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ABSTRACT

In several domains such as natural language processing, it has been empirically
reported that simple addition and subtraction in a somehow learned embedding
space capture analogical relations. However, there is no guarantee that such rela-
tion holds for a new embedding space acquired by some training strategies. To
tackle this issue, we propose to explicitly model analogical structure with an
Abelian group. We construct an Abelian group network using invertible neu-
ral networks and show its universal approximation property. In experiments, our
model successfully learns to capture word analogies from word2vec representa-
tions and shows better performance than other learning-based strategies. As a
byproduct of modeling Abelian group operations, we furthermore obtain its natu-
ral extension to permutation invariant models with theoretical size-generalization
capability.

1 INTRODUCTION

The vector representations of words called word2vec (Mikolov et al., 2013a;b) trained only on
large unlabeled text data are known to capture linear regularities between words. For example,
vec(“king”) — vec(“man”) + vec(“woman”) results in the most similar vector to vec(“queen”). Sim-
ilar results have been observed not only in other word embeddings (Mnih & Kavukcuoglu, 2013;
Pennington et al., 2014) but also in various embedding spaces, such as combined embeddings of text
and image (Kiros et al., 2014), emoji embeddings (Eisner et al., 2016), latent representation of deep
convolutional generative adversarial networks (Radford et al., 2016), and feature space of pretrained
image models (Upchurch et al., 2017).

Although the reports are interesting and attractive, such approaches have shortcomings. Since those
methods of learning from unlabelled data usually do not explicitly incorporate learning analogical
structure, there is no guarantee that the acquired embedding space has linear relations between
instance pairs even if training itself works well. Even when an embedding space captures some kinds
of analogies, it might not work for other kinds of analogies. Indeed, word2vec representation works
well for inflectional analogies (68.22% accuracy) but poorly for encyclopedic analogies (7.11%
accuracy) in our preliminary experiments (see Table 3 in Section 4.2). In such a case, it is quite
difficult to tune the training algorithm for certain kinds of analogies you want to use.

To alleviate these issues, we propose to directly learn analogical relations on the embedding space
from labeled data. One challenge in learning analogy in a supervised manner is how to model
analogical functions. A naive way to do this is to train two separate models corresponding to addition
and subtraction, respectively; however, it does not reflect the analogical structure and might be
inefficient. In this work, we propose an Abelian group network to incorporate an analogical inductive
bias into a neural network. The proposed network is designed to satisfy the Abelian group condition
by using an invertible neural network. We also show that the Abelian group network is a universal
approximator of smooth Abelian group operations. Since the inverse element in the Abelian group
network and its gradient are analytically computable, we can train it for analogy tasks by common
techniques for deep learning, such as stochastic gradient descent.

As a side effect of the algebraic structure, we can construct a permutation invariant function, i.e.,
a function for multisets, by repeatedly composing an Abelian group operation for multiple inputs.
Multiset models can handle inputs of different sizes, and it is important for the models to auto-
matically generalize between different size inputs, especially from small to large ones. However,
existing multiset models (Zaheer et al., 2017; Qi et al., 2017) have no such theoretical guarantee. On
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the other hand, our multiset models naturally induce the size-generalization capability because the
output for larger inputs can be written as the composition of small elements. Further, we show that
a necessary and sufficient condition for the composed function being permutation invariant is that
the binary operation forms an Abelian semigroup, and we propose an Abelian semigroup network,
by using the characterization of associative symmetric polynomials.

2 PRELIMINARIES

2.1 DEFINITIONS

In this section, let us introduce some basic notations and important definitions that will play a key
role in this work.

2.1.1 BASIC NOTATIONS

By N, we represent the set of the natural numbers including 0. We denote a vector by a bold symbol,
eg,x. Letx € R4 be a d-dimensional vector. We represent the ¢-th element (1 < ¢ < d) of x
by ;. For1 < k < d, z< € R” is the k-dimensional vector (71, ...z;) and ), € RF~!is
the (k — 1)-dimensional vector (z1,...x_1). We denote the elementwise product of two vectors
xz,y € R by z ® y, such that (x ® y); = z;9; and the elementwise division of two vectors
xz € Ry e (R\ {0})? by @y, such that (x @ y); = x;/y;. By | - ||, we represent the L2
(Euclidean) norm.

2.1.2 MULTISET AND PERMUTATION INVARIANCE

Here, we use & and ) to describe some domains, which are typically Euclidean spaces, i.e., X =
R% and Y = R%. We denote the set of multisets over X by N*. We use {x1,...x,} € N¥ to
describe a multiset composed of 1, . .., x, € X (any confusion with sets is not problematic in this
paper). The cardinality of a multiset is the number of elements with multiplicity and is expressed by
| : |’ c.g. |{1a 2,2, 3}| = 4.

For n € N, a symmetric group S,, is the set of all n! bijective functions o: {1,2,...,n} —
{1,2,...,n}. For a permutation o € S,, and X € X, o- X is defined such that (0- X ); = X, ;) for
alli € {1,...,n}. A function f: X" — Y is said to be permutation invariant if for any X € A"

and for any permutation o € Sy, f(o-X) = f(X) holds. This concept can be extended to functions
that take vectors of different dimensions. Namely, a function f: |, oy & k — Y is called permuta-
tion invariant if for any k € N, for any X € X’* and for any permutation o € Sy, f(0- X) = f(X)
holds. When f: UkeN Xk Yis permutation invariant, it can be also viewed as a function that
takes multisets as input. For notation simplicity, we sometimes use the same symbol to express the
multiset function: f: N¥ — ).

