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ABSTRACT

This paper presents CoLLIE: a simple, yet effective model for continual learning
of how language is grounded in vision. Given a pre-trained multimodal embed-
ding model, where language and images are projected in the same semantic space
(in this case CLIP by OpenAl), CoLLIE learns a transformation function that ad-
justs the language embeddings when needed to accommodate new language use.
Unlike traditional few-shot learning, the model does not just learn new classes
and labels, but can also generalize to similar language use. We verify the model’s
performance on two different tasks of continual learning and show that it can ef-
ficiently learn and generalize from only a few examples, with little interference
with the model’s original zero-shot performance.

1 INTRODUCTION

Any artificial agent interacting with an environment, using vision, and communicating with other
agents (such as humans), using language, needs to be able to ground the meaning of language with
the visual properties of the environment. One approach to this problem is to project vision and
language into a joint semantic embedding space (Frome et al., 2013} Bruni et al.| [2014). In such
a model, a visual stimulus and a language construct that have similar representations are supposed
to have similar meanings. In order to name a given object with certain visual features, the agent
should try to generate a referring expression that has a similar embedding as the visual features of
the object, and in order to understand what a referring expression is denoting, it should look for
objects that have a similar visual feature embedding as that of the referring expression.

Recent developments in multimodal representation learning using large amounts of data have given
impressive results. An example of a model integrating language and vision is CLIP by OpenAl
(Radford et al.,[2021)), which was trained using constrastive learning on 400 million pairs of images
and their captions. Images and texts are embedded (separately) using state-of-the-art computer
vision and language processing pipelines into a 512 dimensional vector. By calculating the dot
product of the two embeddings, it is possible to determine how similar an image is to a text (or an
image to an image, or a text to a text), as illustrated in Figure [Ip. The model was shown to be very
effective at so-called zero-shot learning, which for CLIP means that the model can do image retrieval
by ranking the similarity of images to a given label (such as “a black cat”). This can be contrasted
with traditional image classification, where the model is specifically trained to classify images into
a predefined set of categories (e.g., Deng et al.[2009). In addition to being more flexible (as it can
use a virtually infinite set of categories), CLIP was also shown to be more robust against noise and
variations in the images, compared to supervised image classification (Radford et al.l 2021]).

While such a model is potentially very useful for agents that need to ground language in vision, it
is limited in that it is trained once, without any mechanism for updating its representations in light
of new data, unless the entire model is retrained and the number of new examples is sufficient. This
is clearly limiting the model’s usefulness in real-life application scenarios for agents interacting
in a dynamic environment. Not only will new objects with new properties emerge, but the way
humans talk about objects changes over time. As has been shown repeatedly in experiments on
human-human interaction, this is not only a long-term issue, but the exact meaning of language
may often be negotiated and evolve during the course of a single interaction, and then develop into
partner-specific language use (Brennan & Clark, |1996; |Shore & Skantzel 2018)). This phenomenon
has been referred to as conceptual pacts (Brennan & Clark, |1996), or more generally as alignment
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Figure 1: Comparison of CoLLIE to Zero-shot and Few-shot learning. Green boxes show where
continual learning is taking place.

in communication (Pickering & Garrod, |2006). For example, if a hard-to-describe object is being
referred to, the partners might establish a new name for it and then continue using that name for
similar objects.

The ability to continually learn over time has been a long-standing challenge for machine learning
and artificial intelligence, and this area of research has been referred to as continual or lifelong
learning (Parisi et al., [2019). There are several problems involved in this. First, humans can learn
new concepts using only a few examples, in contrast to machine learning models that typically need
several orders of magnitude more examples. Second, computational models have been shown to be
prone to so-called catastrophic forgetting (Parisi et al., 2019). Unless the model is re-trained entirely
from scratch (which is infeasible for large models like CLIP), the updates to the model’s parameters
might interfere with previously learned knowledge, resulting in abrupt performance drops. This is
also referred to as the stability-plasticity dilemma (Parisi et al.,|2019).

