
Liquid Resistance Liquid Capacitance Networks

Mónika Farsang
Technische Universität Wien (TU Wien)

Vienna, Austria
monika.farsang@tuwien.ac.at

Sophie A. Neubauer
DatenVorsprung GmbH

Vienna, Austria
sophie@datenvorsprung.at

Radu Grosu
Technische Universität Wien (TU Wien)

Vienna, Austria
radu.grosu@tuwien.ac.at

Abstract

We introduce liquid-resistance liquid-capacitance neural networks (LRCs), a neural-
ODE model which considerably improve the generalization, accuracy, and bio-
logical plausibility of electrical equivalent circuits (EECs), liquid time-constant
networks (LTCs), and saturated liquid time-constant networks (STCs), respectively.
We also introduce LRC units (LRCUs), as a very efficient and accurate gated RNN-
model, which results from solving LRCs with an explicit Euler scheme using just
one unfolding. We empirically show and formally prove that the liquid capacitance
of LRCs considerably dampens the oscillations of LTCs and STCs, while at the
same time dramatically increasing accuracy even for cheap solvers. We experimen-
tally demonstrate that LRCs are a highly competitive alternative to popular neural
ODEs and gated RNNs in terms of accuracy, efficiency, and interpretability, on
classic time-series benchmarks and an autonomous-driving lane-keeping task.

1 Introduction

Electrical equivalent circuits (EECs) are the foremost mathematical model used in neuroscience for
capturing the dynamic behavior of biological neurons [Kandel et al., 2000, Wicks et al., 1996]. EECs
associate the membrane of a neuron with a capacitor, whose potential varies according to the sum
of the stimulus, leaking, and synaptic currents, passing through the membrane, respectively. As a
consequence, EECs are formulated as a set of capacitor ordinary differential equations (ODEs).

EECs however, received little attention in the ML community, due to their ODE nature, except for
continuous-time recurrent neural networks (CT-RNNs) [Funahashi and Nakamura, 1993], which
are arguably EECs with electrical synapses [Farsang et al., 2024]. This changed with the advent
of Neural ODEs [Chen et al., 2018a, Rubanova et al., 2019, Dupont et al., 2019], and EECs with
chemical synapses were called liquid time-constant networks (LTCs) in Lechner et al. [2019], Hasani
et al. [2020], Lechner et al. [2020], as their time constant depends on both the state and the input.

The main promise of LTCs and Neural ODEs is to better capture physical reality and bridge the gap
between natural sciences and ML. They were shown to be more interpretable [Lechner et al., 2020,
Farsang et al., 2024] and able to recover missing data in irregularly-sampled time series [Chen et al.,
2018a, Rubanova et al., 2019, Dupont et al., 2019, Brouwer et al., 2019, Kidger et al., 2020, li et al.,
2023]. An important obstacle in the use of Neural ODEs and especially LTCs however, is their stiff
oscillatory nature, which requires the use of expensive ODE solvers [Biloš et al., 2021]. A best solver
moreover, cannot fully remove oscillations and improve accuracy, as shown in Figures 1 and 2.

1st Workshop on NeuroAI @ 38th Conference on Neural Information Processing Systems (NeurIPS 2024).

0 10 20 30 40 50
Time

0.025

0.020

0.015

0.010

0.005

0.000

0.005

0.010

Ro
ad

 c
ur

va
tu

re

LTC's prediction over time
Ground truth
LTC with Hybrid solver 1 unfolding
LTC with Hybrid solver 6 unfolding

0 10 20 30 40 50
Time

0.025

0.020

0.015

0.010

0.005

0.000

0.005

0.010

Ro
ad

 c
ur

va
tu

re

STC's prediction over time
Ground truth
STC with Explicit solver 1 unfolding
STC with Hybrid solver 1 unfolding
STC with Hybrid solver 6 unfolding

0 10 20 30 40 50
Time

0.025

0.020

0.015

0.010

0.005

0.000

0.005

0.010

Ro
ad

 c
ur

va
tu

re

LRC's prediction over time
Ground truth
LRC with Explicit solver 1 unfolding
LRC with Hybrid solver 1 unfolding
LRC with Hybrid solver 6 unfolding

Figure 1: Dynamic behavior of the output neuron in the Lane-Keeping Task [Lechner et al., 2022].
Left: In LTCs, this neuron has a very stiff oscillatory behavior, with a relatively large validation loss.
Moreover, LTCs fail to converge with an explicit Euler integration scheme of order one and just one
unfolding. Middle: STCs in contrast, convergence with an explicit Euler integration scheme of order
one and just one unfolding. However, the output neuron still exhibits stiff oscillatory behavior. Right:
In LRCs, this neuron has a very gentle varying behavior, with a very small validation loss, even when
using an explicit Euler scheme of order one and just one unfolding (no overhead).

0 20 40 60 80 100
Epochs

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Tr
ai

ni
ng

 lo
ss

Training loss
LTC with Hybrid solver 6 unfolds
STC with Explicit Euler solver 1 unfold
STC with Hybrid solver 6 unfolds
LRC-A with Explicit Euler solver 1 unfold
LRC-S with Explicit Euler solver 1 unfold

0 20 40 60 80 100
Epochs

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Va
lid

at
io

n
lo

ss
Validation loss

LTC with Hybrid solver 6 unfolds
STC with Explicit Euler solver 1 unfold
STC with Hybrid solver 6 unfolds
LRC-A with Explicit Euler solver 1 unfold
LRC-S with Explicit Euler solver 1 unfold

Time Per Best Lipschitz
Model Epoch Epoch Constant

LTC H6 10.06 min 52 ± 06 90±23×10−4

STC E1 03.97 min 50 ± 22 101±25×10−4

STC H6 10.13 min 69 ± 10 89±23×10−4

LRC-A E1 04.05 min 43 ± 08 47±08×10−4

LRC-S E1 04.16 min 22 ± 03 43±11×10−4

Figure 2: Training loss in the first and validation loss in the second figure of LTCs, STCs, and LRCs
for the Lane-Keeping Task. LTCs and STCs use a constant, unit elastance, whereas LRCs use the
liquid elastance of Equations (4-5). The results for LRCs solved with an explicit Euler integration
scheme with one unfolding (called LRCUs) are substantially better, both in terms of convergence
speed and accuracy. Per epoch and curves, the training took around 10 minutes for 6 unfoldings per
step and 4 minutes for 1 unfolding per step, which is 2.5 times faster.

In this paper, we show that the stiff dynamic behavior of LTCs results from abstraction. For simplicity,
EECs and LTCs first ignore the saturation aspects of membrane’s ionic channels [Alberts et al., 2008],
as discussed in Farsang et al. [2024]. To take such aspects into account, they introduce saturated LTCs
(called STCs). Second, and more importantly, EECs, LTCs and STCs also assume that membranal
capacitance is constant, which is disproved by recent results demonstrating a nonlinear dependence
on the neural state and input [Howell et al., 2015, Severin et al., 2022, Kumar et al., 2023].

Adding a liquid membrane capacitance to STCs, considerably reduces their variation wrt. inputs,
while also enhancing their accuracy, as shown in Figures 1,2 and proved in Theorems A.2. We
call the resulting model a liquid-resistance, liquid-capacitance neural network (LRC), as the LRC’s
liquid time-constant is now factored this way. Due to the gentle varying LRC behavior, an explicit
Euler integration scheme with one unfolding, is often enough to obtain a very small error. We call
LRCs solved with this scheme, LRC units (LRCUs). They closely resemble and competitive on the
performance of gated recurrent units [Hochreiter and Schmidhuber, 1997, Cho et al., 2014, Zhou
et al., 2016].

In summary, the main results of our paper are as follows:

• We introduce Liquid Resistance Liquid Capacitance Networks (LRCs), which considerably
improve the generalization, accuracy, and biological plausibility of EEC, LTC, and STC
models, respectively. We introduce LRC Units (LRCUs), as a very efficient and accurate
gated RNN-model, which results from solving LRCs with an explicit Euler scheme of order
one and one unfolding, only.

• We prove that the liquid capacitance of LRCs, leads to a more gentle varying behavior than
in LTCs and STCs, while at the same time dramatically increasing their accuracy even for
cheap solvers. We experimentally show that LRCs are competitive in accuracy, efficiency,
and interpretability to gated RNNs and Neural ODEs on classic benchmarks, and on a
complex Lane-Keeping Task.

