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ABSTRACT

We present the first mechanistic evidence that model-free reinforcement learning
agents can learn to plan. This is achieved by applying a methodology based on
concept-based interpretability to a model-free agent in Sokoban – a commonly
used benchmark for studying planning. Specifically, we demonstrate that DRC, a
generic model-free agent introduced by Guez et al. (2019), uses learned concept
representations to internally formulate plans that both predict the long-term effects
of actions on the environment and influence action selection. Our methodology
involves: (1) probing for planning-relevant concepts, (2) investigating plan forma-
tion within the agent’s representations, and (3) verifying that discovered plans (in
agent’s representations) have causal effect on agent’s behavior through interven-
tions. We also show that the emergence of these plans coincides with the emer-
gence of a planning-like property: the ability to benefit from additional test-time
compute. Finally, we perform a qualitative analysis of the planning algorithm
learned by the agent and discover a strong resemblance to parallelized bidirec-
tional search. Our findings advance understanding of the internal mechanisms
underlying planning behavior in agents, enabling improved diagnosis, interpreta-
tion, and control of agent planning processes.

1 INTRODUCTION

In reinforcement learning (RL), decision-time planning – that is, the capacity of selecting immediate
actions to perform by predicting and evaluating the consequences of future actions – is convention-
ally associated with agents that possess explicit world models, such as MuZero (Schrittwieser et al.,
2020). This raises a natural question: can reinforcement learning agents without explicit world
models learn to perform decision-time planning?

In prior work, Guez et al. (2019) introduced Deep Repeated ConvLSTM (DRC) agents. Despite
lacking an explicit world model, DRC agents behave as though they are performing decision-time
planning. For example, they excel at strategic domains like Sokoban and can perform better if
given additional test-time compute (Guez et al., 2019; Garriga-Alonso et al., 2024). However, this
only partially answers the previous question as these behaviors may not be the result of learned
internal planning, but rather, some other mechanisms that generate planning-like behavior in the
environments studied. In this paper, we perform a mechanistic analysis on a Sokoban-playing DRC
agent and show that it is indeed internally planning. In doing so, we provide the first non-behavioral
evidence that model-free RL agents can learn to internally plan.

Our analysis is based on concept-based interpretability, an approach to explaining neural network
behavior that involves identifying which concepts a network internally represents (Kim et al., 2018).
We provide three types of convergent evidence showing that the DRC agent has learned, and is
making use of, concepts that are instrumentally useful for planning, First, we use linear probes
(Alain & Bengio, 2016) to show that the agent represents specific concepts that predict the long-term
effects of its actions on the environment. Then, we demonstrate that these concept representations
are associated with a learned planning process by analyzing how the agent uses them to iteratively
construct ‘plans’ at test-time. Finally, we demonstrate that these concept representations causally
influence the agent’s behavior as would be expected if they were being used for planning.

To summarize, this paper makes following contributions:
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step 0, tick 3 step 1, tick 3 step 2, tick 3 step 3, tick 3 step 4, tick 3 step 5, tick 3

step 0, tick 3 step 1, tick 3

(B) Agent adapts its plan

step 2, tick 3 step 0, tick 1 step 0, tick 2

(D) Agent plans forwards from boxes

step 0, tick 3

step 0, tick 3 step 1, tick 3

(C) Agent plans backwards from targets

step 2, tick 3 step 0, tick 1 step 0, tick 2

(E) Agent extends routes in parallel

step 0, tick 3

(A) Agent evaluates its plan

Figure 1: Five examples of the DRC agent internally formulating plans to push boxes to targets in
Sokoban. A purple arrow on a square signifies that a linear probe has decoded that the agent plans to
push a box off of that square in the associated direction. No arrow on a square means that the probe
has decoded that agent does not plan to push a box off of that square. (A) The agent evaluates a
naively-appealing route, concludes that it is infeasible, and constructs a longer alternative path. (B)
The agent adapts its plan by changing the target it plans to push the left-most box to. (C) The agent
iteratively extends part of its plan by planning backward from a target. (D) The agent iteratively
extends part of its plan by planning forward from a box. (E) The agent extends multiple parts of
its plan in parallel. We provide additional examples of the agent forming plans in these ways in
Appendices A.2.1-A.2.5.

• We design a procedure, based on concept-based interpretability, for determining if a model-
free agent performs planning using a hypothesized set of concepts. This procedure involves
(1) probing for planning-relevant concepts, (2) investigating plan formation in the agent’s
internal representations, and (3) verifying the causal effect of plans on the agent’s behavior.

• Using this procedure, we demonstrate that in Sokoban, a DRC agent (Guez et al., 2019)
internally formulates plans, and that these plans can be altered to steer the agent. We find
that this agent learns a planning algorithm resembling parallelized bidirectional search,
which differs from commonly-used planning algorithms in RL.

2 BACKGROUND

2.1 PLANNING IN REINFORCEMENT LEARNING

Planning has multiple meanings in RL, encompassing algorithms that utilize environment models
during training (Sutton, 1991) or at decision time (Silver et al., 2016; Chung et al., 2024a). In this
work, we investigate whether an RL agent is specifically performing decision-time planning. As
such, in the rest of this paper, we use ‘planning’ and ‘decision-time planning’ interchangeably.

In prior work, an agent is considered to be performing planning if it engages with an (explicit)
world model to select actions associated with the best long-term consequences (Hamrick et al., 2020;
Chung et al., 2024a). A prototypical example is MuZero (Schrittwieser et al., 2020), which applies a
handcrafted planning algorithm called Monte Carlo Tree Search (Coulom, 2006) to a model of its en-
vironment to select actions associated with the best predicted long-run consequences. Other agents
using world models to plan include VPN (Oh et al., 2017), IBP (Pascanu et al., 2017), I2A (Racanière
et al., 2017), MCTSNet (Guez et al., 2018b), and Thinker (Chung et al., 2024a) agents.
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By definition, model-free RL agents lack an explicit world model. This makes it difficult to reuse
past definitions of planning that presume that an explicit world model is available. Thus, for the pur-
poses of this work, we provide a pragmatic characterization of planning that we use as a foundation
for investigating whether the model-free agent studied in this paper performs planning.

We consider plans to be sequences of potential future actions. We characterize an agent as planning if
it selects actions to perform by considering plans that it formulates and evaluates based on predicted
future consequences. This is similar to how planning is understood in neuroscience (Mattar &
Lengyel, 2022). It also mirrors model-based definitions of planning but relaxes the requirement
for an explicit world model to the requirement that an agent predict consequences of future actions,
regardless of the method used. We discuss our characterization further in Appendix F.1. For an
agent to plan under our characterization, it must: (i) form plans, (ii) evaluate plans by predicting
their consequences, and (iii) be influenced by these plans when acting. In Section 3.1, we use this
characterization to motivate a procedure for studying planning in model-free agents.

2.2 SOKOBAN

(a) Pixel (b) Symbolic

Figure 2: Pixel and symbolic represen-
tations of a Sokoban board.

Sokoban is an episodic, fully-observable, deterministic
environment in which an agent navigates around walls in
an 8x8 grid to push four boxes onto four targets. When an
agent moves up/down/left/right into a square containing a
box, this pushes the box up/down/left/right. Sokoban lev-
els are procedurally generated and allow agents to per-
form actions with irreversible, negative, long-run con-
sequences (moving boxes such that the puzzle cannot
be solved). Sokoban is thus difficult – it is PSPACE-
complete (Culberson, 1997) – and commonly used as a
benchmark for studying planning (Racanière et al., 2017;
Guez et al., 2019; Hamrick et al., 2020; Shoham & Eli-
dan, 2021). As such, it is the environment we focus on in this paper. We use a version of Sokoban
in which the agent observes a symbolic representation xt ∈ R8×8×7 of the environment. For ease
of inspection, all figures are presented as pixel representations. Figure 2 compares these two repre-
sentations. Appendix F.2 provides further details regarding the version of Sokoban we investigate.

2.3 DEEP REPEATED CONVLSTM (DRC) AGENTS

Deep Repeated ConvLSTM (DRC) agents (Guez et al., 2019) are model-free agents based on Con-
vLSTMs that perform multiple computational ticks per time step. ConvLSTMs (Shi et al., 2015)
are LSTMs (Hochreiter & Schmidhuber, 1997) that utilize 3D states and convolutional connections.
At each time step t, a DRC agent passes the observed state xt through a convolutional encoder to
produce an encoding it ∈ RH0×W0×G0 . This is then processed by D ConvLSTM layers. At time t,
the d-th ConvLSTM has a cell state gdt ∈ RHd×Wd×Gd . Unlike standard recurrent networks, which
perform a single tick of recurrent computation per time step, DRC agents perform N ticks of recur-
rent computation per step. Guez et al. (2019) show these internal ticks improve the performance and
generalization of DRC agents. Appendix F.3 provides further architectural details.

DRC agents behave in a manner that suggests they internally engage in decision-time planning.
For instance, DRC agents outperform model-based agents like MuZero (Schrittwieser et al., 2020)
in Sokoban (Chung et al., 2024b), and exhibit improved performance when given extra test-time
compute (Garriga-Alonso et al., 2024). This raises a question: do DRC agents genuinely learn to
internally perform planning, or is their planning-like behavior merely a result of complex heuristics?

In this paper, we investigate whether a Sokoban-playing DRC agent internally plans. The agent we
study has D = 3 ConvLSTM layers and performs N = 3 internal ticks per step. The agent’s encoder
and ConvLSTMs have 32 channels (Gd = 32) and utilize kernels of size 3 with a single layer of
input zero padding. Thus, all cell states share Sokoban’s spatial dimensions (Hd = Wd = 8).
The agent is trained for 250 million transitions on the unfiltered Boxoban training set (Guez et al.,
2018a) using a similar training setup as Guez et al. (2019) as explained in Appendix F.4. Appendix
F.5 shows that, consistent with Guez et al. (2019), this agent exhibits planning-like behavior.
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2.4 CONCEPT-BASED INTERPRETABILITY

Concept-based interpretability is an approach to explaining neural network behavior that involves
identifying which concepts a network internally represents (Kim et al., 2018). A concept is generally
understood as a unit of knowledge Schut et al. (2023). In this paper, we specifically consider ‘multi-
class’ concepts, which can formally be defined as mappings from input states (or parts of input states)
to some fixed classes. That is, multi-class concepts correspond to interpretable, discrete features and
map inputs to classes of that concept. For instance, a multi-class Sokoban concept might be ‘the
number of empty targets’. This concept would map any observed Sokoban board xt to a class in
{ONE, TWO, THREE, FOUR} depending on the number of remaining empty targets in xt.

We focus solely on concepts that networks represent linearly (Mikolov et al., 2013). To determine
whether a network linearly represents multi-class concepts, we use linear probes. A linear probe is a
linear classifier trained to predict the classes assigned to inputs by a concept based on the associated
network activations (Alain & Bengio, 2016; Belinkov, 2022). As a linear classifier, a linear probe
will compute a logit lk = wT

k g for each class k by projecting the associated activations g ∈ Rd

along a class-specific vector wk ∈ Rd. Belinkov (2022) provides further explanation of probing.

3 METHODOLOGY

3.1 A PROCEDURE FOR INVESTIGATING MODEL-FREE PLANNING

In Section 2.1, we characterized planning as requiring that an agent (i) formulate plans, (ii) evaluate
the consequences of these plans, and (iii) be guided by these plans when selecting actions. If an
agent learns to plan, we expect planning-relevant concepts to emerge in its internal representation to
meet the first condition. These concepts ought to reflect the agent’s plan, and so should correspond
to potential future actions, or to their likely environmental effects. Additionally, evidence of plan
evaluation – such as avoiding or improving bad plans – should exist to satisfy the second condi-
tion. Lastly, to fulfill the third condition, the plan must causally influence the agent’s behavior. To
determine if an agent exhibits these three properties, we follow the procedure outlined below:

1. Probe for Concept Representations. First, we identify a group of environment-specific
concepts that could be instrumentally useful for planning. We then use linear probes to
establish whether these concepts are being (linearly) represented by the agent (Section 4).

2. Investigate Plan Formation. Next, we focus on gathering qualitative evidence of the agent
forming plans based on the planning-relevant concepts probed for in the previous step, and
evidence of the agent evaluating and refining these plans (Section 5).

3. Confirm Behavioral Dependence. Finally, we confirm that these internal plans influence
the agent’s behavior. For instance, we show that the agent can be steered to form and
execute desired plans by intervening on plan representations within the network (Section 6).

3.2 PLANNING-RELEVANT CONCEPTS IN SOKOBAN

To apply the above procedure, we must specify concepts we expect the agent to plan with. Sokoban
has a grid-based structure with localized transition dynamics, i.e., the future state of a square is
determined by the current state of its neighbors. This makes spatially local concepts (i.e., con-
cepts related to individual or connected squares) more natural for planning than spatially global
concepts (i.e., representations of the whole board). We thus claim that an agent that learns to plan
in Sokoban may do so by encoding concepts localized to individual squares. We call these ‘square-
level’ concepts. Such concepts seem natural for DRC agents as the 3D structure of ConvLSTMs
allows for spatial correspondence between the Sokoban grid and agent hidden states. We focus on
multi-class square-level concepts which, as explained further in Appendix E, map grid squares to
concept classes.

We hypothesize that the agent will plan using the following square-level, multi-class concepts:

• Agent Approach Direction (CA): For a given square, this concept encodes whether the
agent will move onto the square in the future. If so, it also encodes the direction from
which the agent will move onto the square the next time it moves onto it.

4
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(a) Agent Approach Direction CA

(b) Box Push Direction CB

Figure 3: Examples of the classes assigned to the squares of a Sokoban board over 6 transitions
(from left to right) by the concepts ‘Agent Approach Direction’ (CA) and ‘Box Push Direction’
(CB). An arrow corresponds to the assignment of the associated directional class. The lack of an
arrow in a square indicates the assignment of the class NEVER.

• Box Push Direction (CB): For a given square, this concept encodes whether a box will be
pushed off the square in the future. If so, it also encodes the direction in which the box will
be pushed off the next time it is pushed.

Figure 3 illustrates the classes assigned to each square of a Sokoban board by these concepts over six
transitions near the end of an episode. Both concepts map each grid square of the agent’s observed
Sokoban board to the classes {UP, DOWN, LEFT, RIGHT, NEVER}. The directional classes corre-
spond to the agent’s movement directions. If the next time the agent steps onto a specific square,
the agent steps onto that square from the left, the concept CA would map this square to the class
LEFT. If the next time the agent pushes a box off of specific square, the box is pushed to the left, the
concept CB would map this square to the class LEFT. Finally, the class NEVER corresponds to the
agent not stepping onto or pushing a box off of a square again for the remainder of the episode.

Both concepts depend on the agent’s behavior: we can only determine the classes these concepts
map grid squares to after observing the agent’s behavior over the entire episode. Furthermore, as
shown in Figure 3, the classes squares are mapped to will change at every transition. Once an agent
steps onto a square, the classes assigned to that square will update to represent the agent’s future
interactions with that square. We investigate alternate concepts in Appendices D.4 and D.5.

4 PROBING FOR CONCEPT REPRESENTATIONS

We now perform the first step of our analysis: determining whether the agent internally represents
the concepts that we hypothesize it uses to internally form and evaluate plans.

4.1 EXPERIMENT DETAILS

Specifically, we use linear probes to determine if the agent represents (a) CA, agent’s future move-
ment onto squares, and (b) CB, the future directions boxes are pushed off of squares. We train linear
probes that take as input the agent’s cell state activations after the final of the three computational
ticks performed each step. We train separate probes for the agent’s three layers.

We hypothesize the agent will learn a spatial correspondence between its cell state and the Sokoban
grid. Thus, when predicting CA and CB at each location (x, y), our probes receive as input cell state
activations centered on (x, y). We train both 1x1 probes (which take as input just the activations at
(x, y)) and 3x3 probe (which take as input the 3x3 patch of activations around (x, y)). These probes
have 160 and 1440 parameters so are unlikely to overfit. We consider larger probes in Appendix D.3.

Each probe is trained using logistic regression with the AdamW optimizer, and five unique initial-
ization seeds. The training dataset is generated by running the agent for 3000 episodes on levels
from the Boxoban unfiltered training dataset (Guez et al., 2018a). We test probes on a test set of
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(b) CB

Figure 4: Macro F1s achieved by probes when predicting CA and CB using the cell state at each
layer, or, for the baseline probes, using the observation. Error bars show ±1 standard deviation.

(a) (b) (c)

Figure 5: Examples of internal plans computed by the agent. An internal plan corresponds to the
agent’s combined square-level representations of CA and CB. That is, an internal plan corresponds
to the classes the agent represents these concepts as mapping squares of observed boards to. These
internal plans are decoded from the agent’s final layer cell state by a 1x1 probe. Teal and purple
arrows respectively indicate the agent expects to next step on to, or push a box off, a square in the
associated direction. No arrow indicates the agent does not plan to step onto, or push a box off, a
square again. Further examples of internal plans are given in Figures 10, 11 and 12 in Appendix A.1.

transitions generated by running the agent for 1000 episodes on levels from the Boxoban unfiltered
validation dataset. Further probe training details are given in Appendix D.1. We compare the perfor-
mance of all probes to baseline probes that receive the raw observation xt as input. This comparison
aims to assess the extent to which probes’ abilities to predict concept classes is due to these concepts
being internally represented by the agent rather than the probes learning how to do so themselves.

4.2 RESULTS

In many Sokoban boards, the agent will never move onto, nor push a box off, a large number of
squares. As a result, many squares are assigned the label NEVER for both concepts in our probing
datasets, leading to class imbalance. We therefore evaluate probe performance using macro F1
scores in place of accuracy. Figure 4 shows the macro F1 scores achieved by probes trained to predict
the classes assigned to Sokoban squares by CA and CB. The probes that predict these concepts
using the agent’s cell state activations vastly outperform the baseline, implying the agent linearly
represents CA and CB. This aligns with past work finding linear concept representations in many
different networks (Nanda et al., 2023; McGrath et al., 2022; Zou et al., 2023).

Figure 4 confirms that the agent represents square-level concepts at localized positions of its Con-
vLSTM cells as opposed to distributing representations across adjacent positions. This is evidenced
by the minimal improvement in performance when moving from a 1x1 probe to a 3x3 probe, com-
pared to the significant improvement in baseline performance. We thus focus on 1x1 probes for the
remainder of this paper. Interestingly, Figure 4 also shows that while probes at layer 2 generally
perform a slightly better than probes at layer 1, there is little variation in performance across layers.
This indicates that the concepts are represented across all layers. We thus hypothesize that the agent
is engaged in iterative computation (Jastrzebski et al., 2018), whereby it refines plans across layers.

5 INVESTIGATING PLAN FORMATION

In this section, we provide qualitative evidence that the agent formsplans by searching forward from
the boxes and backward from the targets, and that the agent develops, evaluates, and adapts these
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plans in parallel. In this section, we primarily focus on descriptive explanations of how the agent
forms plans and the general shape of the plans. We defer more conclusive evidence – in the form of
intervening on the agent’s plan formation process to steer the agent’s behavior – to the next section.

Previously, we demonstrated that the agent encodes (at least) two planning-relevant concepts: CA
and CB. These concepts represent predictions regarding how the agent will act when moving onto
a given square in the future, and how the environment – specifically, the locations of boxes – will
be affected by these action. We thus posit that the agent’s representations of these concepts – when
looked at holistically, over the entire board – will collectively constitute a plan that the agent forms
and adapts For example, in Figure 5 we visualize the agent’s representations of CB and CA over
entire Sokoban boards, as decoded from the agent’s cell state by a 1x1 probe in different levels.
Three observations can be made from Figure 5: (a) the arrows, which indicate the direction the
agent expects to move or push boxes, tend to be connected and trace a path; (b) the arrows tend
to connect boxes to specific targets; (c) the arrows collectively form a plan which corresponds to
solving the level. In Appendix A.1 we visualize the agent’s plan across layers, and show that, while
the agent’s plans often contains flaws, they usually consist of connected paths for the agent to follow
and connected routes linking boxes and targets.

A natural question then arises: how does the agent form plans? To answer this, we direct attention
to Figure 1. Figure 1 visualizes the agent’s plans in terms of CB (e.g. the routes the agent plans
to push boxes) over the initial steps (A-C) and internal ticks (D-E) of episodes. As can be seen in
Figure 1, the agent forms plans iteratively. Interestingly, the agent appears to form plans iteratively
by searching forward from boxes – as illustrated in Figure 1(C) – and backward from targets – as
illustrated in Figure 1(D). That the agent seems to plan via bidirectional search – which is known
to be especially efficient when it is applicable (Russell & Norvig, 2010) – may explain why Guez
et al. (2019) found DRC agents to rival specialized planning architectures reliant on forward search.
Indeed, as shown in Figure 1(E), the agent seems to utilize a form of parallelized bidirectional search
whereby it extend multiple plans simultaneously. Appendices A.2.3, A.2.4 and A.2.5 contain further
instances of the agent appearing to utilize forward, backward, and parallel search.