Learning from few examples greatly depends on having powerful enough representations. Thus,
the first problem has been addressed using transfer learning, where a fixed base model learns rich
general representations from other (but related) tasks. This base model is then used as input to
a simple classifier with only a few parameters (such as logistic regression), requiring only a few
training examples. This is often referred to as few-shot learning (Wang et al.l 2020). Since the CLIP
model is trained to learn powerful general representations, it was also shown to be fairly good as a
base model for few-shot learning (Radford et al.l|2021). In principle, an agent that sees a new object
and hears it being referred to as a “a red monitor” by a human could train a few-shot classifier to be
able to identify such objects in the future, as illustrated in Figure[Tp. However, a problem with this
form of few-shot learning is that it is based on the same principles as the conventional supervised
image classification discussed above, where labels do not have any inherent meaning, but are instead
treated as atomic symbols. If an agent using a language-image embedding model (such as CLIP)
would learn a new label using this approach, it is not clear when it should use its base model to
resolve language-image relationships (as in Figure[Th), and when it should apply the newly learned
classifier for the specific label (as in Figure [Ip). Moreover, those new categories would have no
relationship to other (previously known or newly acquired) categories. For example, if the agent
would learn how the term “the red monitor” is used in a specific situation, it would not be able to
infer that “the red display” might be used in a similar way. In addition, it is unclear how it should
be able to make use of semantic compositionality, i.e., to combine (in a principled way) the newly
acquired language with the language it already knows in a compositional manner, to understand
expressions such as “the blue monitor”.

In this paper, we propose CoLLIE, a simple, yet effective, model for Continual learning of
Language grounding from Language-Image Embeddings. The general principle of CoLLIE is illus-
trated in Figure [Tk Instead of learning a new model for each new concept (as in few-shot learning),
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the model relies on a base model of language-image embeddings in a joint embedding space (CLIP in
our case), with zero-shot capabilities. We then use and update a separate transformation model that
makes adjustments to the language embedding to better fit the new concepts that are being learned,
when needed. Thus, the continual learning is only taking place in this transformation model, while
the base model is fixed. Our aim is to achieve the following characteristics:

» Sample efficient: We want to be able to learn new language-image mappings quickly with
only a few examples.

* Computationally efficient: The transformation model is very lightweight and relatively
cheap to retrain. While ideally continual learning should happen without any retraining
(so-called “rehearsal”) and without keeping training data in memory (Parisi et al., 2019),
we accept rehearsal given that only the transformation model needs to be re-trained. We
will return to this issue in the discussion section.

* Generalizable: We want to be able to use the newly learned concepts to understand new
related concepts.

* Robust: As the model learns new concepts, it should continue to perform equally well on
tasks it could do before, and newly learned concepts should not interfere with each other.

2 RELATED WORK

Language grounding is a core problem of Al, and is related to the more general problem of symbol
grounding. i.e., how the symbols used by an Al system get their meaning in terms of how they are
anchored to the external world (Harnad, |1990). In the field of computational linguistics, there is a
long history of research on how to infer the referents of referring expressions (so-called exophoric
reference resolution), as well as how to generate referring expressions, based on the visual properties
of the target referent and potential distractors (Krahmer & van Deemter, [2012;|Q1ao et al., 2020). In
the field of computer vision, the related problems of image captioning (generating a text describing
an image) and image retrieval and object detection (from natural language descriptions) have also
been studied extensively (e.g., You et al.|2016} [Hu et al.|[2016)). Recently, there has also been a lot
of research done in the areas of Visual Question-Answering (VQA) and Visual Dialog, where visual
language understanding and generation is combined and treated in an end-to-end fashion (Kafle
& Kanan| 2017} Das et al., 2017). However, these studies typically assume that a fixed model of
language grounding can be trained, and that the language use does not change after that.

Previous research on continual learning in image classification has mainly studied the effect of
adding new classes to the model (Kemker & Kanan, 2018 Kemker et al., 2018). Our work is
different, in that it is not based on image classification with a limited set of classes, but rather on
adjusting a model that can do zero-shot image retrieval, where the language can form a virtually
endless number of “classes”.

