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Abstract
Knowledge editing has emerged as an effective001
approach for updating large language models002
(LLMs) by modifying their internal knowledge.003
However, their application to the biomedical004
domain faces unique challenges due to the long-005
tailed distribution of biomedical knowledge,006
where rare and infrequent information is preva-007
lent. In this paper, we conduct the first com-008
prehensive study to investigate the effective-009
ness of knowledge editing methods for editing010
long-tail biomedical knowledge. Our results011
indicate that, while existing editing methods012
can enhance LLMs’ performance on long-tail013
biomedical knowledge, their performance on014
long-tail knowledge remains inferior to that015
on high-frequency popular knowledge, even016
after editing. Our further analysis reveals that017
long-tail biomedical knowledge contains a sig-018
nificant amount of one-to-many knowledge,019
where one subject and relation link to multi-020
ple objects. This high prevalence of one-to-021
many knowledge limits the effectiveness of022
knowledge editing in improving LLMs’ un-023
derstanding of long-tail biomedical knowledge,024
highlighting the need for tailored strategies to025
bridge this performance gap1.026

1 Introduction027

Recently, knowledge editing (Meng et al., 2022a;028

Yao et al., 2023) has emerged as a promising ap-029

proach to efficiently update large language models030

(LLMs) by injecting new knowledge into their in-031

ternal knowledge (Touvron et al., 2023; Achiam032

et al., 2023). These methods have shown re-033

markable performance in enhancing LLMs’ perfor-034

mance across several general-domain tasks, such035

as question answering (QA) (Huang et al., 2023),036

knowledge injection (Li et al., 2024), and knowl-037

edge reasoning (Wang et al., 2024a).038

While knowledge editing methods have proven039

effective in general-domain tasks, their application040

1Code: https://anonymous.4open.science/r/edit_
bio_long_tail-951A/
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Figure 1: LLMs often struggle with long-tail biomedical
knowledge, where entities co-occur in a few documents.
Knowledge editing offers a potential solution by inject-
ing this rare information into LLMs, improving their
ability to handle such long-tail knowledge.

to the biomedical domain presents unique chal- 041

lenges (Wu et al., 2024b). Specifically, real-world 042

biomedical data often exhibit a long-tailed distri- 043

bution, with a small amount of popular knowledge 044

and a large amount of long-tail knowledge that ap- 045

pears rarely or only once (Wu et al., 2024b; Delile 046

et al., 2024). For example, the common disease 047

“Type 1 Diabetes” is mentioned in over 106,138 048

papers in PubMed (Roberts, 2001), while a rare 049

disease like “Evans Syndrome” appears in only 050

about 23 papers (Wei et al., 2013). Recent studies 051

indicate that the low frequency of knowledge in 052

the pre-training corpus can hinder LLMs’ under- 053

standing of this knowledge (Kandpal et al., 2023; 054

Wu et al., 2024b). Figure 1 illustrates an example 055

where LLMs struggle with low-frequency biomed- 056

ical knowledge. This is particularly problematic as 057

LLMs are increasingly being used by healthcare 058

professionals, including doctors, to assist in diag- 059

nosis and treatment recommendations (Tian et al., 060

2024). As LLMs become more integrated into clin- 061

ical practice, their ability to accurately handle rare 062

but critical biomedical knowledge becomes essen- 063

tial. This raises a critical question for knowledge 064

editing in the biomedical domain: 065

Can knowledge editing methods effectively edit 066

large language models to incorporate long-tail 067

biomedical knowledge? 068
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In this work, we present the first comprehen-069

