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Abstract

Despite the vast research on class-incremental learning (IL), the critical issues have not yet
been fully addressed. In this paper, utilizing metric learning, we tackle two fundamental is-
sues of class-incremental learning (class-IL), inter-task confusion and catastrophic forgetting,
which have not been fully addressed yet in the literature. To mitigate the inter-task confu-
sion, we propose an innovative loss by utilizing the centroids of previously learned classes as
negatives and current data samples as positives in the embedding space, which reduces over-
laps between the classes of the current and past tasks in the embedding space. To combat
catastrophic forgetting, we also propose that the past trained model is stored and re-used
for generating past data samples. Based on this, we further propose a novel knowledge dis-
tillation approach utilizing inter-class embedding clusters, intra-class embedding clusters,
and mean square embedding distances. Extensive experiments performed on CIFAR-10,
CIFAR-100, Mini-ImageNet, and TinylmageNet show that our proposed exemplar-free met-
ric class-IL method achieves the state-of-the-art performance, beating all baseline methods
by notable margins. We release our codes as the supplementary materials.

1 Introduction

Incremental learning (IL) is the learning paradigm in which the model learns from sequential input data
without accessing all past data. In any IL, a fundamental goal is to remember all seen experiences as much
as possible at each point in time. In practice, however, IL easily suffers from a critical issue of catastrophic
forgetting [De Lange et al.| (2021)); French| (1999)) that model entirely or substantially forgets what it has
already learned. This poses a significant challenge in IL scenarios, as the model needs to adapt to new
information without undermining its previously acquired knowledge.

IL settings can be largely categorized into (i) task-based and (ii) task-free [van de Ven et al. (2021). The
task-based approach itself includes task-I1L, domain-IL, and class-IL |van de Ven et al.| (2021)). In task-IL
problems, the task identity is always available in training and test, making it the easiest setting in IL. In both
domain-IL and class-IL settings, task identity is not provided at the test time. Particularly, in the class-IL,
the model must infer the task identity during the test phase, which is not a requirement of the domain-IL.
Meanwhile, the task identities are inaccessible during the training and inference phase in task-free cases.

In class-IL, which we focus on in this paper, not all performance degradation can be attributed solely to
the phenomenon of catastrophic forgetting. Another significant factor contributing to performance decline is
the confusion between the current task and past tasks, called the inter-task confusion |Masana et al.| (2022);
Huang et al.| (2022)). The origin of this concept can be traced back to the unique challenges presented by
class-IL, which is characterized by the fact that classes belonging to different tasks are never encountered
simultaneously by the model during the training. In testing, however, the model is required to distinguish
between these classes without being provided with explicit task identification information. This implies that,
in class-IL, the model has not had the opportunity to learn how to discriminate between tasks since it has
never been exposed to them together during training, and this inherent ambiguity will negatively affect the
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Figure 1: Training of the proposed method. To learn the current task without over-fitting, actual current
data Dy, are supplied to the trainable encoder M}, to construct triplet loss, L;;. To avoid inter-task confusion,
using the stored centroids of the past classes, 2;_1, as negative samples in conjunction with positive samples
extracted from the current dataset Dy, we construct the inter-task confusion regularizer, Lrcgr. To tackle
the catastrophic forgetting, we design KD loss Lxp by supplying the synthetic past data G to both My
and the stored (fixed) past encoder Mj_; three main losses. In the test phase, the trained encoder My, is
extracted and used as the nearest mean classifier (NCM).

model’s performance in class-IL. Although these two concepts often have not been clearly distinguished in
the literature, the inter-task confusion and the catastrophic forgetting should be treated separately because
the former refers to the confusion between the current and past tasks, whereas the latter refers to forgetting
the past tasks.

In recent works on IL, many researchers have proposed various approaches to tackle catastrophic forgetting
while very few have tackled inter-task confusion explicitly. Representative methods so far could be categorized
into four main groups De Lange et al.| (2021): (i) replay methods, (ii) regularization-based methods, (iii)
parameter isolation methods, and (iv) hybrid methods. In the replay methods, part of the data from
previous tasks are stored or past data are synthesized to alleviate catastrophic forgetting |Rebuffi et al.
(2017); |IChaudhry et al.|(2019). In the regularization-based methods, regularization terms are added to the
loss function, possibly combined with the approach of knowledge distillation (KD) |[Rannen et al|(2017). In
the parameter isolation methods, the parameters of the model are controlled to address the issue of forgetting
by preventing interference between the current task and past tasks Serra et al.| (2018]).

Our proposed approach, shown in Fig. [T} can be categorized as the hybrid method combining regularization
and generative replay in the class-IL setting. In our scheme, we aim to (i) mitigate the inter-task confusion
and (ii) combat catastrophic forgetting, while we use the triplet loss Ly; to train the model M}, for the
current task using the current actual data Dy, only which we are assumed to directly access.

First, we pay a special attention to the confusion between the classes of different tasks, i.e., the inter-task
confusion [Masana et al. (2022), which results in significant performance degradation in the class-1L. To
overcome this challenge, we propose a novel regularization term, Lrcg, using the embedding centroids of
previously learned classes as negative samples and the embeddings of the data samples of the current task as
positive samples. The current model My, is trained such that current classes are located away from previous
classes in the embedding space using the positive and negative samples.

Second, catastrophic forgetting is a critical issue in any IL including class-IL. To mitigate the catastrophic
forgetting, we store the past model My_; trained in the last task time k — 1 and use it (while freezing it)
to train the current model M} in two ways. We first use My _; to synthesize past data samples Gy, which
will be used for training Mj. Note that we do not store any actual samples of previous tasks; instead, we
synthesize past data samples by storing and re-using a past trained (now, fixed) model. We also use Mj,_q
as the teacher to teach the current model My, the student. This is based on the inspiration that, from the



Under review as submission to TMLR

perspective of the past knowledge, M1 is the model having such knowledge whereas M), is the model to
be trained to learn such knowledge. For efficient knowledge distillation (KD) of the past task from Mj_; to
M., we will design a new loss, Lk p, by fully exploiting the properties of embedding structures in class-IL.
The main contributions of our work can be summarized as follows:

o Using the centroids of previously learned classes as negative samples, we design a regularization term
customized to overcome inter-task confusion.

e We propose a highly effective KD method in the embedding space to combat catastrophic forgetting.
To this end, we also propose a method for synthesizing past data samples by storing and re-using a
past trained model My _1.

o Extensive simulations are performed, which demonstrate that our proposed scheme achieves the
state-of-the-art performance in the setting of class-IL.

2 Related works

2.1 Regularization, Replay, and KD in IL

In IL, we must prevent over-fitting in each new task and, at the same time, we must stop forgetting past
tasks. For the purpose of reducing forgetting in IL, general regularization methods used for handling over-
fittings such as dropout |Goodfellow et al.| (2013) and early stopping Maltoni & Lomonaco (2019)) might be
used; but they are not very effective in IL. Instead, searching for important weights to keep them unchanged
with regularization terms is a more effective way Bithlmann & Van De Geer| (2011)).

With advances in generative models, generative replay methods grab enormous attention in IL scenarios.
A parallel generator and a solver model were used in |Shin et al| (2017) to create synthetic images as
replay data in the IL case. More complex issues were investigated in the brain-inspired method [van de Ven
et al.| (2020). They used generated representations in the replay phase instead of using synthetic images.
Cost-Free IL |PourKeshavarzi et al.| (2022) proposed a memory recovery method that helped the current
network remember past information without storing data. Error sensitivity modulation experience replay
(ESMER) [Sarfraz et al. (2023)), proposes that the model should prioritize learning from smaller losses to
minimize significant feature drift, adjusting learning rates dynamically based on error consistency.