2

2 Background

2.1 Liquid Time-Constant Networks (LTCs)

Definition. EECs are a simplified electrical model, defining the dynamic behavior of the membrane-
potential (MP) of a post-synaptic neuron, as a function of the MP of its pre-synaptic neurons, for
electrical or chemical synapses [Kandel et al., 2000, Wicks et al., 1996]. EECs with chemical
synapses only, are also known in the ML community as LTCs [Lechner et al., 2019, Hasani et al.,
2020, Lechner et al., 2020]. An LTC with m neurons and n inputs is defined as follows:

ḣi = −fi hi + ui eli

fi =
∑m+n

j=1 gjiσ(ajiyj + bji) + gli

ui =
∑m+n

j=1 kjiσ(ajiyj + bji) + gli

(1)

It states that the rate of change of the MP hi of neuron i, is the sum of its forget current −fi hi and
its update current ui eli. The forget conductance fi is the liquid time-constant reciprocal of hi. It
depends on y= [h, x], the MPs h of presynaptic neurons and inputs x. Here, gji is the maximum
conductance of the synaptic channels, aji, bji are parameters controlling the sigmoidal probability of
these channels to be open, and gli, eli are the membrane’s leaking (resting) conductance and potential,
respectively. In the update conductance ui, parameters kji = gjieji/eli take the sign of eji/eli, where
eji is the synaptic channel’s reversal potential, that is, the MP at which there is no net ionic flow.

2.2 Saturated Liquid Time-Constant Networks (STCs)

Definition. For simplicity, LTCs ignore saturation in synaptic channels [Alberts et al., 2008]. One
can take this aspect into account, by constraining the forget and signed-update conductances fi and
ui with a sigmoid and a hyperbolic tangent, to range within [0,1] and [-1,1], respectively. Letting fi
and ui be as above, this leads to the definition of saturated LTCs (STCs) of Farsang et al. [2024]:

ḣi = −σ(fi)hi + τ(ui) eli (2)
Accuracy. The dynamic behavior of the STC output neuron in the Lane-Keeping Task is shown
in Figure 1 (middle). It is more gently varying than in LTCs, and it succeeds to converge with an
explicit Euler integration with one unfolding. However, its behavior still oscillates around the ground
truth, and its validation loss, while better than the one of LTCs, remains relatively large, as shown in
Figure 2.

3 Liquid Resistance Liquid Capacitance Networks (LRCs)

Definition. For simplicity, LTCs and STCs assume that the membrane capacitance is constant and
equal to one. This is however not the case in biological neurons. They have a nonlinear dependence on
the MPs and the input [Howell et al., 2015, Severin et al., 2022, Kumar et al., 2023]. LRCs take this
aspect into account, by adding a liquid elastance (reciprocal of capacitance) ϵ(wi), in Equation (2),
where the weights matrix o and the bias vector p play the same role as the ones in an artificial neuron:

ḣi = ϵ(wi) (−σ(fi)hi + τ(ui) eli)

wi =
∑m+n

j=1 ojiyj + pi
(3)

Thus, the time constant in LRCs factors into a liquid resistance and a liquid capacitance. The second,
acts as an additional control of the time constant, by increasing it when the desired variation of the
function is gentle, and leaving it unchanged when the desired behavior is stiff. For convenience, we
provide the definition of both an asymmetric and a symmetric form of elastance in Equations (4-5),
respectively. Here, the parameters vector k of the symmetric version is non-negative in each of its
components:

(A) ϵ(wi) = σ(wi) (4)
(S) ϵ(wi) = σ(wi + ki)− σ(wi − ki) (5)

The shape of the two elastances is shown in Figure 3. The first is asymmetric with respect to y, while
the second is symmetric with respect to y. They both scale the elastance to range within [0,1], thus
acting to possibly decrease the variation of h. The linear output layer of the LRC may compensate
this, by possibly having values larger than one. The architecture of LRCs is given in Figure 6 (left).

3

4 2 0 2 4
y

0.0

0.2

0.4

0.6

0.8

1.0

C

o

Asymmetric Capacitance Formula

4 2 0 2 4
y

0.0

0.2

0.4

0.6

0.8

1.0

C

k

Symmetric Capacitance Formula

0.075 0.050 0.025 0.000 0.025 0.050
h of STC

0.08

0.06

0.04

0.02

0.00

0.02

0.04

h
of

 L
RC

 in
clu

di
ng

 e
la

st
an

ce

(w
i)

LRC Dynamics

0.25

0.20

0.15

0.10

0.05

0.00

0.05

0.10

Hi
dd

en
 st

at
e

h

Figure 3: Left, Middle: The asymmetric and symmetric shape of the membrane’s elastance ϵ(wi)
proposed for LRCs, using Formulas (4) and (5), respectively. Right: Experiment showing that the
LRC’s elastance dampens the dynamic behavior of STCs in an input and state-dependent way. It can
fully reduce it to zero, or keep it as it is, indicated by the red and black dashed lines, respectively.

(a) (b) (c) (d) (e) (f)

0 250 500 750 1000 1250 1500 1750 2000
Iteration

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Lo
ss

Validation loss in the Periodic Sinusoidal dataset
Neural-ODE
LRC

0 200 400 600 800 1000
Iteration

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Lo
ss

Validation loss in the Spiral linear ODE dataset
Neural-ODE
LRC

0 250 500 750 1000 1250 1500 1750 2000
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Lo
ss

Validation loss in the Duffing Oscillator dataset
Neural-ODE
LRC

0 500 1000 1500 2000 2500 3000 3500 4000
Iteration

0

1

2

3

4

5

Lo
ss

Validation loss in the Periodic Lotka-Volterra model dataset
Neural-ODE
LRC

0 250 500 750 1000 1250 1500 1750 2000
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

Lo
ss

Validation loss in the Asymptotic Lotka-Volterra model dataset
Neural-ODE
LRC

0 500 1000 1500 2000 2500 3000 3500 4000
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

Lo
ss

Validation loss in the Non-linear Lotka-Volterra model dataset
Neural-ODE
LRC

Figure 4: Top: Neural-ODE experiments with (x, y) state variables with plotted trajectory and phase
diagram, solved by LRCs. (a) Periodic sinusoidal system, (b) Spiral towards the origin, (c) Non-linear
Duffing oscillatory system, and Lotka-Volterra models with (d) Periodic and (e) Asymptotically
stable dynamics and (f) Non-linear version. Bottom: LRCs converged to a smaller loss, indicating
their ability to fit these dynamics better than the vanilla Neural-ODE.

4 Experimental Results

In the following subsections, we present our experimental results for LRCs, on different topics of
interest in the ML community. First, we investigate the accuracy and speed of LRCs in solving classic
Neural-ODE tasks. Second we explore the interpretability of the learned LRCUs (and thus LRCs) for
the Lane-Keeping Task. More experiments can be found in the Appendix A.4.

4.1 Accuracy and Speed of LRCs on Neural ODEs Benchmarks

LRCs are competitive in accuracy and convergence speed on popular Neural-ODE benchmarks.
As examples, we consider a Periodic Sinusoidal, a Spiral towards the origin Chen et al. [2018b],
the non-linear Duffing oscillator [Riyazia et al., 2023, Sholokhov et al., 2023, Constante-Amores
et al., 2024] and three versions of the Lotka-Volterra (LV) predator-prey model [Bhattacharya and
Martcheva, 2010, ten Klooster, 2021] well-known from evolutionary biology and ecology.

In our experiments we use an LRC with 16 hidden states. LRCs are highly suitable for such tasks
as they are ODEs. We also use two extra layers for mapping. The former maps the state of these
systems to the dimensionality of the hidden state, allowing us to learn more expressive 16-dimensional
dynamics. The latter remaps these dynamics back to the original system state dimensionality. We
compare the performance of the LRCs with a 3-layer Neural-ODE, containing 32, 32, and 2 neurons,
respectively. These three layers match the number of trainable parameters, with the ones of the LRCs.
Neural-ODEs are solved by Runge-Kutta 4(5) of Dormand-Prince, and LRCs by explicit Euler of
order 1. As one can see in Figure 4, we obtain for all tasks an arguably perfect fit. The results of our
experiments, averaged over 3 seeds, are shown in Figure 4 and in Table 2.

4.2 Interpretability of LRCUs on the Autonomous-Driving Lane-Keeping Task

To show that LRCUs outperform LSTMs, GRUs, and MGUs in terms of interpretability, we conduct
Lane-Keeping Task experiments, and compute the following interpretability metrics: the network
attention and its robustness by the structural similarity index, the absolute correlation of neural
activity with road trajectory, and the activity of neurons.