sive study to investigate the effectiveness of knowl-070

edge editing for long-tail biomedical knowledge.071

We focus on biomedical knowledge represented as072

knowledge triples and leverage knowledge prob-073

ing (Alghanmi et al., 2021) to evaluate whether074

LLMs have effectively acquired this knowledge.075

Specifically, knowledge probing is a technique076

that queries LLMs to assess their internal factual077

knowledge (Meng et al., 2022b). As illustrated in078

Figure 1, we query LLMs with questions gener-079

ated from biomedical knowledge triples to deter-080

mine whether they can correctly recall the target081

knowledge. By comparing the knowledge prob-082

ing results of LLMs before and after editing, we083

can evaluate how effectively knowledge editing en-084

hances LLMs’ ability to handle long-tail biomed-085

ical knowledge. Our key findings can be sum-086

marised as follows:087

• LLMs struggle to capture long-tail biomedical088

knowledge through pre-training;089

• Knowledge editing can improve LLMs’ per-090

formance on long-tail biomedical knowledge,091

but the post-edit performance still lags behind092

that of popular knowledge;093

• Edited LLMs can memorise the form of long-094

tail knowledge, but their ability to generalise095

such knowledge is limited.096

• The prevalence of one-to-many knowledge in097

long-tail biomedical knowledge is a key factor098

contributing to LLMs’ poor performance in099

capturing such long-tail knowledge;100

• Effectively handling one-to-many knowledge101

is critical for improving LLMs’ performance102

on long-tail biomedical knowledge through103

knowledge editing.104

2 Background and Definitions105

This section defines long-tail biomedical knowl-106

edge and briefly introduces the knowledge probing107

and editing techniques used in our experiments.108

2.1 Long-Tail Biomedical Knowledge109

We present biomedical knowledge using knowl-110

edge triple ⟨s, r, o⟩, where s is the subject, r is the111

relation, and o is the object. Let D be the set of112

documents in the pre-training corpus, and D(s, o)113

be the subset of documents where both s and o co-114

occur. We define the co-occurrence number of the115

knowledge triple as |D(s, o)|, which represents the116

frequency of knowledge ⟨s, r, o⟩ within the docu- 117

ment set D (Kandpal et al., 2023). In this paper, 118

following Mallen et al. (2023) and Kandpal et al. 119

(2023), we define long-tail knowledge as: 120

Kl = {⟨s, r, o⟩ | |D(s, o)| < α} , (1) 121

where Kl denotes the set of long-tail knowledge 122

and α represents a predefined threshold. 123

2.2 Knowledge Probing 124

Knowledge probing aims to evaluate LLMs’ ability 125

to capture factual knowledge (Meng et al., 2022b), 126

and can serve as an evaluation method to assess 127

the effectiveness of knowledge editing (Hernandez 128

et al., 2023). Specifically, given a subject s and a 129

relation r in a triple ⟨s, r, o⟩, we use a manually 130

designed template T (s, r) to generate a natural 131

language question, which is then fed into an LLM 132

fθ to generate the object o as the answer. Following 133

the work of Meng et al. (2022a) and Kassner et al. 134

(2021), accuracy (ACC) is used to evaluate the 135

performance of LLM in recalling the correct target 136

entity o, which is formulated as: 137

E⟨s,r,o⟩∼PI
{
argmax

y
fθ(y | T (s, r)) = o

}
,

(2) 138

where E⟨s,r,o⟩∼P denotes the expectation over a set 139

of knowledge triples P , y indicates the predicted 140

answer and I{·} is the indicator function. In this 141

paper, we compare the knowledge probing results 142

of LLMs before and after knowledge editing to 143

investigate the effectiveness of editing methods in 144

handling long-tail biomedical knowledge. 145

2.3 Knowledge Editing 146

Knowledge editing (Yao et al., 2023) aims to inject 147

a new knowledge ⟨s, r, o⟩ into an LLM through a 148

specific edit descriptor (xe, ye) (Yao et al., 2023). 149

Given a knowledge ⟨s, r, o⟩ for editing, xe can 150

be formulated as ⟨s, r⟩, and ye = o. The ulti- 151

mate target of knowledge editing is to obtain an 152

edited model fθe , which effectively integrates the 153

intended modifications within the editing scope, 154

while preserving the model’s performance for out- 155

of-scope unrelated facts: 156

fθe(x) =

{
ye if x ∈ I(xe, ye)

fθ(x) if x ∈ O(xe, ye)
(3) 157

Here, the in-scope set I(xe, ye) includes xe and 158

its equivalence neighborhood N(xe, ye), which in- 159

cludes related input/output pairs. In contrast, the 160
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Figure 2: An overview of probing and editing for biomedical knowledge. These knowledge triples are classified into
different groups based on co-occurrence number and further divided into one-to-one and one-to-many categories
based on the number of correct answers (see § 4.4). The increasing performance with the number of co-occurrence
number indicates that LLMs struggle to effectively capture long-tail biomedical knowledge before and after editing.

out-of-scope O(xe, ye) contains inputs that are un-161

related to the edit descriptor (xe, ye).162

3 Identifying Long-Tail Biomedical163

Knowledge164

Due to the lack of biomedical datasets specifically165

designed to evaluate long-tail knowledge, we de-166

velop a pipeline to extract such knowledge. In167

this section, we outline the procedures for extract-168

ing long-tail biomedical knowledge, with further169

details provided in Appendix A.170

Specifically, we focus on biomedical knowl-171

edge represented as knowledge triples. We extract172

triples from SNOMED CT (Donnelly et al., 2006),173

which is a comprehensive biomedical knowl-174

edge graph comprising over 1.4 million clinical175

triples (Benson and Grieve, 2021), and widely used176

for assessing LLMs’ understanding of biomedi-177

cal knowledge (Meng et al., 2022b). To identify178

the long-tail knowledge within these triples, we179

use an entity linking pipeline to compute the co-180

occurrence number of each triple in the PubMed181

corpus2, which is a widely used biomedical corpus182

for pre-training. In the entity linking pipeline, we183

first use PubTator (Wei et al., 2013) to annotate184

entities in the PubMed corpus and then use Sap-185

BERT (Liu et al., 2021) to link knowledge triple186

entities to PubMed entities.187

2https://pubmed.ncbi.nlm.nih.gov/

Subsequently, we calculate the co-occurrence 188

number for each triple. Long-tail knowledge is 189

defined as triples with a co-occurrence number 190

less than 10 (Kandpal et al., 2023). To evaluate 191

LLMs’ ability to capture these triples, we gener- 192

ate question-answer pairs following Meng et al. 193

(2022a). For each triple, we construct a question us- 194

ing the subject and relation, with the object serving 195

as the answer. For example, for the triple ⟨Diabetes, 196

treated_by, Insulin⟩, the corresponding QA pair is: 197

What is Diabetes treated by? Answer: Insulin. The 198

statistics of our extracted data are presented in Ta- 199

ble 1 and the template for constructing questions 200

is provided in Table 3. We refer to our dataset as 201

CliKT (Clinical Knowledge Triples). Details of the 202

construction process can be found in Appendix A 203

and Figure 7. 204

4 Knowledge Editing for Long-Tail 205

Biomedical Knowledge 206

In this section, we investigate the effectiveness of 207

knowledge editing methods in enhancing LLMs’ 208

ability to handle long-tail biomedical knowledge. 209

Since some editing methods like MEND (Mitchell 210

et al., 2022) and IKE (Zheng et al., 2023a) require 211

additional training data, we follow Meng et al. 212

(2022a) to divide our CliKT dataset into training, 213

validation, and test sets (See Table 1), and report 214

the results on the test set. Specifically, we detail 215
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Item Train Valid Test
# Triples 59,705 14,087 28,375