However, recall that, in Section 2.1, we characterized planning as requiring an agent to evaluate the
plans it considers. Evidence suggestive of the agent evaluating plans can be seen in Figure 1(A)-
(B). Figures 1(A)-(B), show examples in which the agent appears to (1) formulate a naive plan, (2)
evaluate it, and then, upon realizing that it is infeasible or could be improved, (3) adapt its plan
accordingly by. For instance, in Figure 1(B), the agent changes the targets it plans to push different
boxes towards. This is suggestive of the agent using an evaluative search algorithm when forming
plans. Appendices A.2.1 and A.2.2 contain further examples of the agent seeming to evaluate plan
and either plan to push a box a longer route, or change which boxes it plans to push to which targets.

3 6 9 12 15
Internal Tick

0.6

0.7

0.8

0.9

M
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ro
 F
1

CA CB

Figure 6: Macro F1 when using 1x1 probes
to decode CA and CB from the agent’s final
layer cell state at each of the additional 15
internal ticks performed by the agent when
the agent is given 5 ‘thinking steps’, aver-
aged over 1000 episodes.

Further evidence of the agent planning via an itera-
tive search algorithm can be seen in Figure 6. For
Figure 6, we forced the agent to remain stationary
for 5 steps prior to acting in 1000 episodes. These
5 ‘thinking steps’ give the agent 15 internal ticks of
extra test-time compute. Figure 6 reports the macro
F1 when using 1x1 probes to decode CA and CB
from the agent’s final layer cell state at each of the
15 extra internal ticks, averaged over 1000 episodes.
Clearly, the macro F1 improves with the number of
ticks. Since the concepts are predictions of future
behavior, we can see the predictions of our probes
at any tick as being the agent’s internal plan at that
tick. We can then see the corresponding macro F1
as reflecting the quality of the agent’s plan at that
tick. Figure 6 shows that, as would be expected if
the agent planned via an iterative search, the agent’s
plans iteratively improve when given extra compute.
Appendix A.3.1 shows test-time plan refinement oc-
curs at all layers. Appendix A.3.2 provides evidence that it is a consequence of the agent searching
deeper. Appendix C.2 shows that this ‘test-time plan refinement capability’ arises early in training.
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Layer 1 Layer 2 Layer 3

Trained (%) Random (%) Trained (%) Random (%) Trained (%) Random (%)

AS 94.6 (±0.5) 33.7 (±32.7) 90.1 (±1.9) 29.8 (±36.8) 98.8 (±0.0) 27.8 (±37.9)
BS 56.2 (±1.4) 31.5 (±13.9) 72.7 (±1.1) 30.9 (±25.8) 80.6 (±2.4) 4.1 (±5.4)

Table 1: Success rates (%) when intervening on each layer using representations from trained and
randomly initialized probes. AS and BS refer to ‘Agent-Shortcut’ and ‘Box-Shortcut’ interventions.
Success rates are averaged over 5 interventions performed. We report ±1 standard deviations.

When considered alongside the agent’s planning-like behavior, the evidence in this section indicates
the agent uses the concepts we study to perform search-based planning. Further evidence of this is
given in Appendices A.2.6-A.2.9 in which we provide examples of the agent forming and adapting
plans in out-of-distribution scenarios. These scenarios include levels in which the agent itself is not
present (Appendix A.2.6), levels with greater numbers of boxes and targets than seen during training
(Appendix A.2.7), and levels in which walls appear and disappear (Appendices A.2.8-A.2.9). These
examples suggest that the agent’s ability to adapt and generalize – benefits of model-based planning
Guez et al. (2019) show DRC agents possess – are linked to its representations of CA and CB.

6 INVESTIGATING THE ROLE OF PLANS

So far, we have shown that the DRC agent represents CA and CB (Section 4), and that it uses these
representations to form internal plans (Section 5). We now conclude our analysis by showing that
these representations are causally responsible for the agent’s behavior. Specifically, we: (1) use
these representations to intervene on the agent to force it to form and execute specific plans, and (2)
show that these representations emerge concurrently with planning-like behavior during training.

6.1 INTERVENING ON AGENT PLANS

Our interventions involve adding concept vectors learned by probes to the agent’s activations to
force it to represent concepts in specific ways. We then observe the causal effect of our interventions
on the agent’s behavior. Recall that a 1x1 probe projects activations along a vector wk ∈ R32 to
compute a logit for class k of some multi-class concept C. We thus encourage the agent to represent
square (x, y) as class k for concept C by adding wk to position (x, y) of the agent’s cell state gx,y:

g′x,y ← gx,y + wk (1)
If the agent indeed uses CA and CB for planning, altering the agent’s square-level representations of
these concepts ought to modify its internal plan and, subsequently, its long-term behavior.

We intervene in two sets of handcrafted levels: ‘Agent-Shortcut’ and ‘Box-Shortcut’ levels. These
sets of levels are characterized by, in each level, there existing two plans: a short plan and a long
plan. The plans are similar, but differ in lengths. The agent by default follows the optimal (short)
plan. We show our interventions cause it to instead form and execute the suboptimal (long) plan.

In ‘Agent-Shortcut’ levels all boxes and targets are in one region of the board, and the agent can
follow either a long or short path to this region. In these levels, we intervene using vectors learned by
probes trained to predict CA to steer the agent to plan to move along the long path. Our intervention
consists of two parts. We add the vector for NEVER to cell state positions on the short path. We
call this the ‘short-route’ intervention. We also add the vector for the direction which would lead
the agent to move onto the first square of the long path to the appropriate cell state position. We call
this the ‘directional’ intervention. An Agent-Shortcut intervention is illustrated in Figure 7b.

‘Box-Shortcut’ levels are specially-designed levels in which three boxes are adjacent to targets and
a fourth box is not. The final box can be pushed a long or short route to a target. In these levels,
we intervene using vectors learned by probes trained to predict CB to steer the agent to push this
box the long route. Our intervention again consists of two parts. We add the vector for NEVER to
cell positions on the short route We also add the directional representation which would encourage
the agent to push the box the longer route to the box’s initial position. We again call these the
‘short-route’ and ‘directional’ interventions. A Box-Shortcut intervention is illustrated in Figure 8b.
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(a) Plan without intervention (b) Intervention (c) Plan with intervention

Figure 7: An Agent-Shortcut intervention and its effect on the agent’s plan as formulated in terms
of CA: (a) the agent’s plan after 4 steps without the intervention, (b) the initial state of the level and
the intervention, and (c) the agent’s plan after 4 steps with the intervention. The ‘short-route’ inter-
vention adds the representation of NEVER for CA to positions with white crosses. The ‘directional’
intervention adds the representation of DOWN for CA to the position with the white arrow.

(a) Plan without intervention (b) Intervention (c) Plan with intervention

Figure 8: A Box-Shortcut intervention and its effect on the agent’s plan as formulated in terms of
CB: (a) the agent’s plan after 4 steps without the intervention, (b) the initial state of the level and
the intervention, and (c) the agent’s plan after 4 steps with the intervention. The ‘short-route’ inter-
vention adds the representation of NEVER for CB to positions with white crosses. The ‘directional’
intervention adds the representation of RIGHT for CB to the position with the white arrow.

We intervene on 200 levels of each type. We created 25 levels of each type and then generated 8
versions of each level by applying vertical reflection and 90°, 180°, and 270° rotations. In all levels,
we repeat the ‘short-route’ intervention every step but repeat the ‘directional’ intervention only until
the agent moves onto, or pushes the box off, the corresponding square.

We perform our interventions on the agent’s cell state at each layer. An intervention is considered
successful if it causes the agent to solve the level in the desired suboptimal way. As a baseline, we in-
tervene using representations from randomly initialized probes. For comparability, we scale random
probe representations so that the norms of both the random and trained probes are similar. Success
rates are averaged over interventions performed with five independently trained or initialized probes.

Table 1 shows intervention success rates. At all layers, Agent-Shortcut interventions are successful.
While the success rate of Box-Shortcut interventions is lower, it remains high relative to the baseline
of interventions using random probes. These results indicate that the agent’s representations of
CA and CB influence its behavior in the way that would be expected if it used them for planning.
Figures 7 and 8 provides examples of the effect of interventions on the agent’s internal plans. These
examples suggest that the agent not only behaves differently following the interventions, but does so
due to forming a different plan. We show more examples of interventions altering the agent’s internal
plans in Appendix B.1. Appendix B.2 reports success rates of Agent- and Box-Shortcut interventions
when introducing a scaling factor for probe vectors, and when varying the squares intervened on
in the ‘directional’ and ‘short-route’ interventions. Appendix B.3 reports intervention success rates
when intervening in an alternate set of levels to encourage optimal behavior. These extra experiments
further indicate that the agent’s representations of CA and CB influence its behavior as expected.

6.2 INVESTIGATING THE EMERGENCE OF PLANNING DURING TRAINING

Finally, we show that the emergence of the agent’s representations of CA and CB during training
coincides with the agent beginning to exhibit planning-like behavior. This indicates that agent indeed
uses its representations of CA and CB for planning. Specifically, we show the emergence of these
representations coincides with the emergence of the agent’s ability to benefit from extra test-time
compute (Guez et al., 2018b; Garriga-Alonso et al., 2024). In particular, we collect checkpoints
every 1 million transitions for the first 50 million transitions of training. For every checkpoint,
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Figure 9: The relationship between the per-
centage of extra medium levels solved when
an agent is given 5 steps to ‘think’, and macro
F1 score of probes when predicting CA (blue)
and CB (orange) from the agent’s final layer
cell state. Each point correspond to these
quantities calculated for a single checkpoint.

we measure two quantities across 1000 unseen
‘medium difficulty’ levels from the Boxoban
dataset (Guez et al., 2018a): (i) the macro F1 score
of 1x1 probes trained to decode the concepts CA
and CB given the agent’s cell state (following the
procedure described in Section 4.1), and (ii) the
number of additional levels the agent could solve
when given extra test-time compute by forcing the
agent to remain stationary for the first 5 steps of an
episode. Figure 9 plots these quantities against each
other and shows a strong correlation between them.
This implies the agent only reliably begins to exhibit
planning-like behavior – benefiting from extra test-
time compute – once its final layer representations
of CA and CB are sufficiently formed. Appendix C.3
shows that this holds for its representations of CA
and CB at all layers. Similarly, Appendix C.4 shows
that the agent begins to perform better when given
extra compute at a similar point in training as to it can use this compute to refine its plans.

7 RELATED WORK

Past work has investigated concept representations learned by game-playing agents (Schut et al.,
2023; McGrath et al., 2022; Hammersborg & Strümke, 2022; 2023; Lovering et al., 2022; Mini
et al., 2023) and language models (Li et al., 2023; Nanda et al., 2023; Karvonen, 2024; Ivanitskiy
et al., 2024). While past work has focused primarily on whether networks internally represent spe-
cific concepts, we study concept representations for the broader purpose of determining if an agent
possesses a capability - planning. An exception is work by Jenner et al. (2024), which finds evidence
of look-ahead in an AlphaZero-style agent, but does not investigate a wider capacity to ‘plan’.

Concept-based interpretability is not the only approach to interpreting agents. An alternative is
attribution-based interpretability. This involves determining – usually via saliency maps – which
features in an agent’s observation influence its behavior (Weitkamp et al., 2019; Iyer et al., 2018; Puri
et al., 2020; Greydanus et al., 2018; Hilton et al., 2020). Attribution-based methods were not used
here as they depend on subjective interpretation (Atrey et al., 2020). Another approach, example-
based interpretability, explains agent behavior by providing examples of illustrative trajectories or
transitions (Rupprecht et al., 2020; Sequeira & Gervasio, 2020; Deshmukh et al., 2023; Zahavy et al.,
2016). Due to not studying model internals, example-based methods were ill-suited for this paper.

Finally, this paper contributes to recent work investigating the emergence of reasoning capabilities
in neural networks (Wei et al., 2022; Kojima et al., 2022; Lehnert et al., 2024; Nye et al., 2021; Wang
et al., 2024). However, unlike this paper in which we provide evidence of an agent internally per-
forms planning, most work thus far has focused on providing behavioral evidence of reasoning. An
exception to this is work by Brinkmann et al. (2024) in which an algorithm learned by a transformer
trained to perform a simple symbolic reasoning task is reverse-engineered. However, Brinkmann
et al. (2024) focus on a much simpler form of reasoning than planning as considered in this paper.

8 DISCUSSION & FUTURE WORK

In this paper, we proposed a methodology for investigating model-free planning and used it to pro-
vide the first non-behavioral evidence of learned planning in a model-free agent. We showed that a
DRC agent appears to utilize a learned planning process mirroring parallelized bidirectional search.
This mechanistic evidence of model-free planning blurs the classic distinction between model-based
and model-free RL (Sutton & Barto, 2018). Yet, as exemplified by its multiple internal recurrent
ticks, the agent we study has a slightly atypical architecture. Further, this agent is especially suited
to Sokoban. Appendices G and H provide evidence of DRC agents planning without internal ticks
and in a different environment. However, the question of whether an agent with a generic architec-
ture like a ResNet (He et al., 2016) can learn to plan in a generic environment remains unanswered.
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Reichert, Théophane Weber, Daan Wierstra, and Peter Battaglia. Learning model-based planning
from scratch. arXiv preprint arXiv:1707.06170, 2017.

Nikaash Puri, Sukriti Verma, Piyush Gupta, Dhruv Kayastha, Shripad Deshmukh, Balaji Krishna-
murthy, and Sameer Singh. Explain your move: Understanding agent actions using specific and
relevant feature attribution. In International Conference on Learning Representations, 2020.
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A ADDITIONAL INVESTIGATIONS OF INTERNAL PLANNING

In Section 5, we provide evidence suggestive of the agent possessing a search-based internal plan-
ning mechanism. In this section, we now provide further complementary evidence regarding the
agent’s internal planning procedure. This section proceeds as follows:

• Appendix A.1 provides further examples of the agent’s internal plan at all layers.
• Appendix A.2 provides additional examples of the agent forming plans in a manner sug-

gestive of a search-based planning algorithm.
• Appendix A.3 provides additional investigations of the agent’s ability to use extra test-time

compute to improve its plans.

A.1 FURTHER EXAMPLES OF INTERNAL PLANS

In Figure 5 we provided examples of ‘internal plans’ formulated by the agent. We understood
the agent’s internal plans to consist of its internal representations, for each square of its observed
Sokoban board, of CA and CB. In Figure 5, all internal plans were decoded from the agent’s final
layer cell state. In this section we now provide additional examples of internal plans formulated by
the agent as decoded from its cell state at each layer.

Figures 10, 11 and 12 respectively show the internal plans decoded from the agent’s first, second,
and third layer cell states at the same 9 transitions. These transitions were selected as they were
the first transitions of the respective episodes in which the agent’s internal plan at a specific layer
corresponded to a complete plan to solve the level. We note that the observations we made regarding
Figure 5 likewise hold here. That is, (1) the arrows tend to form connected paths, (2) the agent’s
plans tend to connect specific boxes to specific targets, and (3) the agent often forms complete plans
to solve levels very early on in episodes.

Note, however, that the agent’s plans in Figures 10, 11 and 12 often contain mistakes. This is despite
the illustrated transitions being selected such that the agent’s plan is correct in at least one layer. A
few things can be noted about these mistakes. First, the agent’s plans for box movements contain,
on average, far fewer mistakes than the agent’s plans for its own movements. Second, the mistakes
in the agent’s plan for its own movements are usually minor and consist of e.g. one arrow being
wrong. Third, the agent’s mistakes when planning its own movements in the examples tend to be
mistakes regarding how it can move between boxes. We think these observations suggest that the
agent is primarily planning by constructing plans in terms of CB connecting boxes and targets, and
then augmenting these plans with planned agent movements where needed.

At a high-level, we suspect that mistakes in the agent’s plan are best seen as relating to intermediate
steps of the agent’s internal planning process. First, this is because many mistakes seems to be
plans that the agent considers on its way to arriving at its final plan. This is because mistakes are
almost always fixed in future transitions. Second, some mistakes seem to be temporarily added to
the agent’s otherwise-correct plan at specific layers. We believe these mistakes potentially relate to
the fact that, as part of its planning process, the agent sometimes considers consider variations on its
plan.
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CA CB
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Figure 10: Examples of internal plans – i.e. planned agent movements (CA) and planned box move-
ments (CB) – computed by the agent as decoded from its first layer cell state by a 1x1 probe. Teal
arrows denote square that the agent expects to next step onto from the associated direction. Blue
arrows denote squares that the agent expects to push a box off in the corresponding direction. These
examples are taken at the first transition of the respective episode in which the agent’s plan as de-
coded from its first layer cell state (10a, 10b and 10c), second layer cell state (10d, 10e and 10f) or
third layer cell state (10g, 10h and 10i) corresponds to a complete plan to solve the level.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

CA CB

(a)

CA CB

(b)

CA CB

(c)

CA CB

(d)

CA CB

(e)

CA CB

(f)

CA CB

(g)

CA CB

(h)

CA CB

(i)

Figure 11: Examples of internal plans – i.e. planned agent movements (CA) and planned box move-
ments (CB) – computed by the agent as decoded from its second layer cell state by a 1x1 probe.
Teal arrows denote square that the agent expects to next step onto from the associated direction.
Blue arrows denote squares that the agent expects to push a box off in the corresponding direction.
These examples are taken at the first transition of the respective episode in which the agent’s plan as
decoded from its first layer cell state (11a, 11b and 11c), second layer cell state (11d, 11e and 11f)
or third layer cell state (11g, 11h and 11i) corresponds to a complete plan to solve the level.
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Figure 12: Examples of internal plans – i.e. planned agent movements (CA) and planned box move-
ments (CB) – computed by the agent as decoded from its final layer cell state by a 1x1 probe. Teal
arrows denote square that the agent expects to next step onto from the associated direction. Blue
arrows denote squares that the agent expects to push a box off in the corresponding direction. These
examples are taken at the first transition of the respective episode in which the agent’s plan as de-
coded from its first layer cell state (12a, 12b and 12c), second layer cell state (12d, 12e and 12f) or
third layer cell state (12g, 12h and 12i) corresponds to a complete plan to solve the level.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

A.2 FURTHER EXAMPLES OF INTERNAL PLAN FORMATION

In this section, we provide additional examples of the agent seeming to use its implicit learned
environment model to internally form plans via an evaluative search. As in the main paper, we focus
on the agent’s internal plan as formulated in terms of its representations of CB. That is, we focus on
the routes the agent expects to push boxes (e.g. ‘box plans’) rather than the paths the agent expects to
follow (e.g. ‘agent plans’). This is for two reasons. First, we expect ‘box plans’ to be determinative
of ‘agent plans’ as the primary difficulty of Sokoban regards box movements. Second, ‘box plans’
are easier to visually inspect as ‘agent plans’ often intersect such that it is usually ambiguous to
tell why a square has been added to an ‘agent plan’. All examples use handcrafted Sokoban levels
designed to allow for clear plan visualization.

We begin by providing additional examples of the plan formation ‘motifs’ shown in Figure 1. These
motifs are re-occurring themes in the agent’s internal plan formation process. In each of the follow-
ing five sub-sections we present five examples of the agent formulating internal plans in a way that
demonstrates one of the aforementioned motifs. These motifs are:

• Evaluative Planning - modifying plans based on feasibility (Section A.2.1)
• Adaptive Planning - modifying plans based on conflicts (Section A.2.2)
• Forward Planning - forming plans by searching forward from boxes (Section A.2.3)
• Backward Planning - forming plans by searching backward from targets (Section A.2.4)
• Parallel Planning - forming multiple plans in parallel (Section A.2.5)

However, these motifs are not the only evidence of evaluative, search-based planning exhibited by
the agent’s internal plan formation process. Specifically, evidence of this can also be seen when
inspecting the manner in which the agent forms plans when confronted with various forms of out-
of-distribution Sokoban levels. As such, we provide examples of the agent successfully formulating
internal plans under various types of distribution shift. That is, we show examples of:

• Blind Planning - planning in levels in which the agent itself is not present (Section A.2.6)
• Generalized Planning - planning in levels with extra boxes and targets (Section A.2.7)
• Blocked-Route Planning - planning in levels in which additional walls appear at later time

steps that block obvious routes to push boxes (Section A.2.8)
• New-Route Planning - planning in levels in which walls disappear at later time steps such

that improved routes become available (Section A.2.9)

Finally, in Section A.2.10, we will conclude by discussing the implications of the agent’s apparent
learned search-based planning process.

A.2.1 EVALUATIVE PLANNING

Under our characterization of ‘planning’ in Section 2.1, planning requires that an agent evaluates
its plans. That is, merely formulating internal plans is not sufficient to view an agent as engaging
in planning. Instead, we understand ‘planning’ as requiring that an agent arrive at an internal plan
by means of evaluating different possible plans. This is because evaluating plans (e.g. in terms of
their effects on the environment) allows the agent to formulate plans that it predicts will lead to good
consequences.