4

LST
M

GRU
MGU

LR
CU-A

LR
CU-S

0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

SS
IM

SSIM in summer

Noise σ2

0.1
0.2

LST
M

GRU
MGU

LR
CU-A

LR
CU-S

0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

SS
IM

SSIM in winter

Noise σ2

0.1
0.2

Summer Winter

LSTM 0.400 ± 0.299 0.450 ± 0.262
GRU 0.363 ± 0.256 0.389 ± 0.248
MGU 0.317 ± 0.227 0.308 ± 0.232
LRCU-A 0.500 ± 0.314 0.533 ± 0.292
LRCU-S 0.645 ± 0.321 0.766 ± 0.243

Figure 5: Left and middle: Robustness of the attention, measured by the Structural Similarity Index
(SSIM) Wang et al. [2004] of the models, in summer (left) and in winter (middle). The LRCU models
maintain the most similar focus of their attention in the presence of noise, indicated by the boxplots
closer to 1. Lighter color refers to additional Gaussian noise of 0-mean and σ2 = 0.1 variance,
and darker to σ2 = 0.2 variance. Right: Absolute correlation between the neural activity and the
trajectory of the road. Values closer to 1 indicate stronger correlation. Averaged over 3 runs.

Understanding neural-network attention during decision-making is a crucial element in increasing
trust in the network. By using the VisualBackprop [Bojarski et al., 2016] method, we visualize which
pixels in the input image have the most impact at the given timestep. Even though the same structure
of CNN heads is used in the training pipeline, the different recurrent parts of the decision-making
policy, have a big influence on the learned features in the convolutional part through backpropagation.
The attention in summer and winter season is given in the Appendix in Figure 11. By injecting a zero
mean Gaussian noise with a variance of 0.1 and 0.2 into the tests, respectively, we can measure how
robust their attention is. Quantitatively, this is measured by the Structural Similarity Index, displayed
in Figure 5.

As another interpretability metric, we assess how the neural activity within a Lane-Keeping RNN-
policy changes during deployment in the closed-loop simulation. Specifically, we are interested in
identifying neurons exhibiting an activity matching the geometry of the trajectory. We conduct tests
for a 1 km long drive, in both summer and winter. In the Appendix in Figure 12, we illustrate the
activity of States h1-h2, corresponding to Cells 1-2 in the RNN policy, respectively. Our results
reveal that the LSTM, GRU, MGU cells, have a scattered, hard-to-interpret activity, respectively.
In contrast, LRCU-S cells demonstrate a very gentle varying activity, that aligns very well with
the road’s trajectory. This is most likely due to their double-liquid resistance and capacitance time
constant. As shown in Table 5, we also compute the absolute-value cross-correlation metric, between
the final prediction sequence of the policy (which aligns with the road’s trajectory), and the sequence
of activities of all individual neurons. By considering the absolute value of the cross-correlations,
we ensure that equal importance is given to both positive (that is excitatory) and negative (that is
inhibitory) behaviors. This method yields values within the range of [0, 1], where values close to zero
indicate little to no correlation, and values close to one mean a very high correlation. The results
presented in Table 5 reinforce the observations from Figure 12, which indicate that LRCU-based
models, exhibit higher absolute-correlation values with the road’s trajectory compared to the other
models.

5 Discussion, Scope and Conclusion

We introduced Liquid-Resistance Liquid-Capacitance networks (LRCs), a Neural ODE model which
is more accurate, more efficient, and biologically more plausible, compared to neuroscience’s Electric
Equivalent Circuits of chemical synapses, and Liquid Time-Constant networks (STCs and LTCs).

Due to their gentle varying behavior LRCs are easy to integrate and applicable to a wide range
of scenarios, including continuous processes and datasets sampled regularly or irregularly. LRCs
thus represent a promising advancement in the field of bio-inspired deep learning. LRCs integrated
with explicit Euler of order 1, and a time-step of 1 (LRCUs), have a very similar structure to gated
RNNs. They not only demonstrate comparable performance to LSTMs, GRUs, and MGUs on several
benchmarks, but also exhibit significantly higher interpretability, demonstrated in the autonomous
Lane-Keeping task. Despite the limitation of the benchmarks used, which we acknowledge could be
expanded in subsequent work, our focus on analyzing the properties of our advanced bio-inspired
model and its performance across diverse scenarios demonstrates its potential and lays a solid
foundation for future exploration. Our results suggest that incorporating additional concepts from

5

neuroscience can advance machine learning models, offering opportunities for future research to
explore and further enhance model performance.

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie grant agreement No 101034277.

References
B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J.D. Watson. Molecular Biology of the Cell.

W. W. Norton & Company, 7th edition, 2008.

Souvik Bhattacharya and Maia Martcheva. Oscillations in a size-structured prey-predator model.
Mathematical Biosciences, 228(1):31–44, 2010. ISSN 0025-5564. doi: https://doi.org/10.
1016/j.mbs.2010.08.005. URL https://www.sciencedirect.com/science/article/pii/
S0025556410001252.

Marin Biloš, Johanna Sommer, Syama Sundar Rangapuram, Tim Januschowski, and Stephan Gün-
nemann. Neural flows: Efficient alternative to neural odes. In Advances in Neural Information
Processing Systems, volume 34, pages 21325–21337. Curran Associates, Inc., 2021.

Mariusz Bojarski, Anna Choromańska, Krzysztof Choromanski, Bernhard Firner, Lawrence D. Jackel,
Urs Muller, and Karol Zieba. Visualbackprop: visualizing cnns for autonomous driving. ArXiv,
abs/1611.05418, 2016. URL https://api.semanticscholar.org/CorpusID:16384108.

Edward De Brouwer, Jaak Simm, Adam Arany, and Yves Moreau. Gru-ode-bayes: Continuous
modeling of sporadically-observed time series. In Advances in Neural Information Processing
Systems, volume 32, pages 7379–7390. Curran Associates, Inc., 2019.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018a.

Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David Kristjanson Duvenaud. Neural ordinary
differential equations. In Neural Information Processing Systems, 2018b. URL https://api.
semanticscholar.org/CorpusID:49310446.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

Moustapha Cisse, Piotr Bojanowski, Edouard Grave, Yann Dauphin, and Nicolas Usunier. Parseval
networks: Improving robustness to adversarial examples. In International conference on machine
learning, pages 854–863. PMLR, 2017.

C. Ricardo Constante-Amores, Alec J. Linot, and Michael D. Graham. Enhancing predictive
capabilities in data-driven dynamical modeling with automatic differentiation: Koopman and
neural ode approaches, 2024. URL https://arxiv.org/abs/2310.06790.

Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neural odes. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

Mónika Farsang, Mathias Lechner, David Lung, Ramin Hasani, Daniela Rus, and Radu Grosu.
Learning with chemical versus electrical synapses does it make a difference? In 2024 IEEE
International Conference on Robotics and Automation (ICRA), pages 15106–15112, 2024. doi:
10.1109/ICRA57147.2024.10611016.

Ken-ichi Funahashi and Yuichi Nakamura. Approximation of dynamical systems by continuous time
recurrent neural networks. Neural Networks, 6(6):801–806, 1993.

6

https://www.sciencedirect.com/science/article/pii/S0025556410001252
https://www.sciencedirect.com/science/article/pii/S0025556410001252
https://api.semanticscholar.org/CorpusID:16384108
https://api.semanticscholar.org/CorpusID:49310446
https://api.semanticscholar.org/CorpusID:49310446
https://arxiv.org/abs/2310.06790

Ramin M. Hasani, Mathias Lechner, Alexander Amini, Daniela Rus, and Radu Grosu. Liquid
time-constant networks. In AAAI Conference on Artificial Intelligence, 2020.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput., 9(8):
1735–1780, nov 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL https:
//doi.org/10.1162/neco.1997.9.8.1735.

B. Howell, L.E. Medina, and W.M. Grill. Effects of frequency-dependent membrane capacitance on
neural excitability. Neural Engineering, 12(5):56015–56015, October 2015.

Eric R Kandel, James H Schwartz, Thomas M Jessell, Steven Siegelbaum, A James Hudspeth, Sarah
Mack, et al. Principles of neural science, volume 4. McGraw-hill New York, 2000.

Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural controlled differential equations
for irregular time series. In Advances in Neural Information Processing Systems, volume 33, pages
6696–6707. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_
files/paper/2020/file/4a5876b450b45371f6cfe5047ac8cd45-Paper.pdf.

Jitender Kumar, Patrick Das Gupta, and Subhendu Ghosh. Effects of nonlinear membrane capacitance
in the hodgkin-huxley model of action potential on the spike train patterns of a single neuron.
Europhysics Letters, 142(6):67002, jun 2023. doi: 10.1209/0295-5075/acd80c.

Quoc V Le, Navdeep Jaitly, and Geoffrey E Hinton. A simple way to initialize recurrent networks of
rectified linear units. arXiv preprint arXiv:1504.00941, 2015.

Mathias Lechner and Ramin Hasani. Learning long-term dependencies in irregularly-sampled time
series. arXiv preprint arXiv:2006.04418, 2020.

Mathias Lechner, Ramin Hasani, Manuel Zimmer, Thomas A. Henzinger, and Radu Grosu. Designing
worm-inspired neural networks for interpretable robotic control. In 2019 International Conference
on Robotics and Automation (ICRA), pages 87–94, 2019. doi: 10.1109/ICRA.2019.8793840.