Transferring learned knowledge from the already trained neural network to a new raw network is proved to
be useful in many machine learning applications. Most of the solutions for this kind of knowledge transfer
are based on the concept of KD [Hinton et al.| (2015). In IL, the distillation of knowledge could be performed
across tasks, and various methods used KD-based transfer learning [Schwarz et al.| (2018]); [Dhar et al.| (2019);
Bhat et al.| (2024); |Chen et al.| (2024); Liang & Li (2024]).

2.2 Soft-Max Classifiers and Metric Learning in IL

The goal of deep metric learning is to train a differentiable model fg(-) : X — RP that maps input domain
X to a (compressed) embedding domain R? together with a distance metric d € R such a way that similar
data samples result in a small distance and dissimilar data samples produce a large distance. To this end,
loss functions in metric learning need to be properly designed to find similarities/dissimilarities between
samples in the embedding space. This is in sharp contrast to the case of standard softmax classification, in
which the embedding of each sample translates into a class score using a weight matrix. This, unfortunately,
causes some challenges in IL. The first challenge is an additional new fully connected layer (FC) might need
to be added whenever the number of classes increases. This, however, is totally opposite to the desiderata
of IL since the number of classes continuously grows in the IL applications. Another issue is the model’s
bias toward the most recent classes due to the FC layers and softmax loss [Mai et al| (2021). Most of all,
soft-max classifiers essentially focus on drawing lines between different classes in the embedding space, which
is inherently problematic in IL.

In IL, the aforementioned issues of soft-max classifiers can be more readily addressed by metric learning.
First, in metric learning, there is no need to change the model structure by the growing number of classes in
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each task. Furthermore, eliminating the FC layers in metric learning alleviates bias toward new classes [Yu
et al.| (2020). Metric learning directly tries to decrease the distance between the embeddings of the same
class and to increase the distance between the embeddings of different classes. This is particularly useful
for the IL setting because during learning the current task, it is less likely that these classes overlap in the
embedding space. Hence, catastrophic forgetting is naturally less problematic in metric learning.

In metric learning, various loss functions have been proposed such as contrastive loss|Sun et al.| (2014), center
loss (Wen et al.| (2016)), N-pair loss [Sohn| (2016|), and triplet loss |Schroff et al.| (2015]), etc. We adopt the
triplet loss as the fundamental loss function for learning each new task, given its demonstrated superiority
in the IL context [Yu et al.|(2020). In the inference time, we use the nearest class mean (NCM) classifier [Yu
et al.| (2020]).

3 Proposed Scheme

3.1 Incremental Learning Formulation

At the initial stage, a model M, is trained from scratch in the standard non-incremental manner using
training dataset Dy containing Cj classes in a classification application. Then new datasets Dy, each having
additional new C classes, are sequentially collected and supplied to the model My one by one so that My
is trained only on Dy at each task in the incremental manner for £ = 1,..., K, where K is the total
number of incremental tasks. The current model M), does not have any access to the actual past data, D;,
i=0,1,....k— 1.

For performance evaluation in the test phase, we use the average accuracy, which is the widely adopted
standard performance metric in IL |Chaudhry et al| (2019; 2018a)); |Yu et al. (2020)). After training all K
tasks, the average accuracy Ay is given by Ax = % Zszl ak,j, where a; ; is the test accuracy of the model
that has been incrementally trained from task 1 to ¢ on the held-out test set of task j.

3.2 Overview of Qur Proposed Method

The fundamental idea of our proposed method is to intelligently control the sizes and positions of embeddings
of the classes of the current task considering the embedding locations of the past tasks in the embedding
space to (i) avoid inter-task confusion and (ii) prevent catastrophic forgetting. The overall structure is
illustrated in Fig. [I} Our proposed model is composed of two encoders (My and Mjy_1), the current input
dataset (Dy), the set of stored centroids of the past classes (2;_1), and the generated dataset (Gj) of the
past data samples. At the current task k, the encoder denoted by M}, is trained by using Dy, Qx_1, and Gy,
whereas the other encoder indicated by My_1, which was trained in the last task kK — 1 and has been stored,
is fixed. Note that, in Q;_1, only a single centroid (not multiple samples) for each past class is stored, which
must be stored for NCM. In our proposed method, the current model My is trained by L;.; to learn the
current task using the embeddings Hj which are produced when the dataset Dy of the actual data samples
for the current task are supplied as input.

To address the intertask confusion, we introduce Lp¢g, through which M}, learns how to avoid any confusion
between the current task and the past tasks utilizing previously stored embedding centroids of past classes
(Q—1) as negatives in conjunction with Hy, as positives.

The other critical issue is to combat catastrophic forgetting. To this end, we use a data generator that is
composed of input & (this is initialized as random noises) and the previously trained (now, fixed) encoder
M1 in order to generate the synthetic images Gy, of the classes of the past task(s). These synthesized past
images in Gy, are used by My_; and M}, such that Mj_; (as the teacher having strong knowledge of Gy)
teaches My, (as the student who has not learned Gy, yet) about the past knowledge Gy. Specifically, Gy, is
supplied as the inputs to both encoders, M} and Mjy_1, to produce the embeddings Z; and Z,,, respectively.
These embeddings are used together to construct the KD loss, Lixp. Note that the (fixed) encoder Mj_;
is used for two different purposes in the current task: (i) to generate the synthetic images G of the past
classes and (ii) to teach Mj the past knowledge as a teacher. Overall, the proposed total loss function for
training M}, is composed of three main terms:
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Figure 2: Triplet loss, inter-task confusion phenomenon, and inter-task confusion regularizer.

Ly, = Lyri + MiLrcr + Lk b, (1)

where Ly; is the triplet loss used to train the current model M} with the current available data Dy (for
implementation details, see Appendix), and the other two losses, Lycr and Lk p, are explained in more
detail in what follows.

3.3 Inter-task Confusion Regularizer, L7cgr, to Combat Inter-task Confusion

This loss, Lrcg, is proposed to avoid any confusion between the current task and any past tasks. Ideally,
class-IL must be able to accurately differentiate between classes across tasks as well as between classes within
each task. In class-IL, however, it is very challenging for the model to effectively discriminate between the
classes across tasks because the model is distinctively trained for each individual task. This fundamental
challenge is inevitable because the model cannot see the data for the classes together in training when they
belong to different tasks. This challenge in class-IL, known as inter-task confusion [Masana et al| (2022), is
illustrated in Fig. b). Note that the triplet loss focuses solely on each task one by one, meaning that it does
not make any effort to avoid collision between the cluster of a class belonging to the current task and that
of another class belonging to any of the past tasks, which results in inter-task confusion. To mitigate this
inter-task confusion, we propose a regularization term that is specifically designed for the class-IL paradigm.

The fundamental idea of our proposed scheme is that, in metric learning, the cluster centroids are anyway
stored in the course of training to be leveraged later for inference and this information can be effectively used
to mitigate inter-task confusion. Specifically, we propose a new loss, Lrcgr, which utilizes cluster centroids
of the classes of all past tasks as negative samples while the positive samples are the randomly selected
data points with noise in every class of the current task. This loss encourages the distance between the
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data samples of the current classes and the centroids of the past classes in the past tasks to be larger than
a predefined margin mycpr in order to effectively avoid the overlap between classes across distinct tasks,
thereby addressing inter-task confusion, as shown in Fig. c). Mathematically, the loss is given by

Lrcr = max(0,mror — d(fﬁp, /U‘U/))v v € N1, (2)

where x,, denotes the positive samples. Also, 1, indicates the negative samples, which are the centroids of
the class v, and ,_1 is the set of class indices from the first task up to task k— 1. To facilitate increasing the
distance effectively, as in the triplet loss, we use a margin mrcgr. The size of a mini-batch for constructing
Lrcr is the same as in the triplet loss, which is b.