When visualizing the agent’s plan formation process, we see evidence indicative of the agent imple-
menting some form of evaluative search-based planning. For instance, we see evidence of the agent
iteratively constructing planned routes push boxes to targets, then evaluating these routes. Specifi-
cally, the agent seems capable of evaluating routes and and determining whether they are feasible.
We call this evaluative planning.

Figure 13 shows the development of agent’s internal plan in five episodes in which it performs
evaluative planning of this sort. For instance, in Figure 13b, the agent’s initial internal plan (i.e. at
the first computational tick) involves the agent pushing the upper-left box down through a corridor
to the center-most target. On the face of it, this plan is appealing. This is because it is a ‘short’
plan in terms of the number of squares it would involve pushing a box across. However, this plan
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is infeasible. This is because the corridor is structured such that, upon pushing the box down into
it, the agent would block the corridor off. This would then prevent the agent from (a) navigating
to the left of the box as would be required to push it right along the corridor to the target, and (b)
navigating to the lower-left box and target. Over subsequent ticks, the agent appears to evaluate its
plan and realize this. In response, the agent then construct an alternative plan for the upper-left box.
While less naively appealing – it is a longer plan in terms of the number of squares the box would
need to be pushed – this plan would allow the agent to solve the level. The ability of the agent to
recognize and avoid such ‘bad’ plans implies that the agent has learned to evaluate plans as required
by our characterization of planning.

A.2.2 ADAPTIVE PLANNING

Determining whether a single route would allow the agent to solve a level is not the only type of
evaluation that the agent appears to perform when it formulates its internal plans. Additionally, the
agent also appears to adapt its plans when conflicts arise between its sub-plans. That is, in cases
when the agent’s internal plan involves pushing two boxes to the same target, the agents adapts its
plan by planning for one of these boxes to be pushed top an alternative target. This suggests that the
agent is predicting and evaluating the consequences of its actions. We call this form of evaluation
adaptive planning.

Instances of the agent performing adaptive planning when formulating its internal plans can be seen
in Figure 14. Figure 14 shows the development of agent’s internal plan over the initial steps of
five episodes in which it performs adaptive planning. For examples, consider the way in which the
agent’s plans develop in Figure 14c. During the initial three computational ticks, the agent plans
to push two separate boxes –i.e. the lower-left box and the upper-left box – to the left-most target.
Importantly, however, in this level the upper-left box must be pushed to this target. This is because
the left-most target is the only target that the upper-left box can feasibly be pushed to (e.g. if the
lower-left box was pushed onto the left-most target, the level would be unsolvable). Over the fourth
and fifth computational ticks, the agent appears to realize this and form an alternate plan for the
lower-left target (e.g. a plan to push it to one of the top-right targets).

We take the ability of the agent to adaptively plan in this fashion as evidence that, during planning,
the agent is capable of predicting and evaluating the (relevant) consequences of its actions. That
is, the agent not only internally represents plans formulated in terms of the consequences of its
actions on box locations (i.e. its internal plans formulated in terms of CB), but also has learned that
a consequence of following one of these plans and pushing a box onto a target is to ‘fill’ this target.
This suggests that the agent has learned that the effect of pushing a box onto a target is to stop other
boxes being able to be pushed onto that same target.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

step 0, tick 3 step 1, tick 3 step 2, tick 3 step 3, tick 3 step 4, tick 3 step 5, tick 3

(a) The agent initially plans to push a box through the circled corridor. However, the agent appears to realize
that this is infeasible as it cannot push the box up onto the target as required by this plan. It then forms a longer
plan that involves pushing the box a longer route to the same target.

step 0, tick 3 step 1, tick 3 step 2, tick 3 step 3, tick 3 step 4, tick 3 step 5, tick 3

(b) The agent initially plans to push a box up through the circled corridor. However, over subsequent time
steps, the agent appears to realize that this is infeasible as it cannot get under the box at the corridor entrance
as it would need to in order to push this box up through the corridor. It then modifies its plan so that this box is
instead pushed a longer route that avoids the corridor.

step 0, tick 3 step 1, tick 3 step 2, tick 3 step 3, tick 3 step 4, tick 3 step 5, tick 3

(c) The agent initially plans to push a box down to a target along the circled route. However, over subsequent
computational ticks, the agent realizes that this plan would prevent it from solving the level as it would prevent
it from ever reaching the lower-left box and target. The agent then modifies its plan so that this box is instead
pushed a longer route avoiding the corridor.

step 0, tick 3 step 1, tick 3 step 2, tick 3 step 3, tick 3 step 4, tick 3 step 5, tick 3

(d) At the initial time step, the agent plans to push a box down through the circled corridor. However, the agent
realizes that this is not possible as it cannot get above the box at the corridor entrance as would be required in
order to to push it down. The agent then updates its plan so that this box is pushed through the further corridor.

step 0, tick 3 step 1, tick 3 step 2, tick 3 step 3, tick 3 step 4, tick 3 step 5, tick 3

(e) After the first time computational tick, the agent plans to push a box along the circled route (e.g. the
shortest route to the respective target). However, at the following tick, the agent appears to realizes that this is
not possible as the agent would be unable to push the box left as required. The agent then updates its plan so
that this box is instead pushed a longer route to the target.

Figure 13: Examples of episodes in which the agent’s internal plan initially includes planned routes
that would not lead to the agent solving the level. In all these examples, the agent realizes that part
of its plan is infeasible and updates its plan accordingly. Blue arrows represent the direction that the
agent plans to next push a box off of each square. Yellow circles highlight parts of the agent’s plan
that are infeasible and later removed. The plans are decoded are from the agent’s cell state at its first
(13a), second (13b and 13c) and third (13d and 13e) layer by a 1x1 probe. The plans are decoded
from the agent’s cell states at either the final computational tick of the first six steps of episodes
(13a, 13b and 13d), or at each computational tick of the first two steps of episodes (13c and 13e).
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step 0, tick 3 step 1, tick 3 step 2, tick 3 step 3, tick 3 step 4, tick 3 step 5, tick 3

(a) The agent initially plans to push two boxes to the lower left target. However, at later time steps, the alters
its plan to instead push one of these boxes to the top-right target.

step 0, tick 3 step 1, tick 3 step 2, tick 3 step 3, tick 3 step 4, tick 3 step 5, tick 3

(b) The agent again initially plans to push two boxes to the two lower right targets. Again, at a later time step,
the agent adapts its plan to instead push one of these boxes to the top-right target.

step 0, tick 1 step 0, tick 2 step 0, tick 3 step 1, tick 1 step 1, tick 2 step 1, tick 3

(c) During the initial 3 ticks, the agent plans to push both the lower-left and upper-left boxes to the left-most
target. However, the agent appears to realize that the top-left box must be pushed to this target (i.e. it is the only
target that it is feasible to push the top-left box to). The agent the adapts its plan to instead push the lower-left
box to one of the top-most targets.

step 0, tick 3 step 1, tick 3 step 2, tick 3 step 3, tick 3 step 4, tick 3 step 5, tick 3

(d) Over the first two time steps, the agent considers pushing the lower-left box forward to one of the lower-
right targets. However, this generates a conflict. The agent appears to realize this and then connect this box to
a plan it has constructed that links this box to the top-left target.

step 0, tick 1 step 0, tick 2 step 0, tick 3 step 1, tick 1 step 1, tick 2 step 1, tick 3

(e) After the third tick, the agent plans to push two boxes to the lower-right target. However, the agent seems
to realize that the lowest box must be pushed to this target (e.g. the only target the lowest box can feasibly be
pushed to is the lower-right target). At the fourth tick, the agent hence plans to instead push the other box that
it has associated with the lower-right target to an alternate target.

Figure 14: Examples of episodes in which the agent initially plans to push multiple boxes to the
same target before modifying its plan to push one of these boxes to an alternate target. Blue arrows
represent the direction that the agent plans to next push a box off of each square. Yellow circles
highlight parts of the agent’s plan that involve pushing two boxes to the same target. The plans are
decoded are from the agent’s cell state at its first (14a), second (14b and 14c) and third (14d and
14e) layer by a 1x1 probe. The plans are decoded from the agent’s cell states at either the final
computational tick of the first six steps of episodes (14a, 14b and 14d), or at each computational tick
of the first two steps of episodes (14c and 14e).
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A.2.3 FORWARD PLANNING

In the previous two sections, we described forms of evaluation the agent appears to perform as part
of its iterative plan-construction process. However, this leaves open the question of how the agent
iteratively constructs plans. As explained in Section 5, the agent appears to do so by using some form
of learned, iterative search process. In this section, we now describe one major form of iterative,
search-based plan-construction the agent performs: planning forward from boxes.

Specifically, one of the (two) primary ways the agent appears to construct its internal plans is by
iteratively extending its internal plans forward from boxes. That is, the agent seems to frequently
‘initialize’ plans at box locations, and then iteratively extend these plans forwards towards targets
over the early computational ticks of episodes. This is as a form of forward search. Algorithms based
on forward search – for instance, Monte Carlo Tree Search (Coulom, 2006) – are the predominant
form of planning algorithms currently used in model-based planning agents. It is hence notable that
the agent appears to have learned a planning that (partially) relies on forward search.

Instances of the agent constructing its internal plans by iteratively searching forward from boxes can
be seen in Figure 15. Figure 15 shows the development of agent’s internal plan over the initial steps
of five episodes in which the agent constructs part of its internal plan by planning forward from
boxes towards targets. As a specific example, consider Figure 15a: the agent iteratively constructs a
plan to push the bottom-right box to the top-right target by planning forward from the bottom-right
box. Notice that the part of its plan that the agent iteratively constructs forward from this box end
up connecting with a partial plan that the agent has constructed by iteratively searching backward
from the top-right target. This will be discussed in the following section.

A.2.4 BACKWARD PLANNING

Iteratively searching forward from boxes is not the only form of search-based planning that the
agent appears to engage in. Additionally, the agent appears to search backwards from targets to
boxes. That is, the agent will frequently initialize the end of a plan (i.e. by initializing a plan that
ends at a specific target), and then iteratively search backwards towards boxes. This is a form of
backward search. We hence refer to this as backwards planning.

Examples of the agent constructing its internal plans by iteratively searching backwards from targets
can be seen in Figure 16. Figure 16 shows the development of the agent’s internal plan over the
initial steps of five episodes in which the agent constructs part of its internal plan by iteratively
planning backwards from targets towards boxes. For instance, consider the manner in which the
agent forms its internal plan in the episode shown in Figure 16e. Between the first and fifth tick in
this episode, the agent iteratively extends a planned route backwards from the lower-right target to
the lower-right box.

Backward-search was long studied in the context of planning in ‘classic’ RL (Moore & Atkeson,
1993). However, whilst some recent work has investigated methods relating to backward planning
(Goyal et al., 2018; Van Hasselt et al., 2019; Lee et al., 2019), backward-facing planning is signif-
icantly less popular forward-facing planning in modern model-based RL agents. The fact that the
agent has learned to (partially) rely upon backwards planning is, therefore, interesting.

A.2.5 PARALLEL PLANNING

Finally, the agent appears to be capable of extending multiple plans in parallel over a single compu-
tational tick. We refer to this as parallel planning. Examples of the agent constructing its internal
plans in parallel can be seen in Figure 17. Figure 17 shows the development of the agent’s internal
plan over the initial steps of five episodes in which the agent utilizes parallel planning. Parallel
planning is not something that it common in standard planning algorithms. This is because, unlike
the DRC agent that can plan by applying convolution operations to its spatially-extended cell states,
standard planning algorithms must extend a single node at a time. We hypothesize that this parallel
planning is learned by the agent to further increase the efficiency with which it plans.
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step 0, tick 3 step 1, tick 3 step 2, tick 3 step 3, tick 3 step 4, tick 3 step 5, tick 3

(a) The agent iteratively extends part of its plan forward from the bottom-right box. The agent extends this part
of its plan forward until it connects to a part of the agent’s plan that connects it to the top-right target.

step 0, tick 1 step 0, tick 2 step 0, tick 3 step 1, tick 1 step 1, tick 2 step 1, tick 3

(b) The agent constructs part of its plan by iteratively searching forward from the bottom-right box. The agent
searches forward until this part of its plan connects to a part of the agent’s plan that connects this box to the
bottom-left target.

step 0, tick 1 step 0, tick 2 step 0, tick 3 step 1, tick 1 step 1, tick 2 step 1, tick 3

(c) The agent formulates a planned route to push the top-most box by extending its plan forward from this box
to the top-right target.

step 0, tick 3 step 1, tick 3 step 2, tick 3 step 3, tick 3 step 4, tick 3 step 5, tick 3

(d) The agent forms a plan for the bottom-most box by searching forward from this box to the lower-left target.

step 0, tick 1 step 0, tick 2 step 0, tick 3 step 1, tick 1 step 1, tick 2 step 1, tick 3

(e) The agent forms a plan for the center-most box by iteratively searching forward from this box to the lower-
right target.

Figure 15: Examples of episodes in which the agent formulates its internal plan by iteratively ex-
tending planned routes forward from boxes. Blue arrows represent the direction that the agent plans
to next push a box off of each square. Yellow circles highlight parts of the agent’s plan that its has
constructed by iteratively searching forward from boxes to targets. The plans are decoded are from
the agent’s cell state at its first (15a), second (15b and 15c) and third (15d and 15e) layer by a 1x1
probe. The plans are decoded from the agent’s cell states at either the final computational tick of the
first six steps of episodes (15a, 15b and 15d), or at each computational tick of the first two steps of
episodes (15c and 15e).
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step 0, tick 3 step 1, tick 3 step 2, tick 3 step 3, tick 3 step 4, tick 3 step 5, tick 3

(a) The agent formulates part of its internal plan by iteratively searching backwards from the bottom-right target
to the center-most box.

step 0, tick 3 step 1, tick 3 step 2, tick 3 step 3, tick 3 step 4, tick 3 step 5, tick 3

(b) The agent constructs a plan to push a box to the top-most target by iteratively extending a plan backwards
from this target. The agent extends this plan backwards until it connects to the top-most box.

step 0, tick 1 step 0, tick 2 step 0, tick 3 step 1, tick 1 step 1, tick 2 step 1, tick 3

(c) The agent forms an internal plan to push a box to the top-most target by iteratively searching backwards
from this target. The agent formulates this part of its plan by searching backwards until this plan connects to
the lower-right target.

step 0, tick 3 step 1, tick 3 step 2, tick 3 step 3, tick 3 step 4, tick 3 step 5, tick 3

(d) The agent formulates a plan to push the left-most box to the right-most target by searching backwards from
the left-most target to the left-most box.

step 0, tick 1 step 0, tick 2 step 0, tick 3 step 1, tick 1 step 1, tick 2 step 1, tick 3

(e) The agent constructs a plan to push a box to the lower-right target by iteratively constructing a plan back-
wards from this target. The agent extends this plan backwards until it connects to the lower-right target.

Figure 16: Examples of episodes in which the agent formulates its internal plan by iteratively ex-
tending planned routes backward from targets. Blue arrows represent the direction that the agent
plans to next push a box off of each square. Yellow circles highlight parts of the agent’s plan that its
has constructed by iteratively searching backwards from targets to boxes. The plans are decoded are
from the agent’s cell state at its first (16a), second (16b and 16c) and third (16d and 16e) layer by a
1x1 probe. The plans are decoded from the agent’s cell states at either the final computational tick
of the first six steps of episodes (16a, 16b and 16d), or at each computational tick of the first two
steps of episodes (16c and 16e).
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step 0, tick 1 step 0, tick 2 step 0, tick 3 step 1, tick 1 step 1, tick 2 step 1, tick 3

(a) At the fourth computational tick, the agent extends two parts of its plan (e.g. its plans to push boxes to the
top-most targets) in parallel.

step 0, tick 1 step 0, tick 2 step 0, tick 3 step 1, tick 1 step 1, tick 2 step 1, tick 3

(b) At the second computational tick, the agent iteratively constructs internal plans for the two top-most targets
by searching backwards from these two targets in parallel.

step 0, tick 1 step 0, tick 2 step 0, tick 3 step 1, tick 1 step 1, tick 2 step 1, tick 3

(c) At the third computational tick, the agent iteratively extends its internal plans associated with the two top-
most targets by extending these two plans in parallel.

step 0, tick 1 step 0, tick 2 step 0, tick 3 step 1, tick 1 step 1, tick 2 step 1, tick 3

(d) The agent searches backwards from the two bottom-most targets in parallel at the third computational tick.

step 0, tick 1 step 0, tick 2 step 0, tick 3 step 1, tick 1 step 1, tick 2 step 1, tick 3

(e) After the third computational tick, the agent extends two parts of its internal plan in parallel.

Figure 17: Examples of episodes in which the agent formulates its internal plan by extending mul-
tiple planned routes in parallel over a single computational tick. Blue arrows represent the direction
that the agent plans to next push a box off of each square. Yellow circles highlight parts of the
agent’s plan that its has constructed in parallel over a single tick. The plans are decoded are from
the agent’s cell state at its first (17a), second (17b and 17c) and third (17d and 17e) layer by a 1x1
probe. The plans are decoded from the agent’s cell states at either the final computational tick of the
first six steps of episodes (17a, 17b and 17d), or at each computational tick of the first two steps of
episodes (17c and 17e).
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A.2.6 BLIND PLANNING

At the start of this section, we noted that, in a discrete, deterministic environment such as Sokoban, a
natural way for an agent possessing a world model – or, in the case of the agent we study, a ‘implicit-
model’ – would be for it to search over possible sequences of future actions in search of a sequence of
actions that achieved some goal. In Section 5, we noted that the agent’s internal plans consistently
represent routes connecting boxes and targets. This, alongside all previous visualizations of the
agent’s plans, suggests that the ‘goal’ the agent evaluates sequences of actions in terms of when
performing search is whether said actions represent a feasible route to push a box along to a target.

If the agent formulates internal plans by searching over potential future actions with the goal of
connecting boxes and targets, we would expect the agent’s planning algorithm to (at least attempt)
to search for plans achieving this goal in any Sokoban level so long as that level contained boxes
to plan from and targets to plan to. That is, if the agent does indeed formulate internal plans by
searching for plans achieving the goal of connecting boxes and targets, we would expect the agent
to be able to formulate plans in Sokoban levels drawn from significantly different distributions.

We now provide examples of the agent successfully forming plans in a a very different type of level
to the levels on which it was trained. Specifically, we provide examples of the agent appearing
to search for plans in levels in which it is not itself present. These are Sokoban levels in which
the agent observes the level, but is not actually positioned on any square. Note that this represents
a significant distribution shift to the levels the agent was trained on. Indeed, the agent can never
actually influence these levels. Crucially, however, since this distribution shift should not prevent
the agent from attempting to form plans if it did indeed plan in the hypothesized manner.

Figure 18 shows the development of the agent’s internal plan in levels in which the agent is not itself
present. Clearly, the agent (i) still attempts to form plans and (ii) forms internal plans that success-
fully connect boxes and targets. We take the ability of the agent to continue internally forming plans
in the face of this radical distribution shift as evidence that the agent indeed possesses some learned
search procedure that searches for plans that achieve the goal of connecting boxes and targets. How-
ever, we note that an unexplained curiosity is that, in same such levels, after arriving at a plan the
agent will seemingly completely forget it. That is, in some cases of blind planning, the agent will
begin to form a plan and then, after many time steps, proceed to forget the plan and represent no
plan at all.

A.2.7 GENERALIZED PLANNING

In the original paper introducing DRC agents, Guez et al. (2019) demonstrated that Sokoban-playing
DRC trained on the Boxoban dataset of Sokoban levels (i.e. levels containing four boxes and four tar-
gets) can successfully solve generalize to Sokoban levels with additional targets and boxes. Specif-
ically, they showed that such a DRC agent can solve Sokoban levels with additional boxes and
targets.

Given the discussion thus far, we hypothesize that the reason for this is that an agent possessing
a planning mechanism of the above sort (i.e. an agent that planned by searching for sequences of
actions corresponding to routes between boxes and targets) would be able to successfully execute
its planning mechanism in such levels. This is because simply introducing a search process that
searched for routes connecting boxes and targets could easily generalize to levels in which additional
boxes and targets are present.