Mathias Lechner, Ramin M. Hasani, Alexander Amini, Thomas A. Henzinger, Daniela Rus, and
Radu Grosu. Neural circuit policies enabling auditable autonomy. Nature Machine Intelligence, 2:
642–652, 2020.

Mathias Lechner, Ramin Hasani, Alexander Amini, Tsun-Hsuan Wang, Thomas A Henzinger, and
Daniela Rus. Are all vision models created equal? a study of the open-loop to closed-loop causality
gap. arXiv preprint arXiv:2210.04303, 2022.

ting li, Jianguo Li, and Zhanxing Zhu. Neural lad: A neural latent dynamics framework for times
series modeling. In Advances in Neural Information Processing Systems, volume 36, pages
17345–17356. Curran Associates, Inc., 2023.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Dekang Lin, Yuji Matsumoto, and Rada
Mihalcea, editors, Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages 142–150, Portland, Oregon, USA, June 2011.
Association for Computational Linguistics. URL https://aclanthology.org/P11-1015.

Yassin Riyazia, NavidReza Ghanbaria, and Arash Bahramib. Leveraging koopman operator and deep
neural net-works for parameter estimation and future prediction of duffing oscillators. ISAV, 2023.

Yulia Rubanova, Ricky T. Q. Chen, and David K Duvenaud. Latent ordinary differential equations
for irregularly-sampled time series. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019.

Daniel Severin, Sofia Shirley, Alfredo Kirkwood, and Jorge Golowasch. Daily and cell type-specific
membrane capacitance changes in mouse cortical neurons. bioRxiv, 2022. doi: 10.1101/2022.12.
09.519806.

Aleksei Sholokhov, Yuying Liu, Hassan Mansour, and Saleh Nabi. Physics-informed neural ode
(pinode): embedding physics into models using collocation points. Scientific Reports, 13(1):10166,
2023.

7

https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://proceedings.neurips.cc/paper_files/paper/2020/file/4a5876b450b45371f6cfe5047ac8cd45-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/4a5876b450b45371f6cfe5047ac8cd45-Paper.pdf
https://aclanthology.org/P11-1015

Jure Sokolić, Raja Giryes, Guillermo Sapiro, and Miguel RD Rodrigues. Robust large margin deep
neural networks. IEEE Transactions on Signal Processing, 65(16):4265–4280, 2017.

L.R. ten Klooster. Approximating differential equations using neural odes., July 2021. URL
http://essay.utwente.nl/87568/.

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry.
There is no free lunch in adversarial robustness (but there are unexpected benefits). arXiv preprint
arXiv:1805.12152, 2(3), 2018.

Vedrana Vidulin, Mitja Lustrek, Bostjan Kaluza, Rok Piltaver, and Jana Krivec. Localization Data for
Person Activity. UCI Machine Learning Repository, 2010. DOI: https://doi.org/10.24432/C57G8X.

Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. Image quality assessment: from error
visibility to structural similarity. IEEE Transactions on Image Processing, 13(4):600–612, 2004.
doi: 10.1109/TIP.2003.819861.

Stephen R Wicks, Chris J Roehrig, and Catharine H Rankin. A dynamic network simulation of
the nematode tap withdrawal circuit: predictions concerning synaptic function using behavioral
criteria. Journal of Neuroscience, 16(12):4017–4031, 1996.

Guo-Bing Zhou, Jianxin Wu, Chen-Lin Zhang, and Zhi-Hua Zhou. Minimal gated unit for recurrent
neural networks. International Journal of Automation and Computing, 13(3):226–234, 2016.

8

http://essay.utwente.nl/87568/

A Appendix

This appendix explores the properties of LRCs, provides the proofs of the two theorems stated,
discusses the RNN form of LRCUs and their connection to GRUs and other gated recurrent units,
and gives additional experimental evaluation and details, demonstrating the accuracy, efficiency, and
interpretability of LRCs.

A.1 Properties of LRCs

Lipschitz constant. The dynamic behavior of the LRC output neuron in the Lane-Keeping Task
is shown in Figure 1(right). It has a very gently varying behavior, closely following the ground
truth. It was demonstrated that a lower Lipschitz constant enhances robustness [Cisse et al., 2017],
generalization [Sokolić et al., 2017], and interpretability [Tsipras et al., 2018].

Figure 6: The architecture of LRCs (left) and of LRCUs (right, explicit 1st order Euler discretization of
LRCs with one unfolding). Both LRCs and LRCUs have a sigmoidal forget gate σ(ft), a hyperbolic-
tangent update gate τ(ut), and a sigmoidal symmetric or asymmetric smoothen gate ϵ(wt).

Due to its very gentle varying behavior, an explicit Euler integration with one unfolding, is often
sufficient for obtaining an acceptable validation loss. This dramatically speeds up computation, as
the solver introduces no overhead. This is particularly useful for time series with regularly sampled
data, lacking timing information. Here, a time step of one, leads to a network closely resembling
gated recurrent neural networks [Hochreiter and Schmidhuber, 1997, Cho et al., 2014, Zhou et al.,
2016]. Its architecture is shown in Figure 6 (right). We call this network, an LRC unit (LRCU).

Accuracy. The addition of a liquid elastance in LRCs does not only reduce oscillations, but it also
dramatically improves accuracy. This is illustrated for the Lane-Keeping Task in Figure 2, where the
validation loss of the LRC’s output neuron, is considerably smaller compared to the one of LTCs and
STCs. While the above theorem proves a smaller Lipschitz constant, the following theorem proves
accuracy.

Efficiency. Solving LTCs, STCs, and LRCs with popular ODE-integration techniques, is computa-
tionally expensive. A hybrid forward-backward Euler method [Lechner et al., 2020] for example,
takes multiple unfolding rounds for a given input, to achieve a good approximation of the solution. In
Figure 2 we show the validation loss of LTCs, STCs, and LRCs, for the Lane-Keeping Task [Lechner
et al., 2022], where the state of the neurons is computed with a fixed integration step ∆. Diving this
into 6 equidistant time steps ∆/6 within one update step, results in a considerably better model, but
at a higher cost of 10min versus 4min per epoch. This results in a 2.5× longer computation time.

In Figure 2, we also compare the training and validation loss of the LRCUs and LRCs, for the
Lane-Keeping Task, where we compute the elastance term ϵ(wi) in two different ways, by using
Equations (4-5), and learning the parameters o, p, and k. Using these proposed liquid elastances
leads to a considerably faster convergence of validation loss, to a much smaller loss. In particular, the
symmetric elastance achieves the best results, by essentially converging in around 20 epochs, to a
loss of about 0.15. The LTCs and STCs instead, converge in about 60 epochs, at a loss of 0.22.

Interpretability. In Lechner et al. [2020], it was shown that trained LTCs are interpretable, when
used in a neural-circuit-policy (NCP) architecture. Later on in Farsang et al. [2024], it was shown
that interpretability naturally occurs in STCs, even when using a single, dense, all-to-all hidden layer.
This is also true for LRCs. As we show in Section 4 for the Lane-Keeping Task, LRCUs lead to very
interpretable behavior of neurons in the hidden layer.

9

A.2 Theorems and Proofs

In this section we provide the theorems and proofs. The LRC Lipschitz Theorem first derives the
local Lipschitz constant of LRCs and then shows that it is smaller than the one of STCs. The LRC
Generalization Theorem, first computes the error of LRCs on the validation time series, and then
shows that it is less than the one of the STCs, considering the validation set being drawn from
in-distribution.

A.2.1 Lipschitz constant Theorem and Proof

Theorem 1 (LRC Lipschitz). Let the Lipschitz constant λs bound the sensitivity of an STC-model
instance of Equation (2), with respect to its inputs and hidden states. Then, there exists an associated
LRC-model instance of Equation (3), with a Lipschitz constant λr, such that λr < λs.

Intuitively, for an LRC having the parameter values for its forget and update conductances fixed as in
an STC, one can set the parameter values of its elastance, such that the Lipschitz constant of the LRC
is smaller than the one of the STC. This leads to LRC being a function which does not change rapidly
when the input changes.
Proof. Let T be the time horizon of the prediction, K be the dimension of the output, m the dimension
of the states, n the dimension of the input and Q ∈ RK×m define the linear output layer. Let the
output of the STC be defined by os =Qhs, with ḣs satisfying Equations (2), hidden states hs, inputs
x, and linear output Qhs, and with trained synaptic parameters for Q and ḣs. Let an associated LRC
be defined by or =Qhr, with ḣr satisfying Equations (3). If we keep in the LRC all the parameters as
they were trained for the STC, and only adapt the elastance ϵ(w), then it holds that ḣr = ϵ(w)⊙ ḣs.