The challenge of how to achieve continual learning without catastrophic forgetting has been studied
for a long time, since early studies of continual learning in neural networks showed that this was
indeed a serious problem (McCloskey & Cohenl |1989). [Parisi et al.| (2019) outline three basic ap-
proaches to alleviate catastrophic forgetting for continual learning in neural networks: First, various
regularization approaches may be used to impose constraints on the update of the model’s parame-
ters. Second, it is possible to allow the architecture of the network to change, e.g., by adding neurons
or layers. Third, complementary learning systems are inspired by the human brain, in that they rely
on an interplay between episodic memory (specific experience) and a semantic memory (general
structured knowledge), where learning first happens in the former, and is eventually consolidated
with the latter (during “sleep”). CoLLIE does not fit squarely into any of these, but comes closest
to complementary learning in its use of a base model (where parameters are fixed) and a dynamic
model (where learning happens).

3 DATA, TASK AND METRIC

For our evaluations, we assume that the task is to rank a set of candidate referents based on how
well they match a referring expression. As our metric, we use the Mean Reciprocal Rank (MRR),
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which is equal to 1 divided by the assigned rank of the correct candidate, yielding a score between 0
and 1. Thus, an MRR of 1 corresponds to ranking the correct candidate first and 0.5 corresponds to
ranking it second (which can still be considered quite good if the number of candidates is large). The
reason we choose MRR instead of accuracy is that it does not only take the top-ranked candidate
into account, and therefore can be considered to be a more nuanced metric.

In this paper, we use two datasets. First, we use the LAD dataset (Large-scale Attribute Dataset) by
Zhao et al.|(2018), from which we selected a set of 200 categories belonging to the super-categories
animals, fruits, electronics and vehicles, with a total of 68247 images. To verify CLIP’s zero-
shot performance on this datase we did 20 iterations where we randomly selected one image per
category (i.e., 200 images) and performed the ranking task using the LAD labels of the categories
as referring expressions, yielding an MRR of 0.773. We think this confirms CLIP’s impressive
zero-shot performance on these types of images.

To study a more challenging set of images (for CLIP), we also use the images from the KTH
Tangrams dataset (Shore et al., |2018). Orginially, these images were used in an experiment where
participants were asked to take turns referring to tangram figures (using spoken language) while the
other participant was trying to identify them on a common game board (Shore & Skantzel [2018).
To assess CLIP’s zero-shot performance on these tangram figures, we took the 17 shapes used in
the study and made colored versions of them (red, green, blue, yellow and purple), constituting a
set of 85 candidate referents. The referring expressions were constructed by combining the color
with the name of the shape used by the authors of the paper (e.g., “the blue giraffe”). As expected,
CLIP’s zero-shot performance on these referents is not as good, only yielding an overall MRR of
0.31. The MRR for the individual shapes are shown in the Appendix (Figure[7). While some shapes
are identified correctly (“mountain”, “barn”), most of them are not. This is of course understandable,
given that these images are not representative of CLIP’s training data.

In fact, it was not that easy for the human participants in the experiment to do this task either, at least
not for their initial attempts. However, they soon started to invent names for the different shapes,
forming conceptual pacts after repeated interactions and making the interactions more efficient over
time. If an artificial agent should be able to engage in such a task, it would clearly have to be able
to apply some form of continual learning in the way outlined in the introduction. For this to work,
CLIP still needs to have a good representation of the images. To investigate whether this is the case,
we performed a t-SNE analysis (Van Der Maaten & Hintonl, 2008) on the CLIP embeddings of the
colored tangram images to reduce the 512 dimensions to 2 dimensions, as illustrated in Figure [6]in
the Appendix. As can be seen, the shapes and colors seem to form clusters and to be handled in a
somewhat consistent fashion, which indicates that it should indeed be possible to learn names for
them.