2.1.3 UNIVERSALITY

Universality is an important theoretical property of neural networks’ expressive power. Let A and
Y be an input domain and an output domain, respectively. We consider a model M and a class of
target functions F, both of which are sets of functions X — ). The model M is a sup-universal
approximator of F if for any target function f* € F, for any ¢ > 0, and for any compact subset
K C X, there exists a function f € M such that

sup || f () — f*(z)[| <e (1
xzelkl
If not noted otherwise, universality refers to the sup-universal property.

2.1.4 BASIC ALGEBRA

Here, we introduce the basic definition of important algebraic structures in this study. Let G be a
setand o: G x G — G be a binary operation. Below, we review four properties to define Abelian
semigroups and groups.

Associativity Forany z,y,2 € G, (xoy)oz=xzo0 (yo z2).
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Identity Element There exists an element ¢ € G, called the identity element, such that for any
reG,roe=cox =ux.

Inverse Element For any = € G, there exists an element z~1 € G, called the inverse element of z,
suchthatzozxz ' =z loz =e.

Commutativity Forany z,y € G,xoy=yoz.
Table 1 shows which properties are required in each algebraic structure. A semigroup only requires

associativity to the binary operation. A group is a semigroup with an identity element and inverse
elements. An Abelian (semi)group is a (semi)group with commutativity.

Table 1: Properties required for each algebraic structure.
| Associativity Identity Inverse Commutativity

Semigroup v - - -
Group v v v -
Abelian Semigroup v - - v
Abelian Group v v v v

2.2 INVERTIBLE NEURAL NETWORKS

Invertible neural networks are neural networks that approximate invertible functions R? — R
Here, we review some existing studies for multi-dimensional case, i.e., d > 2, and single-
dimensional case, i.e., d = 1.

2.2.1 NORMALIZING FLOWS

Multi-dimensional invertible neural networks have been studied mainly in the context of normaliz-
ing flows (Tabak & Vanden-Eijnden, 2010), which iteratively apply invertible functions to a sim-
ple original probability distribution to express complex probability distributions (Kobyzev et al.,
2020; Papamakarios et al., 2019). There have been many variants proposed including residual flows
(Behrmann et al., 2019), neural ODEs (Chen et al., 2018), and autoregressive flows (Kingma et al.,
2017). Here we review affine coupling flows (Dinh et al., 2015), one of the most popular mod-
els with parallelizable efficient inverse computation. Each layer of the affine coupling flows maps
x = (r1,...,24) € R0y = (y1,...,ya) € R? such that

Y<k = T<k, @)
Yok = T @ exp(a(z<p)) + Blx<i),

where exp is applied elementwise and o, 5: R¥ — RYF are trainable functions. The inverse is
computed as follows:

LT<k = Y<k, (3)
Tk = (Y>k — B(y<k)) ® exp(—a(y<k))-

They are used in many successful applications such as NICE (Dinh et al., 2015), Real NVP (Dinh
et al., 2017), and Glow (Kingma & Dhariwal, 2018).

Although the normalizing flows have a limited form of transform, they still admit universalities
on certain classes of functions (Teshima et al., 2020). The affine coupling flows are LP-universal
(weaker condition of universality) for C2-diffeomorphisms. Some more complex models, including
deep sigmoidal flows (Huang et al., 2018) and sum-of-squares polynomial flows (Jaini et al., 2019),
are universal for C2-diffeomorphisms.

2.2.2 SINGLE-DIMENSIONAL INVERTIBLE NEURAL NETWORKS

For single-dimensional functions, invertibility is equivalent to strict monotonicity. Monotonic net-
works (Sill, 1997) model strictly monotonic functions. The monotonically increasing version with
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K groups and J, units for k-th group is as follows:

— mj 5By (k.7
f(x) 1£?Klga§>§ke><p(w PR )

where w(F7) b(#7) € R are trainable parameters. The monotonic networks are a universal ap-
proximator for strictly monotonic differentiable functions. Monotonic rational-quadratic transforms
(Durkan et al., 2019) are another universal model for the single-dimensional case.

3 PROPOSED METHODS

Here, we introduce the proposed methods. First, we propose a model for Abelian group operations
and show its universality. Next, we explain how to model analogical relations by our model. Finally,
we present architectures for multiset input and show the size-generalization ability.

3.1 ABELIAN GROUP NETWORK

Let X' be a Euclidean space, i.e., X = R? (d € N). We present the Abelian group network that
models Abelian group operations as follows:

zoy=0¢ (o(x)+ ¢(y)), (5)

where ¢: X — X is a trainable invertible function, typically modeled by an invertible neural net-
work.

First, we check that this binary operation satisfies the four conditions of the Abelian group described
in Section 2.1.4.

Proposition 1 (Semigroup Conservation). Let p: X — X be a bijective function. When
x: X x X — X is associative, x oy = p~'(p(x) * p(y)) is also associative. Similarly, when
* [s commutative, o is also commutative.

Proof. Associativity:

(@oy)oz=p"(p(p™" (p(x) * p())) * p(2))
= o~ ((p(x) * p(y)) * p(2)) ©
= p (p(x) * (p(y) * p(2))) (. Associativity of *)
= p~Hp(@) * plp~ (p(y) * p(2)))) = z o (y o 2).
Commutativity:
yox=p ' (p(y) *p(x))
=p H(p(z) * p(y)) (.- Commutativity of *) (7
=T oYy.
O

By this proposition, since + is associative and commutative, the Abelian group network is also
associative and commutative. The identity element is

e=¢'(0), (8)
which satisfies

xoe=xo (¢ 1(0))

9
= ¢ p(x)+0) ==
for all x € X. The inverse element of x € X is
™! = ¢ (—¢(2)), (10)
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which satisfies

zozx ' =zo (¢ (~¢(x)))
=0~ (6(x) — ¢()) (11
—67(0) =e.
It is worth noting that we can analytically compute the inverse function (Equation 10).