The Lipschitz constant λ of the output o(y) computed by the LRC and STC networks, is defined
such that ∥o(y1)− o(y2)∥2 ≤ λ∥y1 − y2∥2 for all y1, y2 in the input space of these networks. From
the Mean Value Theorem it holds that for every y1, y2 it exists a c such that ∥o(y1) − o(y2)∥2 ≤
∥∇yo(c)∥2∥y1 − y2∥2. Thus, if a maximum exists, then maxc ∥∇yo(c)∥2 is a Lipschitz constant.

We now want to prove that there exists a choice of parameters for ϵ(w), such that the Lipschitz
constant of the output or of the LCR with respect to its hidden states and input y = [h, x], is less than
the one of os in the STC. So the goal is to state conditions on the parameters of ϵ(w) such that:

max
y

∥∇yo
s∥2 ≤ λs ∧max

y
∥∇yo

r∥2 ≤ λr ⇒ λr < λs (6)

Let us use o, h when stating an equation which holds for STCs as well as LRCs:

o = Qh, ok =

m∑
i=1

qkihi (7)

∂ok
∂yj

=

m∑
i=1

qki
∂hi

∂yj
(8)

With ∆t the time difference between two outputs, and by using Leibniz integral rule it holds that:∣∣∣∣ ∂ht

∂yt,j

∣∣∣∣ = ∣∣∣∣∂ht−∆t

∂yt,j
+

∂

∂yt,j

∫ t

t−∆t

ḣdt

∣∣∣∣ (9)

=

∣∣∣∣∣∣∣∣∣
∂ht−∆t

∂yt,j︸ ︷︷ ︸
≤1

+

∫ t

t−∆t

∂ḣ

∂yt,j
dt

∣∣∣∣∣∣∣∣∣ (10)

≤ 1 +

∣∣∣∣∣
∫ t

t−∆t

max
y

∂ḣ

∂yt,j
dt

∣∣∣∣∣ (11)

As ḣ is time-independent, maxy ∂yj
ḣ is the same for all t, thus:∣∣∣∣ ∂ht

∂yt,j

∣∣∣∣ ≤ 1 +

∣∣∣∣∣∆t ·max
y

∂ḣ

∂yt,j

∣∣∣∣∣ (12)

10

(8)⇒
∣∣∣∣∂ok∂yj

∣∣∣∣ ≤ m∑
i=1

|qki|

(
1 + ∆t ·max

y

∣∣∣∣∣∂ḣi

∂yj

∣∣∣∣∣
)

= vkj (13)

max
y

∥∇yo∥2 ≤ ∥V ∥2 = λ (14)

Here V ∈ RK×m contains the values vkj from Equation (13). When bounding V later on in the
proof, we will need the following known upper bounds of derivatives:

σ′(x) ≤ 0.25, τ ′(x) ≤ 1 (15)

Using these bounds, for the symmetric version of elastance in Equation (5) it holds that:

ϵ′(wi) = σ′(wi + ki)− σ′(wi − ki) ≤ maxσ′(wi + ki)−minσ′(wi − ki) ≤ 0.25 (16)

Further, we will need later on, that for ϵ(wi) ∈ (0, 1) it holds that:

ϵ′(wi)

1− ϵ(wi)
≤ ϵ(wi) (17)

For asymmetric ϵ this is straightforward as the derivivative of a sigmoid is σ′(x) = σ(x) · (1− σ(x)).
For symmetric ϵ we need to reformulate the equations using that σ(wi+ki) ≥ σ(wi−ki) for ki ≥ 0:

ϵ′(wi)

1− ϵ(wi)
=

σ(wi + ki)(1− σ(wi + ki))− σ(wi − ki)(1− σ(wi − ki))

1− σ(wi + ki) + σ(wi − ki)
(18)

≤ σ(wi + ki)(1− σ(wi + ki))− σ(wi − ki)(1− σ(wi + ki))

1− σ(wi + ki)
(19)

= ϵ(wi) (20)

Now we can derive an upper bound for the sensitivity of ḣs
i to the input or hidden state yj :∣∣∣∣∣∂ḣs

i

∂yj

∣∣∣∣∣ ≤
∣∣∣∣∂σ(fi)∂yj

hs
i

∣∣∣∣+ ∣∣∣∣σ(fi)∂hs
i

∂yj

∣∣∣∣︸ ︷︷ ︸
≤1

+

∣∣∣∣∂τ(ui)

∂yj
eli

∣∣∣∣ (21)

≤ |σ′(fi)gjiσ
′(ajiyj + bji)ajih

s
i |+ |τ ′(ui)kjiσ

′(ajiyj + bji)ajieli|+ 1 (22)

≤ 0.0625|gjiajihs
i |+ 0.25|kjiajieli|+ 1 = max

y

∣∣∣∣∣∂ḣs
i

∂yj

∣∣∣∣∣ (23)

For the sensitivity of the LRC it holds that:

ḣr
i = ϵ(wi) · ḣs

i (24)∣∣∣∣∂ϵ(wi)

∂yj

∣∣∣∣ = |ϵ′(wi) · oji| (25)∣∣∣∣∣∂ḣr
i

∂yj

∣∣∣∣∣ =
∣∣∣∣∣ϵ(wi) ·

∂ḣs
i

∂yj
+

∂ϵ(wi)

∂yj
· ḣs

i

∣∣∣∣∣ , (26)

Here oji are the trainable parameters of wi. As ∂ϵ(wi)
∂yj

= ϵ(wi)(1− ϵ(wi))oji, for ϵ(wi) ∈ {0, 1} it

follows from Equation (26) that |∂yj
ḣr
i | = |∂yj

ḣs
i |. For ϵ(wi) ∈ (0, 1):∣∣∣∣∣∂ḣr

i

∂yj

∣∣∣∣∣ =
∣∣∣∣∣ϵ(wi) ·

∂ḣs
i

∂yj
+

∂ϵ(wi)

∂yj
· ḣs

i

∣∣∣∣∣ (27)

≤ ϵ(wi) ·

∣∣∣∣∣∂ḣs
i

∂yj

∣∣∣∣∣+ ϵ′(wi) · |oji| · |ḣs
i | (28)

Now let us choose the trainable parameters oji in such a way, that:

|oji| ≤ min{0.0625|gjiaji|, 0.25|kjiaji|} = o∗ji (29)

11

Then for this choice, and using Equation (17) it holds that:

ϵ′(wi)

1− ϵ(wi)
|oji||ḣs

i |
(17)
≤ ϵ(wi)|oji||ḣs

i | (30)

(2),(15)
≤ ϵ(wi)|oji|(|hs

i |+ |eli|) (31)
≤|oji||hs

i |+ |oji||eli| (32)

(29)
≤ 0.0625|gjiajihs

i |+ 0.25|kjiajieli|+ 1
(23)
= max

y

∣∣∣∣∣∂ḣs
i

∂yj

∣∣∣∣∣ , (33)

which is equivalent to:

ϵ′(wi) · |oji| · |ḣs
i | ≤ (1− ϵ(wi))max

y

∣∣∣∣∣∂ḣs
i

∂yj

∣∣∣∣∣ (34)

⇔

ϵ(wi) ·max
y

∣∣∣∣∣∂ḣs
i

∂yj

∣∣∣∣∣+ ϵ′(wi) · |oji| · |ḣs
i | ≤ max

y

∣∣∣∣∣∂ḣs
i

∂yj

∣∣∣∣∣ (35)

(28)⇒

max
y

∣∣∣∣∣∂ḣr
i

∂yj

∣∣∣∣∣ ≤ max
y

∣∣∣∣∣∂ḣs
i

∂yj

∣∣∣∣∣ (36)

If for all i, j Equation (29) holds, and if there exists at least one pair ī, j̄ such that |oj̄ī| < o∗
j̄ī

, then

also Equation (36) holds with inequality for these indices (maxy ∂yj̄
ḣr
ī
< maxy ∂yj̄

ḣs
ī
) and thus by

using Equations (13)- (14) it follows that:

vrkj ≤ vskj ∀j = {1, . . . ,m+ n} (37)

vrkj̄ < vskj̄ (38)

⇒ λr < λs (39)

This proves that the Lipschitz constant of LRCs is smaller than the Lipschitz constant of STCs.

A.2.2 Generalization Theorem and Proof

Theorem 2 (LRC Generalization). Let hs be an STC-model instance of Equation (2) with hr being
an associated LRC-model instance of Equation (3) with λr < λs (Theorem. A.2.1). Let oTt be training
labels and ôT,r

t and ôT,s
t be the predictions of the models hr and hs respectively. Let both models have

a small training loss ∥oTt − ôTt ∥2 < ϵT with small ϵT > 0. Let yTt and yVt be respectively training
and validation input. Let the validation set be similar to the training set (drawn in-distribution) in a
sense that for every time t it holds that ∥yTt −yVt ∥2 < ϵy and ∥oTt −oVt ∥2 < ϵo with small ϵy, ϵo > 0.
Then it holds that the upper bound of the validation loss of the LRC-model is smaller than the one of
the STC-model.