|D(s, o)| < 101 52,297 11,476 22,952
|D(s, o)| ∈ [101, 102) 05,363 02,055 04,110
|D(s, o)| ∈ [102, 103) 01,659 00,551 01,103
|D(s, o)| ≥ 103 00,386 00,105 00,210

# Relations 00,021 00,021 00,021
# Subjects 39,654 12,267 21,872
# Objects 07,867 03,526 04,706

Table 1: The statistics of CliKT dataset. |D(s, o)| rep-
resents the oc-occurrence number of knowledge triple.

the experimental setup in § 4.1, and introduce the216

results of LLMs before and after editing in § 4.2217

and § 4.3, respectively.218

4.1 Experimental Setup219

LLMs. In our experiments, we employ two widely220

used biomedical LLMs primarily pre-trained on221

the PubMed corpus: BioGPT-Large (Luo et al.,222

2022) and BioMedLM (Bolton et al., 2024). Ad-223

ditionally, we include two general-domain LLMs:224

Llama2 (Touvron et al., 2023) and GPT-J (Wang225

and Komatsuzaki, 2021) to evaluate whether our226

findings generalise to models that are not specifi-227

cally trained on biomedical data. Details of these228

LLMs are provided in Appendix B.1.229

Knowledge Editing Methods. For knowledge230

editing, we employ the following methods, which231

have demonstrated strong effectiveness in knowl-232

edge injection tasks (Wang et al., 2025):233

• ROME (Meng et al., 2022a): ROME updates234

an MLP layer to encode new information by235

treating the MLP module as a key-value mem-236

ory. It relies on causal mediation analysis to237

precisely identify the location for editing.238

• MEMIT (Meng et al., 2023): it employs the239

localisation strategies from ROME and ap-240

plies explicit parameter adjustments to inject241

new knowledge across multiple layers.242

• MEND (Mitchell et al., 2022): MEND en-243

ables efficient, targeted updates to LLMs by244

leveraging low-rank gradient transformations.245

It enables quick, localised modifications in246

model behaviour using only a single input-247

output example, while preventing overfitting.248

• IKE (Zheng et al., 2023a): IKE modifies fac-249

tual knowledge in LLMs through in-context250

learning without updating parameters. It cor-251

rects specific knowledge using demonstration252
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Figure 3: The overall performance of pre-edit prob-
ing on Llama2, GPT-J, BioMedLM and BioGPT-Large.
The shaded areas indicate the standard deviation and
Count denotes the number of triples within each group.

contexts, reducing over-editing and preserv- 253

ing previously stored knowledge. 254

• FT (Yao et al., 2023): FT updates model pa- 255

rameters using gradient descent on a single 256

MLP layer identified by ROME. We employ 257

the FT implementation within the EasyEdit 258

framework (Wang et al., 2023b). 259

Evaluation Metrics. We use knowledge probing 260

to evaluate whether LLMs have successfully ac- 261

quired biomedical knowledge within the CliKT 262

dataset. Specifically, we focus on the zero-shot 263

QA performance of LLMs in answering questions 264

from the CliKT dataset. The questions are used 265

as inputs, and the accuracy (ACC) metric is em- 266

ployed to evaluate the correctness of the generated 267

answers, as described in § 2.2. 268

In addition to knowledge probing, we follow 269

previous works (Meng et al., 2022a; Yao et al., 270

2023) and use the following metrics to evaluate the 271

comprehensive effectiveness of knowledge editing: 272

(1) Reliability: This metric measures the mean 273

accuracy on a specific collection of pre-defined 274

input-output pairs (xe, ye); (2) Generalisation: 275

Considering that paraphrased sentences should be 276

modified accordingly by editing, this metric mea- 277

sures the average accuracy on equivalent neigh- 278

bours R(xe, ye); (3) Locality: This metric quan- 279

tifies how often the predictions of the post-edit 280

model remain unchanged for out-of-scope neigh- 281

bours O(xe, ye). Detailed definitions of these met- 282

rics are provided in Appendix B.2. 283
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4.2 Pre-Edit Results on Long-Tail Biomedical284