Figure 19 shows examples of the agent’s internal plan at the final tick of the initial six time steps
in episodes in which there are either five boxes and targets, or six boxes and targets. As implied
by the above discussion, the agent (i) still attempts to form plans and (ii) forms internal plans that
successfully connect boxes and targets. We take this as additional evidence of the agent searching
for plans that achieve the goal of connecting boxes and targets.
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step 0, tick 1 step 0, tick 2 step 0, tick 3 step 1, tick 1 step 1, tick 2 step 1, tick 3

(a)

step 0, tick 3 step 1, tick 3 step 2, tick 3 step 3, tick 3 step 4, tick 3 step 5, tick 3

(b)

step 0, tick 1 step 0, tick 2 step 0, tick 3 step 1, tick 1 step 1, tick 2 step 1, tick 3

(c)

step 0, tick 3 step 1, tick 3 step 2, tick 3 step 3, tick 3 step 4, tick 3 step 5, tick 3

(d)

step 0, tick 3 step 1, tick 3 step 2, tick 3 step 3, tick 3 step 4, tick 3 step 5, tick 3

(e)

Figure 18: Examples of episodes in which the agent formulates an internal plan despite not being
present in the level. Blue arrows represent the direction that the agent plans to next push a box off
of each square. The plans are decoded are from the agent’s cell state at its first (18a), second (18b
and 18c) and third (18d and 18e) layer by a 1x1 probe. The plans are decoded from the agent’s cell
states at either the final computational tick of the first six steps of episodes.
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step 0, tick 3 step 1, tick 3 step 2, tick 3 step 3, tick 3 step 4, tick 3 step 5, tick 3

(a)

step 0, tick 3 step 1, tick 3 step 2, tick 3 step 3, tick 3 step 4, tick 3 step 5, tick 3

(b)

step 0, tick 3 step 1, tick 3 step 2, tick 3 step 3, tick 3 step 4, tick 3 step 5, tick 3

(c)

step 0, tick 3 step 1, tick 3 step 2, tick 3 step 3, tick 3 step 4, tick 3 step 5, tick 3

(d)

step 0, tick 3 step 1, tick 3 step 2, tick 3 step 3, tick 3 step 4, tick 3 step 5, tick 3

(e)

Figure 19: Examples of episodes in which the agent formulates its internal plan despite there being
more boxes and more targets than in the levels on which it was trained. Blue arrows represent the
direction that the agent plans to next push a box off of each square. The plans are decoded are from
the agent’s cell state at its first (19a), second (19b and 19c) and third (19d and 19e) layer by a 1x1
probe. The plans are decoded from the agent’s cell states at the final computational tick of the first
six steps of episodes. These episodes take place in levels in which there are five boxes and targets
(19a, 19b and 19d), and in levels in which there are six boxes and targets (19c and 19e)
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A.2.8 BLOCKED-ROUTE PLANNING

The previous two sub-sections provided examples of the agent successfully formulating plans in
levels that represented significant distribution shifts relative to the training distribution. These pre-
vious distribution shifts aimed to induce changes to the agent’s environment that would not impede
the planning capabilities of an agent that planned via searching for plans that achieved the implicit
goal of connecting boxes and targets. In this sub-section and the following sub-section we now con-
sider different forms of distribution shift. Namely, we now consider distribution-shifted Sokoban
levels that aim to test the ability of the agent to dynamically evaluate and update its internal plan in
response to environmental changes.

We begin by considering Sokoban levels in which, at a time step following the initial time step,
an additional wall square is added to the level. Specifically, this wall square is added to a location
that blocks an obvious route between a a box and a target. The aim of investigating these levels is
to determine whether the agent is capable of evaluating that this additional wall square invalidates
its current plan, and whether the agent can dynamically form a new plan after doing so. Figure 20
shows the manner in which the agent’s internal plan develops in levels in which, at a time step
following initialization, we add a wall square to block of an obvious route between a box and a
target. Clearly, the agent is capable of (i) recognizing that the added wall invalidates its initial
plan and (ii) dynamically adjusting its plan accordingly. We take this as evidence to support the
hypothesis that the agent forms plans via an evaluative search process.

A.2.9 NEW-ROUTE PLANNING

Given the ability of the agent to dynamically updates its plans in response to the addition of a
wall square to block off an optimal route to push a box, an obvious question to ask is whether the
agent can dynamically update its plan in levels representing the reverse type of distribution shift.
That is, can the agent dynamically update its plans in levels in which, at some time step following
initialization, we remove a wall square to open up an optimal route to push a box to a target that is
infeasible prior to the removal of the wall?

Figure 21 shows the development of the agent’s internal plan in levels where we, at some time step
following initialization, remove a wall square to open up an optimal route to push a box to a target
that is infeasible prior to the removal of the wall. In some levels – for example, in Figure 21a – the
agent does dynamically respond to this wall-removal by updating its plan to exploit the new, optimal
route. However, in other levels – such as in Figure 21b – the agent does not do this. We conjecture
that this is potentially due to the agent having a notion of a ‘completed route’ within its internal
plan. That is, we conjecture that the agent represents some plans as being complete and requiring no
further search, and this is why the agent modifies its plan following the removal of a wall in some
cases but not others.

A.2.10 DISCUSSION

In discrete, deterministic, fully-observable environments like Sokoban, an agent with access to a
perfect environment model can reformulate the problem of ‘planning’ as the problem of searching
for a sequence of future actions – a plan – that achieves a goal (Russell & Norvig, 2010). The agent
studied in this paper lacks such a perfect world model.

However, we have demonstrated that the agent we study has learned a spatial correspondence be-
tween its cell states and the Sokoban grid, such that it represent can spatially-localized concepts at
corresponding positions of its cell state. This can, perhaps, be seen as a learned ‘implicit’ model
of the environment. Importantly, this learned implicit world model is sufficient to (i) represent se-
quences of future actions and (ii) predict relevant consequences of these actions on the environment.
It is hence sufficient to allow the agent to plan via search.

We believe the examples provided in the previous sections support the hypothesis that the agent
indeed plans via applying a learned search algorithm to a learned, ‘implicit’ model of its environ-
ment. This is interesting as it implies that the agent’s emergent planning capabilities represent a
learned analogue to the planning-capable agents introduced in Appendix F.1 that plan via applying
an explicit search algorithm to an explicit world model.
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step 0, tick 3 step 1, tick 3 step 2, tick 3 step 3, tick 3 step 4, tick 3 step 5, tick 3

(a) After the first step, a wall is added to block the agent’s planned route between center-most box and target.
Over the subsequent time steps, the agent realizes this and dynamically forms a new planned route connecting
this box and target.

step 0, tick 3 step 1, tick 3 step 2, tick 3 step 3, tick 3 step 4, tick 3 step 5, tick 3

(b) After the first step, a wall is added to block the agent’s planned route between left-most box and target.
Over the subsequent time steps, the agent realizes this and dynamically forms a new plan that involves pushing
this box an alternate, longer route to this target.

step 0, tick 3 step 1, tick 3 step 2, tick 3 step 3, tick 3 step 4, tick 3 step 5, tick 3

(c) After the first step, a wall is added to block the agent’s planned route between right-most box and target.
During the steps that follow, the agent realizes that this invalidates its initial plan and dynamically forms a new
plan that involves pushing this box an alternative route.

step 0, tick 3 step 1, tick 3 step 2, tick 3 step 3, tick 3 step 4, tick 3 step 5, tick 3

(d) Initially, the agent plans to push the central box down to the central target. After the first step, a wall is
added to block this route. During the following steps, the agent realizes that this has occurred and dynamically
forms a new plan that involves pushing this box left, down, and then right, to this target.

step 0, tick 3 step 1, tick 3 step 2, tick 3 step 3, tick 3 step 4, tick 3 step 5, tick 3

(e) Initially, the agent plans to push the central box down to the central target. However, after the first step, a
wall is added to block off this route. During the following steps, the agent realizes that this its initial plan is
now infeasible and dynamically forms a new plan that instead involves pushing this box right, down, left, and
then up, to this target.

Figure 20: Examples of the agent formulating its internal plan in levels in which a wall square is
added to the environment to block an obvious route between a box and target at a time step following
initialization. Blue arrows represent the direction that the agent plans to next push a box off of each
square. Yellow circles highlight relevant parts of the agent’s plan before and after the additional wall
square is added. The plans are decoded are from the agent’s cell state at its first (20a), second (20b
and 20c) and third (20d and 20e) layer by a 1x1 probe. The plans are decoded from the agent’s cell
states at the final computational tick of the first six steps of episodes.
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step 0, tick 3 step 1, tick 3 step 2, tick 3 step 3, tick 3 step 4, tick 3 step 5, tick 3

(a) The agent begins planning to push the upper-left box up, right, and down to the center-most target. However,
after the first step, a wall is removed such that this box can instead be pushed straight right to the target. The
agent realizes this and updates its plan accordingly.

step 0, tick 3 step 1, tick 3 step 2, tick 3 step 3, tick 3 step 4, tick 3 step 5, tick 3

(b) Initially, the agent plans to push the left-left box right, up, left, and down to the left-most target. However,
after the third step, a wall is removed such that this box can instead be pushed a shorter route (i.e. left and the
up) to the target. The agent does not realizes this and does not update its plan in response.

step 0, tick 3 step 1, tick 3 step 2, tick 3 step 3, tick 3 step 4, tick 3 step 5, tick 3

(c) After the second step a wall is removed. The removal of this wall means that the optimal route to push the
right-most box to the right-most target is to push it right and then up. Before the removal of the wall the agent
plans to push it left, up and then right. However, after the removal, the agent updates its plan to account for the
new optimal route.

step 0, tick 3 step 1, tick 3 step 2, tick 3 step 3, tick 3 step 4, tick 3 step 5, tick 3

(d) The agent initially plans to push the right-most box up and around the wall that separates it from the right-
most target. After the second step, a wall is removed such that this box can now be pushed a shorter route to
this target. The agent respond.

step 0, tick 3 step 1, tick 3 step 2, tick 3 step 3, tick 3 step 4, tick 3 step 5, tick 3

(e) The agent initially plans to push the center-most box around the wall that separates it from the center-most
target. After the first step, a wall square is removed such that this box can now be pushed directly down to this
target. The agent realizes this and updates its plan to account for the new optimal route to push this box.

Figure 21: Examples the agent formulating internal plans in episodes in which a wall square is
removed at a time step after initialization. Removing this wall square opens up a route that it is
optimal to push a box to a target through. Blue arrows represent the direction that the agent plans to
next push a box off of each square. Yellow circles highlight the relevant parts of the agent’s plan (or
lack of internal plan) before and after the wall square is removed. The plans are decoded are from
the agent’s cell state at its first (21a), second (21b and 21c) and third (21d and 21e) layer by a 1x1
probe. The plans are decoded from the agent’s cell states at the final computational tick of the first
six steps of episodes.
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This perspective on the agent’s concept representations – i.e. that, by enabling the agent form plans
and evaluate their consequences, collectively, these representation play a role that can be seen as
the role of a learned implicit world model, – aligns with work that has emphasized the importance
of world models for generalization capabilities (Richens & Everitt, 2024; Andreas, 2024). It also
provides new insights regarding learned world models in RL. Specifically, it complements past work
that has investigated explicitly training world models (Ha & Schmidhuber, 2018; Freeman et al.,
2019) by showing that world models – or, at least, representations that can play the role traditionally
played by world models –can also emerge spontaneously within the representations of a generic
agent.

Additionally, it is interesting that the agent constructs its internal plans by simultaneously searching
forward from multiple boxes and searching backwards from multiple targets. That is, the agent
appears to have learned a form of parallelized bidirectional planning. This is very different to the
agents introduced in Appendix F.1 that primarily rely on forward search algorithms.

Whilst some past work has had considerable success in applying bidirectional search to RL (Edwards
et al., 2018; Lai et al., 2020), RL agents making use of bidirectional planning are still remarkably
rare. This is likely due to the difficulty in specifying which states to plan forwards and backwards
from in many environments. Indeed, Sokoban is somewhat unique in that it is especially well-suited
for bidirectional search. This is because there are obvious candidates to plan forwards from (boxes)
and backwards from (targets). As such, the main takeaway from the emergence of bidirectional
search within the agent is likely not that bidirectional search should be applied more widely within
RL.

Instead, we believe the main takeaway from this finding to be that there are benefits to allowing
agents to learn a planning algorithm (and a implicit-world model to apply it to) rather than forcing
an agent to use a handcrafted planning algorithm. This is because the agent can learn to plan in
a way that is well-suited for the environment it finds itself in. We suspect this idea – of allowing
agents to learn search algorithms well-suited for specific domains, rather than forcing them to use a
generic, handcrafted search algorithms such as MCTS – may become increasingly prevalent.

This is to say that we hypothesize that the agent we study has learned a form of planning that
is especially well-suited to Sokoban relative to other planning algorithms. Bidirectional search is
known to be very efficient in certain environments (Kaindl & Kainz, 1997; Russell & Norvig, 2010;
Sturtevant et al., 2020). Intuitively, this is because is more efficient to form plans by searching
backwards from goals and forwards from initial states (i.e. because these two plans can ‘meet in the
middle’) than to form plans by either of these means alone. Furthermore, as Sokoban is characterized
by actions having negative consequences in the long-run, efficient planning is crucial in Sokoban.
This is because forming plans quickly at the start of episodes allows the agent to avoid taking actions
early on that would make a level unsolvable. Thus the agent studied in this paper appears to have
learned a domain-specific planning algorithm that works well in the environment it finds itself in.
Evidence of this can be seen in the fact that one of the highest-performing Sokoban agents that does
not rely on deep learning also uses a form of forward-backward planning Shoham & Elidan (2021).

A.3 FURTHER RESULTS REGARDING ITERATIVE PLAN REFINEMENT

In Section 5, we used Figure 6 to demonstrate that the agent can use additional test-time compute
at the start of episodes to refine its internal plan. This would be expected if the agent constructed
plans using some form of learned search, since the agent would be able to use additional compute
ato perform a more thorough search. This additionally help explain the ability of DRC agents to
perform better in Sokoban when given ‘thinking time’ steps (Guez et al., 2019; Garriga-Alonso
et al., 2024) as we have shown that the extra compute afforded by ‘thinking time’ facilitates plan
refinement. In this section, we further investigate the agent’s ability to iteratively refine its internal
plans when forced to perform ‘thinking time’ steps– that is, forced stationary steps at the start of
episodes – prior to acting.

A.3.1 TEST-TIME PLAN REFINEMENT ACROSS LAYERS

In Section 5, Figure 6 only demonstrated that the agent can use ‘thinking time’ iteratively refine its
plan in its final layer. To investigate whether whether the agent can iteratively refine its plans at
all layers when given additional test-time compute prior to acting, we thus again forceed the agent
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Figure 22: Macro F1 (averaged over 1000 episodes) when using the agent’s internal plan at each
internal tick during the first 5 steps of an episode to predict (a) the agent’s future movements (CA)
and (b) future box movements (CB). The ‘internal plan’ at a layer for a tick corresponds to the
agent’s representation of CA and CB as decoded by a 1x1 probe applied to the agent’s cell state at
that layer.

(a) Length 2 (b) Length 6 (c) Length 10 (d) Length 14

Figure 23: Example of one of the levels used to test for behavioral evidence of search when it.

perform 5 ‘thinking time’ steps before beginning to act in 1000 episodes. As with Figure 6, after
each of the 15 internal computational ticks performed by the agent during these steps, we applied 1x1
probes to decode the agent’s representations of CA and CB for each square of the observed Sokoban
board at that tick. As argued previously, the agent’s internal representations of the concepts over
the entire Sokoban board can be seen as its internal plan. We viewed the agent’s internal plan at
each tick as a prediction of its future behavior (CA) and the effect of this future behavior on the
environment (CB), and measured the correctness of these prediction using the macro F1 score. The
results be seen in Figure 22. Clearly, the agent’s internal plan gets iteratively refined over the course
of ‘thinking time’ at all layers.

A.3.2 EVIDENCE OF TEST-TIME COMPUTE BEING USED FOR SEARCH

In this paper, we have provided qualitative evidence that supports the hypothesis that the agent plans
via a learned search procedure, and that the agent reason the agent benefits from additional test-
time is because it uses this extra compute to search more thoroughly prior to acting. In this section
we now complement this with behavioral evidence of the agent using extra test-time compute for
search.

We do this using a dataset of handcrafted levels. These levels all follow a common schematic.
Namely, there is a corridor with a single entrance. At the end of this corridor is a box and a target.
The entrance square of the corridor also has a target on. There is a box adjacent to this target at
the entrance to the corridor. In these levels, the agent always starts adjacent to this box. Thus, at
the initial time step, a myopoic agent will always push this box on to the target. However, doing so
blocks off the corridor (e.g. it prevents the agent from ever reaching the box and target at the end).
So, we would expect a planning-capable agent to realize this, and instead plan to push the box out
off the way so it can enter the corridor. We create 8 handcrafted levels of this sort. For each level,
we create a copy where its corridor is of length 2, 6, 10 and 14. Figure 23 shows a version of one
of these levels with these 4 corridor lengths. We then reflect and rotate each level. Thus, we have a
dataset of 80 such levels with corridors of each length.
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Figure 24 shows the percentage of these levels the agent solves when given between zero and 5
thinking steps prior to acting. If the agent planned via search, we would expect it to struggle to solve
these levels without additional test-time compute. This is because, plausibly, the agent’s search
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Figure 24: The percentage of the 80 levels in-
troduced in Appendix A.3.2 that the agent solves
with different numbers of ‘thinking steps’ (forced
stationary steps prior to acting)

procedure would take multiple steps to extend
backward from the end of the corridor to the
corridor entrance (i.e. to inform the agent that
it should not act myopically). This is clearly
the case in Figure 24. Additionally, if the agent
planned via search, we would expect it to take
more test-time compute to solve levels with
longer corridor. This is because, if the agent
planned via search, it would presumably take
longer for the search process to account for the
effect of blocking off the corridor (i.e. by my-
opically pushing a box onto the target at the
entrance) in levels with longer corridors. The
expected pattern of the agent requiring more
‘thinking steps’ to solve levels with longer cor-
ridors can be seen in Figure 24. For instance,
the number of ‘thinking steps’ the agent re-
quires to solve at least half of each set of levels increases with the corridor length of these levels.
The agent requires 0 thinking steps to solve at least half of the levels with corridors of length 2, 1
thinking step for levels with corridors of length 4, 2 thinking steps with corridors of length 10, and
3 thinking steps to solve levels with corridors of length 14.

Qualitative evidence of the agent using the additional test-time compute given to it by ‘thinking
steps’ to perform a more thorough search can be seen in Figure 25. In Figure 25, we visualize the
agent’s internal plan (as formulated in terms of the squares the agent expects to step onto) at the
final tick of each 5 additional steps of computation given to the agent when it performs 5 steps of
‘thinking time’ performed prior to acting in levels with corridors of length 14. In all of these levels,
the agent at the third tick plans to step directly onto the box, myopically pushing it onto the target and
making the level unsolvable. Note that this corresponds to the agent’s plan without ‘thinking steps’
and thus explains why the agent fails all of these levels by default. However, over the subsequent
steps, the agent iteratively searches backwards from the box at the corridor end. Once this search
extends backwards onto the target at the corridor entrance, the agent seems to realize that it should
not myopically push a box onto this target as it needs to instead step onto this target to enter the
corridor. The agent then alters its plan to instead push the box at the corridor entrance out of the way
and enter the corridor.
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step 0, tick 3 step 1, tick 3 step 2, tick 3 step 3, tick 3 step 4, tick 3

(a) The agent initially plans to step up into the circled box, pushing the box onto the circled target and blocking
off the corridor. However, when given additional ‘thinking time’, the agent extends its planned route backwards
from the end of the corridor and realizes that it needs to onto this target. It hence changes its plan so that it will
step onto, and thus push, the box right so that it can enter the corridor.

step 0, tick 3 step 1, tick 3 step 2, tick 3 step 3, tick 3 step 4, tick 3

(b) After the third computational tick, the agent plans to step right and push the circled box on to the circled
target. Over subsequent steps of ‘thinking time’, the agent plans backwards from the box at the end of the
corridor and realizes that it needs to step into the corridor to reach this box. It thus instead plans to step down
onto the box, moving it out of the way.

step 0, tick 3 step 1, tick 3 step 2, tick 3 step 3, tick 3 step 4, tick 3

(c) Initially, the agent plans to step up, pushing the circled box onto the circled target. However, the agent
extends its plan backwards from the box at the corridor end and realizes that it needs to step onto this target
in order to enter the corridor and reach the box at the corridor end. As such, it alters its plan to first push the
circled box left rather than myopically pushing it on to the target.

step 0, tick 3 step 1, tick 3 step 2, tick 3 step 3, tick 3 step 4, tick 3

(d) Without ‘thinking steps’, the agent would push the circled box right onto the circled target. However, during
‘thinking steps’, the agent extends a path backwards from the box at the end of the corridor to the circled target.
It then plans to instead push the circled box down so that it can follow this path.

step 0, tick 3 step 1, tick 3 step 2, tick 3 step 3, tick 3 step 4, tick 3

(e) Initially, the agent plans pushing the circled box left onto the circled target. However, the agent extends the
path it plans to follow to the box at the corridor end backwards, and realizes that it needs to step onto the circled
target to reach this box. The agent then alters its plan to first push the circled box down.