3.4 KD loss, Lxp, to Combat Catastrophic Forgetting

This loss, Lk p, is proposed to address the issue of catastrophic forgetting. It is composed of three innovative
knowledge distillation loss terms for transferring the knowledge of the previous tasks that had been learned
by Mj_; (the teacher) to the current model My, (the student) as follows:

Lip =X LRE + As(LRE" + LEB"), (3)

where Ao and A3 are hyper-parameters to control the impact of each term. To construct these three KD
losses, we utilize the synthetic data Gy of the last task as inputs to both My and My _;. Therefore, we will
begin by detailing the process of generating G in the following subsection. Subsequently, each of the three
KD losses will be explained one by one.

3.4.1 Generating Past Synthetic Data G,

In IL, one of the most effective approaches to prevent catastrophic forgetting is to access some of the
previous data in training. This approach, called the replay strategy, is classified into two types: (i) coreset
replay Rebuffi et al.| (2017) and (ii) generative replay [Sun et al. (2021). In the approach of coreset replay,
by storing small amount of actual previous data samples, IL is facilitated. However, this approach cannot
be adopted when data privacy matters. In this case, the other approach of generative replay might be
considered. GANs are a popular model to be used as generative models in IL Lesort et al.| (2019)); |Cong
et al.| (2020). Variational autoencoders (VAEs) are also valuable as a generative model in both supervised and
unsupervised IL |Caselles-Dupré et al.| (2021); [Kemker & Kanan| (2017). In the setting of class-IL, however,
incrementally training generative models such as GANs or VAEs can be challenging because the training
data is presented incrementally. Indeed, as discussed in [van de Ven et al| (2020)), in the class-IL setting,
generative replay works well for small data sets (e.g., MNIST |[LeCun et al.| (1998)), but scaling it up to non-
small ones (e.g., CIFAR-100 Krizhevsky| (2009), TinyImageNet |Le & Yang (2015))) is not straightforward.
Also, because such incremental training of generative models is typically distinct from incremental training
of the discriminative model performing classification, the overall training complexity goes up. To address
these issues, in this paper, we propose a more scalable and effective approach for generative replay without
additionally training a dedicated separate generative model.

The core idea of the proposed replay approach is to store and re-use a previously trained model for generating
synthetic past images. Specifically, the model My_; that was trained in the last task time k£ — 1 is stored
and used for the purpose of generating past data samples, which in turn are used to help the training of the
current model My, as shown in Fig. Note that we do not introduce any separate or distinct generator
such as GANs or VAEs for generating past data samples; instead, at each task time, we store a single (past
trained) model and re-use it for the training of the next model. Here, the critical question is how to generate
past data samples using a trained discriminator Mj_1, which is discussed in the following.

For generating class-conditional synthetic images using a (fixed) trained model, in Yin et al.| (2020), a very
effective method, called the Deep-Inversion, was proposed. In this paper, we also follow the approach of [Yin
et al.| (2020)) for generating class-conditional synthetic images. The fundamental idea of [Yin et al.| (2020) is
to minimize the distances of the means and the distances of the variances between the actual images x € D
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and the synthesized (generated) images & € G. In training, Z is initialized by random (Gaussian) noise and
gradually updated to get close to the actual image, . Mathematically, for a model that was trained on D,
the following regularization term Ry (%) is used |Yin et al.| (2020):

Ry(#) =Y _ | (@) — E(a(@)|D) || + Y Il o7 (£) — E(o7 (2)|D) ||, (4)
l l

where (%) and ¢7(2) are the mini-batch-wise mean and variance, respectively, at the I convolutional
layer when the input to the (fixed) model is Z. In the same way, 1;(z) and o(z) are defined for z. In the
setting of IL, however, it is not possible to exactly determine v (z) and o7 (x), because the model does not
have any access to the original past dataset D. Nevertheless, E(i;(z)|D) and E(c7(z)|D) can be estimated
by the stored past trained (fixed) model, because the running average statistics are actually stored in the
widely-used BatchNorm layers of the model.

In our proposed method, the technique of [Yin et al.| (2020) cannot be directly used, because we work in
the embedding space. To make it work in our proposed method, we change the structure of the model [Yin
et al.| (2020) and we use a different overall loss function. Our approach involves generating class-conditional
images in the embedding space by utilizing the embedding centroid of each class. We adopt minimizing
the Euclidean distance between the input noise and the class embedding centroids as one term of the loss
function (instead of using the softmax layer and cross-entropy as in [Yin et al.[(2020))), and the regularization
term in as the second term. Overall, using the fixed model (i.e., the past trained model My_1), the
synthetic images Gy, are constructed for a target class by the following optimization:

min L = min (dist(Z, pn) + ApRp(2)) , (5)

where p is the embedding centroid for the target class of the last task, A is the scale for the regularization
loss, and dist(i, j) is Euclidean distance.

As shown in the past data generator block of Fig. [I] for training the current model My, the generator is
composed of the input image & (initialized by the noise) and the fixed (stored) model Mj_; that was trained
in the last task time k£ — 1. In principle, using the model M}_, one might attempt to generate the synthetic
images for all past classes from the very first task time to the last task time k — 1, because ideally Mj_1 had
learned all classes up to task k — 1. However, it turns out that such an approach does not work well due to
unavoidable forgetting of the past knowledge.

From our experiments, we found that the best IL performance was achieved when Mj_; was used to generate
the synthetic images of the last task time & — 1 only, compared to the case of synthetic images of the last
task time £ — 1 and any older tasks. The benefit of generating the synthetic images of the last task time
k—1 only is that the computational complexity required for generating synthetic past images is substantially
lower, which makes our proposed scheme scalable.

Based on our extensive experiments, we found that the subjective image quality of synthetic images is
important only up to a certain extent (i.e., truly high-quality images are not required) when using them
in our proposed KD method, allowing us to reduce the number of iterations for generating images without
significant performance loss. The average accuracy of our proposed IL method versus the number of iterations
used for generating past synthetic images for CIFAR-10 is shown in Fig. a). As can be seen, increasing
the number of iterations beyond 40 does not further improve the average accuracy of our scheme. In this
paper, therefore, we set the number of iterations to 40 for CIFAR-10 and 80 for all the rest datasets (as
opposed to 3,000 as in |Yin et al (2020)), of which computing complexity is not high. In Fig. b), forty
eight samples of generated synthetic images with a ResNet-18 network trained on CIFAR-10 are illustrated.
We consider three different iteration number for generating each 16 synthetic images including 20, 40, and
1000 iterations. In this simulation, our setting is A, = 10 with Adam optimization and the learning rate
of 0.06. The superior visual quality of synthetically generated images is apparent with 1000 iterations
(bottom 16 images in Fig. b))7 surpassing the quality observed with 40 iterations (middle 16 images in
Fig. b)) However, it is crucial to note that achieving such high pixel-level quality is not a necessity for
our proposed method. Our primary focus lies in capturing the overall distribution within our knowledge
distillation approach.
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Figure 3: Synthetic images versus the number of iterations.