4 THE COLLIE TRANSFORMATION

The idea behind CoLLIE is to learn a transformation function, 7 = 7'(t) : R>'2 — R®!2, which
takes the CLIP embedding of the text, ¢, and returns another transformed embedding, 7, that better
represents the new language use, and is closer to the CLIP image embedding 7, as illustrated in
Figure 2] It is important to note that in order to retain the zero-shot performance, 7" should in most
cases return a similar output as input, unless the text has a domain-specific meaning that the model
should correct for.

The transformation function is modelled as T'(t) = t + A(t) x S(t), where A(t) : R%12 — R5!2
is an adjustment function, and S(¢) : R5'? — [0, 1] is a scaling function. As we will see, this
scaling function helps to retain the zero-shot performance of the model. It can be noted that this
principle is similar to that of Residual connections in neural networks (He et al., 2016) and Gated
Linear Units (Dauphin et al., 2017).

Training examples are stored as pairs of text and image embeddings (¢, ), and thus have a limited
footprint (512+512 floats). A(t) is then trained to estimate the difference vector ¢ —¢, using the accu-
mulated training examples. We learn A using linear regression: A(t) = St+m, 3 € R?12X512 ¢
R512. To avoid overfitting (given the limited number of training examples) we use ridge regression

"For the experiments in this paper, we use the publicly released pre-trained CLIP model with the ViT-B/32
Vision Transformer architecture (https://github.com/openai/CLIP).
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Figure 2: The CoLLIE transformation. Figure 3: A principled illustrated of the intu-

ition behind CoLLIE.

(L2 regularization with A = 0.001). The objective of .S is to return a value close to 1 when the
input is a text that should be transformed (i.e., close to any example in the training set), and close to
0 otherwise. We learn S using support vector regression (SVR) with an RBF kernel (forced in the
range [0, 1]). The accumulated training examples are used as positive examples (with training target
1). As negative examples (with training target 0), we simply use a list of the 1000 most common
nouns in English (representing expressions that should not be transformed), which seemed to work
relatively well in our initial tests.

Figure [3)illustrates the intuition behind the model: Given that we have a reference to an image (“the
red monitor”), we encode it using CLIP and get an embedding ¢;. As can be seen, in this case the text
embedding is not very close to the embedding of the corresponding image ¢;, and will thus retrieve
the wrong referent. To teach the model to make better predictions in the future, we add the pair
(t1,11) as a training example. Using the accumulated training examples, we train A to approximate
the difference vector between the embedding of the image and the text (¢; — £1). Now, when a new
referring expression is to be resolved, “the blue monitor”, the expression is encoded by CLIP into 5.
Again, directly using this embedding would result in a poor match for this domain. If we now apply
the learned adjustment function A(¢2), it is likely to return a similar vector as 47 —¢; (given that ¢5 is
relatively close to ¢; and that we do not have any other, more similar, training examples). Similarly,
S(t2) is likely to return a value close to 1. We now get a new vector 7o = to + A(t2) x S(t2), which
is indeed closest to the true referent i5.

While our choice of models for A(t) and S(t) are just two examples of classes of functions that
could be used in the CoLLIE transformation, we chose them for demonstrating the efficiency of the
approach, even when these functions are very simple. Other adjustment and scaling functions could
of course be explored in future work. However, given that we want to be able to learn these functions
with very few examples, it is important that we use models requiring relatively few parameters.

5 EXPERIMENTS

5.1 EXPERIMENT I: LEARNING PSEUDO-WORDS FOR REALISTIC OBJECTS

We first devised an evaluation scheme to see whether the model can learn new words for pho-
tographic images from the LAD dataset, and monitor the retained zero-shot performance during
training. We randomly select a set of IV categories, Cl,qin, (out of the 200 categories) for which
we want to teach the model new names. We then assign a new name for each of these N cate-
gories, using randomly selected pseudo-words from the Novel Object and Unusual Name (NOUN)
Database (“boskot”, “derd”, “tust”, etc.) (Horst & Hout, |2016). Training is then performed over five
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Figure 4: Performance of the model over five rounds of training on the LAD dataset (averaged over
50 iterations, 95% CI), where |Ctyq:n| = 50. One training example per category is added per round.
(A) shows continual learning performance. (B) and (C) show retention performance. Few-shot
learner is only applicable for pane (A).