Figure 25: Examples of the agent’s internal plan (in terms of CA) over the extra steps associated
with 5 ‘thinking steps’ in levels with corridors of length 14 as introduced in Appendix A.3.2. During
steps, the agent searches backwards from the end of the corridor to the corridor entrance, and realizes
that it must not myopically block this corridor off. The agent fails all of these levels when not forced
to perform ‘thinking steps’. However, when given 5 ‘thinking steps’ the agent successfully solves
all of these levels. Yellow circles highlight the box and target for which the agent changes its plans.
Teal arrows represent the direction that the agent plans to next move on to each square. The plans
are decoded are from the agent’s cell state at its first (25a), second (25b and 25c) and third (25d and
25e) layer by a 1x1 probe. The plans are decoded from the agent’s cell states at the final tick of each
extra step performed during 5 steps of ‘thinking time’.
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B ADDITIONAL INTERVENTION RESULTS

In Section 6 we provided evidence indicating that the agent’s representations of CA and CB were
responsible for the agent’s planning-like behavior. Specifically, in Section 6.1 we outlined the results
of experiments in which we used the vector representations of CA and CB learned by 1x1 probes to
intervene on the agent’s cell state to force the agent to formulate and execute sub-optimal plans in
Agent-Shortcut and Box-Shortcut levels. The aim of these experiments was to demonstrate that the
plans the agent internally formulated using its representations of CA and CB causally influenced its
behavior in the manner that would be expected of plans.

In this section, we provide further results regarding these experiments.

• Appendix B.1 provides additional examples of the qualitative effect of the interventions
from Section 6 on the agent’s internal plan.

• Appendix B.2 outline the results of additional intervention experiments in Agent-Shortcut
and Box-Shortcut levels. These additional intervention experiments investigate altering the
number of squares intervened upon, and introducing an intervention strength parameter.

• Appendix B.3 details alternate intervention experiments in a new set of handcrafted lev-
els. These levels are designed to test the ability of interventions to force the agent to act
optimally when it otherwise would not.

B.1 ADDITIONAL EXAMPLES OF INTERVENTIONS

In Section 6.1, we provided examples of plans as decoded from the agent’s final layer cell state
by a 1x1 probe after the first 4 time steps of Box-Shortcut and Agent-Shortcut episodes both when
we did, and when we did not, intervene on the agent’s final layer cell state. We noted that, when
visualizing the agent’s plans as decoded by 1x1 probes, we could see that the interventions had the
effect of causing the agent to internally formulate and execute the desired type of sub-optimal plan
(e.g. a plan that involves either following a longer-than-necessary path, or that involves pushing
a box a longer-than-necessary route to a target). We now provide additional examples to further
illustrate this. Figure 30 provides additional example Box-Shortcut interventions and Figure 31
provides additional example Agent-Shortcut interventions.
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(a) Plan without intervention (b) Intervention (c) Plan with intervention

(d) Plan without intervention (e) Intervention (f) Plan with intervention

(g) Plan without intervention (h) Intervention (i) Plan with intervention

(j) Plan without intervention (k) Intervention (l) Plan with intervention

(m) Plan without intervention (n) Intervention (o) Plan with intervention

(p) Plan without intervention (q) Intervention (r) Plan with intervention

(s) Plan without intervention (t) Intervention (u) Plan with intervention

Figure 26: Examples of Agent-Shortcut interventions and their effects on the agent’s internal plan.
Each row shows (1) the agent’s internal plan after 4 steps in a level without the intervention, (2) the
initial state of that level, and the intervention performed, and (3) the agent’s internal plan after 4
steps in that level with the intervention. Plans are decoded from the agent’s final layer cell state by a
1x1 probe. Teal arrows mean the agent plans to next step onto the associated square in the associated
direction. White arrows mark positions which the associated directional representations of CA are
added to. White crosses mark positions of the agent’s cell state that representations of NEVER for
CA are added to.
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(a) Plan without intervention (b) Intervention (c) Plan with intervention

(d) Plan without intervention (e) Intervention (f) Plan with intervention

(g) Plan without intervention (h) Intervention (i) Plan with intervention

(j) Plan without intervention (k) Intervention (l) Plan with intervention

(m) Plan without intervention (n) Intervention (o) Plan with intervention

(p) Plan without intervention (q) Intervention (r) Plan with intervention

(s) Plan without intervention (t) Intervention (u) Plan with intervention

Figure 27: Examples of Box-Shortcut interventions and their effects on the agent’s internal plan.
Each row shows (1) the agent’s internal plan after 4 steps in a level without the intervention, (2) the
initial state of that level, and the intervention performed, and (3) the agent’s internal plan after 4
steps in that level with the intervention. Plans are decoded from the agent’s final layer cell state by a
1x1 probe. Blue arrows mean the agent plans to push a box of the associated square in the associated
direction. White arrows mark positions which the associated directional representations of CB are
added to. White crosses mark positions of the agent’s cell state that representations of NEVER for
CB are added to.
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Algorithm 1 Agent-Shortcut Intervention

1: ShortRouteSquares← All positions (x, y) on the short route
2: (x0, y0)← The first square (x, y) of the long route.
3: LongRouteSquaresDirs← The first p squares (x, y) that the agent would step onto if following

the longer route, and the direction DIR it would step onto them
4: for t in 1, 2, · · · , EpisodeLength do
5: for (x, y) in ShortRouteSquares do ▷ Short-route intervention
6: c(x,y) ← c(x,y) + α× wCA

NEVER

7: if Agent has not moved onto (x0, y0) this episode then
8: for ((x, y), DIR) in LongRouteSquaresDirs do ▷ Directional intervention
9: c(x,y) ← c(x,y) + α× wCA

DIR

Algorithm 2 Box-Shortcut Intervention

1: ShortRouteSquares← All positions (x, y) on the short route
2: (x0, y0)← The initial position (x, y) of the box that is not adjacent to any targets.
3: LongRouteSquaresDirs← The first p squares (x, y) that a box would be pushed off of if pushed

the longer route, and the direction DIR it would be pushed
4: for t in 1, 2, · · · , EpisodeLength do
5: for (x, y) in ShortRouteSquares do ▷ Short-route intervention
6: c(x,y) ← c(x,y) + α× wCB

NEVER

7: if Agent has not pushed a box off of (x0, y0) this episode then
8: for ((x, y), DIR) in LongRouteSquaresDirs do ▷ Directional intervention
9: c(x,y) ← c(x,y) + α× wCB

DIR

B.2 ADDITIONAL AGENT-SHORTCUT AND BOX-SHORTCUT INTERVENTION EXPERIMENTS

We begin by considering performing alternate intervention experiments in Box-Shortcut and Agent-
Shortcut levels. To reiterate, Agent-Shortcut levels are characterized by the agent having to choose
to follow either a longer or a shorter path from its initial position to a region with boxes and targets.
Similarly, Box-Shortcut levels are characterized by there being one box that can be pushed either a
shorter or a longer route to a target. In both levels, it is optimal for the agent to select the shorter
option, and this is indeed what the agent does when not intervened upon. Thus, our interventions
aimed to force the agent to formulate and execute a sub-optimal plan involving choosing the longer
option.

Our interventions in Box-Shortcut and Agent-Shortcut levels consisted of two sub-interventions:

• Short-Route Interventions. These interventions aim to discourage the agent from acting
optimally and taking the shorter option. In Agent-Shortcut levels, the short-route interven-
tion consists of adding the representation of NEVER for CA to cell state positions along
the short path the agent could follow. In Box-Shortcut levels, the short-route intervention
consists of adding the representation of NEVER for CB to cell state positions along the short
route the box could be pushed along. This intervention is repeated at every time step.

• Directional Interventions. These interventions aim to encourage the agent to act sub-
optimally and take the longer option. In Agent-Shortcut levels, the directional intervention
consists of adding the appropriate directional representation of CA to the first square the
agent would step onto if it followed the longer path. In Box-Shortcut levels, the directional
intervention consists of adding the appropriate directional representation of CA to the box’s
initial position to encourage it to be pushed the long route. This intervention is repeated at
every time step until the agent either pushes the box off the initial squares (Box-Shortcut in-
terventions) or steps onto the first square of the long-route (Agent-Shortcut Interventions).

The experiments in Section 6.1 that performed these two interventions did not investigate three pos-
sible axes of variation that could influence the success rate of interventions. First, the previous
experiments simply added the un-scaled vector representations learned by 1x1 probes to the agent’s
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cell state and did not consider the effect of introducing an intervention strength parameter α to scale
representation by before using them for interventions. Second, the previous experiments did not
consider varying the directional intervention - specifically, they did not consider whether interven-
tions become more successful if we intervene upon more squares along the longer path. Finally, they
did not consider whether the interventions could be successful without the short-route intervention.
We now consider the effect of these three factors on the success rate of interventions.

Algorithms 1 and 2 respectively provide pseudoscope for general Agent- and Box-Shortcut inter-
ventions in which we (1) intervene on the first p squares of the long route as part of the ‘directional’
intervention, and (2) introduce an intervention strength α. Note that we can also choose not to per-
form the ‘short-route’ intervention. The interventions in Section 6.1 correspond to algorithms 1 and
2 with p and α set to 1.

As with the experiments in Section 6.1, all experiments in this section are repeated with 5 indepen-
dently trained and initialized probes, and interventions are considered a success if they cause the
agent to solve the level in the desired, sub-optimal way.

B.2.1 VARYING THE NUMBER OF DIRECTIONAL INTERVENTIONS

First, we also consider intervening in Agent-Shortcut and Box-Shortcut experiments while varying
the number of squares intervened upon as part of the directional intervention along the ‘long’ route.
Specifically, we vary the number of squares intervened upon in ‘directional’ interventions between 0
squares and 3 squares. When intervening upon an additional square on the ‘long route’ we intervene
on the square following the already-intervened-upon squares. That is, we vary the value of p between
0 and 3 in algorithms 1 and 2. For instance, when we intervene upon two squares in Agent-Shortcut
levels, we intervene upon the first two squares the agent would step onto if it followed the longer
path. Then, when intervening upon three squares we would additional intervene on the third square
the agent would step onto if it followed the longer path. We also consider varying α

Figures 28 and 29 show the success rate when intervening on the agent in Agent-Shortcut and Box-
Shortcut levels when varying the intervention strength α and the number of squares intervened upon
in on the longer route. A few observations can be made from these figures.

First using too high or too low of an α harms the intervention success rate. This would be expected:
when α is too low, interventions will not meaningfully change the agent’s internal concept represen-
tations, while when α is too high, the intervention will cause the agent’s internal activations to go
off-distribution.

Likewise, performing additional interventions on the long path improves intervention success rate
for low α, but harms the success rate for high α. We posit this is because, to alter the agent’s
concept representations for a low α additional interventions are useful. However, when α is high,
these additional interventions cause the agent’s activations to go further off-distribution, impeding
the ability of the intervention to steer the agent.

B.2.2 REMOVING THE SHORT-ROUTE INTERVENTION

We also considered intervening on Agent-Shortcut and Box-Shortcut levels when not performing
any short-route interventions and solely performing directional interventions. These directional-
only interventions aimed to assess the extent to which the internal agent’s planning mechanism is
driven by avoiding planning into squares it represents as having the class NEVER as opposed to
extending plans its constructs with the directional concept classes.

Figures 28 and 29 show the success rate when intervening on the agent in Agent-Shortcut and Box-
Shortcut levels when varying the intervention strength α and the number of squares intervened upon
in on the longer route. Clearly, intervening without the short-route intervention is less successful.
However, the reduction in success rate relative to Figures 28 and 29 is significantly more pronounced
for Agent-Shortcut interventions than for Box-Shortcut interventions. We thus hypothesize that the
agent utilizes a different planning mechanism when planning paths for it to follow as opposed to
planning routes to push boxes. Specifically, the agent’s path-planning mechanism seems to be more
driven by avoiding certain squares (e.g., those it represents using the class NEVER of CA) than the
agent’s box-route-planning mechanism.
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Figure 28: Success rate when intervening in Agent-Shortcut levels when varying the number of
cell state positions intervened on along the ‘long path’ during the ‘directional’ part of the interven-
tion. Interventions are performed using the vector representations of CA learned by 1x1 probes.
Interventions are performed using different intervention strengths α on the agent’s cell state at each
of its ConvLSTM layers. For each layer, intervention strength, and number of squares intervened
upon, we repeat the intervention 5 times using 5 independently trained probes and report the average
success rate. We compare interventions performed with trained probes to interventions performed
with randomly-initialized probes. Error bars report ±1 standard deviations.

44



2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

0
20
40
60
80

100

=0
.2

5

Layer 1 Layer 2 Layer 3

0
20
40
60
80

100

=0
.5

0
20
40
60
80

100

In
te

rv
en

tio
n 

Su
cc

es
s R

at
e 

(%
)

=1

0
20
40
60
80

100

=2

0 1 2 3
0

20
40
60
80

100

=4

0 1 2 3
Number of Squares Intervened Upon On The Long Path

0 1 2 3

Probe Type
trained random

Figure 29: Success rate when intervening inBox-Shortcut levels when varying the number of cell
state positions intervened on along the ‘long path’ during the ‘directional’ part of the intervention.
Interventions are performed using the vector representations of CB learned by 1x1 probes. Inter-
ventions are performed using different intervention strengths α on the agent’s cell state at each of its
ConvLSTM layers. For each layer, intervention strength, and number of squares intervened upon,
we repeat the intervention 5 times using 5 independently trained probes and report the average suc-
cess rate. We compare interventions performed with trained probes to interventions performed with
randomly-initialized probes. Error bars report ±1 standard deviations.
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Figure 30: Success rate when intervening in Agent-Shortcut levels but not performing the ‘short-
route’ part of the intervention. Identical to Figure 28 otherwise.
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Figure 31: Success rate when intervening in Box-Shortcut levels, but not performing the ‘short-
route’ part of the intervention.Identical to Figure 29 otherwise.
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(a) ‘Agent-Only’ Intervention (b) ‘Box-Only’ Intervention (c) ‘Agent-and-Box’ Intervention

Figure 32: Examples of (a) ‘Agent-Only’, and (b) ‘Box-Only’, and (c) ‘Agent-and-Box’ interven-
tions in a Cutoff level. We add the associated directional representation of CA to the position with the
teal arrow (e.g. in this example the representation of UP for CA). We add the associated directional
representation of CB to the position with the blue arrow (e.g. in this example the representation of
RIGHT for CB).

B.3 INTERVENING TO ENCOURAGE OPTIMAL BEHAVIOR

We also considered performing interventions in a different set of levels. We call these levels ‘Cut-
off’ levels introduced. Cutoff levels follow a schematic very similar to the levels introduced in
Appendix A.3.2 and are designed in such a way that solving them requires the agent to for see the
long-run consequences of its actions. Specifically, these are levels in which a box is adjacent to a
target at the entrance of a corridor. The agent always begins levels one square removed from this
box. At the end of this (variable-length) corridor is another box adjacent to another target. To solve
these levels, the agent must not act myopically – i.e. it must not immediately push the box at the
corridor entrance onto the adjacent target as doing so would block the corridor and make the level
unsolvable – and must instead push the box out of the way so that it can enter the corridor and reach
the box at the corridor end.
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Figure 33: The percentage of 200 Cutoff lev-
els the fully-trained agent solves when per-
forming different numbers of ‘thinking steps’
prior to acting.

We use a dataset of 200 Cutoff levels. These were
created by designing 25 Cutoff levels (with corri-
dors of varying lengths), and then making 8 copies
of each by applying vertical reflection and 90°, 180°,
and 270° rotations. Figure 33 shows the percent
of these levels the agent solves when given vary-
ing number of ‘thinking steps’. Recall that ‘thinking
steps’ refer to steps at the start of episodes where the
agent is forced to remain stationary prior to acting.
By default – that is, without any thinking time – the
agent solves none of the 200 Cutoff levels. However,
the agent can solve the vast majority of Cutoff levels
when given additional test-time compute to refine its
plans. Thus, we consider intervening in Cutoff lev-
els with the aim of artificially replicating the effect
of additional test-time compute. That is, we perform
interventions that aim to aid the agent in solving the
levels without additional decision-time compute. We investigate these interventions in order to de-
termine whether we can intervene on the agent’s internal plan to aid it in forming and executing
optimal plans. This is in contrast to Section 6.1 in which we focused on intervening on the agent to
encourage it to form and execute sub-optimal plans.

We perform three types of interventions in Cutoff levels: ‘Agent-and-Box’ interventions, ‘Agent-
Only’ interventions, and ‘Box-Only’ interventions. ‘Agent-Only’ interventions consist of adding
an appropriate directional representation of CA to the target at the entrance of the corridor that
corresponds to the agent stepping into the corridor. An example is shown in Figure 32a. The
motivation for this intervention is that it should correspond to the agent having extended its plan back
fully from the end of the corridor such that the agent knows it should not block the corridor off. If this
is the case, the agent should then plan to not myopically push the box onto the target at the corridor
entrance. ‘Box-Only’ interventions consist of adding an appropriate directional representation of
CB to the initial position of the box that could by myopically pushed into the corridor entrance to

48



2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2025

Layer 1 Layer 2 Layer 3
=0.25

0
20
40
60
80

100

Su
cc

es
s R

at
e 

(%
)

Layer 1 Layer 2 Layer 3
=0.5

Layer 1 Layer 2 Layer 3
=1

Layer 1 Layer 2 Layer 3
=2

Layer 1 Layer 2 Layer 3
=4

(a) ‘Agent-Only’ Intervention Success Rates
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(b) ‘Box-Only’ Intervention Success Rates
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(c) ‘Agent-and-Box’ Intervention Success Rates

Figure 34: Success rate when intervening on the agent in Cutoff levels. We consider ‘agent-only’,
‘box-only’ and ‘agent-and-box interventions’. These interventions are respectively performed using
the vector representations of CA, CB, and both CA and CB, as learned by 1x1 probes. Interventions
are performed using different intervention strengths α on the agent’s cell state at each of its Con-
vLSTM layers. For each layer and intervention strength, we repeat the intervention 5 times using 5
probes and report the average success rate. We compare interventions performed with trained probes
to interventions performed with randomly-initialized probes. Error bars report ±1 standard.

encourage the agent to instead push this box out of the way of the corridor entrance. An example
is shown in Figure 32b. The motivation for this intervention is that it should remove the need for
the agent to complete planning backwards from the end of the corridor. Finally, ‘Agent-and-Box’
interventions consist of the conjunction of ‘Agent-Only’ and ‘Box-Only’ interventions. An example
is shown in Figure 32c.

In all cases, the interventions are performed by adding the corresponding representations learned by
1x1 probes to the agent’s cell state at one of its ConvLSTM layers. The interventions are repeated
at each computational tick until the agent moves the box at the corridor entrance at which point
the interventions cease. As previously, we repeat all interventions with 5 trained and 5 randomly
initialized probes. Since the agent cannot solve any Cutoff levels without steps of ‘thinking time’,
we consider an intervention to be a success if it leads to the agent solving the level.

Figures 34a, 34b and 34c respectively show success rates when performing ‘Agent-Only’, ‘Box-
Only’ and ‘Agent-and-Box’ interventions on the agent’s cell state at each layer using different in-
tervention strengths α. A few key takeaways can be drawn from these results. First, and most
importantly, these interventions can replicate the effect of additional test-time compute and allow
the agent to solve levels it would otherwise fail. That the concept representations of CA and CB
decoded by our 1x1 probes can be used to intervene on the agent in such a way that induces a be-
havioral effect comparable to that of additional test-time compute is further evidence that the plans
decoded by the agent causally influence the agent’s behavior in the way that would be expected.
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Figure 35: Macro F1 scores achieved when training 1x1 probes to predict (a) CA and (b) CB using
the agent’s cell state activations at each layer at checkpoints every 1 million transitions over the first
50 million transitions of training.

Another interesting takeaway from these results is that the pattern of success rates across layers is
notably different for ‘Agent-Only’ (Figure 34a) and ‘Box-Only’ (Figure 34b) interventions. This
suggests potential insights into the role of each ConvLSTM in the planning process. For instance,
note that interventions on layer 2 using representations from trained probes are highly successful
when performing ‘Agent-Only’ interventions but are no better than baseline interventions with ran-
dom probes when performing ‘Box-Only’ interventions. This suggests the agent performs some
type of ‘plan conflict detection’ computation either at layer 2, or between layers 2 and 3, such that
intervening on layer 2 to encourage the agent to plan to step onto the target causes the agent to
detect that acting myopically would conflict with its plans. Likewise, ‘Box-Only’ interventions are
much more successful than ‘Agent-Only’ interventions at layer 3. This indicates that agent does
not perform ‘plan conflict detection’ computations at layer 3 – since, if it did so we would expect
‘Agent-Only’ interventions to be successful – but does update the routes it plans to push boxes at
this layer.

C ADDITIONAL TRAINING-TIME INTERPRETABILITY RESULTS

In Section 6.2 we briefly investigated the emergence of planning-relevant representations during
training. Precisely, we demonstrated the co-occurrence during training of (i) the agent’s internal
representations of CA and CB in its final layer cell state, and (ii) the ability of the agent to perform
better when given additional test-time compute. In this section, we now detail experiments in which
we further interpret the agent during the early stages of training. Specifically, we show that:

• The agent’s internal representations of CA and CB largely emerge at the start of training
(Appendix C.1).