Additionally, our experiments show that the number of required synthetic images is much fewer than the
actual images. Based on the experiments, we choose the amount of synthetic data for the last task to be
only 25% of the actual data for the current task. It effectively addresses the issue of generation time, which
also contributes to training time. To the best of our knowledge, in the literature, no generative replay-based
IL method has used such a scalable generating process by re-using a previously stored model both as a
lightweight generator and a teacher to distill past knowledge into the current model simultaneously. The
impact of varying ratios of synthetic images is presented in Appendix [A.T]

3.4.2 MSE Regularization Term, L%

Using the synthesized past images G, we introduce a regularization term, which is inspired by self-supervised
learning. Minimizing the distance between two embeddings of two differently augmented versions of a single
input has proved to be a powerful strategy in self-supervised learning [Bardes et al.| (2022)). Inspired by this,
we propose to use a similar loss term, namely, the Mean Square Euclidean (MSE) distance regularization
term, L'75. Our idea is to prevent the knowledge learned in the last task from being forgotten by minimizing
the distance between two embeddings produced respectively by the last model Mj_; (teacher) and current
model M, (student) for the same last data Gj. Specifically, we supply the same input Gy (i.e., the synthetic
images for the last task) to the current trainable model M} and the stored (fixed) last model My_;. For
training of M}, we then minimize the distance between the two sets of embeddings produced by those two
models. This way, in the embedding space, the current model My will learn the knowledge of the embedding
positions that had been learned by Mj_; for the images Gy, of the last task k& — 1.

To mathematically formulate the loss, let Z, = [ZL,...,28] € RP*" denote the un-normalized embedding
matrix produced in the current task time k by the trainable model M} when the inputs are the synthetic
images, G. Similarly, Z,’c = [2,;1, ceey Z,;"] € RP*™ represents the un-normalized embedding matrix produced
in the current task time k by the fixed last model My_; when the inputs are the same synthetic images, Gj,.
The vector Zj is the p-dimensional un-normalized embedding vector obtained by model M}, when the input

is the ;' synthetic image x; € G, in a mini-batch composed of n images. The column vector 2,/5 is defined
in the same way, but by Mj_;. Our proposed regularization term is the element-wise MSE distance between

~ ~ . .2
the two embedding matrices, L7355 = L[ Z, — Z ||> = 7_112?:1 | . — 2,;3 |-
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Figure 4: Synthetic images versus the number of iterations.

Alternatively, one might try to use different distance measures such as mean absolute error (MAE) or cosine
dissimilarity losses. However, based on our simulations, MSE exhibited the best performance. For the
detailed simulation results, see Fig. [7]in Section [4.4]

3.4.3 Intra-class and Inter-class Regularization Terms, L{17% and L{45"

In order to further mitigate the catastrophic forgetting, we propose two additional loss terms, through which
the past model My_; teaches M} how to not forget the knowledge of the past data in the embedding space,
as illustrated in Fig. [d] Specifically, the intra-class loss and the inter-class loss are designed respectively by
constructing intra-class and inter-class embedding scatters at the level of each mini-batch. Let G; . C Gy
denote the subset of G, that contains the synthetic images of the i*" class only (in the last task),i = 1,...,C,

where C is the number of classes in G, (i.e., the number of classes for the last task, k — 1). Letting |G; x|

denote the number of images in G; i, we use Z; = [2},,..., Zlgk "l] € RP¥19:.¢] to represent the normalized

embedding matrix produced by the current model M}, when the inputs are the synthetic images in G; . The
vector sz represents the p-dimensional normalized embedding vector produced by M} when the input is
the 5t image of class i in G; ;. The class mean of the embedding vectors zf i for class i is determined by:

Hike = ‘g ] Zlg | z; k We will construct scatter vectors at the level of mini-batches, each of which is of size

n. Recall that each mini-batch contains the synthetic images only for ¢ classes (not C'). Then the mini-batch

mean over c classes is given by uj = % Do Hik-

At the mini-batch level, we now define the inter-class scatter S;}*" in the current task time k, which is
constructed from the outputs of My, for the synthetic images G}, of the classes in the last task £k — 1 as
Smt” = (i — t),? = 1,...,c. In the same manner, S, linter ig defined as the inter-class scatter, which is
constructed in the current task time k from the outputs of Mk 1, for the images G, of the classes in the last
task k — 1. In order to transfer the knowledge from Mj_1 (teacher) to M, (student) about the embedding
cluster distances among different classes learned in the last task k—1, we design the inter-class regularization
term LY by penalizing the change from S;f,?te’“ to Se" as follows:

c
Ligtsm =37 || siner - spipter || (6)

The second part of the information that we try to keep unchanged in learning the k*" task is the intra-class
scatter denoted as S.mtm. The S?"tm is constructed in the current task time k£ from the outputs of My, for

the images Gy, of the classes in the last task k — 1: S””fm Zlg‘ ’“l( —pik),i=1,...,c
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Similarly, S;f}:”“ is defined as the intra-class scatter, constructed in the current task time k from the outputs
of My_4, for the images G}, of the classes in the last task k — 1. Our goal in the intra-class loss, denoted
as L7 is to penalize the change from S;f,?tm to S/ in order to transfer the knowledge (from My _; to
M) about the embeddings within each class learned in the last task k& — 1.

c
Lgpe = | s — st |- (7)
=1

As shown in , the final training mini-batch-wise loss Ljy, is the combination of the triplet loss, Ly,
inter-task confusion regularizer, Lrcgr, and the KD loss composed of the three proposed KD loss terms
Lypss, Liptra and L™ as in (3).

4 Experiments

4.1 Experimental Setting

Datasets: The four most widely used datasets are selected. CIFAR-10 |Krizhevsky| (2009)) includes ten
classes, which are divided into five disjoint tasks, resulting in two classes per task. Mini-ImageNet [Vinyals
et al.| (2016)) is composed of 100 classes, and following |Gu et al.| (2022), we split 100 classes into ten disjoint
tasks, including ten classes in each task. CIFAR-100 [Krizhevsky| (2009)) has 100 classes and two methods
for splitting this dataset are used: (i) the entire dataset is divided into ten disjoint tasks, with 10 classes per
task, (ii) half of the classes are used for the first task, and the remaining half classes for the rest phases as
in [Zhu et al| (2021} 2022)). TinyImageNet Le & Yang (2015)) contains 200 classes and half of the classes
are used for the first task as in |Zhu et al.| (2021} [2022).

Baselines: For performance comparison, we first consider a simple method of fine-tuning only the current
model using the conventional triplet loss, which can be considered as a performance lower bound. We also
compare our method with the following state-of-the-arts (SOTAs): EWC++ |Chaudhry et al.| (2018al),
LwF [Li & Hoiem| (2018), AGEM |[Chaudhry et al.| (2018b), ER |Chaudhry et al.[(2019), GSS [Aljundi et al.
(2019b)), MIR |Aljundi et al.| (2019a)), ASER__ |Shim et al.| (2021)), SCR |Mai et al.| (2021), Gen. [van de
Ven et al.| (2021)), CF-IL |PourKeshavarzi et al.| (2022), Semi Michel et al.| (2022), MGI |Gu et al.| (2022),
SDC Yu et al.|(2020)), Pass|Zhu et al.| (2021)), and S-SRE |Zhu et al.| (2022), ESMER |Sarfraz et al.[ (2023)),
IMEX-Reg Bhat et al|(2024), CW-DPPER |Chen et al.| (2024)), LODE |Liang & Li| (2024).