Next, we check the expressive power of the Abelian group network. An Abelian Lie group is an
Abelian group over a manifold in which the group operation (z,y) — x oy and the inverse function
x + z~ 1 are both differentiable. The following theorem states that the Abelian group network can
approximate any Abelian Lie group operation with arbitrary precision.

Theorem 1 (Universality of Abelian group networks). Let X’ be a Euclidean space. Abelian group
networks are a universal approximator of Abelian Lie group operations over X. In other words,
for any Abelian Lie group operation x: X x X — X, for any € > 0, and for any compact subset
K C X, there exists a binary operation function o: X x X — X represented by an Abelian group
network such that

sup  [[(z*y) — (zoy)| <e (12)
zelk,yek

We provide the proof in Appendix C.1. It is based on the theory of the Abelian Lie group and the
universality of invertible neural networks.

3.2 MODELING ANALOGY BY ABELIAN GROUP NETWORK

Now we consider an analogical task of predicting an element d in a relation a : b = ¢ : d. Let
a,b,c,d € X be embedded vectors of corresponding elements. We need to define a model f: X’ x
X X X — X that predicts d from a, b, and c. Then, if the set of candidate elements are finite as
in word embedding, we can search the nearest vector to f(a, b, ¢). We explained in Section 1 that
several studies heuristically use f(a,b,c) =b—a + c.

Analogical relations have two natural laws: when a = b, then ¢ = d holds; a : b = ¢ : d is equivalent
toa:c=1>b:d whena = ¢ then b = d holds. Therefore, we would like to design f to satisfy
the two condition that f(a,b,c) = ¢ when @ = b, and f(a,b,c) = f(a,c,b). These conditions
hold in f(a,b,c) = b — a + c. However, when we try to parametrize f by neural networks, it is
not trivial to reflect these inductive biases using existing architectures. By using the Abelian group
network, we can model f so that it reflects the conditions as follows:

fla,b,c)=boa"'oc
= ¢7'(¢(b) + &(67 (—9(a)))) o c.
=0~ (¢(b) — ¢(a)) oc.
=67 (6(b) — d(a) + ¢(c)).
Also, this is strictly more expressive than the simple arithmetic operations because when ¢ is the

identity, ¢(a,b,c) = b — a + c¢. We can train this model by minimizing the loss: I(f(a,b, c),d),
where [: X — R can typically be an L? loss or negative cosine similarity.

13)

3.3 MULTISET ARCHITECTURE AND SIZE GENERALIZATION

Here, we construct a multiset architecture by combining the Abelian group networks and show
it naturally generalizes in sizes. It is easy to check that if o: X x X — X is associative and
commutative, f: X* — X defined by

fle1,...,xx) =x10X2 00T} (14)

is permutation invariant. When this condition holds, we represent the multiset version of f: N¥ —
X as follows by denoting a composition of o by O: f(X) = Qe x T, where X € N* is a multiset
of X. By modeling o by the Abelian group network, we can construct a multiset architecture of the

Abelian group network:
f(X)=¢" (Z ¢(w)> , (15)

rzeX
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where the invertible function ¢: X — X is typically modeled by an invertible neural network.

Now, we consider the size-generalization ability of the multiset architectures. An intuitive explana-
tion is as follows. As an extreme case, even if trained only on multisets of two elements, our models
can learn the correct binary operation. Therefore, they generalize to multisets of larger sizes. In
general, we can derive the following theorem. Appendix C.2 provides the proof.

Theorem 2 (Size Generalization of Abelian Group Networks). Let f*: N¥ — X be a target func-

tion expressed by a composition of Abelian semigroup (X,0): f*(X)= () «. Let f: N* —» X
xeX

be a multiset architecture of the Abelian group network: f(X) = ¢! (Z:EGX d)(:c)) When

[F(X) = fHX)] <e (16)
holds for any X (€ N%) whose size is smaller than a (> 2), then
€ ((QKlKg)DOga bl — 1)
aK1K2 -1

holds for any X (€ N%) whose size is b (> a), under the condition that the Lipschitz constants of ¢
and ¢~ are K, and Ko, respectively.

1F(X) = (X < (17)

A necessary and sufficient condition of f in Equation 14 being permutation invariant is that o is
an Abelian semigroup operation. In Appendix A, we provide the proof and propose an Abelian
semigroup network by using the characterization of associative symmetric polynomials.

4 EXPERIMENTS

Here, we summarize the main experiment of learning word analogies. In addition to this section, we
provide the experiments of size generalization on learning multiset functions in Appendix B.

4.1 COMMON SETTINGS

We implemented the neural networks in the PyTorch framework (Paszke et al., 2019) and optimized
them using the Adam algorithm (Kingma & Ba, 2015). The hyperparameters for each model in
each problem were tuned with validation datasets using the Bayesian optimization of the Optuna
framework (Akiba et al., 2019). The experiments were run on Intel Xeon E5-2695 v4 with NVIDIA
Tesla P100 GPU. See Appendix D for the detailed settings, such as the model architecture and the
range of hyperparameters.