and testing is performed over six rounds (the initial round of testing is performed without training,
which reflects the model’s zero-shot performance). At the beginning of each round, we randomly
select 1 image for each of the 200 categories, without ever reusing images between rounds. We
then let the model rank the 200 images as potential referents for each pseudo-word, and the MRR is
computed as described in Section [3] At the end of each round, we add the images from C};.4;, and
their associated pseudo-words as training examples (i.e., one example per category) to the model,
and retrain it. This whole procedure is repeated over 50 iferations (with new pseudo-words and
categories randomly selected and assigned), in order get a smooth average performance per round.
We evaluate and compare the performance using (1) the CoLLIE model, (2) the fixed CLIP model,
and (3) a few-shot classifier based on logistic regression (implemented in the same way as in |Rad-
ford et al.[2021). For the few-shot classifier, each pseudo-word is treated as a class. To study the
effect of the scaling function, we also add (4) the CoLLIE model without the scaling function, and
(5) the CoLLIE model without scaling function, but where the negative examples (common nouns)
are added as training examples to the adjustment function to produce zero-length vectors (i.e., no
adjustment).

The results are shown in Figure @A), where N = 50. As can be seen, CoLLIE quickly learns
the new pseudo-words, and reaches a fairly good performance (0.618) already after one round (i.e.,
when it has only been provided with one example per category), increasing to 0.750 at the final round
(where five examples have been provided), which is quite close to CLIP’s zero shot performance of
0.773 for the original words on this dataset. Here, the scaling function has very little effect. Since
the CLIP model is not doing any learning, it obviously has a very poor zero-shot performance on
these new words. However, the few-shot classifier has a slightly better performance than CoLLIE,
especially after five examples are added (0.805). This is perhaps not very surprising, given that
it is optimizing this classification task, rather than transforming the embedding space. Also, in
this specific task, CoLLIE does not benefit from generalization of the learned words, as they are
arbitrarily assigned and there is no semantic compositionality effect.

To study the retained zero-shot performance of the model during training, we also plot the perfor-
mance of the models when using the original words for the 50 categories in Cl;.4;n, in Figure B).
As can be seen, the original names for those categories can still be resolved by CoLLIE with a slight
(but not catastrophic) drop in performance compared to the static CLIP model (0.699 vs. 0.760 at
the final round), even though the model has also learned new words for them. In this case, the scal-
ing function is important and without it the performance drops considerably (to 0.260). Similarly,
for each round, we also study the models’ retained zero-shot performance on 50 randomly selected
categories, Cytper, Which were not part of Ct,.q4n, using their original names. This is shown in
Figure C). Again, when using the scaling function, CoLLIE does not seem to interfere much with
CLIP’s original zero-shot performance (0.719 vs. 0.769 at the final round), while there is a drastic
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Table 1: Performance of the model (MRR) on the LAD dataset (averaged over 50 iterations), with
different numbers of classes/pseudo-words to learn (V). (A) shows continual learning performance
and (B) shows retention performance. n/s = negative samples used for the scaling function.

N = |Cirainl 10 50 100 150 10 50 100 150
(A) New pseudo-words | CY,q;p: After 1 example Clirain: After 5 examples
CoLLIE (1000 n/s) 0.616 0.618 0.636 0.634 | 0.770 0.750 0.746 0.751
CoLLIE (100 n/s) 0.639 0.629 0.639 0.636 | 0.770 0.750 0.746 0.752
CoLLIE (w/o scaling) 0.654 0.632 0.641 0.637 | 0.774 0.751 0.746 0.753
Few-shot learner 0.639 0.648 0.660 0.660 | 0.802 0.805 0.810 0.815
CLIP 0.033 0.030 0.030 0.028 | 0.028 0.029 0.030 0.031
(B) Original words Chrain: After 5 examples Clother: After 5 examples
CoLLIE (1000 n/s) 0.790 0.699 0.606 0.519 | 0.761 0.719 0.608 0.515
CoLLIE (100 n/s) 0.769 0.621 0450 0.333 | 0.732 0.638 0.443 0.314
CoLLIE (w/o scaling) 0.515 0260 0.127 0.078 | 0.361 0.242 0.112 0.054
CLIP 0.798 0.760 0.768 0.773 | 0.779 0.769 0.783 0.774