Implementation details: As the trainable encoder, M}, we use a ResNet-18 with the classifier part and
the fully-connected layer removed as in |[Mai et al.| (2021). Therefore, the embedding dimension p is equal to
512. All the baseline methods except the Gen. van de Ven et al.| (2021) and CF-IL [PourKeshavarzi et al.
(2022)) are evaluated with NCM. To comply with the majority of the baselines, Adam is used as the optimizer
with a learning rate le—6 and weight decay of 0.0001. The total number of epochs is 50 for each task. The
mini-batch size b for constructing the triplet loss L,-; and the inter-task confusion regularizer Lrcg is b = 64.
The mini-batch size n for constructing the three KD losses is n = 16. This means that, for constructing
the total loss Ly, in each mini-batch, the total number of synthetic images is one-fourth of the current
(new) actual images. Every individual mini-batch (whether from Dy or Gj) is set to contain the samples
only for ¢ different classes, where ¢ = 2 for CIFAR-10 and ¢ = 4 for both CIFAR-100, Mini-ImageNet,
and TinylmageNet. This means that each mini-batch of size b = 64 drawn from Dy contains 32 actual
images for each class of CIFAR-10 and 16 actual images for each class of CIFAR-~100, Mini-ImageNet, and
TinyImageNet. Also, each mini-batch of size n = 16 drawn from G} contains 8 synthetic images for each
class of CIFAR-10 and 4 synthetic images for each class of CIFAR-100, Mini-ImageNet, and TinylmageNet.
Hyper-parameters in our method are: Ay = 0.2, Ay = 0.8, A3 = 0.4, and A\, = 10 for CIFAR-10 and
CIFAR-100. For Mini-ImageNet and TinylmageNet we set Ay = 0.1, Ao = 0.3, A3 = 0.2, and A\, = 15 (see
Appendix for the details).

Learning of the initial task in IL is non-incremental since there is nothing before it. Therefore, we use
softmax loss only in the initial non-incremental step because softmax proved its power in static offline
learning. For the non-incremental step, we use SGD with a learning rate of 0.001, momentum of 0.9, weight
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decay of 0.0005, and mini-batch size of 256 for all datasets. After completing the training of the initial non-
incremental step, we remove the classifier part and use only the encoder part in the remaining incremental
tasks. As a regularization method, we add some controlled noise to the triplets in the embedding space,
akin to classical regularization methods, with the goal of reducing overfitting. We refer to this technique as
"noisy triplet loss" in our simulation results (see Appendix for the details).

4.2 Comparison Results

In terms of average accuracy A, our proposed method is compared to all mentioned baselines in the class-1L
setting. Table [I] presents the experimental findings pertaining to equal splitting datasets, which means the
number of classes is the same in all tasks. For simulations of the 8 methods whose names are preceded by
‘7, we use the source codes provided by the authors of those original papers. Symbol { indicates that the
numerical results are directly copied from the original papers and ‘x’ denotes that the results are not available
in those original papers. Whether each method stores any actual past data samples or not is denoted by i
and ¢, where ¢ indicates that no actual past data samples are stored and } represents the coreset replay-based
methods. These results have been compared with the baselines that adopt the same data-splitting approach.
The results were derived from ten independent runs with ten different class orderings. From the results, we
can see that our proposed method outperforms all baselines by notable margins, achieving the state-of-the-
art (SOTA) performance. Even compared to Gen. van de Ven et al.| (2021) which requires multiple models
as many as the number of classes (e.g., 100 models for CIFAR-100), our method works better despite that
we use only two models, (trainable) My and (stored and fixed) My_1, irrespective of the total number of
classes.

Table [2] presents the findings regarding an increased number of tasks and the comparison with prior research
that utilized half of the classes in the initial task. Notably, the results show that our proposed method
outperforms previous approaches by a significant margin as the number of tasks increases. Although most
Class-IL studies use average accuracy as their primary metric, we also analyze final task accuracy, denoted
as Ajqst, in Table 3] for the same number of classes in all tasks setting to provide additional insights. This
comparison reveals that our method generally outperforms existing approaches in final task performance.

Table 1: Average accuracy, Ax (%), after finishing the final task. Our method considerably outperforms all
methods, including the coreset replay-based methods on all three datasets.

Schemes CIFAR-10 CIFAR-100 Mini-ImageNet
K=5 K =10 K =10
Fine-tune ¢ 16.9+11 5.4+0.0 4.3+0.95
_EWC++ |Chaudhry et al.| (2018a)< 18.2+0.2 5.5+0.33 4.3+03
_ LwF |Li & Hoiem| (2018))¢ 20.4+0.6 13.540.5 8.5x0.5
_ AGEM |Chaudhry et al.[(2018b)f 28.941.2 14.0+0.45 11.540.4
_ ER |Chaudhry et al.[ (2019)% 49. 1411 28.1+1.2 20.9+1.5
_ GSS|Aljundi et al.| (2019b))T 46.441.0 25.410.55 20.7+1.5
_ MIR |Aljundi et al.| (2019al)1 49.3+41.2 27.3x1.0 21.8+1.0
_ASERp |Shim et al.| (2021)1 50.2+11 294107 21.0x0.43
7SCR Mai et al. (2021)1 65.6+0.55 37.8+0.6 35.2+0.55
Gen. van de Ven et al.| (2021)¢ 56.0x0.04 T 49.5+0.06 T *
CF-IL [PourKeshavarzi et al. (2022)¢ 75.341 * *
Semi |[Michel et al.| (2022)1 57.9411 T 38.9+0.5 T *
MGI|Gu et al.| (2022)F 521425 T 241408 T 19.140.0 F
ESMER |Sarfraz et al.| (2023)% 73.1540.54 50.8+0.31 *
IMEX-Reg [Bhat et al.| (2024)1 74.6+0.18 50.3x0.23 *
CW-DPPER |Chen et al. (2024)1 67.42+1.20 49.15+0.61 51.63+0.11
LODE Liang & Li (2024):{: 76.3+0.90 51.4+1.01 52.4+0.13
Our methodo 76.9+0s 54.810.0 54.2+1.2
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Table 2: Average accuracy, Ax (%), after finishing the final task setting half of the classes for the first task.

Schemes CIFAR-100 TinyImageNet
K=5 K =10 K =20 K =5 K =10 K =20
SDC|Yu et al] (2020)0 56.771 57.00% 58.907 * * *
Pass [Zhu et al) (2021) 63.47+ 61.841 58.09t 49.55+ 47.29% 42.07%
S-SRE [Zhu et al| (2022)¢ 65.887 65.047 61.707 50.391 48.93.11  48.17%
LODE [Liang & Li (2024)0 |  65.88¢ 65.041 61.70% 50.39% 48.93% 48.17%
Our method¢ 66.15+0.10 65.8210.30 64.35+0.70 55.32+12 54.90+15 54.10+1.4

Table 3: Final task accuracy, Ajqst (%).

Schemes CIFAR-100 TinyImageNet
K =10 K =20
SCR [Mai et al|(2021)f 28.650.55 23.11x0.62
ESMER |[Sarfraz et al.| (2023)f 48.77+0.51 T 48.77 £o0.41
IMEX—Reg Bhat et al. (2024)1 48.54+0.23 '[' 41.34+0.53
LODE Liang & Li (2024)1 46.31i01.05"' 45.11410.33
Our method 49.67+0.45 44.8510.15

Evaluating forgetting serves as an additional measure to assess the extent to which a model loses information
after learning new knowledge. Forgetting is defined for the j-th task after the model has been trained
incrementally up to task &, where k > j, as |Chaudhry et al.| (2018a)): 0? = maxeq1,.. p—1}(a;—arj), Vj<
k. Considering 0? € [—1,1], defined for j < k, as our focus lies on quantifying forgetting across preceding
tasks, and ay ; is the test accuracy of the model that has been incrementally trained on the held-out test
set of task j. Furthermore, by standardizing against the count of previously encountered tasks, the average
forgetting at the k-th task is denoted as Oy = ﬁ Zf;ll 0?. The lower Qi values are the lesser forgetting
concerning earlier tasks. The results of average accuracy and forgetting after each task are summarized in
Table [4] We can see a huge margin between fine-tuning and our method regarding forgetting values in all
three datasets.

Table 4: Forgetting (%) and average accuracy (%) after each task for our method and the lower bound (i.e.,

fine-tuning).