Knowledge285

Finding 1: LLMs struggle to capture long-tail286

biomedical knowledge through pre-training.287

To investigate whether LLMs face challenges in288

capturing long-tail biomedical knowledge during289

pre-training, we categorise biomedical knowledge290

triples in CliKT into different groups based on their291

co-occurrence number |D(s, o)| and evaluate the292

probing results of LLMs across these groups.293

The bottom portion of Figure 3 shows the dis-294

tribution of triples across different group, which295

highlights the long-tail nature of biomedical knowl-296

edge, where long-tail knowledge accounts for the297

majority of the data. The results for biomedical298

LLMs and general-domain LLMs are illustrated in299

the top portion of Figure 3. Specifically, Figure 3300

shows that the performance of LLMs declines as301

the co-occurrence number decreases. In particu-302

lar, the performance of BioMedLM on long-tail303

knowledge (|D(s, o)| < 10) is 22.86% lower rel-304

ative to its performance on popular knowledge305

(|D(s, o)| ≥ 103). This trend is also evident306

in general-domain LLMs. For example, Llama2307

experiences an accuracy drop of 16.86% when308

handling long-tail biomedical knowledge com-309

pared with popular knowledge. These results in-310

dicate that LLMs struggle with long-tail biomed-311

ical knowledge, highlighting the challenge of ac-312

curately capturing long-tail knowledge during pre-313

training. Furthermore, Figure 3 shows that as the314

co-occurrence number decreases, the standard de-315

viation of ACC increases. This observation implies316

that LLMs exhibit greater confidence when pro-317

cessing popular biomedical knowledge than long-318

tail biomedical knowledge.319

Based on the above analysis, we conclude that320

Group Edit Reliability↑ Gen.↑ Locality↑

<101

ROME 98.02 68.42 83.70
MEMIT 86.21 47.36 98.10
MEND 91.32 46.75 89.60
IKE 83.87 43.70 97.81
FT 32.52 40.36 96.80

[101, 102)

ROME 98.11 70.10 84.60
MEMIT 89.21 48.21 97.30
MEND 88.90 47.80 89.83
IKE 84.52 45.12 96.80
FT 33.35 40.78 97.90

[102, 103)

ROME 98.63 72.50 84.62
MEMIT 89.01 51.47 97.90
MEND 88.94 48.83 91.40
IKE 85.89 46.74 96.85
FT 33.89 44.62 96.66

≥ 103

ROME 98.66 72.54 84.45
MEMIT 89.87 50.00 97.43
MEND 90.96 49.86 90.92
IKE 85.91 48.76 96.87
FT 34.84 44.62 97.57

Table 2: Performance of knowledge editing methods on
the CliKT dataset across different co-occurrence num-
ber groups. The best performance per group is marked
in boldface, while the second-best performance is un-
derlined. ↑ indicates that higher values reflect better
performance, and “Gen.” stands for Generalisation.

LLMs indeed struggle to capture long-tail biomedi- 321

cal knowledge. As long-tail knowledge constitutes 322

the majority of biomedical data, it is crucial to ex- 323

plore methods that can effectively improve LLMs’ 324

performance on long-tail biomedical knowledge. 325

4.3 Post-Edit Results for Long-Tail 326

Biomedical Knowledge 327

Finding 2: Knowledge editing can improve LLMs’ 328

performance on long-tail biomedical knowledge, 329

but the post-edit performance still lags behind that 330

of popular knowledge. 331

Subsequently, we investigate the effectiveness of 332

knowledge editing for long-tail biomedical knowl- 333

edge. We apply existing knowledge editing meth- 334

ods to inject biomedical knowledge from the CliKT 335

dataset into LLMs and then follow the procedures 336

in the pre-edit experiments for evaluation. 337

The post-edit probing results for BioMedLM 338

are presented in Figure 4, while the results for 339

other LLMs can be found in Figure 8. These re- 340

sults yield the following findings: (1) Knowledge 341

editing methods, especially ROME, can enhance 342

LLM’s ability in handling long-tail biomedical 343

knowledge. For example, Figure 4 shows that 344

BioMedLM edited with ROME achieves an im- 345

provement of approximately 52.08% in ACC on 346
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long-tail knowledge (|D(s, o)| < 10) compared347