drop in performance (to 0.242) when the scaling function is not used. Since the few-shot learner has
no zero-shot performance to retain, its performance is not plotted in pane B-C.

As these experiments show, the scaling function is important for the performance of the model, and
simply adding the negative examples to the adjustment function does not have the same effect (as
seen in Figure [d). In the Appendix (Table [2), we also investigate different implementations of the
scaling function, of which SVR has an overall favorable performance.

To further investigate the performance, we also run experiments with different numbers of
classes/pseudo-words to learn (N = |Clyqinl), and different numbers of negative examples in the
scaling function. The results are shown in Table[I] As can be seen in (A), the continual learning
performance is relatively stable for different values of N. However, as seen in (B), the zero-shot
retention performance is clearly affected as N increases. This is especially true when only 100
negative examples are used for the scaling function. Thus, it is likely that the drop in retention per-
formance could be mitigated by adding even more negative examples, as /N increases. As seen in
(A), the number of negative examples does not seem to have a big effect on the continual learning
performance.

5.2 EXPERIMENT II: LEARNING LANGUAGE FOR TANGRAM FIGURES

The biggest expected benefit of CoLLIE comes from its ability to generalize from the language it
is learning, which was not addressed in Experiment I. We thus devised an evaluation scheme to see
how quickly the model can learn to identify the colored tangram shapes (introduced in Section [3),
for which it clearly had a very poor zero-shot performance. Here, we expect the model to benefit
from the compositionality of the referring expressions. As discussed earlier, given that it has learned
what concept to associate with the phrase “the blue rock”, it should be able to extrapolate this
understanding to “the red rock”.

Again, the task is to rank the 85 potential referents, given a referring expression. Similar to Exper-
iment I, the model starts out with no training examples (round 0). We then train the model over 30
rounds. In each round, one random referent is picked, the model’s performance (in terms of MRR)
on this referent is assessed, the image-text pair of the referent is added to the training set, the model
is retrained, and a new round begins. This whole procedure is then repeated over 3000 iterations,
resetting the model after each iteration. The MRR per round (over all iterations) is illustrated in Fig-
ure[5] We do a similar comparison with other models as in Experiment I. Here, we let the few-shot
learner (again, a logistic regression classifier) fall back on CLIP when it is presented with a referring
expression it has not seen before. We then add the new referring expression as a new class for the
few-shot learner, and retrain it.

As can be seen, CoLLIE quickly learns the names for the tangrams, reaching an MRR of 0.860
after 30 rounds. Note that the 85 images are all unique in terms of shape-color combinations,
which means that the model must be able to generalize in order to achieve this performance. In
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Figure 5: Performance of the model over 30 rounds of training (averaged over 3000 iterations) when
training on the colored tangrams (95% CI). One new training example is added per round.

contrast, the few-shot learner has a much worse performance, as new referring expressions (classes)
are introduced in most rounds in the beginning (unless the exact same object happened to be picked
twice), and it has no way of generalizing from already learned classes. This confirms the hypothesis
that CoLLIE should be able to benefit from the compositionality of language: After being taught
what a “red giraffe’” looks like, CoLLIE is now better at identifying a “blue giraffe”, combining the
base representation of “blue” with the learned meaning of “giraffe”.

To further confirm this ability, we also performed an experiment where we first train the model on
all 17 shapes of one random color, and then evaluate it on the same shapes with different random
colors. This was iterated 100 times. Whereas the CLIP baseline model (and the few-shot learner,
which has to fall back on the CLIP model) only had an average MRR of 0.317 on these unseen
combinations, CoLLIE achieved an MRR of 0.857.