Method | Metric CIFAR-10
k 1 2 3 4 - - - - -
Fine tuning | "O'8°0H08[ 95 122157286 - - -
Accuracy [50.9 40.0 30.0 16.9 - - - - -
Forgetting| 4.6 4.7 54 11.1 - - - - -
Our method Acfuracyg 881833 81.175.9 - - - - -
Method Metric CIFAR-100
k 1 2 3 4 5 6 7 8 9
Fine tuning | TO"EPng[ 38 12170 7.9 10.2 114 59 43 40
Accuracy |69.8 54.4 49.1 41.8 32.2 20.0 14.6 9.1 6.5
Our mothod| FOTetting| 5.3 86 3.2 29 26 22 10 L7 41
Accuracy [82.2 71.8 69.5 66.7 63.4 60.2 59.6 57.5 54.5
Method Metric Mini-ImageNet
k 1 2 3 4 5 6 7 8 9
Fine tuning Forgetting|12.1 18.9 14.5 5.3 9.3 48 54 35 2.1
Accuracy |51.5 32.1 20.0 18.9 11.0 9.8 6.1 5.5 5.2
Our method Forgetting|11.1 6.2 3.4 3.7 22 23 20 4.2 6.6
Accuracy |76.8 71.4 66.8 64.8 62.3 59.9 58.0 56.2 55.3
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To gain deeper insights into the model’s performance on individual tasks, we generated confusion matrices
for each task for CIFAR-10 with 5 equal tasks. These matrices provide a visual representation of the model’s
classification accuracy across different classes within each task. Fig. [5|shows the confusion matrices for all 5
tasks, where Uj ;, presents the confusion matrix obtained from model M}, which was trained on task k and
then tested on classes for tasks 0 to 7, 7 < k. By examining the confusion matrices, we can see the patterns of
misclassification arising from both catastrophic forgetting and task-confusion. Table [fillustrates the order of
classes for each task. From the visualization in Fig. [5| it is evident that the highest correct classification for
U; 1 occurs when k = j. However, it is noteworthy that the worst classification is not necessarily associated
with the initial classes (i.e., j < k) suggesting the significance of the class ordering.

Table 5: The labels of classes associated with each task. Classes marked in bold represent the classes present
at that task number. For instance, in task k = 2, the current classes are {0,3}, and previous classes are
{4,2,7,6}.

Task# (k) Categories
0 4 2 - - - - - - - -
1 4 2 7 6 - - - - - -
2 4 2 7 6 0 3 - - - -
3 4 2 7 6 0 3 5 8 -
4 4 2 7 6 0 3 5 8 9 1

It can be clearly seen that controlling the position of embeddings in the embedding space through our
proposed losses is very effective for mitigating inter-task confusion and combating catastrophic forgetting,
which leads to superior performance to all those baselines. Furthermore, our results echo the claim of [Mai
et al.| (2021)); |[Yu et al.| (2020) that, in IL, using metric learning with NCM classifiers could be a better choice
than softmax classifiers.

4.3 Ablation Study on L,

In this subsection, more experiments are conducted to reveal the effect of each term of our loss Ljy, in .
We present the results of ablation experiments for inter-task confusion regularization, knowledge distillation
(MSE, intra-class, and inter-class), and their collective impact on four distinct datasets. With the exception
of TinyImageNet, where we allocate half of the total classes to the initial non-incremental task, all other
datasets are configured with an equal distribution of classes in each task.

Effect of inter-task confusion regularization, Lrcg: To gauge the impact of Lrcgr on the performance,
we set A\; = 0. The intention behind incorporating this term Lrcg is to prevent overlap across the current
classes and those classes that have been learned earlier, thereby mitigating the occurrence of inter-task
confusion. The average accuracy is represented in the third row of Table[6] Looking at Table [6] it becomes
evident that eliminating the inter-task confusion regularizer leads to a decline of no less than 1.1% across all
datasets. Further insight into the impact of this term on individual intermediate tasks is provided in Fig. [6]
(depicted by the yellow curve), illustrating a heightened prominence of the influence of Lrcp as the number
of tasks increases.

Effect of the MSE loss, L7}5: To assess how L5 affects the performance, we assign a value of Ay = 0,
(ie., total loss is Las, = Lii + M Lror + As(Li20e + Li2tem)). The objective of this term is to minimize
the Euclidean distance between the embeddings of the current under-training model, denoted as M} (the
student), and the previously stored fixed model Mj,_; (the teacher) when the input comprises data generated
from a prior task. This approach compels M}, to acquire knowledge about past tasks from the teacher model
M., thereby mitigating the phenomenon of catastrophic forgetting.

The fourth row of Table [f] displays the performance after completing the final task across all datasets.
Upon comparison with the outcomes of the Lyrcg, it becomes evident that the influence of this term is
more pronounced. Removing it results in a performance decrease of around 3%. Additionally, in Fig. @, a
comparison is made between employing the MSE loss term and not using it (i.e., setting A2 = 0) for each
incremental task. The significance of the MSE loss becomes evident in the outcomes as the number of tasks
increases.
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0, to see the impact of

our proposed intra- and inter-class losses on the average accuracy. The fifth row of Table [0] displays the

Effect of the intra- and inter-class losses, L%% and L™ We set A3
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Table 6: Average accuracy, Ax (%), after finishing the final task for ablation experiments. The mean and
standard deviation (STD) are reported from ten individual runs with ten different orderings of the classes.

Schemes CIFAR-10 CIFAR-100 Mini-ImageNet TinylmageNet
K=5 K =10 K =10 K =20
Fine-tune 24.7+o0.s 37.2+1.2 10.0+0.85 6.5+1.1
Our method when A\; =0 75.7+1.2 52.8+0.8 53.1+1.1 53.0+0.95
Our method when )\2 =0 74.8+0.92 49.5+0.85 51.0+1.0 51.1+0.0
Our method when A3 =0 70.1x0.0 44 .8+0.8 49.1+1.2 48.4+0.05
Our method 76.9+0.s 54.8+0.9 54.2+1.2 54.1+1.4
“ CIFAR-10 “ CIFAR-100 “ Mini-ImageNet - TinylmageNet
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Figure 6: Average accuracy, Ay (%), for ablation experiments for all four datasets (best viewed in color).
Only the incremental tasks (or states) are plotted.
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Figure 7: The effects of various loss configurations on MSE loss.

results of the performance evaluation following the completion of the final task. It is evident that intra-
and inter-class losses play a pivotal role in our suggested loss function. Its significance is underscored by a
reduction of up to 10% in the average accuracy upon its removal. This term embodies our key strategy for
mitigating catastrophic forgetting, achieved through the innovative preservation of the positional relationship
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of previously learned classes within the embedding space. Moreover, looking at Fig. [6] the drop in the average
accuracy is noticeable for each incremental task when A3 = 0, which means the two losses play an essential
role in all datasets.

4.4 Ablation Study on MSE Loss, L.,

This section delves into the effects of various loss configurations on Mean Square Euclidean (MSE) loss. To
assess this, we substituted mean absolute error (MAE) and cosine dissimilarity for MSE loss in our KD loss
framework, evaluating their impact on CIFAR-100 and TinyImageNet with a total number of tasks K = 10.
Fig. [7] illustrate the outcomes, indicating that MSE consistently produces the optimal results. However, it
is noteworthy that even with alternative configurations, our method surpasses most state-of-the-art. Thus,
while our approach performs admirably across different loss setups, a meticulously crafted configuration can
lead to a notable performance enhancement as evidenced in our ablation study.

5 Conclusion

In this paper, we ventured into the realm of class-incremental learning (class-IL), utilizing the potent tool of
metric learning. Instead of storing any actual past data samples, we stored and re-used a single past-trained
encoder in a recursive manner to generate the past synthetic images. Leveraging these synthesized images,
we introduced three novel rules, or metric KD regularizers, designed to mitigate the issue of catastrophic
forgetting, where previous knowledge is lost when learning new classes. Additionally, we incorporated an
inter-task confusion regularizer to alleviate the overlap among distinct classes within the embedding space.
Experimental results showed the superior performance of our approach compared to many recent approaches.