to the base model before editing; (2) Despite the348

improvements from knowledge editing, Figure 4349

also reveals that ACC of post-edit LLMs consis-350

tently drops as the co-occurrence number decreases351

across all the editing methods. Specifically, for352

ROME, the ACC on long-tail knowledge is still353

16.15% relatively lower than on popular knowl-354

edge (|D(s, o)| ≥ 103). This indicates that even355

after editing, the edited LLMs continue to suffer356

from long-tail biomedical knowledge.357

Finding 3: Edited LLMs can memorise the form of358

long-tail knowledge, but their ability to generalise359

such knowledge is limited.360

In addition to the post-edit probing results, we361

also calculate the other editing metrics outlined in362

§4.1 to comprehensively evaluate the effectiveness363

of the editing methods. Specifically, we calculate364

the Reliability, Generalisation and Locality metrics365

of edited models across different groups of biomed-366

ical knowledge. From the results in Table 2, we367

observe that ROME’s Reliability remains above368

98% across all groups, with no significant varia-369

tion. Similarly, the Reliability of MEMIT, MEND,370

and IKE is largely unaffected by the co-occurrence371

number, indicating that the edited LLMs’ ability372

to memorise the form of inserted knowledge is373

not influenced by long-tail knowledge. However,374

the generalisation performance declines as the co-375

occurrence number decreases, which aligns with376

the observed reduction in post-edit ACC for edited-377

LLMs as the co-occurrence number decreases.378

This observation suggests that, although edited379

LLMs can memorize the form of long-tail knowl-380

edge itself after knowledge editing, their ability381

to generalise this long-tail knowledge, especially382

in reasoning and responding to related questions,383

remains influenced by low co-occurrence numbers.384

Furthermore, we observe that, though all the385

editing methods exhibit relatively strong perfor- 386

mance in terms of locality across groups, ROME 387

is affected more than the other methods. This in- 388

dicates that while ROME achieves the best reli- 389

ability and generalisation, it may slightly affect 390

unrelated knowledge, consistent with the observa- 391

tions of Wang et al. (Wang et al., 2024b). 392

4.4 In-depth Analysis 393

In this section, to further investigate the cause of 394

the performance gap between long-tail and popu- 395

lar biomedical knowledge before and after edit- 396

ing, we further subdivide the data of long-tail 397

and popular knowledge into one-to-one and one- 398

to-many knowledge categories. The one-to-one 399

knowledge means the subject is linked to a sin- 400

gle object through the same relation, and one-to- 401

many knowledge means the subject is linked to 402

multiple objects through the same relation. For 403

example, the triple ⟨Type 1 diabetes, therapeutic 404

procedure, insulin therapy⟩ represents a one-to-one 405

knowledge, where “Type 1 diabetes” is associated 406

with a single object, “insulin therapy”. In contrast, 407

⟨hypertension, associated with, heart disease⟩ ex- 408

emplifies a one-to-many knowledge, where “hyper- 409

tension” can be linked to multiple objects, such as 410

“stroke” or “kidney disease”. 411

4.4.1 Pre-Edit Probing of Different Types of 412

Knowledge 413

Finding 4: The prevalence of one-to-many knowl- 414

edge in long-tail biomedical knowledge is a key 415

factor contributing to LLMs’ poor performance in 416

capturing such long-tail knowledge. 417

Figure 5 presents the pre-edit probing results 418

of one-to-one and one-to-many knowledge across 419

different co-occurrence number groups. We found 420

that one-to-one knowledge is almost unaffected 421

by co-occurrence numbers and consistently outper- 422

forms one-to-many knowledge in all groups. For 423
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instance, BioGPT achieves an ACC that is approx-424

imately 115.56% higher on one-to-one knowledge425

compared to one-to-many knowledge. In contrast,426

for one-to-many knowledge, results from BioGPT,427

BioMedLM, and Llama2 all show a steady in-428

crease in ACC as the co-occurrence number in-429

creases. This suggests that co-occurrence num-430

ber, or knowledge frequency, has a significant431

impact on LLMs’ ability to accurately compre-432

hend one-to-many knowledge. We further anal-433

ysed the distribution of one-to-one and one-to-434

many knowledge. Figure 5 shows that as the co-435

occurrence number increases, the proportion of436

one-to-many knowledge decreases while one-to-437

one knowledge increases. In the long-tail knowl-438

edge group (|D(s, o)| < 10), 90.4% of the knowl-439

edge is one-to-many. This analysis reveals that440

LLMs’ difficulty with long-tail biomedical knowl-441

edge before editing is primarily due to the large442

proportion of one-to-many knowledge, which is443

challenging for LLMs to comprehend, as it in-444

creases the probability that the correct answers445

will not align with the model’s output.446

4.4.2 Knowledge Editing for Different Types447

of Knowledge448

Finding 5: Effectively handling one-to-many449

knowledge is critical for improving LLMs’ perfor-450

mance on long-tail biomedical knowledge through451

knowledge editing.452

Next, we apply editing methods to both one-to-453

one and one-to-many knowledge. The results for454

BioMedLM are provided in Figure 6, while the re-455

sults for other LLMs can be found in Figure 9. As456

shown in Figure 6, while editing methods enhance 457

performance on one-to-many knowledge, the im- 458

provement remains limited. For instance, in the 459

ROME-edited BioMedLM for the long-tail knowl- 460

edge (|D(s, o)| < 10), the ACC for one-to-one 461

knowledge was initially 42.19% higher than that 462

for one-to-many knowledge. After applying the 463

editing, this gap decreased to 16.43%. However, 464

the persistent gap also highlights that even after 465

editing, the model’s performance on one-to-many 466

knowledge, which constitutes the majority of long- 467

tail knowledge, remains constrained. This finding 468

suggests that despite knowledge editing can en- 469

hance LLMs’ capability in handling one-to-many 470

knowledge, there remains a challenge in bridg- 471

ing the performance gap between one-to-one and 472

one-to-many knowledge. This limitation is critical 473

given that one-to-many knowledge constitutes the 474

majority of long-tail knowledge. 475

5 Related Work 476

5.1 LLMs for the Biomedical Domain 477

LLMs have made significant success in the biomed- 478

ical domain, with an increasing variety of mod- 479

els contributing to advancements across different 480

tasks (Tian et al., 2024). In the initial stages of 481

their application, BERT (Vaswani et al., 2017) 482

and its variants, such as BioBERT (Lee et al., 483

2020) and ClinicalBERT (Huang et al., 2019), 484

demonstrated notable improvements in named en- 485

tity recognition and relation extraction when ap- 486

plied to large datasets such as PubMed and clin- 487

ical notes (Perera et al., 2020; Sun et al., 2021). 488

GPT-based models, including GPT-J (Wang and 489
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Komatsuzaki, 2021), BioGPT (Luo et al., 2022)490