• The agent’s ability to refine its internal plans when given additional test-time compute
emerges early on in training (Appendix C.2).

• As shown for the final layer in Section 6.2, the emergence of the agent’s representations
of CA and CB in its cell state at all layers coincides with the emergence of its ability to
perform better when given additional test-time compute (Appendix C.3).

• The emergence during training of the agent’s ability to improve its internal plans when
given extra test-time compute coincides with the emergence of its ability to perform better
when given this extra compute (Appendix C.4).

C.1 INVESTIGATING THE EMERGENCE OF PLANNING-RELEVANT CONCEPT
REPRESENTATIONS DURING TRAINING

First, we investigate the emergence of the planning-relevant concepts we study – CA and CB – over
the course of training. We do this by taking checkpoints of the agent every 1 million transitions
over the first 50 million (of 250 million total) transitions of training. For each checkpoint, we train
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Figure 36: Increase in macro F1 when predicting the agent’s future movements (CA) using the
agent’s internal plan at each layer as decoded at the 1st and 15th tick. Each data point corresponds
to this increase for a checkpoint of the agent taken every million transitions during the first 50
million transitions of training. Here, the ‘internal plan’ at a layer for a tick corresponds to the
agent’s representation of CA as decoded by a 1x1 probe applied to the agent’s cell state at that layer
at that tick.

1x1 probes to predict CA and CB using the agent’s cell state activations at that checkpoint. That is,
we train and test probes on datasets generated by collecting the agent’s cell state activations when
running the agent at that checkpoint. Note that re-training probes at each checkpoint is important
since CA and CB are behavior-dependent concepts in that the classes they assign to squares depends
on how the agent behaves (which itself changes during training as the agent’s parameters update).

Figure 35 shows the macro F1 scores achieved when training probes to predict CA and CB based
on the agent’s cell state activations over the course of the first 50 million transitions of training.
Clearly, the agent’s internal representations of these concepts largely emerge early on in training.
However, we note that, even after 50 million transitions, the macro F1s achieved by our probes are
still somewhat lower than the macro F1s achieved when probing the fully-trained agent as shown
in Figure 4. This suggests that the agent does slightly improve its representations of these concepts
over the entire course of training.

C.2 INVESTIGATING THE EMERGENCE OF TEST-TIME PLAN REFINEMENT DURING
TRAINING

In Section 5, we used Figure 6 to demonstrate that the agent can use additional test-time compute
at the start of episodes to refine its internal plan. Thus, a natural question to ask is when during
training does this ability emerge - is this an ability that emerges early on in training and that is
gradually improved, or is it an ability that the agent only develops towards the end of training?

We can investigate the emergence of the ability to refine plans when given additional test-time com-
pute by repeating the setup from Figure 6 – i.e. predicting the agent’s future actions using its internal
plans decoded froms it cell state by a 1x1 probe during steps of ‘thinking time’ whilst the agent is
forced to remain stationary prior to moving – but now whilst doing so for checkpoints of the agent
taken throughout training.

Specifically, we now use the 1x1 probes from Appendix C.1 to decode the agent’s plan when given
additional test-time compute. As before, we use checkpoints of the agent taken every 1 million
transitions during the first 50 million transitions of training. We force the agent at each checkpoint
to perform 5 ‘thinking steps’ prior to acting at the start of 1000 episodes and use 1x1 probes to
decode the agents internal representations of CA and CB at each of the 15 corresponding internal
computational ticks. We view the predictions made by our probes at each tick as being the agent’s
internal plan at each tick. We then measure the average correctness of the agent’s plan at each of
the 15 ticks by averaging the macro F1 of the probe’s predictions at each tick. Finally, we measure
the extent to which the agent can utilize the extra test-time compute afforded by ‘thinking time’
by measuring the increase in average macro F1 when using the probe’s predictions at the 15th tick
relative to at the 1st tick.

Figure 36 show the increase in macro F1 for different checkpoints of the agent when using probe
predictions from the 15th tick of thinking time relative to the 1st tick of thinking time to predict CA
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Figure 37: Increase in macro F1 when predicting future box movements (CB) using the agent’s
internal plan at each layer as decoded at the 1st and 15th tick. Each data point corresponds to this
increase for a checkpoint of the agent taken every million transitions during the first 50 million
transitions of training. Here, the ‘internal plan’ at a layer for a tick corresponds to the agent’s
representation of CB as decoded by a 1x1 probe applied to the agent’s cell state at that layer at that
tick.

for each checkpoint. Figure 37 shows the analogous results when predicting CB for each checkpoint.
Clearly, the agent acquires the ability to use additional test-time compute to refine its ‘internal plan’
(i.e. its internal representations of CA and CB) early on in training.

C.3 INVESTIGATING THE CO-EMERGENCE OF PLANNING-RELEVANT CONCEPT
REPRESENTATIONS AND PLANNING-LIKE BEHAVIOR DURING TRAINING

In Section 6.2 we illustrated that (i) the agent’s internal representations of CA and CB in its final layer
cell state and (ii) the ability of the agent to perform better when given additional test-time compute
emerge concurrently during training. This naturally leads to the question of whether the emergence
of this type of planning-like behavior coincides with the emergence of the agent’s representations of
CA and CB at all layers. We now provide evidence that this is indeed the case.

As in Section 6.2 we do this by inspecting both (i) the macro F1 of probes trained to predict CA
and CB using the agent’s cell state activations at all layers, and (ii) benefit from additional test-time
compute. We measure these quantities at checkpoints of the agent taken ever 1 million transitions
over the first 50 million transitions of training. As in Section 6.2, we measure the ability of the agent
to benefit from additional test-time compute by counting the number of 1000 medium-difficult levels
from the Boxoban dataset (Guez et al., 2018a) the agent cannot solve by default, but can solve when
given 5 ‘thinking steps’.

The effect illustrated in Figure 9 – namely, that the period of training in which the agent begins
to solve additional levels when given extra compute is the same as the period in which its repre-
sentations of CA and CB become increasingly well-developed – can be seen across all layers. This
can be seen in Figure 38 in which we plot the relationship between (i) the percentage of additional
medium levels solved and (ii) the macro F1 when training probes to predict CA and CB using the
agent’s cell state activation at each layer for that checkpoint. As would be expected if the agent’s
representations of CA and CB were used as part of an internal planning process, the emergence of
these representations at all layers is clearly related to the emergence of the agent’s ability to benefit
from extra test-time compute.

C.4 INVESTIGATING THE CO-EMERGENCE OF TEST-TIME PLAN REFINEMENT AND
PLANNING-LIKE BEHAVIOR DURING TRAINING

Yet, Figure 38 only shows that the emergence of the agent’s representations of CA and CB is related
to the emergence of the agent’s planning-like behavior. It hence does not show that the planning
process the agent uses these representations as a part of is related to the behavioral evidence of
planning exhibited by the agent.

However, recall that in Appendix C.2 we showed that we could inspect the emergence of the agent’s
internal planning process by inspecting the manner in which the plans the agent internally repre-
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Figure 38: The relationship between (i) the percentage of extra medium levels solved when an agent
is given 5 steps to ‘think’, and (ii) macro F1 score of probes when predicting CA (blue) and CB
(orange) from the agent’s cell state at each layer at different checkpoints taken during training. Each
point correspond to these quantities calculated for a single checkpoint.
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Figure 39: The relationship between (i) the percentage of extra medium levels solved when an agent
is given 5 steps to ‘think’, and (ii) the increase in macro F1 when predicting CA (blue) and CB
(orange) from the agent’s cell state at each layer between the 1st and 15th computational tick of
5 ‘thinking steps’ at different checkpoints taken during training. Each point correspond to these
quantities calculated for a single checkpoint.

sents in terms of CA and CB become more accurate when given ‘thinking steps’. Specifically, we
can use probes to decode the agent’s internal plan at the 1st and final tick of additional compute
given by 5 steps of ‘thinking time’ and measure the correctness of these plans using the macro F1
achieved when viewing these plans as predictions of the agent’s future behavior (CA) and its effect
on the environment (CB). We can then measure the extent to which the agent is internally using
these representations as part of an internal planning process by measuring the increase in macro F1
achieved when using the agent’s plans after the first tick and after the final tick of ‘thinking time’.
If the agent uses its representations of CA and CB as part of an internal planning process, the agent
ought to be able to use the extra compute associated with ‘thinking steps’ to form a better plan with
these representations. That is, if these representations are used for planning, we expect the macro
F1 of the agent’s internal plan to increase during ‘thinking steps’.

Figure 39 shows, for checkpoints of the agent taken over the first 50 million transitions of training,
the relationship between (i) the percentage of addition levels the agent solves with 5 ‘thinking steps’,
and (ii) the increase in macro when using the agent’s internal plan at the 1st and 15th tick of 5 steps
of ‘thinking time’ to predict future agent movements (CA) and box movements (CB). As would be
expected if the agent used its representations of CA and CB for planning, checkpoints at which the
agent can use extra test-time compute to improve its internal plans are also checkpoints at which the
agent solves more levels when given extra compute.
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D ADDITIONAL PROBING RESULTS

Our methodology is underpinned by our use of linear probes. In this section, we now provide
further details regarding the probes we use and further relevant experimental results. This section is
organized as follows:

• Appendix D.1 provides additional details regarding how we train probes.
• Appendix D.2 provides additional metrics – specifically, class-specific recalls, precisions

and F1s – for the 1x1 and 3x3 probes we discuss from Section 4.2.
• Appendix D.3 details the macro F1 scores achieved when using larger probes.
• Appendix D.4 outlines the performance of 1x1 and 3x3 probes trained to predict alternate

square-level concepts to CA and CB.
• Appendix D.5 provides the results of applying ‘global’ probes that receive the agent’s entire

cell state as input to predict the agent’s future actions directly.

D.1 PROBE TRAINING DETAILS

In this section, we now provide a brief overview of the manner in which the probes considered in
this paper are trained. All probes are trained for 10 epochs using the AdamW optimizer (Loshchilov
& Hutter, 2019) with a batch size of 16, learning rate of 0.001 and a weight decay of 0.001. We
train probes to predict the concepts assigned to Sokoban squares using the agent’s cell state activa-
tions both after training, and at checkpoints taken during training. Since the concepts we study are
dependent on the agent’s behavior and thus the agent’s current parameters, we train and test probes
on different datasets when investigating the agent at different points of training.

All probes trained to predict concept classes using the fully-trained agent’s cell states are trained
and tested on datasets consisting of 106.6k and 25.7k transitions. The training dataset is generated
by running the fully-trained agent for 3000 episodes on levels from the Boxoban unfiltered training
dataset (Guez et al., 2018a). The test dataset is generated by running the fully-trained agent for 1000
episodes on levels drawn from Boxoban unfiltered validation dataset.

All probes trained to decode concepts from the agent’s cell state at checkpoints taken during training
are trained and tested on checkpoint-specific datasets. For any checkpoint, the training and test
datasets are created by collecting transitions when running the agent at that checkpoint for 1000
and 500 episodes in the unfiltered training and unfiltered validation Boxoban datasets respectively.
These datasets are of different sizes for each checkpoint as the agent’s behaviour changes over the
course of training.

D.2 ADDITIONAL PROBING METRICS

In Section 4, we investigated training 1x1 and 3x3 probes to predict CA and CB. Figure 4 illus-
trated the macro F1s achieved by these probes. We now provide additional metrics for these probes.
Specifically, we provide, for each class, the precision, recall, and F1 achieved by our probes when
viewing that class as the positive class and all other classes as belonging to a single negative class.
Since we train 5 probes with different initialization seeds, we report both the mean and standard
deviation for all metrics. Tables 2 and 3 respectively show these metrics for 1x1 and 3x3 probes
trained to predict CA. Tables 4 and 5 respectively show these metrics for 1x1 and 3x3 probes trained
to predict CB.
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Class Metric Layer 1 Layer 2 Layer 3 Baseline
NEVER F1 0.9787 ± 0.0000 0.9821 ± 0.0001 0.9845 ± 0.0000 0.9049 ± 0.0000

Precision 0.9795 ± 0.0002 0.9838 ± 0.0004 0.9826 ± 0.0001 0.8279 ± 0.0000
Recall 0.9779 ± 0.0001 0.9804 ± 0.0003 0.9864 ± 0.0001 0.9978 ± 0.0000

UP F1 0.7563 ± 0.0004 0.8187 ± 0.0004 0.8396 ± 0.0003 0.0000 ± 0.0000
Precision 0.7405 ± 0.0026 0.8238 ± 0.0011 0.8237 ± 0.0019 1.0000 ± 0.0000

Recall 0.7728 ± 0.0025 0.8137 ± 0.0008 0.8561 ± 0.0019 0.0000 ± 0.0000

DOWN F1 0.7548 ± 0.0003 0.8278 ± 0.0007 0.8255 ± 0.0004 0.0000 ± 0.0000
Precision 0.7516 ± 0.0061 0.8216 ± 0.0039 0.8440 ± 0.0021 1.0000 ± 0.0000

Recall 0.7581 ± 0.0066 0.8342 ± 0.0026 0.8078 ± 0.0018 0.0000 ± 0.0000

LEFT F1 0.7985 ± 0.0004 0.8282 ± 0.0002 0.7955 ± 0.0005 0.0000 ± 0.0000
Precision 0.7958 ± 0.0019 0.8126 ± 0.0020 0.8199 ± 0.0019 1.0000 ± 0.0000

Recall 0.8013 ± 0.0021 0.8445 ± 0.0025 0.7726 ± 0.0010 0.0000 ± 0.0000

RIGHT F1 0.7238 ± 0.0007 0.8228 ± 0.0003 0.8129 ± 0.0002 0.2262 ± 0.0000
Precision 0.7362 ± 0.0029 0.8181 ± 0.0029 0.8131 ± 0.0010 0.2707 ± 0.0000

Recall 0.7119 ± 0.0035 0.8277 ± 0.0033 0.8128 ± 0.0011 0.1943 ± 0.0000

Table 2: Average and standard deviation of class-specific performance metrics when probing for CA
using 1x1 probes.

Class Metric Layer 1 Layer 2 Layer 3 Baseline
NEVER F1 0.9862 ± 0.0001 0.9874 ± 0.0002 0.9877 ± 0.0003 0.9294 ± 0.0005

Precision 0.9865 ± 0.0003 0.9882 ± 0.0004 0.9877 ± 0.0003 0.8887 ± 0.0015
Recall 0.9860 ± 0.0001 0.9866 ± 0.0002 0.9878 ± 0.0005 0.9739 ± 0.0008

UP F1 0.8614 ± 0.0006 0.8614 ± 0.0004 0.8735 ± 0.0013 0.3300 ± 0.0110
Precision 0.8619 ± 0.0046 0.8568 ± 0.0024 0.8669 ± 0.0040 0.4682 ± 0.0092

Recall 0.8610 ± 0.0037 0.8660 ± 0.0020 0.8802 ± 0.0020 0.2553 ± 0.0151

DOWN F1 0.8616 ± 0.0006 0.8677 ± 0.0006 0.8734 ± 0.0005 0.3464 ± 0.0082
Precision 0.8656 ± 0.0030 0.8662 ± 0.0035 0.8791 ± 0.0033 0.4297 ± 0.0085

Recall 0.8576 ± 0.0019 0.8691 ± 0.0026 0.8678 ± 0.0026 0.2907 ± 0.0151

LEFT F1 0.8606 ± 0.0005 0.8654 ± 0.0002 0.8726 ± 0.0003 0.3528 ± 0.0048
Precision 0.8570 ± 0.0034 0.8579 ± 0.0026 0.8741 ± 0.0017 0.4541 ± 0.0026

Recall 0.8641 ± 0.0029 0.8731 ± 0.0028 0.8710 ± 0.0016 0.2885 ± 0.0070

RIGHT F1 0.8536 ± 0.0005 0.8626 ± 0.0013 0.8713 ± 0.0015 0.3524 ± 0.0085
Precision 0.8491 ± 0.0031 0.8653 ± 0.0046 0.8722 ± 0.0052 0.4631 ± 0.0091

Recall 0.8581 ± 0.0026 0.8600 ± 0.0024 0.8704 ± 0.0039 0.2848 ± 0.0136

Table 3: Average and standard deviation of class-specific performance metrics when probing for CA
using 3x3 probes.
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Class Metric Layer 1 Layer 2 Layer 3 Baseline
NEVER F1 0.9907 ± 0.0000 0.9943 ± 0.0000 0.9913 ± 0.0000 0.9634 ± 0.0000

Precision 0.9906 ± 0.0002 0.9943 ± 0.0001 0.9913 ± 0.0001 0.9311 ± 0.0000
Recall 0.9909 ± 0.0002 0.9942 ± 0.0001 0.9912 ± 0.0001 0.9980 ± 0.0000

UP F1 0.8027 ± 0.0008 0.9126 ± 0.0002 0.8805 ± 0.0002 0.0000 ± 0.0000
Precision 0.7968 ± 0.0039 0.9054 ± 0.0016 0.8562 ± 0.0008 1.0000 ± 0.0000

Recall 0.8089 ± 0.0041 0.9200 ± 0.0017 0.9061 ± 0.0013 0.0000 ± 0.0000

DOWN F1 0.8386 ± 0.0003 0.9257 ± 0.0003 0.8590 ± 0.0004 0.0000 ± 0.0000
Precision 0.8407 ± 0.0031 0.9327 ± 0.0010 0.8741 ± 0.0024 1.0000 ± 0.0000

Recall 0.8366 ± 0.0032 0.9188 ± 0.0014 0.8444 ± 0.0015 0.0000 ± 0.0000

LEFT F1 0.8954 ± 0.0001 0.9247 ± 0.0003 0.8058 ± 0.0007 0.0000 ± 0.0000
Precision 0.8968 ± 0.0019 0.9194 ± 0.0010 0.8144 ± 0.0008 1.0000 ± 0.0000

Recall 0.8940 ± 0.0018 0.9301 ± 0.0016 0.7975 ± 0.0012 0.0000 ± 0.0000

RIGHT F1 0.8111 ± 0.0008 0.9162 ± 0.0005 0.8315 ± 0.0005 0.3079 ± 0.0000
Precision 0.8182 ± 0.0020 0.9194 ± 0.0008 0.8321 ± 0.0016 0.2707 ± 0.0000

Recall 0.8041 ± 0.0034 0.9131 ± 0.0013 0.8310 ± 0.0016 0.3570 ± 0.0000

Table 4: Average and standard deviation of class-specific performance metrics when probing for CB
using 1x1 probes.

Class Metric Layer 1 Layer 2 Layer 3 Baseline
NEVER F1 0.9950 ± 0.0000 0.9956 ± 0.0001 0.9949 ± 0.0000 0.9664 ± 0.0001

Precision 0.9952 ± 0.0002 0.9962 ± 0.0001 0.9949 ± 0.0002 0.9436 ± 0.0003
Recall 0.9948 ± 0.0002 0.9951 ± 0.0001 0.9949 ± 0.0002 0.9904 ± 0.0004

UP F1 0.9201 ± 0.0005 0.9313 ± 0.0008 0.9230 ± 0.0008 0.3976 ± 0.0108
Precision 0.9127 ± 0.0016 0.9219 ± 0.0007 0.9160 ± 0.0021 0.5518 ± 0.0121

Recall 0.9277 ± 0.0012 0.9409 ± 0.0012 0.9302 ± 0.0014 0.3112 ± 0.0166

DOWN F1 0.9312 ± 0.0003 0.9347 ± 0.0015 0.9292 ± 0.0003 0.4246 ± 0.0074
Precision 0.9376 ± 0.0027 0.9360 ± 0.0038 0.9313 ± 0.0017 0.5733 ± 0.0153

Recall 0.9248 ± 0.0030 0.9334 ± 0.0022 0.9272 ± 0.0014 0.3376 ± 0.0144

LEFT F1 0.9208 ± 0.0006 0.9346 ± 0.0006 0.9160 ± 0.0007 0.4068 ± 0.0039
Precision 0.9182 ± 0.0020 0.9246 ± 0.0021 0.9196 ± 0.0026 0.5884 ± 0.0054

Recall 0.9233 ± 0.0019 0.9448 ± 0.0019 0.9125 ± 0.0038 0.3109 ± 0.0059

RIGHT F1 0.9179 ± 0.0005 0.9384 ± 0.0007 0.9317 ± 0.0004 0.4190 ± 0.0053
Precision 0.9153 ± 0.0052 0.9378 ± 0.0020 0.9338 ± 0.0030 0.5819 ± 0.0125

Recall 0.9206 ± 0.0044 0.9391 ± 0.0011 0.9297 ± 0.0027 0.3276 ± 0.0098

Table 5: Average and standard deviation of class-specific performance metrics when probing for CB
using 3x3 probes.
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Figure 40: Comparisons of macro F1 achieved when probing the cell state at each layer of the agent
for ‘Agent Approach Direction’ (CA) and ‘Box Push Direction’ (CB) using 1x1, 3x3, 5x5 and 7x7
probes. Reported F1 scores are averaged over five independent training runs. Error bars report
standard deviations.