References

Rahaf Aljundi, Eugene Belilovsky, Tinne Tuytelaars, Laurent Charlin, Massimo Caccia, Min Lin, and Lu-
cas Page-Caccia. Online continual learning with maximal interfered retrieval. In Advances in Neural
Information Processing Systems, volume 32, pp. 11849-11860. Curran Associates, Inc., 2019a.

Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample selection for online
continual learning. In Advances in Neural Information Processing Systems, volume 32. Curran Associates,
Inc., 2019b.

Adrien Bardes, Jean Ponce, and Yann LeCun. VICReg: Variance-invariance-covariance regularization for
self-supervised learning. In International Conference on Learning Representations. OpenReview.net, 2022.

Prashant Shivaram Bhat, Bharath Chennamkulam Renjith, Elahe Arani, and Bahram Zonooz. IMEX-reg:
Implicit-explicit regularization in the function space for continual learning. Transactions on Machine
Learning Research, 2024. ISSN 2835-8856. URL https://openreview.net/forum?id=pla6rulZCT.

Peter Bithlmann and Sara Van De Geer. Statistics for high-dimensional data: methods, theory and applica-
tions. Springer Science & Business Media, 2011.

Hugo Caselles-Dupré, Michael Garcia-Ortiz, and David Filliat. S-trigger: Continual state representation
learning via self-triggered generative replay. In 2021 International Joint Conference on Neural Networks
(IJCNN), pp. 1-7, 2021.

Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan, and Philip HS Torr. Riemannian walk
for incremental learning: Understanding forgetting and intransigence. In Proceedings of the European
Conference on Computer Vision (ECCYV), pp. 532-547, 2018a.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient lifelong
learning with a-gem. arXiv preprint arXiv:1812.00420, 2018b.

Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K Dokania,
Philip HS Torr, and Marc’Aurelio Ranzato. On tiny episodic memories in continual learning. arXiw
preprint arXiv:1902.10486, 2019.

16


https://openreview.net/forum?id=p1a6ruIZCT

Under review as submission to TMLR

Shuai Chen, Mingyi Zhang, Junge Zhang, and Kaiqi Huang. Exemplar-based continual learning via con-
trastive learning. IEEFE Transactions on Artificial Intelligence, 2024.

Yulai Cong, Miaoyun Zhao, Jianqgiao Li, Sijia Wang, and Lawrence Carin. Gan memory with no forgetting.
Advances in Neural Information Processing Systems, 33:16481-16494, 2020.

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Ales Leonardis, Gregory Slabaugh,
and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification tasks. IEEFE
Transactions on Pattern Analysis and Machine Intelligence, 44(7):3366-3385, July 2021.

Prithviraj Dhar, Rajat Vikram Singh, Kuan-Chuan Peng, Ziyan Wu, and Rama Chellappa. Learning without
memorizing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 5138-5146, 2019.

Robert M French. Catastrophic forgetting in connectionist networks. Trends in Cognitive Sciences, 3(4):
128-135, April 1999.

Tan J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empirical investigation
of catastrophic forgetting in gradient-based neural networks. arXiv preprint arXiv:1312.6211, 2013.

Yanan Gu, Xu Yang, Kun Wei, and Cheng Deng. Not just selection, but exploration: Online class-incremental
continual learning via dual view consistency. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 7442-7451, 2022.

Geoffrey Hinton, Oriol Vinyals, and Jeff. Dean. Distilling the knowledge in a neural network. arXiv preprint
arXiv:1508.02581, 2(7), 2015.

Bin Huang, Zhineng Chen, Peng Zhou, Jiayin Chen, and Zuxuan Wu. Resolving task confusion in dynamic
expansion architectures for class incremental learning. In AAAI Conference on Artificial Intelligence,
2022. URL https://api.semanticscholar.org/CorpusID:255340983.

Ronald Kemker and Christopher Kanan. FearNet: Brain-inspired model for incremental learning. arXiv
preprint arXiv:1711.10563, 2017.

A. Krizhevsky. Learning multiple layers of features from tiny images. Master’s thesis, Department of
Computer Science, University of Toronto, 2009.

Ya Le and Xuan S. Yang. Tiny imagenet visual recognition challenge. 2015. URL https://api.
semanticscholar.org/CorpusID: 16664790.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to docu-
ment recognition. Proceedings of the IEEE, 86(11):2278-2324, November 1998.

Timothée Lesort, Hugo Caselles-Dupré, Michael Garcia-Ortiz, Andrei Stoian, and David Filliat. Generative
models from the perspective of continual learning. In International Joint Conference on Neural Networks

(IJCNN), pp. 1-8, 2019.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 40(12):2935-2947, December 2018.

Yan-Shuo Liang and Wu-Jun Li. Loss decoupling for task-agnostic continual learning. Advances in Neural
Information Processing Systems, 36, 2024.

Zheda Mai, Ruiwen Li, Hyunwoo J. Kim, and Scott Sanner. Supervised contrastive replay: Revisiting the
nearest class mean classifier in online class-incremental continual learning. IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 3584-3594, 2021.

Davide Maltoni and Vincenzo Lomonaco. Continuous learning in single-incremental-task scenarios. Neural
Networks, 116:56-73, August 2019.

17


https://api.semanticscholar.org/CorpusID:255340983
https://api.semanticscholar.org/CorpusID:16664790
https://api.semanticscholar.org/CorpusID:16664790

Under review as submission to TMLR

Marc Masana, Xialei Liu, Barttomiej Twardowski, Mikel Menta, Andrew D Bagdanov, and Joost Van De Wei-
jer. Class-incremental learning: survey and performance evaluation on image classification. IEFE Trans-
actions on Pattern Analysis and Machine Intelligence, 45(5):5513-5533, May 2022.

Nicolas Michel, Romain Negrel, Giovanni Chierchia, and Jean-Francois Bercher. Contrastive learning for
online semi-supervised general continual learning. arXiv preprint arXiv:2207.05615, 2022.

Mozhgan PourKeshavarzi, Guoying Zhao, and Mohammad Sabokrou. Looking back on learned experiences
for class/task incremental learning. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=RxplU3vmBx.

Amal Rannen, Rahaf Aljundi, Matthew B. Blaschko, and Tinne Tuytelaars. Encoder based lifelong learning.
In Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 1320-1328, 2017.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. iCaRL: Incremental
classifier and representation learning. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 2001-2010, 2017.

Fahad Sarfraz, Elahe Arani, and Bahram Zonooz. Error sensitivity modulation based experience replay:
Mitigating abrupt representation drift in continual learning. In The FEleventh International Conference on
Learning Representations, 2023. URL https://openreview.net/forum?id=z1bci7019Z3|

Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for face recognition
and clustering. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp- 815823, 2015.

Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina, Agnieszka Grabska-Barwinska, Yee Whye Teh,
Razvan Pascanu, and Raia Hadsell. Progress & compress: A scalable framework for continual learning. In
International Conference on Machine Learning, pp. 4528-4537. PMLR, 2018.

Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic forgetting
with hard attention to the task. In International Conference on Machine Learning, pp. 4548-4557. PMLR,
2018.

Dongsub Shim, Zheda Mai, Jihwan Jeong, Scott Sanner, Hyunwoo Kim, and Jongseong Jang. Online class-
incremental continual learning with adversarial shapley value. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, pp. 9630-9638, 2021.