and BioMedLM (Bolton et al., 2024), further en-491

hanced biomedical text generation and question492

answering (Tian et al., 2024). Recent LLMs493

like Llama (Touvron et al., 2023), Falcon (Al-494

mazrouei et al., 2023), and Palm (Chowdhery et al.,495

2023) have scaled transformer architectures to ad-496

dress more complex tasks, such as biomedical497

knowledge reasoning (Wu et al., 2024a; Watan-498

abe et al., 2024) and assisting in clinical decision-499

making (Sandmann et al., 2024). This work ex-500

plores LLMs’ performance on long-tail biomedical501

knowledge. We present the first study to investigate502

how long-tail knowledge impacts LLMs in knowl-503

edge editing, offering new insights into improving504

LLMs’ handling of rare biomedical information505

through knowledge editing techniques.506

5.2 Knowledge Editing507

Knowledge editing methods can be broadly clas-508

sified into three distinct categories (Yao et al.,509

2023): memory-based (Zheng et al., 2023b), meta510

learning (Mitchell et al., 2022), and locate-then-511

edit (Meng et al., 2022a). Memory-based methods,512

like IKE (Zheng et al., 2023b), enhance LLMs with513

external memory modules to update knowledge514

without changing the model’s parameters. Meta-515

learning approaches, such as KE (Cao et al., 2021),516

train a hyper-network to generate updated weights.517

MEND (Mitchell et al., 2022) improves on this by518

using low-rank gradient updates for more efficient519

model edits. However, meta-learning methods still520

require substantial computational resources and521

may unintentionally affect unrelated knowledge.522

Locate-then-edit approaches aim for more tar-523

geted knowledge editing. Methods like KN (Dai524

et al., 2022) use knowledge attribution to locate525

relevant neurons but struggle with precise weight526

updates. ROME (Meng et al., 2022a) advances527

this by using causal tracing to locate and edit the528

Feed Forward Network (FFN) layers, which act529

as key-value memories (Geva et al., 2021, 2023).530

MEMIT (Meng et al., 2023) further expands this531

technique for batch editing. To the best of our532

knowledge, this work is the first to investigate533

the effectiveness of knowledge editing on long-tail534

biomedical knowledge.535

5.3 Long-Tail Knowledge within LLMs536

Existing studies have explored how long-tail537

knowledge, affects LLMs’ performance (Shin et al.,538

2022; Han and Tsvetkov, 2022; Elazar et al., 2022; 539

Mallen et al., 2023; Kandpal et al., 2023). Mallen 540

et al. (2023) find that commonsense QA accu- 541

racy is strongly correlated with the frequency of 542

entity popularity in the pre-training data from 543

Wikipedia (Milne and Witten, 2008). Similarly, 544

Elazar et al. (2022) employ causal inference to 545

investigate how pre-training data statistics affect 546

commonsense QA, highlighting how models rely 547

on co-occurrence patterns between subjects, ob- 548

jects, and text to answer questions. More recently, 549

Kandpal et al. (2023) explore the connection be- 550

tween the knowledge LLMs acquire for general- 551

domain QA tasks and its frequency in the pre- 552

training corpus, introducing comparative experi- 553

ments involving model retraining and scaling. 554

Despite these findings, prior work has focused 555

on general-domain QA, with the long-tail biomed- 556

ical domain remaining largely unexplored (Wu 557

et al., 2024b). This is especially concerning as 558

LLMs are increasingly being used by healthcare 559

professionals. Our research fills this gap by in- 560

vestigating the influence of long-tail biomedical 561

knowledge on LLMs through knowledge probing 562

and examining its impact on the effectiveness of 563

knowledge editing. This is particularly problem- 564

atic as LLMs are increasingly being used by health- 565

care professionals, including doctors, to assist in 566

diagnosis and treatment recommendations. 567

6 Conclusion 568

In this paper, we investigated the effectiveness 569

of knowledge editing methods for addressing the 570

challenges of long-tail biomedical knowledge in 571

LLMs. Our findings show that while existing tech- 572

niques enhance performance on long-tail knowl- 573

edge, their performance remains inferior to that 574

on high-frequency popular knowledge. This prob- 575

lem is primarily attributed to the high presence 576

of one-to-many knowledge in the biomedical do- 577

main, which complicates the models’ ability to 578

effectively comprehend such knowledge. To ad- 579

dress these challenges, we recommend the devel- 580

opment of advanced editing techniques specifically 581

tailored to long-tail knowledge. These techniques 582

should prioritise strategies for effectively handling 583

the intricacies of one-to-many knowledge scenar- 584

ios, which are particularly common in the biomed- 585

ical domain and remain a significant obstacle for 586

current methods. 587
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Limitations588

We identify the following limitations of our589

work: (1) First, our approach to extracting long-590

tail knowledge is based on document-level co-591

occurrence frequency (Kandpal et al., 2023), which592

captures general patterns of occurrence but lacks593

refinement at the sentence level. This limitation594

may cause our analysis to miss finer patterns in595

knowledge distribution, especially in instances596

where sentence-level context provides essential nu-597

ances. Future work could enhance the long-tail598

knowledge extraction pipeline by investigating co-599

occurrence on the sentence-level to improve the600

granularity of knowledge editing. (2)Second, our601

experimental framework is limited to the collection602

of over 100,000 biomedical knowledge extracted603

from PubMed, an extensive repository of biomed-604

ical literature. While we believe the scale of this605

collection offers a robust foundation for evaluat-606

ing our methods, our future research should focus607

on extracting long-tail knowledge from a broader608

range of domains to further validate the generalis-609

ability of our findings. (3) Finally, we concentrate610

on analysing limitations without proposing spe-611

cific solutions, prioritising the establishment of a612

comprehensive understanding. Future work will fo-613

cus on developing methods to improve knowledge614

editing performance on long-tail knowledge.615
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Appendix898

