaiton gain even with more particles, showing that it can gener-
alize to complex meshes.

BANet takes in a 3D volume representing the tissues and its deformation field at the end of each test

cases as inputs. It then classifies if each voxel is boundary or not. We convert our triangular mesh to

be volumetric by marking the closest voxel to each of our mesh particles to be part of the volumetric

representation. The mesh’s particle displacement can be calculated with our proposed method (i.e.

xref
end − xref

0 ). A displacement field is computed by assigning the mesh particles’ displacement to

the closest voxel and setting the displacement everywhere else to be zero. We assign the threshold

to be small (0.1) to include more relatively low-scored results from BANet because it assumes hard

boundary conditions whereas our scenarios do not rely on that specific assumption. Lastly, boundary

condition of mesh particles are determined by checking the BANet outputs corresponding to their

closest voxel.

Additional comparisons between our method and BANet are shown in Table 3. Looking at the

PCD metric, BANet predicts inaccurate results. Fig. 4 explanins it by showing that BANet tends

to regard not-displaced particles as boundaries. In fact, if we increase the binary threshold to 0.5,

BANet predicts few boundary conditions. Note that this is correct for BANet because it assumes

hard boundary conditions in its training data whereas in our test cases there is no hard boundary

condition. But it also showed that BANet does not generalize to our attachment scenario that is

common in surgery.

6.4 Additional Active Sensing Results

Motion Primitive Details. We show additional details from the experiment discussed in the paper

when comparing our method with the motion primitives in [15]. Due to ground contact, moving

downward is forbidden. Therefore, we only consider 5 motion primitives of up, forward, backward,

left, and right. There direction w.r.t to the tissue is shown in the left of Fig. 5. To avoid sliding, all

primitives are preceeded by a grasp sequence that lifts up the tissue. Fig. 5 shows additional com-

parison between the proposed method and all choices of predefined motion primitives (PMP). All

PMPs result in safety violation. Before violations, up and forward achieve more entropy reduction,

but up achieves that faster in general. In comparsion, our proposed method outperforms all PMPs,

achieving more entropy reduction at the cost of smaller boundary energy.

6.5 Scalability

We evaluate our framework’s ability to handle higher dimensional meshes. This become important

when simulating surgical scenes of higher complexity. Specifically, we double the number of par-
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Figure 7: Results from our active sensing experiments with 4 different strategies: PMP (yellow)
is a baseline, and SL-D (blue), LG-H (green), and LG-D (red) are proposed in this work. Every
two rows show one experiment with the entropy and energy plotted in the left-most column, and the
images on the right show a collage of the control trajectories being applied from the different active
sensing strategies. Note that the colored background on each image corresponds to the active sensing
strategy (best viewed in color). The red color on the tissue highlights the reference attachment, and
the blue shows the confidence, inverse of variance, of the estimated boundary. The goal of the active
sensing strategies is to maximize the confidence, which is measured in entropy, while adhering to
safety constraints, which are measured in energy. Overall, SL-D achieves more entropy reduction
than all other baselines while keeping a safe boundary energy profile. It also produces the most
intricate control point trajectories, such as switching directions and folding. In comparison, local
controllers LG-H and LG-D get trapped in local minima, resulting in higher entropy. PMP reduces
entropy in the beginning but results in quick safety violations.

ticles on our mesh (1200 particles). We show the performance of our framework with our most

computation-demanding task, active sensing, in Fig. 6. Our framework is able to maintain the sim-

ilar amount of information gain with more particles. The computation time of our active sensing

controller increases from 2.9s to 4.5s. Despite increase in computation time, we believe our al-

gorithm can be accelerated via techniques such as asynchronous computation and multi-resolution

meshes to handle more complex scenarios.

15



U-shape

Arc-line

Line

Large-attachLine-dot

Arc

Figure 8: The images show the ground truth attachment points in red using spring boundary con-
straints for the simulation test cases in our experiments.

Reference Mean Variance

1

1

2 3

2

Figure 9: Example results from our estimation framework on simulated environments where the
order of the grasps is numbered, and the boundary is highlighted in red on the left-most column.
The final result from our proposed method is shown in red in the middle column. Finally, the
confidence (inverse of variance) of our estimation is shown in blue in the rightmost column. We can
see how the variance has decreased in the regions where the trajectories have displaced the tissue
from its original state, and the mean estimate has converged close to the reference values.
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Figure 10: This figure shows results from real-world tissue attachment point estimation experiments
case 2 and case 3 (case 1 is shown in Fig. 1). Time progresses from left to right. A dark purple value
corresponds to a stronger estimated attachment point, and a darker blue value corresponds to lower
uncertainty about the boundary parameters at that region. Notice that as the tissue is deformed, the
variance decreases, and the estimated mean of our boundary matches closer to the ground truth.
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Figure 11: Detailed comparison of estimated attachment points between the proposed method and
the Adam optimizer. In the second row, our method successfully detects attachment shape. In
comparison, the Adam optimizer estimates predictions that are close to the true region (case 1) but
fails in other cases, producing many false positive estimations. Because BANet cannot generalize to
our real-world data, it fails to predict meaningful results.
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Figure 12: We applied JIGGLE to a suturing procedure by 1) the left column: applying the active
sensing approach to find where the tissue is detached, 2) the middle column: applying a suture
action at the desired detached area, and 3) the right column: active sensing again to validate the
suture action. The top row of images shows the ground truth attachment in red, and the bottom row
shows our estimation of the boundary in red and the confidence, inverse of variance, in blue. After
each suture is applied, the suture information is also fed into our estimation algorithm, including a
noise injection near the suture region, so the active sensing policy is encouraged to confirm where
the new boundary has been added. The second re-estimation, confirming the boundary after the
suture, reports an increase in PUG from 20.2 to 75.2. The PCD value remains the same at 100,
indicating no false detections.
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Reference Sim
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Re-estimation

Active Sensing 
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Figure 13: We applied JIGGLE to a tissue detachment procedure on test case Large-attach, which is
done by iteratively applying the active sensing approach to find the attachment points, and then a cut
is made at that discovered boundary. The sequence of images depicts an iteration of this procedure
where the top row shows the ground-truth boundary attachment in red, and the bottom row shows
our estimation of the boundary in red and the confidence, inverse of variance, in blue. After each cut
action is applied, where all of the discovered boundary is removed, the cutting information, δbt,Wt,
is also fed into our estimation algorithm. The strategy is repeated until the tissue is fully detached
and it took 7 cycles in this experiment to detach the tissue successfully .
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