4.2 WORD ANALOGIES

In Section 1, We discussed the general motivation of training analogical functions over an embed-
ding space. In addition, here, we explain the specific issue in word2vec (Mikolov et al., 2013a;b)
and justify the motivation of using the Abelian group network. In word2vec, for predicting a word
d in a relation a : b = ¢ : d, the word with the most similar vector to b — a + ¢ (we denote
the corresponding vector for each word by using a bold symbol) is selected in terms of the cosine
similarity:

V1 - V2
v [[[lvz]l
Usually, the words a, b, c are excluded from the candidate vocabulary under the assumption that
a common word does not appear in one analogy example. Although this assumption is reason-
able in many cases, it prevents us from solving certain problems such as a past tense verb analogy
“do”:“did” = “split”:“split” or a plural noun analogy “apple”:“apples” = “deer”:“deer”. On the
other hand, if we do not exclude the words a, b, ¢ from the candidates, word2vec suffers from severe
performance degradation e.g., falling from 73.59% to 20.64% in our preliminary experiment on the
Google analogy test set. This is due to the nature of the word2vec algorithm: the result of the simple
arithmetic calculation b — a + ¢ has a high probability of being close to b or c in the cosine similar-
ity, especially in a high dimensional space. We mitigate this issue by learning richer functions than
addition and subtraction. In this experiment, we trained the Abelian group network from a labeled
dataset and compared it with the original word2vec and other learning-based approaches.

cos(vy,v2) = (18)
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Word Embedding We used a 300-dimensional word2vec model for 3 billion words trained on
Google News corpus of about 100 billion words'. We normalized each word embedding by L?
norm, following the implementation of the Gensim framework (Rehtifek & Sojka, 2010).

Word Analogy Models We compared different models for a word analogy function f : R3%0 x
R399 x R300 3 R390 that takes the vectors of words a, b, ¢ and predicts the vector of a word d. In the
proposed method (WV + AGN), we modeled f by Equation 13. For the invertible neural network
¢ : R3%9 — R399 we implemented a model based on the affine coupling flows described in Section
2.2.1. In addition to the original word2vec (WV): f(a, b,c) = b— a + ¢, we prepared two trainable
baselines based on a multilayer perceptron (WV + MLP and WV + MLP_C, respectively):

f(a,b,e) = MLP(b—a + ¢), (19)
fla,b,¢) = MLP-(CONCAT(a, b, ¢)), (20)

where we trained MLP : R399 — R300 or MLP : R990 — R300,

Setup Except for WV, we trained f by minimizing the loss function: losss(a,b,c,d) =
—cos(f(a, b, c),d) on the training set. We measured the accuracy on the test set by calculating
the most similar vector to the model output for each word:
argmax cos(f(a,b, c),d), (21)
dev
where V is the set of all word embeddings in the word2vec model. For reference, we also tested the
setting where we removed the words a, b, ¢ from the candidates:

argmax cos(f(a,b,c),d). (22)
dev\{a,b,c}

Datasets We trained our models on the bigger analogy test set (Rogers et al., 2016), which con-
sists of 4 categories, each of which has 10 smaller subcategories of 50 unique relations. First, we
extracted the pairs included in the word2vec vocabularies. Then for each subcategory, randomly
split them into a training set (60%), validation set (20%), and test set (20%). Finally, for each set,
we generated all the combinations of the pairs for each subcategory and concatenated them among
all subcategories. For some relations that contain multiple acceptable candidates, such as mammal
and canine for hypernyms of dog, we used the first candidate for training and accepted any for the
test. To check the transferability to another dataset, we also tested our models by the Google analogy
test set (Mikolov et al., 2013a). It includes 19,544 question pairs (8,869 semantic and 10,675 syn-
tactic), and all the words were included in the word2vec vocabulary. Tables 9 and 10 in Appendix
D.2 summarize the explanation and the number of extracted pairs for all subcategories.

Table 2: Accuracy on bigger analogy test set when we selected from the whole words.

num | WV | WW+MLP  WV+MLP.C WV +AGN
Overall 3314 | 177 (5.34%) | 565 (17.05%) 674 (20.34%) 690 (20.82%)
Inflectional 900 | 100 (11.11%) | 317 (35.22%) 340 (37.78%) 435 (48.33%)
Derivational 882 | 4(0.45%) 15(1.70%) 40 (4.54%) 20 (2.27%)

Lexicographic ~ 632 | 52 (8.23%) 154 (24.37%) 202 (31.96%) 172 (27.22%)
Encyclopedic 900 | 21 (2.33%) 79 (8.78%) 92 (10.22%) 63 (7.00%)

Results In Table 2, we summarized the results on the bigger analogy test set when we selected
from the whole vocabulary. In this setting, WV performed extremely poorly. WV + AGN achieved
the best accuracy in overall, while the three trainable models all outperformed WV. Table 3 shows
the accuracy comparison when we excluded a, b, c from the candidates. While the proposed method
outperformed WV again, interestingly, the other learning-based models degraded their performance
compared to the original WV.

We summarized the results on the Google analogy test set in Tables 4 and 5 for each test setting.
Here, MLP-based models significantly dropped performance while the proposed model did not.

"https://code.google.com/archive/p/word2vec/
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Table 3: Accuracy on bigger analogy test set when we excluded a, b, ¢ from the candidates.

num | WV | WV +MLP WV+MLP.C WV +AGN
Overall 3314 | 864 (26.07%) | 569 (17.17%) 686 (20.70%) 1065 (32.14%)
Inflectional 900 | 614 (68.22%) | 324 (36.00%) 369 (41.00%) 656 (72.89%)

Derivational 882 | 103 (11.68%) | 17 (1.93%) 43 (4.88%) 98 (11.11%)
Lexicographic ~ 632 | 83 (13.13%) | 151 (23.89%) 188 (29.75%) 205 (32.44%)
Encyclopedic 900 | 64 (7.11%) | 77 (8.56%) 86 (9.56%) 106 (11.78%)

Table 4: Accuracy of transfer test to Google analogy test set when we selected from the whole
words.

num | WV | WV +MLP WV +MLP.C WV +AGN

Overall 19544 | 4033 (20.64%) | 1346 (6.89%) 2222 (11.37%) 5676 (29.04%)

Semantic 8869 | 1995 (22.49%) | 161 (1.82%) 256 (2.89%) 2260 (25.48%)
Syntactic 10675 | 2038 (19.09%) | 1185 (11.10%) 1966 (18.42%) 3416 (32.00%)

Only in the setting where we excluded a, b, ¢ from the candidates in the Google analogy test set, the
proposed method did not outperform WV. This is possibly because the word2vec model was highly
tuned for the Google analogy test set for this evaluation method. Indeed, it has been pointed out
that word embedding algorithms are quite dependent on system design choices and hyperparameter
tuning Levy et al. (2015). We show the full results of all subcategories on each dataset in each
evaluation setting in Tables 11, 12, 13, and 14 in Appendix D.2.