In the Appendix, we introduce more details along with datset construction, additional experimental results,899

discussions, and related works:900

• Appendix A: CliKT Construction (cf. Section 3).901

• Appendix B: Experimental Details (cf. Section 2 and 3).902

• Appendix C: Additional Results (cf. Section 3).903

A CliKT Construction904

Due to the lack of datasets dedicated for evaluating long-tail biomedical knowledge, we propose CliKT, a905

new benchmark specifically designed to evaluate LLMs’ performance on long-tail biomedical knowledge.906

Notably, given that PubMed is a widely used biomedical corpus for pre-training LLMs (Wang et al.,907

2023a), which contains over 37 million abstracts of biomedical papers (Wei et al., 2013), we mainly908

focus on PubMed data to extract long-tail biomedical knowledge. Specifically, we first extract knowledge909

triples from SNOMED CT (Donnelly et al., 2006) (§A.1) to obtain a comprehensive set of biomedical910

concepts and their relationships. Next, we employ an entity linking pipeline to map these triples back to911

their corresponding documents in the PubMed (Roberts, 2001) corpus (§A.2), enabling us to identify912

whether a triple represents long-tail knowledge based its occurrence in the corpus. Finally, we generate913

question-answer (QA) pairs based on the knowledge triples to evaluate the ability of LLMs to capture the914

factual knowledge, and conduct a human evaluation to show that our entity linking pipeline accurately915

identifies relevant documents for the majority of the QA pairs.916

A.1 Extracting Biomedical Knowledge Triples917

We focus on the long-tail biomedical knowledge from the PubMed corpus. However, directly extracting918

such knowledge from the entire corpus is a challenging task (Shetty and Ramprasad, 2021; Nguyen et al.,919

2021; Abdullah et al., 2023). Therefore, following previous work (Alghanmi et al., 2021; Fei et al., 2021),920

we leverage information from existing biomedical knowledge graphs to facilitate more efficient extraction.921

Specifically, we extract all the knowledge triples from SNOMED CT (Donnelly et al., 2006), which is a922

comprehensive biomedical knowledge graph comprising over 200K triples and widely used for assessing923

LLMs’ understanding of biomedical knowledge (Meng et al., 2022b). Each triple is denoted as (head924

entity, relation, tail entity), representing the relationship between two entities, e.g., (Type 1 Diabetes,925

Therapeutic Procedure, Insulin therapy).926

A.2 Mapping Knowledge Triples to PubMed Documents927

We then develop an entity linking pipeline to map the extracted knowledge triples back to documents in928

Pubmed (Roberts, 2001) to identify long-tail knowledge. The detailed procedure is as follows:929

Entity Annotation. To facilitate the mapping of knowledge triples to specific PubMed documents, we930

first need to annotate the entities within the PubMed corpus. To this end, we use PubTator (Wei et al.,931

2013), a robust web-based text-mining tool that provides automatic annotations of biomedical concepts932

in PubMed. Following the work of Wei et al. (2019), we obtain entity annotations within 37 million933

PubMed abstracts3.934

Entity Linking. After obtaining annotated entities, the next step is to map the knowledge triples to their935

corresponding PubMed documents. Previous studies (Elsahar et al., 2018; Kandpal et al., 2023) suggest936

that when the head entity and the tail entity of a knowledge triple co-occur within a document, it is likely937

that the knowledge represented by the triple is expressed in that document. Based on this observation,938

we define documents where both the head and tail entities of a knowledge triple co-occur as its related939

documents, and the count of such documents as the co-occurrence number.940

3The annotated data is available at https://ftp.ncbi.nlm.nih.gov/pub/lu/PubTatorCentral/
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Figure 7: The pipeline for identifying long-tail biomedical knowledge consists of a systematic process encompassing
documents collection, entity linking, knowledge graph traversal, and question generation.

To determine whether both the head and tail entities of a triple co-occur in a document, we use 941

SapBERT (Liu et al., 2021), an effective biomedical entity linking model, to match these entities to 942

those present in the document. For instance, given the triple (Hypertension, causes, heart disease) from 943

SNOMED CT, SapBERT can link “Hypertension” to its equivalent term “high blood pressure” in PubMed, 944

ensuring an accurate match with related documents. We iterate through the entire corpus to calculate the 945

co-occurrence number for each triple. We define triples with a low co-occurrence number as long-tail 946

biomedical knowledge. 947

Question Generation. Finally, we generate QA pairs based on the resulting triples to assess the LLMs’ 948

ability to capture these knowledge triples. Following Meng et al. (2022a), we manually design templates 949

to generate questions using the head entity and the relation, while considering the tail entity as the answer. 950

For example, given a triple (Diabetes, treated_by, Insulin), the corresponding QA pair would be: Question: 951

What is Diabetes treated by? Answer: Insulin. 952

B Experimental Details 953

B.1 Details of Large Language Models 954

We employ two biomedical LLMs and two general-domain LLMs in our experiments: 955