The intuition behind why this works was illustrated in Figure 3} CoLLIE learns to predict the dif-
ference vector that needs to be applied. Thus, if the color dimensions in the CLIP embedding were
already aligned between the language and the image, there will not be any need to adjust those di-
mensions — it is only the dimensions related to the shape that need to be adjusted. The fact that
this works despite CLIP’s representation being entirely distributed is interesting. The steady im-
provement also indicates that the learning of each concept does not interfere with learning of other
concepts. However, as can be seen, without the scaling function, the model has a drastic drop in
performance for the first rounds, which is likely because the newly learned adjustments are added
too generously to unrelated referring expressions.

As a further (limited) test to verify the model’s ability to generalize, we substituted the names of the
tangrams with synonymﬂ (“barn”—*“shed”, “chicken”—‘hen”, etc.). This way, we formed referring
expressions such as “the blue hen”. Using the CoLLIE model trained for 30 rounds as described
above, we then evaluated these expressions (over all 3000 iterations). The MRR for these was 0.602,
which is clearly better than the baseline of 0.290 (using CLIP directly), providing further evidence
for the model’s ability to generalize. Given that many of the names had no obvious synonyms, the
individual performance of them varied greatly (MRR 0.056-0.920). A breakdown of these results
can be found in the Appendix (Figure 7).

6 DISCUSSION

Several previous studies have addressed the problem of incremental class learning in image classifi-
cation (Kemker & Kanan|, 2018} [Kemker et al.| [2018). However, to the best of our knowledge, the
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problem of continual adjustment of language-image embeddings to learn new language grounding
has not been addressed before. Thus, we do not have any results from prior work to compare our
performance with. However, we hope that this work can serve as a benchmark for future studies and
alternative models.

Returning to the four characteristics we aimed to achieve, we think that the model has shown to
be sample efficient, as it seems to reach a fairly high performance with only one training exam-
ple per new category. Second, Experiment II showed that the model was able to generalize from
the newly learned language use, thanks to the semantic compositionality of the referring expres-
sions. Third, Experiment I showed that the model was fairly robust, as despite a slight drop in the
model’s original zero-shot performance, it did not exhibit catastrophic forgetting. Finally, the model
is fairly computationally efficient, seeing as the transformation model uses very simple models
with few parameters and the stored training examples have a very small footprint. Nevertheless,
the transformation model needs to be retrained when new examples are added, so there are limits
to its scalability. Whether this is a problem, however, depends entirely on the use case scenario.
Regardless, the continual learning of the transformation function without storing examples is also
an interesting topic for future work.

As we have seen, the scaling function plays a very important role in retaining the model’s zero-shot
performance, making sure that only the newly learned terms are adjusted. However, given how the
scaling function was trained here (simply using common nouns as negative examples), this will not
always work, and we therefore still saw a slight drop in zero-shot performance, especially as the
number of new concepts to be learned increases. The scaling function could of course be more or
less restrictive. For example, it could require an exact match with a training example to set the
scale to 1, and O otherwise. This would retain all of the zero-shot performance, at the expense of
being able to generalize the learning to similar language use. Exploring more sophisticated scaling
functions that provide a good balance between retention and generalization is an interesting topic
for future work. For example, Shin et al.| (2017) explore the use of a generative model to generate
samples for rehearsal, which alleviates the need for storing training examples.

Of course, CoLLIE’s performance also relies on CLIP already having good representations of the
“new” categories, and so it can be argued whether the categories themselves are really new — it is
rather the transformed embedding of the language that better maps to this region in the embedding
space. In other words, it might be fair to say that the model learns domain-specific language use.
CoLLIE’s performance is thus limited by the performance of the base model (CLIP in this case) to
accurately represent the landscape of visual properties of objects. As pointed out by Radford et al.
(2021)), CLIP’s representations are limited in certain aspects, including counting objects in an image
or representing detailed attributes.