Finally, we enumerated the answers of each model for some toy example relations in Table 6. The
first four relations are the cases where a = b or a = c. Thanks to the inductive bias incorporated in
the Abelian group network, WV + AGN answered all the questions correctly as well as WV. WV +
AGN also predicted the correct words for the last five relations, where we need to predict the words
that appeared as c. On the other hand, the MLP-based models failed in most cases, which indicates
that they are not good at the type of examples different from the training dataset.

Overall, while the naive learning approach overfitted to the certain dataset and evaluation criteria,
the inductive biases incorporated in the Abelian group network successfully prevented the model
from overfitting.

5 RELATED WORK

5.1 ALGEBRAIC STRUCTURES IN NEURAL NETWORKS

In the literature of deep learning, algebraic structures mainly appear in the context of group invari-
ant/equivariant neural networks. For image input, some studies tried to incorporate reflection and ro-
tation invariance into convolutional neural networks (Cohen & Welling, 2016; Worrall et al., 2017).
Neural networks for (multi)sets (Zaheer et al., 2017; Qi et al., 2017) adopted invariance/equivariance
to symmetric group actions. Recent studies have investigated symmetries invariant/equivariant to
more general group actions, such as a subgroup of the symmetric group (Maron et al., 2019b) and
sets of symmetric elements (Maron et al., 2020).

Our work differs from the above studies since we try to model an Abelian group/semigroup operation
itself.

5.2 INDUCTIVE BIAS AND EXPRESSIVE POWER OF NEURAL NETWORKS

Inductive biases are assumptions on the nature of the data-generating process or the space of so-
lutions in machine learning (Battaglia et al., 2018). Many studies have constructed special neural
networks that reflect the inductive biases of a given problem setting. At the same time, since those
networks are often composed of limited forms of neural operations, expressive power including
universal approximation properties has been studied.
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Table 5: Accuracy of transfer test to Google analogy test set when we excluded a, b, ¢ from the
candidates.

num | WV | WV +MLP WV +MLP.C WV +AGN

Overall 19544 | 14382 (73.59%) | 1427 (7.30%) 2414 (12.35%) 11857 (60.67%)

Semantic 8369 | 6482 (73.09%) | 163 (1.84%) 256 (2.89%) 4918 (55.45%)
Syntactic 10675 | 7900 (74.00%) | 1264 (11.84%) 2158 (20.22%) 6939 (65.00%)

Table 6: Answers of each model for relations that include identical words.

| WV WV + MLP WV+MLPC WV +AGN
do:do = make:? make  realize ensuring make
apple:apple = pen:? pen retractable_leash  dustcover pen
do:did = do:? did failed seemed did
apple:apples = apple:? | apples parsley_sprig fruit apples
do:did = split:? split failed split split
do:did = set:? set decided established set
do:did = put:? put allowed Serge_Audate put
apple:apples = deer:? | deer raptor fawn deer
apple:apples = dice:? | dice ethnic_heritages = Proximex C### dice

Convolutional layers of convolutional neural networks (CNN) (LeCun et al., 1989) are designed
to reflect spacial structures in images. CNN without fully connected layers has been shown to be
universal (Zhou, 2018). Invertible neural networks incorporate the inductive bias of being bijec-
tive, which we summarized in Section 2.2. Message passing graph neural networks (Gilmer et al.,
2017) such as graph convolutional networks (Kipf & Welling, 2017) and graph attention networks
(Vaswani et al., 2017) are designed under the assumption that neighboring nodes have similar prop-
erties. They have been shown to have limited expressive power in terms of graph isomorphism (Xu
et al., 2019; Morris et al., 2019) More expressive models have also been studied (Sato et al., 2019;
Maron et al., 2019a; Keriven & Peyré, 2019; Maehara & Hoang, 2019). For a (multi)set learning
problem, DeepSets (Zaheer et al., 2017) are one of the most popular models with universal approxi-
mation property.

5.3 SIZE GENERALIZATION

Graph neural networks and neural networks for (multi)sets can handle graphs and sets of different
sizes, and their size-generalization ability has been empirically shown in some applications such as
physical systems (Battaglia et al., 2016) and combinatorial optimization (Khalil et al., 2017; Abe
et al., 2019; Velickovi¢ et al., 2020). However, from a theoretical perspective, there exist simple
tasks on which graph neural networks do not naturally generalize to larger graphs (Yehudai et al.,
2020). Recent work has analyzed the extrapolation of graph neural networks trained by gradient
descent (Xu et al., 2021). There have been few studies on size generalization of (multi)sets probably
because of difficulty in analyzing DeepSets for inputs of different sizes.

6 CONCLUSION AND FUTURE WORK

In this work, we presented a novel neural network architecture to model an Abelian group with
universality. In the experiment of learning word analogies, we confirmed that the inductive bias
of our model that reflects analogical structure successfully enhanced the performance. This brings
up the possibility of solving other analogical tasks such as image generation by image analogies
(Hertzmann et al., 2001), which is left as future work. Moreover, as an application other than
analogies, we constructed a permutation invariant architecture (i.e., multiset model) by combining
the Abelian group models, which has the theoretical capability of size generalization. We hope that
our attempt to model algebraic structure by neural networks gives a new insight into the field of
machine learning.
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A ABELIAN SEMIGROUP NETWORK

A.1 MOTIVATION

Below, we present a necessary and sufficient condition for multiset functions that are represented by
the composition of binary operations to be well-defined.