Intuitively, if the validation set is similar to the training set modulo some small perturbation, are
drawn from the same distribution, one can use a Taylor series approximation of the validation loss
o(yV) ≈ o(yT) + (yV − yT)T∇yo(y

V) and get an upper bound on the validation loss by using
Theorem A.2.1. As the Lipschitz constant of the LRC is smaller than the one of STC, also the upper
bound of the validation loss of the LRC-model is smaller than the one of the STC-model.

Proof. Let oT1 , . . . , o
T
T be the labels of the training set, oV1 , . . . , o

V
T be the ones of the validation set

and ôTt and ôVt be respectively the output of the models of the training and the validation set. The STC
or LRC model will be denoted in the superscript as s or r. When not using one of these superscripts,
the statement holds for both models. Let T be the time horizon of the prediction.

12

Let the loss function for the STC and LRC networks be defined as usual, as follows:

L(o, ô) =
1

T

T∑
t=1

∥ot − ôt∥2, (40)

Then for the validation loss it holds that:

L(oV , ôV) =
1

T

T∑
t=1

∥oVt − ôVt ∥2 (41)

=
1

T

T∑
t=1

∥oVt − oTt + oTt − ôTt + ôTt − ôVt ∥2 (42)

≤ 1

T

T∑
t=1

∥oVt − oTt ∥2 + ∥oTt − ôTt ∥2 + ∥ôTt − ôVt ∥2 (43)

≤ 1

T

T∑
t=1

ϵo + ϵT + ∥ôTt − ôVt ∥2 (44)

As ôVt is a function of the input yVt , we will switch to the notation: ôTt = ô(yVt). Moreover, as we
assumed that ∥yTt − yVt ∥2 < ϵy , we can use a Taylor-series approximation:

ô(yVt) ≈ ô(yTt) + (yVt − yTt)
T∇y ô(y

V
t) (45)

⇔
ô(yVt)− ô(yTt) ≈ (yVt − yTt)

T∇y ô(y
V
t) (46)

⇒
∥ô(yVt)− ô(yTt)∥2 ≈ ∥(yVt − yTt)

T∇y ô(y
V
t)∥2 (47)

≤ ∥(yVt − yTt)∥2 · ∥∇y ô(y
V
t)∥2 (48)

≤ ϵy · λ, (49)

Here, λ is the Lipschitz constant of the model. Putting this upper bound into Equation (44), we can
set the upper bound of the validation loss L̄(oV , ôV) as follows:

L(oV , ôV) ≤ ϵo + ϵT + ϵy · λ = L̄(oV , ôV) (50)

Finally, by using Theorem A.2.1, it holds that:

L̄(oV , ôV,r) = ϵo + ϵT + ϵy · λr < ϵo + ϵT + ϵy · λs = L̄(oV , ôV,s) (51)

This proves that the validation loss of LRCs is smaller than the validation loss of STCs.

A.3 Liquid Resistance Liquid Capacitance Units (LRCU)

In this section we first introduce the RNN formulation of LRCUs, which as discussed in the paper,
are a very accurate and efficient Euler integration of order one of LRCs, with a time step of one.
Since LRCUs turn out to be a new form of gated recurrent units, we explore their relation to GRUs.

A.3.1 LRCUs as an RNN

Starting from the Neural-ODEs model of saturated biological neurons with chemical synapses (the
saturated EECs) of Equation (2), we have shown that first considering a liquid capacitance (elastance)
as in Equation (3) and then discretizing the ODEs leads to a very accurate and efficient gated RNN,
which we called an LRCU. The formulation of this discrete unit is the following:

hi,t = (1− ϵ(wi,t)σ(fi,t))hi,t−1 + ϵ(wi,t) τ(ui,t) eli

fi,t =
∑m+n

j=1 gjiσ(ajiyj,t + bji) + gli

ui,t =
∑m+n

j=1 kjiσ(ajiyj,t + bji) + gli

wi,t =
∑m+n

j=1 ojiyj,t + pi

(52)

13

Here, one can use either an asymmetric or a symmetric form of elastance ϵ in Equations (4-5),
respectively. We will denote the first choice as LRCU-A, and the second choice as LRCU-S.

Next, we show how can one re-formulate GRUs and make connections to LRCUs. MGUs and LSTMs
could be related to LRCUs, with minor modifications, in a similar manner.

A.3.2 LRCUs versus GRUs

In this section we explore the connections between LRCUs and GRUs. The general form of a gated
recurrent units (GRU) is according to Cho et al. [2014], an RNN of the following form:

hi,t = (1− σ(fi,t))hi,t−1 + σ(fi,t) τ(ui,t)

fi,t =
∑m+n

j=1 afji yj,t + bfj

ui,t =
∑m+n

j=1 auji y
′
j,t + buj

ri,t =
∑m+n

j=1 arji yj,t + brj

(53)

Here, vector yt occurring in functions fi,t and ri,t, is defined as before, as yt = [ht−1, xt]. However,
vector y′t occurring in ui,t is defined as y′t = [σ(rt)⊙ht−1, xt]. Thus, previous state ht−1 is pointwise
scaled in the update part τ(ui,t) of the GRU, with a nonlinear state-and-input dependent function
σ(ri,t), whose parameters are to be learned. This function is called in GRUs a Reset Gate (RG).
Moreover, the state-and-input dependent function σ(fi,t) is called in GRUs an Update Gate (UG).

The RG determines how previous state ht−1 is used in the update τ(ui,t). The UG σ(fi,t) controls
the amount (1− σ(fi,t)) of the previous state hi,t−1, to be remembered in the next state. However,
this UG also controls the amount of the update τ(ui,t) to be considered in the next state, by using it
to multiply the update. One can identify the GRU’s UG with the LRCU’s smoothen (elastance) gate.

Given the above discussion, GRUs can also be understood as the ordinary difference equations
associated with the Neural ODEs below. From this, one can get back to the original form of
Equations (53), using an explicit Euler integration scheme of order one with a unit time difference:

ḣi = σ(fi)(−hi + τ(ui))

fi =
∑m+n

j=1 afji yj + bfj

ui =
∑m+n

j=1 auji y
′
j + buj

ri =
∑m+n

j=1 arji yj + brj

(54)

Here the vector y= [h, x] is defined as before, and vector y′ = [σ(r)⊙ h, x]. The RG occurring in
y′ determines how state h is used in the update part τ(ui) of the ODE. The LRC’s time constant
(TC) thus consists of a liquid resistance liquid capacitance, while the GRU’s TC consists of a liquid
capacitance, only. As a consequence, GRUs have a less expressive TC but more expressive update.

A.4 Experiments for LRC(U)s

In this section, we provide additional experiments and implementation details about our experimental
evaluation of LRC in ODE modeling and LRCUs on the popular benchmarks for gated recurrent
units. The benchmarks considered were the Localization Data for Person Activity, the IMDB Movie
Sentiment Classification, the Permuted Sequential MNIST, and a relatively complex autonoumous-
driving in the Lane-Keeping Task.

In general, LRC(u)s have more trainable parameters per cell. Therefore, we are training the other
models with more cells to ensure a fair comparison between them.

The experiments are run on an Nvidia Tesla T4.

A.4.1 Neural ODE Experiments

For ODE modeling tasks, we used a 3-layer (units of 32, 32 and 2) Neural ODE and the LRC
(units of 16) with additional input and output mapping, which hold 1k trainable parameters. The
hyperparameters are presented in Table 1. We use sequences of 16 points during training and test the

14

models on the whole sequences of 1000 data points giving them only the initial state information of
(x0, y0). As some ODE modeling tasks are more challenging, we allocated longer training iteration
time for them. The training time is 0.4-0.5 seconds per iteration for both models.

Table 1: Hyperparameters of the Neural ODE experiments.

Variable Value

Learning rate 10−3

Batch size 16
Training sequence length 16
Iterations 1000/2000/4000

• Periodic Sinusoidal: dx/dt = x · (1−
√

x2 + y2)− y, dy/dt = x+ y · (1−
√
x2 + y2).

• Spiral: dx/dt = Ax, where A = [[−0.1, 3], [−3,−0.1].

• Duffing Oscillation: dx/dt = y, dy/dt = x− x3.

• Periodic Lotka-Volterra: dx/dt = a · x− b · x · y, dy/dt = −c · y + d · x · y with a = 1.5,
b = 1, c = 3 and d = 1.

• Asymptotic Lotka-Volterra: dx/dt = x · (1− x)− x · y, dy/dt = −y+ d · x · y with d = 2.