• BioGPT-Large (Luo et al., 2022): A 1.5 billion parameter model from Microsoft, primarily 956

pre-trained on PubMed, excelling in drug discovery and medical record analysis. 957

• BioMedLM (Bolton et al., 2024): A Stanford-developed model optimised for biomedical tasks, 958

pretrained on PubMed with 2.7 billion parameters, ideal for literature retrieval and information 959

extraction. 960

• Llama2 (Touvron et al., 2023): A Meta-developed model with 7 billion parameters, designed for 961

general-purpose language tasks. It has been leveraging large-scale pretraining on diverse datasets, 962

including biomedical corpora. 963

• GPT-J (Wang and Komatsuzaki, 2021): A 6 billion parameter open-source model by EleutherAI, 964

trained on the Pile dataset, which includes a significant portion of biomedical texts from PubMed. 965

B.2 Details of Evaluation Metrics 966

(1) Reliability: This metric measures the average accuracy over a predefined set of input-output pairs 967

(xe, ye). It is aimed to evaluate the ability of memorising the form of edit Prompt after knowledge editing. 968

Ex′
e,y

′
e∼{(xe,ye)}1

{
argmax

y
fθe(y | x′e) = y′e

}
(4) 969
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Relation Template

Finding site Edit Prompt: “The finding site of [SUBJECT] is.”
Question: “What is the finding site of [SUBJECT]?”
Rephrase: “Where is [SUBJECT] typically found?”

Associated morphology Edit Prompt: “The associated morphology of [SUBJECT] is.”
Question: “What is the associated morphology of SUBJECT?”
Rephrase: “Can you describe the morphology associated with [SUBJECT]”

Causative agent Edit Prompt: “The causative agent of [SUBJECT] is”
Question: “What is the causative agent of [SUBJECT]?”
Rephrase: “Which pathogen causes [SUBJECT]?”

Interprets Edit Prompt: “[SUBJECT] interprets.”
Question: “What does [SUBJECT] interprets?”
Rephrase: “What is interpreted by [SUBJECT]?”

Procedure site Edit Prompt: “The procedure site of [SUBJECT] is”
Question: “What is the indirect procedure site of [SUBJECT]?”
Rephrase: “Where is the procedure site for [SUBJECT]?”

Pathological process Edit Prompt: “The pathological process of [SUBJECT] involves.”
Question: “What is the pathological process of [SUBJECT]?”
Rephrase: “Which pathological process does [SUBJECT] involve?”

Due to Edit Prompt: “[SUBJECT] is due to.”
Question: “What is the [SUBJECT] due to?”
Rephrase: “What is the cause of [SUBJECT]?”

Has active ingredient Edit Prompt: “The active ingredient of [SUBJECT] is.”
Question: “What is the active ingredient of [SUBJECT]?”
Rephrase: “What active ingredient does [SUBJECT] have?”

Part of Edit Prompt: “[SUBJECT] is a part of.”
Question: “What is the [SUBJECT] a part of?”
Rephrase: “To what is [SUBJECT] a part?”

Has definitional manifestation Edit Prompt: “The definitional manifestation of [SUBJECT] is.”
Question: “What is the definitional manifestation of [SUBJECT]?”
Rephrase: “How is [SUBJECT] manifested definitionally?”

Component Edit Prompt: “The component of [SUBJECT] is.”
Question: “What is the component of [SUBJECT]?”
Rephrase: “What components does [SUBJECT] consist of?”

Table 3: Examples of relation templates demonstrate how each relation is transformed into input prompts, which
can categorized into three parts: Edit Prompt, Question, and Rephrase. The “Edit Prompt” is used for knowledge
editing and reliability evaluation, the “Question” is designed for knowledge probing, and the “Rephrase” is used to
assess generalisation metrics. The complete template for all the relations can be found in our github repository.

(2) Generalisation: Considering that paraphrased sentences are modified accordingly through edit-970

ing, this metric measures the average accuracy on equivalent neighbours R(xe, ye), where equivalent971

neighbours are rephrased questions based on the edited knowledge.972

Ex′
e,y

′
e∼R(xe,ye)1

{
argmax

y
fθe(y | x′e) = y′e

}
(5)973

(3) Locality: This metric measures the frequency with which the predictions of the post-edit model974

remain consistent for out-of-scope neighbors O(xe, ye).975

Ex′
e,y

′
e∼O(xe,ye)1

{
fθe(y | x′e) = fθ(y | x′e)

}
(6)976

C Additional Results977

We present the performance of knowledge editing on the other base LLMs in this section. Specifically, the978

performance of knowledge probing after editing with different editing methods on BioGPT and Llama2979
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(a) The performance on BioGPT.
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(b) The performance on Llama2.

Figure 8: The performance of knowledge probing after editing with different editing methods on BioGPT and
Llama2, where “Base” denotes LLM without editing.
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Figure 9: The knowledge probing performance of BioGPT on both one-to-one knowledge and one-to-many
knowledge before and after editing.

can be seen in figure 8(a) and figure 8(b). We have also conducted the further analysis on BioGPT and 980

Llama2, which can be seen in figure 9 and figure 10. 981
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Figure 10: The knowledge probing performance of Llama2 on both one-to-one knowledge and one-to-many
knowledge before and after editing.
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