Proposition 2 (Permutation Invariant Conditions for Binary Operation). Let f : |J, oy X ks X be
a function represented as

f(X)=a10---0m, (23)
where X = (x1,...,x,) € X" and o : X x X — X is a binary operation (left-associative). The
function f is invariant if and only if o forms an Abelian semigroup, namely, o is commutative and
associative.

Proof. 1t is obvious that when o is commutative and associative, f is permutation invariant. Let us
consider the case when f is permutation invariant. f((@x1,x2)) = f((z2,21)) leads to &1 o &2 =
X2 o &1 (commutativity). From f((x1,x2,23)) = f((x2,23,21)), we have (x1 o x2) o &3 =
(z2 0 x3) o &1 and commutativity leads to (1 o ©3) o &3 = &1 o (€2 o x3) (associativity). O

On the basis of this proposition, our goal decomposes into learning Abelian semigroup operations
over X. In Section A.2, we propose neural network architectures for Abelian semigroups.

A.2 ARCHITECTURE

Although the Abelian group network proposed in Section 3.1 is universal for smooth group opera-
tions, it is not sufficient for approximating an Abelian semigroup operation such as the product over
R, i.e., z oy = xy. Now we extend the Abelian group network and propose the Abelian semigroup
network. Our idea is to extend + of Equation 5 to a polynomial. From Proposition 1, Equation 5 is
still a semigroup after we replace + by a polynomial of  and y as long as the polynomial is asso-
ciative and symmetric as a binary operation. We call the polynomials with this property associative
symmetric polynomials, which are characterized by the following theorem. Since the original paper
only gives a brief explanation, we give detailed proof in Appendix C.3.

Theorem 3 (Characterization of Associative Symmetric Polynomials, Commutative Case of
(Yoshida, 1963)). An associative symmetric polynomial of x and y is one of the following three
forms:

o

rzxy=¢ atzr+y (24)

PO 4 B(a+y) +yay (v #0),

where «, 3,7y are coefficients.

By applying this theorem to Proposition 1 for X with elementwise product and division, we obtain
the following three kinds of Abelian semigroup operations:

p o) (25)
zoy =14 p " (px)+ply) + ) (26)
p (B (B-1)0y+Ba (p(x)+p(y) +7 @ px) @ p(y)), 27)

where p : X — X is an invertible function and o, 3,y € X" are parameters (- is nonzero for all
elements in Equation 27). Equation 25 is a constant case, on which we do not put a focus due to
its trivialness. Equation 26 forms a group where e = p~!(—a), z7! = p~}(—p(x) — 2). It can
be expressed by the Abelian group network with ¢(z) = p(z) + a and ¢~ (z) = p~l(z — )
in Equation 5. Equation 27 is a semigroup but not a group. Just using this equation is fine, but we
propose a simpler form, as the Abelian semigroup network:

zoy=0¢"'(¢(x) ® H(y)), (28)
where ¢ : X — X is a trainable invertible function typically modeled by an invertible neural
network. This is a special case of Equation 27 when 3 = 0,~ = 1 and therefore is a semigroup.
Conversely, the Abelian semigroup network can express Equation 27 by

p(x) =y @ p(x)+ B8, ¢~ (x) =p ' ((x—B)27). (29)
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Moreover, the Abelian semigroup network can approximate the Abelian group network:
¢~ H¢' (z) + ¢'(y)). Let Xsg = RZ,, where ¥ = R? One construction is approximating a
bijective function 7 : X — X%,

(x) = exp(¢/'(x)), " (x) = ¢’ (log(x)) (30)

by ¢, where exp and log act elementwise. This is possible in any compact subset of X'. From
the previous discussions so far, the Abelian semigroup network can approximate any binary oper-
ation which is homeomorphic to an associative symmetric polynomial. We confirm this fact in the
experiments.

By calculating Equation 14, we can write the model for multiset input X = {x1,...x,} € X ina
simple form:

F(X) =07 (o(x1) @~ @ plan)), (31)
where the invertible function ¢ : X — X’ is typically modeled by an invertible neural network.

For the Abelian semigroup network, the error bound for small multiset propagates in the form of
the product with the values ¢(x;), which prevents us from inducing the bound like Theorem 2.
However, it still has the size-generalization ability in most real applications where the values are not
too large. We confirm this by an experiment in Section B.

B EXPERIMENTS OF SIZE GENERALIZATION

To check the size generalization over semigroup and group operations on multisets, we trained
the models on synthetic data. The binary operation forms of the examined functions are z o y =

t+y,z4+y+1, v/a3 + y3 (group cases) and z oy = xy, & + y + %/ (semigroup cases).

Setup For the single-dimensional invertible neural network of the Abelian group network and
Abelian semigroup network, we used monotonic networks (Sill, 1997). We tuned the hyperparame-
ters, the number of groups and the number of units for each group. As a baseline, we used DeepSets
(Zaheer et al., 2017), one of the most popular models for (multi)set learning. It incorporates two
multilayer perceptrons (MLP). We used the same number of hidden layers for the two MLPs and
tuned the hyperparameters, the number of layers in each MLP, the middle dimension, and the hidden
dimension. Each model was trained to minimize the mean squared error on a training set.

Data Generation As training data, we generated 500 multisets of size {2, 3,4} (chosen uni-
formly random). All the elements were single-dimensional and selected uniformly at random from
[—5.0,5.0]. A validation data of 100 multisets were generated from the same distribution. We pre-
pared two kinds of test data. One consisted of 100 multisets drawn from the same distribution as the
training and validation data, which we refer to by small. To see the size-generalization ability, the
other consisted of 100 multisets of size {10, 11, 12} (chosen uniformly at random) with the same
element distribution, which we refer to by large.