D.3 PROBING USING LARGER PROBES

In addition to probing the agent’s ConvLSTM cell states using 1x1 and 3x3 square-level concepts,
we now consider using ‘5x5’ and ‘7x7’ probes. These are probes that are identical to the 1x1 and
3x3 probes considered previously, but that predict the concept class of a square (x, y) using the
activations in, respectively, 5x5 and 7x7 grids about the (x, y) position of the agent’s cell state. We
investigate these probes in order to investigate whether the agent represents square-level concepts in
a spatially-localized way at individual positions of its cell states, or whether it represents square-level
concepts in a distributed way across multiple cell state positions. As previously we also consider
baseline versions of these probes trained on the raw observation xt.

Figure 40b shows the macro F1 when using 1x1, 3x3, 5x5 and 7x7 probes. This figure illustrates that
increasing the probe size leads to minimal gains in performance when probing the agent’s cell state
relative to the increase in the performance of the baseline probes. We take this as evidence that the
agent indeed localizes its representations of square-level concepts at individual cell state positions.

D.4 PROBING FOR ALTERNATIVE SQUARE-LEVEL CONCEPTS

In this section, we now investigate the extent to which alternative concepts to the ‘main’ concepts
considered in the paper – ‘agent approach direction’ (CA) and ‘box push direction’ (CB) – can be
successfully decoded from the agent’s cell state by 1x1 and 3x3 probes. Specifically, we investigate
binary simplifications of the ‘main’ concepts, and versions of the ‘main’ concepts in which the
on-off asymmetry is reversed.

D.4.1 PROBING FOR SIMPLIFIED BINARY CONCEPTS

The first set of additional concepts we probe for are binary simplifications of the concepts studied in
the main paper. These binary simplifications are concepts that remove the directional components
from CA and CB, and just reflect whether an agent will move onto, or push a box off of, a square.
We call these concepts ‘Agent Approach’ and ‘Box Push’.

These are binary multi-class concepts that map Sokoban squares to the class {NEVER, AGAIN}. For
instance, ‘Agent Approach’ maps a square to NEVER if the agent will never step onto that square
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Figure 41: Comparisons of the macro F1 achieved when probing the cell state at each layer of the
agent for the ‘main’ concepts (‘Agent Approach Direction’ and ‘Box Push Direction’) and the ‘bi-
nary simplification’ concepts (‘Agent Approach’ and ‘Box Push’). Reported F1 scores are averaged
over five independent training runs. Error bars report standard deviations.

again in the remainder of the current episode, and maps that square to AGAIN otherwise. Likewise,
‘Box Push’ maps a square to NEVER if the agent will never push a box off of that square again in
the remainder of the current episode, and maps that square to AGAIN otherwise. Probing for these
simplified concepts allows us to determine the extent to which the agent learns the directions it will
move and push boxes when it visits future squares as opposed to learning simpler concepts merely
reflecting which squares it will visit and which squares it will push boxes off of.

Figures 41a and 41c show the F1 scores achieved when using 1x1 probes to probe for ‘Agent Ap-
proach’ and ‘Box Push’ respectively. Figures 41b and 41d show the analogous results when using
3x3 probes. Importantly, probing performance increases only mildly relative to‘Agent Approach
Direction’ and ‘Box Push Direction’, suggesting the agent has learned the more complex directional
concepts rather than these simpler alternatives. A potential explanation for the minor performance
gain when probing for these simpler concepts is that the agent may sometimes know it will visit
certain squares but be uncertain what action it will perform regarding them.

D.4.2 PROBING FOR REVERSED ASYMMETRICAL CONCEPTS

The next set of additional concepts we probe for are versions of the concepts studied in the main
paper where the on-off asymmetry (i.e. the asymmetry in which CA captures the direction an agent
moves on to a square while CB captures the direction in which a box is pushed off of a square) is
reversed. We call these concepts ‘Agent Exit Direction’ and ‘Box Approach Direction’. Probing for
these reversed asymmetrical concepts allows us to determine whether we were correct to probe for
the asymmetrical concepts focused on in the main paper.

Both ‘Agent Exit Direction’ and ‘Box Approach Direction’ are multi-class concepts that map
Sokoban squares to the classes {LEFT, RIGHT, UP, DOWN, NEVER}. ‘Agent Exit Direction’ maps
squares to the direction which the agent moves the next time it moves off of them (if it ever does in
the remainder of the episode). For instance, if the next time the agent moves off of a square the agent
moves left, ‘Agent Exit Direction’ maps that square to the class LEFT. ‘Box Approach Direction’
maps squares to the direction the next box is pushed onto them (if a box is ever pushed onto them
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Figure 42: Comparisons of macro F1 achieved when probing the cell state at each layer of the
agent for ‘main’ concepts (‘Agent Approach Direction’ and ‘Box Push Direction’) and the ‘reversed
asymmetrical’ concepts (‘Agent Exit Direction’ and ‘Box Approach Direction’). Reported F1 scores
are averaged over five independent training runs. Error bars report standard deviations.

again in the remainder of the episode. For example, if the next box pushed onto a square is pushed
down onto this square, ‘Box Approach Direction’ maps this square to DOWN.

Figures 42a and 42c compare macro F1 scores when using 1x1 probes to predict, respectively, (a) CA
as opposed to ‘Agent Exit Direction’, and (b) ‘Box Approach Direction’ as opposed to CB. Figures
42a and 42d show the analogous results when using 3x3 probes. The key takeaway from these
figures is that there are moderate gains in probing performance when probing for ‘Agent Approach
Direction’ rather than ‘Agent Exit Direction’ when using 1x1 probes, and small gains when probing
for CB as opposed to ‘Box Approach Direction’ when using 1x1 probes. That the two concepts
with the highest performance are ‘Agent Approach Direction’ and ‘Box Push Direction’ is expected
given that these concepts better reflect the transition dynamics of Sokoban in which the agent pushes
boxes off of squares by moving on to squares.

D.5 PROBING FOR FUTURE ACTIONS

In the main paper, we apply the methodology introduced in Section 3.1 to show that the DRC agent
we study plans in the way that we hypothesized it would in Section 3.2: by planning in terms of the
square-level concepts CA and CB. In this section, we now demonstrate how this methodology can
be used to falsify a hypothesis regarding how we might expect an agent to plan.

Specifically, we apply the methodology to falsify the hypothesis that the agent plans by determining
which actions it expects to take in a specific number of time steps. Under this hypothesis, the agent
would internally represent concepts such as ‘Action To Take in 1 Time Step’, ‘Action To Take in
2 Time Steps’ and so on. These concepts would, for example, assign the class LEFT if the agent
moved left in the relevant number of time steps. An agent that represented these concepts would
then be able to formulate plans by forming planned action sequences of the form (LEFT, LEFT, UP,
RIGHT) that the agent would be able to sequentially execute.

To apply our methodology to determine whether the agent plans in this way, we must first use linear
probes to determine whether the agent linearly represents these concepts. Unlike the square-level
concepts studied in the main paper, these concepts are global in the sense that they depend on the
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Figure 43: Accuracy achieved when probing the agent’s cell state or, for the baseline, observation to
predict the agent’s action in a specific number of time steps.

entire observed Sokoban board. As such, we can use standard ‘global’ linear probes, i.e. linear
probes that receive the agent’s entire cell state at a layer as input.

We therefore train global probes to predict the agent’s action 1,2, ..., 10 time steps into the fu-
ture using the agent’s cell state activations at each layer. These global probes have 10,240 param-
eters . These probes are trained using the same set-up as spatially-local probes as described in
Appendix D.1. We also train baseline global probes that receive the agent’s entire observation as
input. Note that we use accuracy (not macro F1) as a measure of probe performance here as class
imbalance is a lesser issue. However, for these results, accuracy is usually higher than macro F1.

Figure 43 shows the accuracies achieved by global probes trained to predict the ‘Action To Take in
n Time Steps’ for n ∈ {1, · · · , 10} into the future. While probes trained on the agent’s cell state
activations do outperform the baseline, they do not do so by a large margin. The performance of
these probes seems especially poor relatively to the performance of 1x1 probes (which have 64x
fewer parameters) trained to predict CA and CB. The poor performance of these probes implies
that these concepts are not linearly represented. We can explain the ability of the global probes to
slightly outperform the baseline by noting that global probes can infer some information regarding
the agent’s future actions based on the agent’s internal representations of CA and CB. Note, however,
that global probes cannot simply read future actions off of the internal plan as it will usually be
unclear which planned path the agent will follow.

Since our probes imply that the agent does not linearly represent the concepts ‘Action To Take in n
Time Steps’, we have, according to our methodology, falsified the hypothesis that the agent plans in
the way suggested at the start of this section. That is, we have falsified the hypothesis that the agent
plans by directly forming planned sequences of actions it expects to sequentially execute.

E OPERATIONALIZING CONCEPTS

The concepts we investigate in this paper differ somewhat from the standard operationalization of
concepts implicit in the concept-based interpretability literature. In this section, we thus explain the
ways in which the concepts we study are abnormal, and provide a formal operationalization of this
type of concept.

A discrete concept C that take one of W values in the set ΛC = {c1, · · · , cW } for every possible
model input x ∈ S is typically operationalized as a mapping C : S → ΛC that maps every input x
to the value taken by the concept on that input, C(x) ∈ ΛQ (McGrath et al., 2022). The concepts
we investigate differ in the following ways:

• Behavior Dependence: We believe that defining concepts to be mappings from environ-
ment states to concept classes is overly restrictive in the context of reinforcement learning.
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This because RL agents are situated in a continuing interaction with their environment
whereby current actions influence future environment states. Hence, RL agents could plau-
sibly learn concepts depending upon their own behavior. An example of such a concept de-
pending on both the environment state and agent behavior in Sokoban might be ‘a Sokoban
board that will be solved within five moves’. Importantly for present purposes, we believe
that behavior dependent concepts would be natural concepts for a planning-capable agent
to learn. This is because existing model-based planners rely on explicit world models for
predicting future behavior when evaluating immediate actions to perform planning. Such
predictions are implicit within behavior-dependent concepts. Thus, the concepts we study
depend on the agent’s current parameters (since these directly determine agent behavior)
and on the past observations encountered by an agent in an episode (since the DRC agent’s
recurrent architecture allows these to influence future behavior).

• Spatial Localization: We also believe that, in environments with spatially-localized dy-
namics like Sokoban, agents could learn similarly spatially-localized concepts. All con-
cepts we investigate are hence features of individual squares in Sokoban boards.

We thus propose the following pragmatic operationalization of a discrete concept C that takes one
of K values in the set ΛC = {c1, · · · , cK} for a square in a Sokoban board. This definition is
proposed primarily to characterise the specific concepts we study though could serve as inspiration
for future definitions of concepts in RL. Let S denote the state space of Sokoban boards, and let
G = {(i, j)}8i,j=1 be a set of square indexes describing an 8x8 Sokoban board. The index (i, j)
refers to the square in the i-th row of the j-th column. Further, let Θ be the set of all possible
parameters for a given DRC agent and let H be the set of all possible sequences of observed past
Sokoban boards. A concept C is then defined as a mapping C : S × G × H × Θ → ΛC from a
particular square (i, j) ∈ G of a presently-observed Sokoban board xt ∈ S , and from an agent’s
current parameters θ ∈ Θ and past episode observations (xo, x1, · · · , xt−1) ∈ H to the value
c
(i,j)
xt that the concept takes on that square given agent behavior. More compactly, and suppressing

dependence on past observations for notational simplicity, the concept value taken on square (i, j)

of Sokoban board xt when an agent has parameters θ can be written as C(i,j)
xt = C(xt, (i, j), θ).

F ADDITIONAL BACKGROUND MATERIAL

F.1 DECISION-TIME PLANNING

In Section 2.1, we provided a pragmatic characterization of decision-time planning. In this section,
we now briefly overview definitions of decision-time planning in other fields. We do so to demon-
strate that our characterization is very similar to these past definitions. Specifically, we consider
approaches to decision-time planning in: (1) classical AI, (2) neuroscience, and (3) reinforcement
learning.

In classic AI, or, symbolic AI, planning is viewed as the process of an agent formulating a sequence
of actions to perform in order to achieve its goal (Russell & Norvig, 2010; Hendler et al., 1990).
From this perspective, planning is a search problem: it involves an agent searching for a sequence
of actions that can be performed to reach a goal state from the current state (Korf, 1987). This
perspective of planning is very similar to our characterization in that understands planning as re-
quiring formulating sequences of actions and evaluating their consequences (i.e. predicting whether
performing the sequence of actions will allow the agent to reach the goal state).

Decision-time planning is also a topic of interest in neuroscience (Miller et al., 2017; Jensen et al.,
2024). Within neuroscience, Mattar & Lengyel (2022) have defined planning as ‘the process of
selecting an action or sequence of actions in terms of the desirability of their outcomes’. This
is again very similar to our characterization in that it defines planning as involving formulating
sequences of actions and evaluating their consequences.

Finally, in reinforcement learning, decision-time planning is usually taken to refer to the process of
an agent interacting with a world model in order to determine which actions, when performed in
the current state, will yield positive consequences (Hamrick et al., 2020). As stated in Section 2.1,
this definition is very similar to our characterization of planning. The only difference is that this
‘model-based’ definition requires an agent to interact with an explicit world model to predict and
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evaluate the consequences of actions. Our definition loosens this requirement, only requiring that an
agent somehow predict and evaluate the consequences of its actions. Table 6 shows some common
approaches to designing RL agents capable of performing decision-time planning. Note that, other
than DRC agents as studied in this paper, these approaches all maintain at least some dependence on
an explicit world model in order to plan. Finally, in RL, decision-time planning is often contrasted
with ‘background planning’ which refers to the process of an agent interacting with a world model
during training to learn a better policy and/or value function Sutton & Barto (2018). Importantly,
our characterization of planning does not aim to capture background planning.

Explicit World Model (Known) Explicit World Model (Learned) No Explicit World Model
Explicit Search
Algorithm
(Handcrafted)

Example: AlphaZero
(Silver et al., 2018)

Example: MuZero
(Schrittwieser et al., 2020) -

Explicit Search
Algorithm
(Partially Learned)

Example: MCTSNet
(Guez et al., 2018b)

Example: I2A
(Racanière et al., 2017) -

Explicit Search
Algorithm
(Fully Learned)

- Example: Thinker
(Chung et al., 2024a) -

No Explicit
Search Algorithm - - Potential Example: DRC

(Guez et al., 2019)

Table 6: Summary of common approaches to creating RL agents capable of decision-time planning.
Agents are categorized based on the extent to which they rely on handcrafted, explicit world models
and search algorithms. A search algorithm is explicit if it relies on handcrafted rather than learned
elements. A world model is explicit if it depends more on handcrafted elements and less on learnable
components. DRC agents are listed as potential examples as, prior to this work, it was unclear
whether they performed decision-time planning.

F.2 SOKOBAN

This paper investigates planning in the context of Sokoban. As explained in Section 2.2, Sokoban is a
deterministic, episodic environment in which an agent operating in a 8x8 gridworld seeks to navigate
around walls to push four boxes onto four targets. In this section, we provide a detailed explanation
of the transition and reward dynamics of Sokoban, as well as of the symbolic representations of
Sokoban boards our agent observes.

Sokoban’s transition dynamics are as follows. At each time step, a Sokoban agent must choose to
either move up, down, left, right or not to move. When an agent moves left, right, up or down onto
a square currently containing a box, that box is respectively pushed on to the square to the left, the
right, below, or above. If the move an agent attempts to perform would involve pushing a box into
a non-empty square - that is, a square containing either a wall or another box - neither the box nor
the agent moves. The agent cannot push two adjacent boxes simultaneously. An episode ends either
when (a) the agent successfully pushes all boxes onto targets or (b) when an episode length exceeds
a random number between 115 and 120.

Sokoban’s reward structure is as follows.

• The agent receives a reward of -0.01 at each environment step.

• The agent receives a reward of +1 when it pushes a box on to a target square.

• The agent receives a reward of -1 when it pushes a box off of a square

• The agent receives a reward of +10 after pushing a box onto all four targets.

In this paper, we study a version of Sokoban that uses symbolic environment representations. Each
square of a Sokoban board is always in one of seven states: it is either a wall, an empty square, a
box on an otherwise empty square, the agent on an otherwise empty square, a box on a target, the
agent on a target, or a target with nothing on it. Thus, in our symbolic representation, we represent
each square of an observed Sokoban board as a seven-dimensional one-hot vector and then combine
these vectors into an array to produce the agent’s observation xt ∈ R8×8×7 of the environment state
at time t. Importantly, however, in all figures in which we show an example of a Sokoban board,
we use an RGB pixel representation of Sokoban. We do this to allow the reader to more easily
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understand respective level. Figure 2 compares the pixel and symbolic representation of a Sokoban
board, where each color in the symbolic representation denotes which dimension of the one-hot
vector is active for each square. It should also be noted that our version of Sokoban forgoes the layer
of wall squares that is sometimes appended to the edge of Sokoban boards in previous work.

F.3 DEEP REPEATED CONVLSTM (DRC) AGENT ARCHITECTURE

The agent studied in this paper is a Deep Repeated ConvLSTM agent as introduced by Guez et al.
(2019). DRC agents are a recurrent actor-critic architecture. At each time step t, a convolutional
encoder e processes the agent’s observation of the current environment state, xt, into an encod-
ing it ∈ RH0×W0×G0 . This is then processed by the recurrent backbone of the DRC architecture,
which is a stack of ConvLSTMs (Shi et al., 2015). A ConvLSTM is a modified LSTM (Hochre-
iter & Schmidhuber, 1997) that include a 3D hidden state and uses convolutional connections. The
DRC architecture utilises a stack of D ConvLSTM units with untied parameters θ = (θ1, · · · , θd).
These ConvLSTM units performs recurrent computations and, at time t, have an internal state
sdt = (hd

t , g
d
t ) where hd

t , g
d
t ∈ RHd×Wd×Gd are, respectively, the output and cell state of the d-

th ConvLSTM unit. For the agent we study, the encoder and all ConvLSTM units have a hidden
dimensionality of Gd = 32, 0 ≤ d ≤ D and utilise kernels of size 3 with a single layer of zero
padding appended to convolution inputs. This means that all ConvLSTM states maintain the spatial
dimensions of the environment state, so that Hd = Wd = 8 for all 0 ≤ d ≤ D.

The DRC ConvLSTM stack includes a number of enhancements relative to standard ConvLSTM
architectures. These are generic modification that aim to improve the broad capacity of the architec-
ture as a function approximator. The most notable of these is that, rather than performing a single
step of recurrent computation for each time step, the DRC architecture performs N steps of recurrent
computation per time step. If the current state of the stack of D ConvLSTM units is st−1, and we
denote the operation of this stack on input encoding it as fθ(it, st−1), the computation performed
by the ConvLSTM stack at each time step t can be described by the equations below.

st,0 = st−1, (2)

st,n = fθ(it, st,n−1), 0 < n ≤ N, (3)
st = st,N . (4)

The stack of D ConvLSTM units hence performs N ticks of internal recurrent computation for each
single time step t in the environment. DRC agents are referred to as a DRC(D,N) agents to make
the choice of hyperparameters D and N explicit. The DRC architecture also includes the following
additional modifications relative to a baseline ConvLSTM architecture:

• Bottom-Up Skip Connections: to allow information to flow up the ConvLSTM stack, the
input encoding it is provided as an input to all ConvLSTM units in the stack.

• Top-Down Skip Connections: to allow information to additionally flow down the Con-
vLSTM stack, the output of the final ConvLSTM unit on the current tick is provided as an
additional input to the bottom ConvLSTM unit on the next tick.

• Pool-and-Inject: to allow spatial information to spread rapidly, each ConvLSTM cell ad-
ditionally receives a version of its output hd

t,n−1 on the prior tick that is spatially pooled.
Specifically, this pooled output pdt,n−1 is produced by separately mean- and max-pooling
hd
t,n−1 spatially, passing the concatenated pooled vectors through an affine transformation,

and then reshaping the result to match the dimensions of the hd
t,n−1. This is shown below.

md
t,n−1 = [MeanPoolHd,Wd

(hd
t,n−1),MaxPoolHd,Wd

(hd
t,n−1)]

T ∈ R2Gd , (5)

p̂dt,n−1 = Wpd
md

t,n−1+bpd
∈ RHdWdGd , Wpd

∈ RHdWdCd×2Gd , bpd
∈ RWdHdGd , (6)

pdt,n−1 = ReshapeHd×Wd×Gd
(p̂dt,n−1) ∈ RHd×Wd×Gd . (7)

Finally, the output hD
t,N of the final ConvLSTM cell at the final tick N is concatenated with the input

encoding it and undergoes an affine transformation followed by a ReLU non-linearity to generate a
vector of activations ot which is then fed to a policy head and a value head. The policy head performs
an affine transformation on ot to generate a vector of action logits which parameterises a categorical
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Figure 44: Illustration of DRC(3,3) architecture. For each time step, the architecture encodes the
input xt as a convolutional encoding it, passes it to a stack of 3 ConvLSTMs which perform three
ticks of recurrent computation and then outputs policy logits πt and a value estimate vt.

distribution from which the next action can be sampled at ∼ πt. The value head estimates the state-
value vt of the current policy for the current environment state as a linear combination of ot. The
policy and value heads are used as an actor and critic in order to train the agent in an actor-critic
fashion. Figure 44 illustrates the computation performed a DRC(3,3) agent on a single time step.