• Non-linear Lotka-Volterra: dx/dt = x · (1− x)− a · x · y, dy/dt = y · (1− y) + x · y with
a = 0.33.

These examples originate from the TensorFlow implementation of Chen et al. [2018b], tfdiffeq.

A.4.2 Accuracy and Speed of LRCUs on RNNs Benchmarks

In this section we ask and positively answer, if LRCUs are competitive with respect to accuracy and
convergence speed, compared to the popular gated RNNs. To this end, we conduct experiments on
a wide range of time-series modeling applications, including: Classification of activities based on
irregularly sampled localization data; IMDB movie reviews; and Permuted sequential MNIST tasks.

To achieve a somewhat similar number of parameters, we use 64 cells for LRCUs, and 100 cells for
the others. The total number of parameters in a model also depends on the number of inputs and
outputs of the tasks considered. Finally, we also conduct experiments in a relatively complex and
high-dimensional, Image-based Regression Task, for lane keeping in autonomous vehicles.

All experimental details, including the hyperparameters and the number of trainable parameters,
are given in Appendix A.4. In Table 3 we provide the accuracy of the various models compared.
Moreover, in Figure 7 we give the validation accuracy convergence curves for the compared models.

Localization Data for Person Activity. The localization data for the Person Activity dataset given
in Vidulin et al. [2010], captures the recordings of five individuals, engaging in various activities.
Each wore four sensors at the left and the right ankle, at the chest, and at the belt, while repeating
the same activity five times. The associated task, is to classify their activity based on the irregularly
sampled time-series. This task is a classification problem, adapted from Lechner and Hasani [2020].

Table 2: Test loss of various ODE tasks, with LRCs showing good performance. Results are averaged
over 3 seeds.

Task Neural-ODE LRC

Sinusoid 0.140± 0.033 0.019± 0.005
Spiral 0.012± 0.005 0.009± 0.004
Duffing Oscill. 0.142± 0.117 0.003± 0.001
Periodic LV 0.025± 0.006 0.005± 0.001
Asymptotic LV 0.030± 0.0002 0.009± 0.001
Non-linear LV 0.033± 0.010 0.008± 0.004

15

Table 3: Classification accuracy in percentage. For similar number of trainable parameters, we
used 64 cells in LRCUs and 100 cells in the other models. We repeated the experiments 5× for
the irregularly sampled localization of person activity, and 3× for IMDB and permuted sequential
MNIST classification tasks, respectively.

Task LSTM GRU MGU LRCU-A LRCU-S

Localization 82.90± 0.31 82.76± 0.41 83.35± 0.30 83.90± 0.34 84.21± 0.26
IMDB 86.56± 0.49 86.32± 0.51 85.18± 0.85 87.00± 0.53 85.73± 0.41
psMNIST 91.20± 0.10 90.20± 0.44 87.78± 0.82 91.31± 0.33 91.74± 0.41

0 25 50 75 100 125 150 175 200
Epochs

0.4

0.5

0.6

0.7

0.8

Va
lid

at
io

n
ac

cu
ra

cy

Validation accuracy in Person Activity dataset

LSTM
GRU
MGU
LRCU-A
LRCU-S

0 5 10 15 20 25 30
Epochs

0.65

0.70

0.75

0.80

0.85

Va
lid

at
io

n
ac

cu
ra

cy

Validation accuracy in IMDB sentiment classification dataset

LSTM
GRU
MGU
LRCU-A
LRCU-S

0 25 50 75 100 125 150 175 200
Epochs

0.0

0.2

0.4

0.6

0.8

Va
lid

at
io

n
ac

cu
ra

cy

Validation accuracy in Permuted Sequential MNIST dataset

LSTM
GRU
MGU
LRCU-A
LRCU-S

Figure 7: Accuracy convergence. Left: Irregularly sampled person activity dataset. As one can see,
LRCUs converge a bit slower, yet they achieve the best accuracy after 100 epochs. Middle: IMDB
sentiment classification problem. LRCU-A achieves the highest accuracy after only 5 epochs. The
accuracy though, decreases a bit over time. Right: Permuted sequential MNIST dataset. LRCUs
demonstrate a sligtly better validation accuracy when compared to GRUs and LSTMs.

In Table 3, we present the experimental results for the accuracy of the classification for LSTMs,
GRUs, MGUs, and LRCUs. The experiments for the LRCUs were done with both the asymmetric
(LRCU-A) and the symmetric (LRCU-S) elastance, respectively. As one can see, both LRCUs
considerably outperformed the traditional gated RNNs. In particular, the LRCU-S performed best,
achieving an accuracy of 84.99%, slightly better than the LRCU-A. In Figure 7 we compare the
validation accuracy. LRCUs converge slower, but they both surpass the other models after 100 epochs.

Considering that this is an irregularly sampled dataset, including separate extra timestep information
per input, traditionally used gated units need further modification when dealing with this task.

Table 4: Number of trainable parameters in the Localization Data for Person Activity dataset. To
have at least the same number of trainable parameters, we employed 64 cells for LRCUs and 100
cells in the other models.

LSTM GRU MGU LRCU-A LRCU-S

Parameters 40k 30k 20k 20k 20k

For LSTMs, GRUs, and MGUs we concatenate the time-step information (difference in time between
to inputs) directly with the input features. This time step is used as the ∆t value in LRCUs. LSTM,
GRU and MGU networks contain 100 units, while LRCUs have 100 units.

In Table 3 we provide the total number of trainable parameters used by each model. Moreover, in
Table 4 we provide information about the hyperparameters used by all models to solve this task.

IMDB Movie Sentiment Classification. The IMDB Movie-Review Sentiment Classification
dataset, also known as the Large Movie Review Dataset [Maas et al., 2011], is designed for binary
sentiment classification. This data set includes 25,000 movie reviews, for both training and testing.
Each review was labeled with either a positive or a negative sentiment.

Table 3 presents our experimental results for this task, too. While the LRCU-S achieved a performance
which was comparable to the one of the traditional RNNs, the LRCU-A had the best performance,
by achieving an accuracy of 87%. Moreover, LRCU-A achieves the highest accuracy after only 5
epochs, even though this decreases a bit over time, as can be seen in the second image of Figure 7.

In the IMDB review dataset we keep the 20,000 most frequent words and truncate the sequences up
to 256 characters. Token embeddings of size 64 are used. LSTM, GRU and MGU have 100 units,
while LRCU variants have 64 cells in the networks.

16

Table 5: Hyperparameters of the Localization Data for Person Activity experiment.

Variable Value

Learning rate 10−3

Batch size 128
Training sequence length 32
Epochs 100

Table 6: Total number of trainable parameters in the IMDB Movie Sentiment Classification task. We
used 64 cells in the LRCUs and 100 cells in the other models.

LSTM GRU MGU LRCU-A LRCU-S

Parameters 70k 50k 35k 40k 40k

In Table 6 we provide the total number of trainable parameters used by each model to solve this task.
Moreover, in Table 7 we provide information about the hyperparameters used to solve this task.

Permuted Sequential MNIST. The Permuted Sequential MNIST dataset is a variant of the MNIST
Digits Classification data set, designed to evaluate recurrent neural networks, adapted from Le
et al. [2015]. In this task, the 784 pixels (originally images of size 28×28) of digits are presented
sequentially to the network. The main challenge lies in predicting the digit category, only after all
pixels are observed. This task tests the network’s ability to handle long-range dependencies. To make
the task even more complex, a fixed random permutation of the pixels is first applied.

As in the other classification tasks, traditionally used gated networks, such as LSTMs, GRUs and
MGUs, have 100 units, and the proposed LRCUs contain 64 units. In Table 7 we provide details
about the hyperparameters used in this task. Moreover, in Table 8, we provide the total number of
trainable parameters for each model used.

During the training of this task, the computed loss values of MGUs became NaNs in 2 out of the
3 runs in the middle of the experiments. Thus, for plotting the validation accuracy in Figure 7, we
included only the one fully successful run for them.

in Table 8 we provide the total number of trainable parameters used by each model to solve this task.
Moreover, in Table 9 we provide information about the hyperparameters used to solve this task.

A.4.3 Lane-Keeping Task

In the Lane-Keeping Task, the control agent is provided with the front-camera input, consisting of
RGB images of size 48×160 pixels. It is required to autonomously navigate and maintain its position
within the road, by properly predicting its curvature. The predicted road curvature corresponds to the
steering action necessary for lane-keeping, and holds the advantage of being vehicle-independent, as
the actual steering angle depends on the type of car used.

The dataset for the Lane-Keeping Task task is obtained from human-driving recordings captured
under various weather and illumination conditions [Lechner et al., 2022], as shown in Figure 8. The
network architecture contains a CNN-head for extracting the main features from the camera input.
They are fed into the gated recurrent models, for the sequential-regression prediction. This network
architecture is illustrated on the right in Figure 8. This setup is adapted from Farsang et al. [2024].