Results Table 7 summarizes the results. For the group functions, all models including the Abelian
semigroup network performed well. This is consistent with the fact that group operations can be ap-
proximated by the Abelian semigroup network, as discussed in Section A. While the Abelian group
network was better on the other two cases, DeepSets outperformed the Abelian group network on
Va3 + y3. This is possibly due to the optimization of MLPs in DeepSets being easier than mono-
tonic networks in the Abelian group network and Abelian semigroup network. Invertible neural
networks for the single-dimensional case that are easy to optimize are important for future work.
For the semigroup operations, as well as DeepSets, the Abelian group network did not work well.
This is reasonable because these semigroup operations can not be expressed by the Abelian group
network.

On the size generalization, although DeepSets worked fairly well, our models worked better. For
example, the Abelian semigroup network was better than DeepSets on large of x + y despite being
worse on small; The Abelian group network had similar results on 2y and z + y + %7.
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Table 7: Mean squared error comparison between the models for each function. The upper three
operations are groups and the lower two equations are semigroups. Square root of the values are
presented. Smaller is better.

Toy DeepSets AGN ASN
| | I

Tty small | 0.00226 || 3.63e-7 0.0832
large 0.908 0.0366 0.309
z+y+1 | small | 0.00772 | 4.17e-7 0.136
large 0.0335 0.0132 0.956

{/ 23 +y3 | small | 0.0844 0.284 0.427
large 0.229 0.636 1.26
xy small 13.0 36.7 0.00000295
large 28500 28390 31.5
x+y+ 5 | small 0.965 7.08 0.000660
large 194 193 1.22

C PROOFS

C.1 PROOF OF THEOREM 1

First, we review a theorem of the Abelian Lie group, which is important in our proof. The real
numbers R with the addition + forms a Lie group, which we denote by (R, +). Also, the torus
T = R/27Z with the addition + modulo 27Z forms a Lie group, which we denote by (T, +). It is
known that any connected Abelian Lie group is isomorphic to (R, +)* x (T, +)" for some k, h € N
(Section 4.4.2 of (Procesi, 2007)).

Now, we give the proof of Theorem 1.

Proof. We use the fact that any connected Abelian Lie group is isomorphic to (R, +)* x (T, +)"
for some k, h € N. Since there is no homeomorphic function R (which is not compact) to T (which
is compact), Abelian Lie groups over a Euclidean space has the form of only (R, +)*. Therefore,
any * can be represented as

xxy=n (n(x)+7(y)), (32)

where 7 : X — X is a homeomorphic function in terms of Lie groups, i.e., 7(-) and 7~ !(-) are
analytic. Take any € > 0 and a compact subset X C X'. We denote the image of K x K through the
function (x,y) — w(x) + 7(y) by S’ = {7(x) + n(y) | x,y € K}. Let

S={s|3s' €S s.t.||s— 5| <2} (33)

and
K' = ICUw_l(S). (34)

Then, we have a Lipschitz constant L > 0 of 7! over & since 7! is continuous and S is compact.

Also, from the universality of invertible neural networks (Teshima et al., 2020) for the compact set
K, there exists an invertible neural network ¢ : X — X’ such that for any = € K’

€

(@) — o)l < 575 39
and for any ' € w(K’)
Ir~ @) = 7' @) < g7 71 (36)
Then, for any z,y € K, ¢(x) + ¢(y) € S(C n(K')) because
[(7(z) + 7(y)) = (p(z) + W) < [I7(x) — d(2)[| + |7 (y) + o(y)]
2e
Sar+1 Gn

< 2e.
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Therefore, for any &,y € X, we have from the Lipshitz continuity of 7!

7~ (@) + 7 (y)) — 7 () + o)l < Lll(w(z) + 7(y)) — (¢(x) + 6(y))]]
2¢
2L +1 (38)
2Le

2L +1

and from Equation 36

€

7~ (6(@) + 0(y)) — 6~ (9(@) + W) < g7 (39)
From Equation 38 and 39, for any x,y € K, we obtain
[z xy) — (@oy)| = 7~ (n(x) + 7(y)) — ¢~  (d(x) + ¢(y))]|
< |7~ (@) + 7 (y) — 7 (o(@) + o(y))]]
+ 7 o) + ¢(y)) — o~ (B() + d(y))| (40)
< 2Le €
—2L+1 + 2L +1
= €.
This concludes that Abelian group networks are universal. O
C.2 PROOF OF THEOREM 2
Proof. We prove that for any X € N¥ of size smaller than b > a,
K Ko )Moga b1 _ 1
1500 - o3 < LR ) @

aK1K2 -1

by induction on size b. Note that K; K5 > 1 because they are the Lipschitz constants of inverse
functions.

Base Case When b = a, Inequality 41 holds.