F.4 DRC AGENT TRAINING DETAILS

This paper focuses on analyzing a Deep Repeated ConvLSTM (DRC) agent trained to play Sokoban.
The DRC agent we investigate is trained on 900k levels from the unfiltered training set of the
Boxoban dataset (Guez et al., 2018a). The agent is trained in an actor-critic setting using IMPALA
(Espeholt et al., 2018) for 250 million transitions.

We train the agent using a discount rate of γ = 0.97 and V-trace target of λ = 0.97. The agent is
trained by additionally imposing a L2 penalty of size 1e-3 on the action logits, L2 regularisation of
strength 1e-5 on the policy and value heads, and adding an entropy penalty of strength 1e-2 on the
policy. Optimisation is performed using propagation through time with an unroll length of 20. We
use the Adam optimiser (Kingma & Ba, 2015) with a batch size of 16 and a learning rate that decays
linearly from 4e-4 to 0.

During training, the agent selects actions by sampling from a categorical distribution parameterized
by its policy head logits. Once trained, the agent acts greedily by always performing the action with
the greatest logit. After training, solves 97.3% of unseen levels from the unfiltered test set of the
Boxoban dataset (Guez et al., 2018a).

F.5 BEHAVIORAL EVIDENCE OF PLANNING EXHIBITED BY THE DRC AGENT

As explained in Section 2.3, this paper is motivated by the phenomenon of DRC agents behaving in
a way that suggests that they perform planning. For instance, DRC agents have been found in past
work to solve additional Sokoban levels when forced to perform ‘thinking steps’, which are steps
at the start of episodes where the agent is forced to remain stationary Guez et al. (2019); Garriga-
Alonso et al. (2024). We now confirm that the agent we analyze in this paper also exhibits this
planning-like behaviour.
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Figure 45: The percentage of 1000 ‘Medium’ and ‘Hard’ levels that the agent solves when the agent
performs ‘thinking steps’. Zero thinking steps corresponds to the agent’s standard behaviour.

We do this by investigating amount of levels the fully-trained agent solves when given differing num-
bers of thinking steps. We investigate this in two datasets of Sokoban levels taken from the Boxoban
dataset (Guez et al., 2018a). These are the ‘Medium’ and ‘Hard’ subsets of levels. As suggested
by their names, these levels are more difficult than the ‘unfiltered’ subset of levels the agent was
trained on. We use subsets consisting of 1000 levels taken from each dataset. Figure 45 shows the
percentage of these 1000 Medium and Hard levels the agent solves when performing between zero
and five thinking steps. Zero thinking steps corresponds to the agent’s standard behavior. Clearly,
the agent performs better when forced to perform ‘thinking steps’. This represents planning-like
behavior. This is because an agent capable of planning would be able to make use of the additional
test-time compute afforded by ‘thinking steps’ to refine its plan.

G INVESTIGATING PLANNING IN DRC AGENTS OF DIFFERENT SIZES

In the main paper, we investigate emergent planning in a DRC agent with D = 3 layers that performs
N = 3 internal ticks of computation per time step. In this section, we now perform a preliminary
investigation of DRC agents of different sizes and provide evidence that they too engage in planning.
Specifically, we investigate whether two DRC agents of different sizes internally represent CA and
CB. Using the terminology from Appendix F.3 – in which we referred to a DRC agent with D layers
that performed N ticks of computation per step as a DRC(D,N) agent – the agents we investigate
are:

• A DRC(1,9) agent (Appendix G.1)

• A DRC(9,1) agent (Appendix G.2)

Both agents investigated in this section are trained for 100 million transitions using the training
scheme described in Appendix F.4. Likewise, both agents exhibit behavioral evidence of planning.
For instance, the DRC(1,9) and DRC(9,1) agents respectively solve an additional medium difficulty
levels when given five ‘thinking steps’ (i.e. forced stationary steps) prior to acting at the start of
episodes.

We use 1x1 and 3x3 probes to investigate whether these agents internally represent CA and CB.
As in Section 4, we train probes with 5 different initialization seeds. All probes in this section are
trained using a training scheme identical to that described in Appendix D.1 except for the fact that
the training and test datasets consist of all transitions generated when running the corresponding
agent for 500 and 250 transitions respectively.

G.1 INVESTIGATING PLANNING IN A DRC(1,9) AGENT

We first investigate whether the DRC(1,9) agent exhibits evidence of internally planning. To re-
iterate, this agent only has a single ConvLSTM layer, but performs 9 internal ticks of computation
for each environment time step. Due to only having a single layer, this agent represents an interesting
case-study of a low-capacity model-free agent. After 100m transitions of training, this agent solves
84.9% of unseen levels, and solves an additional 0.8% of medium-difficulty levels when given five
‘thinking steps’. While clearly less capable than the DRC(3,3) agent we focus on, the ability of the
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Figure 46: Macro F1s achieved by probes when predicting CA and CB using the DRC(1,9) agent’s
cell state, or, for the baseline probes, using the observation. Error bars show ± 1 standard deviation.
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Figure 47: Success rates when intervening on the cell state of the DRC(1,9) agent in Agent- and
Box-Shortcut levels using trained and randomly-initialized probes. Error bars show ± 1 standard
deviation.

agent to solve unseen Sokoban levels, and to benefit from additional test-time compute, represents
behavioral evidence of planning.

Probing For Planning-Relevant Concepts Figures 46a and 46b respectively show the macro
F1 scores achieved when probing this agent for CA and CB. As with the DRC(3,3) agent in-
vestigated in the paper, the agent appears to represent these planning-relevant concepts. This
can be seen in the strong performance of the 1x1 and 3x3 probes relative to the respec-
tive baseline. Similarly, as with the DRC(3,3) agent, the agent appears to represent these
concepts in a spatially-localized manner. This can be seen in the minimal increase in per-
formance when moving from the 1x1 probes to 3x3 probes relative to the baseline. Given
that these concepts correspond to predictions of future behavior, and of the impacts of fu-
ture behavior on the environment, these results suggest that the DRC(1,9) agent is planning.
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Figure 48: Macro F1 when using 1x1 probes
to decode CA and CB from the DRC (1,9)
eighth-layer agent’s cell state at each of
the additional 45 internal ticks performed
by the DRC (1,9) agent when the agent is
given 5 ‘thinking steps’, averaged over 1000
episodes.

Investigating Plan Formation Further evidence of
the DRC(1,9) using these concepts to plan can be
seen in Figure 48 in which we force the agent to per-
form five ‘thinking steps’ prior to acting and mea-
sure the average macro F1 when predicting CA and
CB using the agent’s cell state at each internal tick
the agent performs during these thinking steps. As
with the DRC(3,3) agent, the DRC(1,9) agent seems
to iteratively refine its internal plan as formulated in
terms of CA and CB. Qualitative evidence of the
DRC(1,9) agent internally planning can be seen in
Figures 52a, 53a and 54a in which we visualize the
agent’s internal representations of CB over the initial
12 steps of episodes.

Confirming Behavioral Dependence Finally, Fig-
ures 47a and 47b show the success rates when in-
tervening with the vectors learned by 1x1 probes to
steer the behavior of the DRC(1,9) agent in Agent-
and Box-Shortcut levels in the manner described in
Section 6.1. Agent-Shortcut interventions are very
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Figure 49: Macro F1s achieved by probes when predicting CA and CB using the DRC(9,1) agent’s
eighth-layer cell state, or, for the baseline probes, using the observation. Error bars show ± 1
standard deviation.
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Figure 50: Success rates when intervening on the cell state of the DRC(9,1) agent at each layer in
Agent- and Box-Shortcut levels using trained and randomly-initialized probes. Error bars show ± 1
standard deviation.

successful. While Box-Shortcut are somewhat less
successful than Agent-Shortcut interventions, they still are significantly more successful than inter-
ventions with random probe vectors.

G.2 INVESTIGATING PLANNING IN A DRC(9,1) AGENT
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Figure 51: Macro F1 when using 1x1 probes
to decode CA and CB from the DRC (9,1)
agent’s eighth-layer cell state at each of
the additional 5 internal ticks performed
by the DRC (9,1) agent when the agent is
given 5 ‘thinking steps’, averaged over 1000
episodes.

We now turn attention to investigating whether the
DRC(9,1) exhibits evidence of internally planning.
To re-iterate, this agent has 9 ConvLSTM layers but
only performs a single recurrent tick of computation
per time step in the environment. The lack of addi-
tional internal ticks means this agent is an instance
of a generic recurrent, model-free agent. As such,
it an interesting case-study for investigating whether
generic recurrent agents can learn to internally plan.
After 100m transitions of training, this agent exhibits
behavioral evidence of planning as it solves 94.2%
of unseen levels, and solves an additional 5.3% of
medium-difficulty levels when given five ‘thinking
steps’.

Probing For Planning-Relevant Concepts Figures
49a and 49b respectively show the macro F1 scores
achieved when probing this agent for CA and CB.
As with the DRC(3,3) agent investigated in the pa-
per, the agent appears to represent these planning-
relevant concepts, and appears to do so in a spatially-
localized manner. However, the agent only does so
at a few layers. Namely, the agent only appears to
robustly represent CA at layers 8 and 9, and to robustly represent CB at layers 6, 7 and 8. Evidence

67



3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671

Under review as a conference paper at ICLR 2025

of this can be seen in the fact that these are the layers at which 1x1 probes strongly outperform the
baseline, and at which there are only minimal gains in macro F1 when moving from 1x1 probes to
3x3 probes. Given that these concepts correspond to predictions of future actions and their impact
on the environment, the fact that the agent represents these concepts provides evidence that it is
planning.

Investigating Plan Formation Further evidence of the DRC(9,1) agent planning can be seen in
Figure 51. In Figure 51, we force the agent to perform five ‘thinking steps’ prior to acting and
measure the average macro F1 when predicting CA and CB using the eighth-layer agent’s cell state
after each of these thinking steps. We use the agent’s eigth layer as this is the layer at which probes
achieve the highest macro F1. Clearly, the agent’s internal plan, as formulated in terms of CA and
CB, becomes iteratively more accurate when the agent is provided with additional test-time compute.
This would be expected if the agent was indeed engaging in iterative planning. Qualitative evidence
of the DRC(9,1) agent internally planning can be seen in Figures 52b, 53b and 54b in which we
visualize the agent’s internal representations of CB over the initial 12 steps of episodes. Note that,
at would be expected, the DRC(9,1) agent takes more environment steps to arrive at plans than the
DRC(1,9) and DRC(3,3) agents.

Confirming Behavioral Dependence Finally, Figures 50a and 50b show the success rates when
intervening with the vectors learned by 1x1 probes to steer the behavior of the DRC(1,9) agent in
Agent- and Box-Shortcut levels in the manner described in Section 6.1. Note that, in the interven-
tions detailed in Figures 50a and 50b, it was found to be necessary to scale probe vectors by a scaling
factor of 4. These results indicate that the DRC(9,1) agent does use its representations of CA and
CB for planning. This is because, in general, the layers at which interventions are most successful
(relative to the baseline) are the layers at which probes achieve the highest macro F1 scores. Note,
however, that the success of interventions cannot be fully explained by the success of the probing
the respective layer. A notable example of this is the much greater success rate of Box-Shortcut in-
terventions when intervening at layer 6 rather than layer 8, even though probes are somewhat more
accurate at layer 8. We hypothesize that this is a consequence of the DRC(9,1) agent accurately rep-
resenting its plans to push boxes at many layers (layers 6-8), but only causally altering these plans at
a single layer (layer 6). This aligns with the observation that Agent-Shortcut interventions become
more successful at later layers, as it may be that the role of these later layers is to determine which
actions the agent needs to perform to execute its plans to push boxes.

H INVESTIGATING PLANNING IN A DIFFERENT ENVIRONMENT: MINI
PACMAN

Figure 55: An example of a Mini PacMan
board. The agent (green) must eat the food
(grey) and avoid the aliens (red) that are
chasing it. When the agent eats a pill (yel-
low) it can eat ghosts and ghosts flee it. Lev-
els end when all non-wall squares are in the
no-food (white) state.

In the main paper, we use the methodology intro-
duced in Section 3.1 to provide evidence indicating
that a DRC agent trained to play Sokoban internally
performs planning. However, it is natural to ask the
extent to which the finding that model-free agents
can learn to internally plan generalizes. This is be-
cause the 3D structure of the DRC agent’s ConvL-
STM cell states mean the agent is particularly well-
suited to learning to plan in an environment such
as with a grid-based structure and localized transi-
tion dynamics. In this section, we now provide pre-
liminary results when investigating whether a DRC
agent can learn to internally plan in a different envi-
ronment: Mini PacMan.

H.1 MINI PACMAN

Mini PacMan is, like Sokoban, a grid-based envi-
ronment. In Mini PacMan, an agent must navigate
around walls in a grid-world and eat food. Initially,
each non-wall square has food on, and levels end
when the agent eats all food. When a level ends,
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step 6, tick 9 step 7, tick 9 step 8, tick 9 step 9, tick 9 step 10, tick 9 step 11, tick 9

(a) DRC(1,9)

step 0, tick 1 step 1, tick 1 step 2, tick 1 step 3, tick 1 step 4, tick 1 step 5, tick 1

step 6, tick 1 step 7, tick 1 step 8, tick 1 step 9, tick 1 step 10, tick 1 step 11, tick 1

(b) DRC(9,1)

step 0, tick 3 step 1, tick 3 step 2, tick 3 step 3, tick 3 step 4, tick 3 step 5, tick 3

step 6, tick 3 step 7, tick 3 step 8, tick 3 step 9, tick 3 step 10, tick 3 step 11, tick 3

(c) DRC(3,3)

Figure 52: The internal plan of a (a) DRC(1,9), (b) DRC(9,1) and (c) DRC(3,3) agent after the final
internal tick over 12 steps of the same level. Plans are decoded from the agents’ (a) first, (b) eighth
and (c) third layer using a 1x1 probe.
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step 6, tick 9 step 7, tick 9 step 8, tick 9 step 9, tick 9 step 10, tick 9 step 11, tick 9

(a) DRC(1,9)

step 0, tick 1 step 1, tick 1 step 2, tick 1 step 3, tick 1 step 4, tick 1 step 5, tick 1

step 6, tick 1 step 7, tick 1 step 8, tick 1 step 9, tick 1 step 10, tick 1 step 11, tick 1

(b) DRC(9,1)

step 0, tick 3 step 1, tick 3 step 2, tick 3 step 3, tick 3 step 4, tick 3 step 5, tick 3

step 6, tick 3 step 7, tick 3 step 8, tick 3 step 9, tick 3 step 10, tick 3 step 11, tick 3

(c) DRC(3,3)

Figure 53: The internal plan of a (a) DRC(1,9), (b) DRC(9,1) and (c) DRC(3,3) agent after the final
internal tick over 12 steps of the same level. Plans are decoded from the agents’ (a) first, (b) eighth
and (c) third layer using a 1x1 probe.
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(a) DRC(1,9)

step 0, tick 1 step 1, tick 1 step 2, tick 1 step 3, tick 1 step 4, tick 1 step 5, tick 1

step 6, tick 1 step 7, tick 1 step 8, tick 1 step 9, tick 1 step 10, tick 1 step 11, tick 1

(b) DRC(9,1)

step 0, tick 3 step 1, tick 3 step 2, tick 3 step 3, tick 3 step 4, tick 3 step 5, tick 3

step 6, tick 3 step 7, tick 3 step 8, tick 3 step 9, tick 3 step 10, tick 3 step 11, tick 3

(c) DRC(3,3)

Figure 54: The internal plan of a (a) DRC(1,9), (b) DRC(9,1) and (c) DRC(3,3) agent after the final
internal tick over 12 steps of the same level. Plans are decoded from the agents’ (a) first, (b) eighth
and (c) third layer using a 1x1 probe.
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Figure 56: Macro F1s achieved by probes when predicting (a) ‘Agent Approach Direction 16’ and
(b) ‘Agent Approach 16’ using the agent’s cell state at each layer, or, for the baseline probes, using
the observation.

a new level loads. However, the agent must also avoid ghosts which chase the agent. In each level,
there are also ‘power pills’. When the agent steps onto a square with a power pill, ghosts flee, and
the agent eats any ghosts it steps onto for the next 20 turns. The agent gets a reward of +1 for eating
food, +2 for eating a pill, and +5 for eating a ghost. An episode of Mini PacMan ends when the
agent eventually gets eaten by a ghost. Figure 55 shows an example of a Mini PacMan maze near
the start of a level.

We study a version of Mini PacMan that is very similar to that studied in Hamrick et al. (2020). The
version of Mini PacMan we train our agent on consists of mazes that are randomly generated by (1)
generating mazes using Primm’s algorithm, and then (2) randomly removing each wall square with
a probability of 0.3. Each maze contains 4 pills. The number of ghosts in the initial level is equal to
1 plus an integer drawn from the Poisson(1) distribution. The number of ghosts at each subsequent
level then increases by the floor of a number drawn from Unif[0, 2]. Unlike Hamrick et al. (2020)
who use mazes of size 15x19, we use smaller square mazes of size 13x13. As with Sokoban, we use
a version of Mini PacMan where the agent observes a symbolic representation xt ∈ R13×13×14 of
the environment.

The preliminary results provided in this section regard a DRC(3,3) agent trained for 250 million
transitions on this version of Mini PacMan. This agent is trained using the same training scheme as
the Sokoban agents as described in Appendix F.4.

H.2 PRELIMINARY PROBING RESULTS

We now present some very preliminary results regarding the aforementioned DRC agent. We ini-
tially tried probing for the concept ‘Agent Approach Direction’ (CA) as in Sokoban but found no
evidence of the agent representing it. After much experimentation, however, we found probes to be
able to decode from the agent’s cell state the following two concepts:

• Agent Approach Direction 16: This concept tracks which squares the agent will step onto,
and which direction it will do so from, over the next 16 time steps. That is, this is a variant
of ‘Agent Approach Direction’ that only accounts for the agent’s actions of the next 16
steps.

• Agent Approach 16: This is a binary concept that tracks whether an agent will or will not
step onto each square over the next 16 time steps. That is, this is a variant of ‘Agent Ap-
proach Direction 16’ that ignores directional information and simply tracks which squares
the agent will step onto.

Figures 56a and 56a show the macro F1s achieved by 1x1 and 3x3 probes when predicting ‘Agent
Approach Direction 16’ and ‘Agent Approach 16’ respectively. These probes are trained and tested
on datasets consisting of 28k and 12k transitions respectively. We interpret these results as indicating
that the agent possesses spatially-localized representations of the concept ‘Agent Approach 16’. This
is because 1x1 probes can accurately predict this concept, and because we see minimal improvement
in performance when moving from a 1x1 to 3x3 probe. In contrast, we see large improvements in
performance when moving from 1x1 to 3x3 probes when predicting ‘Agent Approach Direction 16’.
This is consistent with the agent representing ‘Agent Approach 16’, and 3x3 probes utilizing their
larger receptive field to learn the associated actions when predicting ‘Agent Approach Direction 16’.
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Figure 57: Examples an episode in which the agent first plans a path to a power pill (yellow) and
then towards edible ghosts (purple). A grey dot indicates that a 1x1 probe trained to predict ‘Agent
Approach 16’ decodes that the agent plans to step onto a square in the next 16 time steps.

Figure 57 shows examples of the predictions made by a 1x1 probe trained to predict ‘Agent Ap-
proach 16’ when applied to the agent’s final-layer cell state over 8 transitions at different points
of 3 example episodes. Note that purple and blue squares correspond to edible ghosts. These ex-
amples indicate that, as in Sokoban, the agent uses its concept representations to form an internal
plan. Here, the agent’s internal plan consists of the squares it plans to visit in the near-future. A few
observations can be made of the agent’s internal plan in these examples. First, its internal plans tend
to corresponded to connected paths to follow. Second, the agent’s internal plans seem to iteratively
develop. Finally, the agent does not appear to have a fixed planning horizon. Rather, it seems to
often plan paths towards a ‘target’ such as a pill (yellow squares) or, when ghosts are edible, an
edible ghost (blue/purple squares). Note that this explains why the macro F1 of the probes are not
higher, as ‘Agent Approach 16’ seems only to be a correlate of the concept the agent ‘truly’ plans in
terms of.
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