Hanul Shin, Jung Kwon Lee, Jachong Kim, and Jiwon Kim. Continual learning with deep generative replay.
In Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

Kihyuk Sohn. Improved deep metric learning with multi-class n-pair loss objective. In D. Lee, M. Sugiyama,
U. Luxburg, I. Guyon, and R. Garnett (eds.), Advances in Neural Information Processing Systems, vol-
ume 29. Curran Associates, Inc., 2016.

Wenju Sun, Jing Zhang, Danyu Wang, Yangli-ao Geng, and Qingyong Li. Ilcoc: An incremental learning
framework based on contrastive one-class classifiers. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 3580-3588, 2021.

Yi Sun, Yuheng Chen, Xiaogang Wang, and Xiaoou Tang. Deep learning face representation by joint
identification-verification. In Advances in Neural Information Processing Systems, volume 27. Curran
Associates, Inc., 2014.

Gido M van de Ven, Hava T Siegelmann, and Andreas S Tolias. Brain-inspired replay for continual learning
with artificial neural networks. Nature Commaunications, 11(1):1-14, August 2020.

Gido M van de Ven, Zhe Li, and Andreas S Tolias. Class-incremental learning with generative classifiers. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3611-3620,
2021.

18


https://openreview.net/forum?id=RxplU3vmBx
https://openreview.net/forum?id=zlbci7019Z3

Under review as submission to TMLR

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray Kavukcuoglu, and Daan Wierstra. Matching
networks for one shot learning. In Advances in Neural Information Processing Systems, volume 29. Curran
Associates, Inc., 2016.

Yandong Wen, Kaipeng Zhang, Zhifeng Li, and Yu Qiao. A discriminative feature learning approach for deep

face recognition. In Proceedings of the European Conference on Computer Vision (ECCV), pp. 499-515.
Springer, 2016.

Hongxu Yin, Pavlo Molchanov, Jose M Alvarez, Zhizhong Li, Arun Mallya, Derek Hoiem, Niraj K Jha, and
Jan Kautz. Dreaming to distill: Data-free knowledge transfer via deepinversion. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8715-8724, 2020.

Lu Yu, Bartlomiej Twardowski, Xialei Liu, Luis Herranz, Kai Wang, Yongmei Cheng, Shangling Jui, and
Joost van de Weijer. Semantic drift compensation for class-incremental learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6982-6991, 2020.

Fei Zhu, Xu-Yao Zhang, Chuang Wang, Fei Yin, and Cheng-Lin Liu. Prototype augmentation and self-
supervision for incremental learning. In Proceedings of the IEEE/CVFE Conference on Computer Vision
and Pattern Recognition, pp. 5871-5880, 2021.

Kai Zhu, Wei Zhai, Yang Cao, Jiebo Luo, and Zheng-Jun Zha. Self-sustaining representation expansion
for non-exemplar class-incremental learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 9296-9305, 2022.

A Appendix

A.1 Choosing Hyper-parameters

In this subsection, we examine the choice of the number of synthetic images and the values for the loss term
coefficients in equations (1)) and (3] across different simulation setups. Figure [§] shows the final accuracy of
our method on CIFAR-100 using various amounts of synthetic images. It is evident that beyond one-fourth
of the real dataset, performance improvement becomes negligible. Therefore, we set the number of synthetic
images to one-fourth of the real data for each task across all simulation settings.

CIFAR-100
70

Average accuracy (%)
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Figure 8: The effect of different numbers of synthetic images on the final average for the CIFAR-100 dataset.
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Table 7: Impact of hyper-parameters in and on average accuracy, Ax (%).

Schemes TinyImageNet CIFAR-100

A1 A2 A3 Ax Al A2 A3 Ax
0.1 01 0.2 5288 |01 0.1 0.2 64.00
02 02 03 5420 |02 02 03 6465
0.3 03 04 5400 | 0.3 03 04 64.28
04 04 05 5372 |04 04 05 64.20
02 02 05 5455 |02 02 05 6496
02 02 06 5440 |02 02 06 65.14
0.2 0.2 04 5492 |02 02 0.7 65.60
02 02 03 5415 |0.2 0.2 0.8 65.85
01 01 04 5391 |02 02 09 6552
0.1 01 05 5325 |01 0.1 08 64.83

Our method

100

= B =Fine tuning + standard triplet loss (no noise)

90 - ® — Fine tuning + noisy triplet (10%)
= B =Fine tuning + noisy triplet (25%)
80 - ® =Fine tuning + noisy triplet (50%)
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(
(
—#— Fine tuning + noisy triplet (75%)
Fine tuning + noisy triplet (100%)
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Figure 9: Average accuracy obtained by fine-tuning ResNet-18 using the classical triplet loss and noisy triplet
loss with five different portions of noisy triplets in each mini-batch. The model is trained on CIFAR-100
(best viewed in color). NCM is used in the test time, the results indicate a significant improvement in the
final task (about 30%) using noisy triplet loss.

Table [7| presents the results of performance evaluations across various loss term coefficient values in
and The determination of final coefficients follows a specific approach. Through empirical observations,
it was identified that employing significantly distinct values for A; and Ag, or setting A1 = Ay with Ay > Ag,
results in poor accuracy. Conversely, opting for \; = s and selecting A3 > A; yields improved performance,
and the specific value assigned to A\; has minimal impact on the ultimate classification accuracy, as long as
it satisfies the constraint 0 < Ay < 1.

A.2 Noisy Triplet Loss

The term Ly.; in is a triplet loss used to learn the current task. In this paper, we use a very simple,
yet effective way to construct the triplet loss for mitigating over-fitting while learning the current task. In
general, when the model learns how to make the distances between anchor-positive pairs smaller than those
of anchor-negative pairs, the learning process will stop; however, this does not necessarily prevent the model
from being over-fitted. In our proposed scheme, as a regularization method, we add noise to some of the
embeddings in order to alleviate over-fitting. To be more precise, let Hj, = [7111@7 e ﬁi] € RP*? denote the
un-normalized embedding matrix produced by M}, and let Hy = [hi,...,h%] € RP*? denote its normalized
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version with hj, = IIZ?H where ||.|| denotes I3 norm. We add noise to some normalized embeddings hj, so that
k

the pairwise distances for triplets become randomly different in each mini-batch. Specifically, we randomly

select a subset of the normalized embeddings in each mini-batch. Then we add Gaussian noise to the selected

hj,, followed by creating triplets. This helps the network to learn the features with a lower risk of over-fitting

while fulfilling the triplet loss inequality.

For generating noisy triplets, as the added noise, we choose zero-mean Gaussian noise w with variance o2,

i.e., w ~ N(0,0%). The noise variance, o2, is an essential hyper-parameter. Based on our experiments, we
find that it should be less than 0.01 for all datasets. In the simulations, we set o2 = 0.005 for CIFAR-10
and 02 = 0.01 for all three CIFAR-100, Mini-ImageNet, and TinyImageNet.

One interesting (and important) question is whether the noisy triplet loss is still effective for general IL (i.e.,
other than our proposed IL method). To answer the question, we compare the noisy triplet loss and the
standard (traditional) triplet loss in the baseline IL setting in which vanilla fine-tuning is used in each task.
In the simulation, we train a single encoder, a ResNet-18, on CIFAR-100. The squared Euclidean distance
is utilized as the distance metric in the triplet loss. The performance of the traditional triplet loss and noisy
triplet loss is compared in Fig.[J] in which the average accuracy is plotted for the case of no noise and for the
case of adding noise to 10% of embeddings, 25% of embeddings, 50% of embeddings, 75% of embeddings, and
100% of embeddings. The effectiveness of noisy triplet loss is clear from Fig. E[, and the best performance
is achieved when the noise is added to 25% of the embeddings. The accuracy improvement is about 30% at
the end of the training (i.e., at the incremental task of 9).
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