In Figure 9, we report the experimental losses of the models considered on the Lane-Keeping task.
As it was the case before, both LRCU-A and LRCU-S obtain comparable validation losses, with
LRCU-A achieving the best weighted-validation loss (loss weighted by road curvature).

We test the models in the closed-loop setting to evaluate their performance of robust lane keeping. By
injecting extra Gaussian noise with variance 0.1 into the input images, we find that LRCUs can handle
it without any crashes, and show better performance than other models in even higher Gaussian noise
with variance 0.2 too, as reported in Table 13.

In this section we provide details about the Lane-Keeping-Task RNN-policy architecture. In Table 10
below we describe the convolutional head used by the policy.

17

Table 7: Hyperparameters of the IMDB Movie Sentiment Classification task.

Variable Value

Learning rate 10−3

Batch size 64
Training sequence length 256
Epochs 30

Table 8: Total number of parameters in the Permuted Sequential MNIST task. LRCUs use 64 neurons,
whereas the other 100 neurons, each. All gated-RNN models were run for 3 seeds.

LSTM GRU MGU LRCU-A LRCU-S

Parameters 40k 30k 20k 20k 20k

For the Lane-Keeping task, the total number of parameters of the recurrent part is 8k, where the
number of neurons used for LSTMs, GRUs, MGUs, LRCU-A, and LRCU-S are 23, 28, 38, 19, and
19 respectively. This choice ensures a similar number of trained parameters.

In Table 11 we provide a description of the hyperparameters used in the Lane-Keeping Experiment.
They had the same value for all the RNN models compared.

A.5 Interpretability Experiments for LRCUs

In this section we provide additional details for the interpretability experiments for the Lane-Keeping
Task.

Figure 10 shows our results in the summer season, where lighter-highlighted regions indicate the
attention of the network. We found that the LSTM takes into account irrelevant parts of the image,
during its decision-making. The rest of the models have most of the attention on the road, and LRCU
networks especially, focus on the horizon. In Figure 11, we provide the attention maps for the winter
season.

In Figure 11, we provide the attention maps for the winter season.

In Figure 13 we provide the neural activity of two cells of the lane-keeping policy for the winter
season. As one can clearly see, the LRCU-S has a very smooth behavior closely matching the road
geometry: Cell 1 is responsible for turning left, and Cell 2 is responsible for turning right.

18

Table 9: Hyperparameters of the Permuted Sequential MNIST experiment.
Variable Value

Learning rate 10−3

Batch size 64
Training sequence length 784
Epochs 200

CNN head

RNN

extracted
features

prediction

t

input frames

Figure 8: Lane-Keeping task. The first two figures show summer and winter conditions, respectively.
The red rectangle indicates the input and the blue line the predicted steering angle of the network.
The third figure illustrates the overall network architecture for this task. The CNN head extracts the
input features of a video stream. They are passed to the recurrent policy, responsible for steering.

Table 10: The shape and size of the layers in the convolutional head of the RNN-policy used to solve
the Lane-Keeping Task. Settings are adapted from Farsang et al. [2024].

Layer Type Settings

Input Input shape: (48, 160, 3)
Image-Norm. Mean: 0, Variance: 1
Conv2D Filters: 24, Kernel size: 5, Stride: 2, Activ.: ReLU
Conv2D Filters: 36, Kernel size: 5, Stride: 1, Activ.: ReLU
MaxPool2D Pool size: 2, Stride: 2
Conv2D Filters: 48, Kernel size: 3, Stride: 1, Activ.: ReLU
MaxPool2D Pool size: 2, Stride: 2
Conv2D Filters: 64, Kernel size: 3, Stride: 1, Activ.: ReLU
MaxPool2D Pool size: 2, Stride: 2
Conv2D Filters: 64, Kernel size: 3, Stride: 1, Activ.: ReLU
Flatten -
Dense Units: 64

Table 11: Hyperparameters of the Lane-Keeping experiment.
Variable Value

Learning rate cosine decay, 5 · 10−4

Weight decay 10−6

Batch size 32
Training sequence length 32
Epochs 100

Table 12: Training time per epoch.
Model Time/epoch

LSTM 2.57 min
GRU 2.50 min
MGU 3.08 min
LTC 10.06 min
STC 10.13 min
LRCU-A 4.05 min
LRCU-S 4.16 min

19

Model Validation Loss W-Validation Loss

LSTM 0.139± 0.008 0.013± 0.0010
GRU 0.145± 0.006 0.013± 0.0010
MGU 0.139± 0.007 0.012± 0.0010
LTC 0.204± 0.004 0.011± 0.0004
STC 0.201± 0.006 0.011± 0.0010
LRCU-A 0.154± 0.005 0.010± 0.0003
LRCU-S 0.142± 0.004 0.011± 0.0010

0 20 40 60 80 100
Epochs

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225

0.0250

0.0275

0.0300

Va
lid

at
io

n
lo

ss

Weighted Validation loss in Lane-keeping task
LSTM
GRU
MGU
LRCU-A
LRCU-S

Figure 9: Mean squared loss results for the Lane-Keeping task, averaged over 3 seeds.

Table 13: Crash likelihood in closed-loop simulation with additional Gaussian noise in the Lane-
Keeping task. Values closer to zero indicate reliable, crash-free behavior.

Model Noise σ2 = 0.1 Noise σ2 = 0.2

LSTM 0.000± 0.000 0.483± 0.254
GRU 0.133± 0.189 0.767± 0.047
MGU 0.267± 0.221 0.817± 0.037
LRCU-A 0.000± 0.000 0.200± 0.231
LRCU-S 0.000± 0.000 0.300± 0.216

LSTM GRU MGU LRCU-A LRCU-S

0.
0

0.
1

0.
2

Figure 10: Interpretability. Attention in summer. Column 1 shows the input of the network: Row 1,
without additional noise, Rows 2-3, with Gaussian noise of variance σ2 = 0.1 and σ2 = 0.2,
respectively. Remaining columns correspond to the networks, showing their attention to the same
input image. One can observe how much the focused areas get distorted in the presence of noise.

LSTM GRU MGU LRCU-A LRCU-S

0.
0

0.
1

0.
2

Figure 11: Attention maps in the winter season. In general, the focus shifts from the road to the side
of the road compared to summer. Unimportant regions on the off-road are attended by LSTM, GRU
and MGU. A winter input image and its saliency maps of the analyzed models are displayed, with
increasing noise of Gaussian noise of σ2 = 0.1 and σ2 = 0.2 variances, in the second and third rows.

20

LSTM GRU MGU LRCU-A LRCU-S
C

el
l1

C
el

l2

Figure 12: Interpretability. The neural activity of two command cells in the learned policy for the
Lane-Keeping Task, projected over time on the 1km road driven in summer, for three popular gated
recurrent units (LSTMs, GRUs, and MGUs) and for LRC units (LRCU-A, and LRCU-S). It is very
hard to visually match the neural activity of LSTM, GRU, and MGU cells to the traversed road
geometry, respectively. However, LRCU-S cells especially, display a very smooth and identifiable
pattern during driving: Cell 1 is responsible for turning right, and Cell 2 for turning left.

LSTM GRU MGU LRCU-A LRCU-S

C
el

l1
C

el
l2

Figure 13: Interpretability. The neural activity of two cells in the learned policy for the Lane-Keeping
Task, projected over time on the 1km road driven in winter, for three popular gated recurrent units
(LSTMs, GRUs, and MGUs) and for LRC units (LRCU-A, and LRCU-S). It is very hard to visually
match the neural activity of LSTM, GRU, and MGU cells to the traversed road geometry, respectively.
However, LRCU-S cells especially, display a very smooth and identifiable pattern during driving:
Cell 1 is responsible for turning right, and Cell 2 for turning left.

21

	Introduction
	Background
	Liquid Time-Constant Networks (LTCs)
	Saturated Liquid Time-Constant Networks (STCs)

	Liquid Resistance Liquid Capacitance Networks (LRCs)
	Experimental Results
	Accuracy and Speed of LRCs on Neural ODEs Benchmarks
	Interpretability of LRCUs on the Autonomous-Driving Lane-Keeping Task

	Discussion, Scope and Conclusion
	Appendix
	Properties of LRCs
	Theorems and Proofs
	Lipschitz constant Theorem and Proof
	Generalization Theorem and Proof

	Liquid Resistance Liquid Capacitance Units (LRCU)
	LRCUs as an RNN
	LRCUs versus GRUs

	Experiments for LRC(U)s
	Neural ODE Experiments
	Accuracy and Speed of LRCUs on RNNs Benchmarks
	Lane-Keeping Task

	Interpretability Experiments for LRCUs