An interesting topic for future work is how to consolidate the learned transformation function into
the base model, and then learn a new transformation function on top of this, or to use different
transformation functions in different contexts, as language use is highly context dependent. Another
line of future work is to incorporate the model into a system that learns through interaction. Given
the small number of examples needed to learn new language use, the model should be interesting for
studies on continual language grounding in the context of human-robot interaction (e.g., Chai et al.
2016).

7 CONCLUSION

We have presented CoLLIE: a simple, yet effective model for continual learning of how language
is grounded in vision. Given a pre-trained language-image embedding model capable of zero-shot
image classification (CLIP), CoLLIE learns a transformation function that adjusts the language em-
beddings when needed to accommodate new language use. The transformation function learns the
difference vector that needs to be applied to the embedding, and uses a scaling function to retain em-
beddings that should not be adjusted. We establish new benchmarks with novel metrics to capture
the trade-off between continual learning, retention (avoiding catastrophic forgetting), and general-
ization. The evaluation showed that the model can learn new language use with very few examples.
Unlike traditional few-shot learning, the model does not just learn new labels, but can also generalize
to similar language use, and benefit from the semantic compositionality of language.
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8 REPRODUCABILITY STATEMENT

The models were implemented using scikit-learn (https://scikit—-learn.org/)), with stan-
dard parameters unless otherwise stated. The code used for running the experiments and reproducing
the results in this paper is provided as supplementary material, including necessary data or pointers
to data.
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A APPENDIX
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Figure 6: t-SNE dimensionality reduction of the colored tangram CLIP embeddings.

Table 2: Performance of the model (MRR) on the LAD dataset (averaged over 50 iterations), with
different implementations of the scaling function, where |Clyqir| = 50.

Learning new | Testing existing | Testing existing
pseudo-words for | words for Cyrqin words for Coiper
Ctrain

Round 1 5 1 5 1 5

SVR (RBF) 0.630 0.758 0.721 0.711 0.711 0.693

SVR (sigmoid) 0.574 0.756 0.759 0.690 0.749 0.672

SVR (linear) 0.614 0.758 0.736  0.684 0.729 0.667

SVR (poly) 0.635 0.758 0.711  0.715 0.701  0.698

Logistic regression | 0.633 0.756 0.656 0.679 0.649 0.657

Linear regression 0.640 0.759 0.646 0.644 0.640 0.624
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MAVMY YA KX

Shape arrow barn boat bridge chevron chicken crown giraffe goose
CLIP 0.114 1.000 0.095 0.097 0.338 0.108 0.843 0.050 0.053
CoLLIE 0.848 0.829 0.806 0.924 0.902 0.841 0.883 0.837 0.864
Synonym pointer shed ship overpass rank hen tiara camel duck
CLIP 0.073 1.000 0.130 0.109 0.599 0.098 0.616 0.059 0.059
CoLLIE 0.251 0.807 0.761 0.920 0.597 0.727 0.852 0.325 0.456
Shape head lozenge monitor mountain rock spikes temple wedge
CLIP 0.099 0.351 0.207 1.000 0.162 0.392 0.290 0.096
CoLLIE 0.893 0.892 0.778 0.990 0.914 0.835 0.753 0.845
Synonym skull troche screen hill stone spears church chock
CLIP 0.134 0.382 0.331 0.672 0.162 0.166 0.211 0.124
CoLLIE 0.651 0.807 0.362 0.880 0.877 0.310 0.597 0.056

Figure 7: Performance (MRR) on individual tangram shapes and their synonyms. Both the original
zero-shot performance of CLIP (over the 85 candidates), and the performance of CoLLIE (after
training on 30 examples with the original names), are shown.

13



	Introduction
	Related work
	Data, Task and Metric
	The CoLLIE transformation
	Experiments
	Experiment I: Learning pseudo-words for realistic objects
	Experiment II: Learning language for tangram figures

	Discussion
	Conclusion
	Reproducability statement
	Appendix