Inductive Step We assume Inequality 41 holds for size b’ = 1,...,b — 1. We divide X of size b
into balanced a subsets X1, ..., X4 sothat X = X;+--- X, and each | X;| < fg] (Addition over
multisets is defined as follows: {@1,...,&n} +{Tnt1,-. &N} ={Z1,.. ., Tpn, Tny1, ..., EN}).
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Then,
1£(X) = f1(X)| = ¢‘1< () | — x

zeX xeX

- as-l(a ¢<w>)—<“> oK ‘
;wex =1 (:’cEXi )

=||¢7" (Zcb(f(Xi))) — {1 (X),.. ,f*(Xa>}>H

<7} (Zos(f(xi)))—w <Z<z><f*<xl>>> +
=1 =1

’ ¢ <_ ¢(f*(Xi))> - { (X)), f*(Xa)})H “2)

A
Z
VO
=
=

From the assumption on size [ 2], we obtain

e((aK 1 Ky)losal211 — 1)

X) - (X KKy -
1FX) = £ (O] < akyy - S
e((aK 1 Ky) Mg 1 — 1)
KK - (43)
< ol aKlKQ—l te
€ ((aKlKQ)“OgQ b] — 1)
CLKlKQ—l ’
which establishes the inductive step. O

C.3 PROOF OF THEOREM 3

Proof. First, we prove that associative polynomials are at most first-order for each variable. Assume
that we have a n-order (n > 2) associative polynomial

TxY = zn:iaiijiyj, (44)
i=0 j=0

where «; ; € R for 0 < ¢, 7 < n. Then, we have

n

(zxy) *z—ZZa” ZZaklacy (45)

1=0 j=0 k=0 1=0
and
n n
(y x 2) ZZa”x Z akly z 46)
=0 j=0 k=0 1=0
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Since * is associative, these two must form an identity. By comparing a coefficient of ™ , we obtain

> (O ey =0. (47)
j=0 1=0

If we have 0 < j' < n such that ¢, j» # 0, from the coefficient of P /,

n
I
O anyh) =0. (48)
1=0
Recursively, we get o, 0 = a1 = -+ = ay,n, = 0, which leads to contradiction. Therefore, we
now have
Qp o =0p1 =" " =0pnp = 0. (49)
In the same way, we can also prove
Qop = Q1 p =" =0Qpnp = 0. (50)

From Equation 49 and 50 for n > 2, now we know that associative polynomials are at most first-
order for each variable. Therefore, symmetric associative polynomials have the form:

rxy=a+B(z+y)+yzy. (51)
Then we have
(xxy)xz=a+ B((a+B(x+y)+yzy) +2) +y(a+ Bz +y) +yzy)2 (52)
and
zx(y*xz)=a+ B(a+Bx+y)+yry) + 2) +v(a+ Bz +y) +yzy)=. (53)
By solving this identity, we obtain
ay=p(B—-1). (54)

This condition is equivalent to the associativity of *. It decomposes into three cases: (y = 0, 8 = 0),
(y=0,8=1), and v # 0. For each case, we obtain

(6%
rcxy=¢ at+xr+ty (55)
B0 4 Bw+y) +yzy (v #0).

D EXPERIMENTAL DETAILS

Here, we explain the detailed setting and further discussion of the experiments that we did not cover
in the main part.

D.1 EXPERIMENTS OF SIZE GENERALIZATION

Model Architecture For the implementation of the monotonic networks, we followed the Equa-
tion 4, except that we added a coefficient term s € R which automatically learn the sign of the
weights:

o RSN (k)
f(z)  Inin, | max s exp(w'™)) -z + b5, (56)

Hyperparameters All networks were trained by the Adam algorithm of Ir = 1073, beta =
(0.9,0.999) for 1000 epochs with the batch size of 32. Hyperparameters of each model were tuned
with the validation dataset using the Optuna framework for each function. For DeepSets, the number
of layers for each MLP was selected from [2, 8] and the middle dimension and hidden dimension
were selected from [2,32]. For the Abelian group network and Abelian semigroup network, the
number of groups and the number of units in each group were selected from [2, 32].
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D.2 WORD ANALOGIES

Model architecture For the invertible neural network for the Abelian group network and Abelian
semigroup network, we implemented a model based on the affine coupling flows using the FrEIA
framework 2. We stacked Glow coupling layers and random permutation layers of the dimensions
in turn. For each Glow coupling layer, we used three layer feedforward neural networks with a
hyperparameter of hidden_dim as a sub network. For MLP and MLP_C, we implemented multilayer
perceptrons with the ReLLU activation function.

Hyperparameters All networks were trained by the Adam algorithm of Ir = 1073, beta =
(0.9,0.999) for 100 epochs with the batch size of 32. The hyperparameters of each model were
tuned with the validation dataset using the Optuna framework. For MLP, the number of layers was
selected from [2, 6] and the hidden dimension was selected from [8,256]. For the Abelian group
network, the number of layers was selected from [2, 6] and the hidden dimension was selected from
[8,256]. Weight_decay was selected from [0, 10~3] for all models.

Table 8 summarizes the selected hyperparameters for each model.

Table 8: Selected hyperparameters in word analogy task.
| layernum  hidden_dim

\PAY - -
W2V + MLP 4 223
W2V + MLP_C 2 516
W2V + AGN 5 151

Detailed Results In Table 9 and 10, we explained all the subcategories of the bigger analogy test
set and the Google analogy test set. We summarized the full results for each subcategory in Table
11,12, 13, and 14.

*https://github.com/VLL-HD/FrEIA
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Table 9: Detailed explanation of bigger analogy test set. pair refers to the whole relation size, used
refers to the number included in the word2vec model, and identical refers to the number of used
relations that include identical words.

category subcategory example pair used identical
Inflectional 101 noun - plural_reg album:albums 50 50 1
Inflectional 102 noun - plural_irreg ability:abilities 50 48 2
Inflectional 103 adj - comparative angry:angrier 50 49 0
Inflectional 104 adj - superlative able:ablest 50 49 0
Inflectional 105 verb_inf - 3pSg accept:accepts 50 50 1
Inflectional 106 verb_inf - Ving achieve:achieving 50 49 0
Inflectional 107 verb_inf - Ved accept:accepted 50 50 1
Inflectional 108 verb_Ving - 3pSg adding:adds 50 50 0
Inflectional 109 verb_Ving - Ved adding:added 50 50 0
Inflectional 110 verb_3pSg - Ved adds:added 50 50 0
Derivational DO1 noun+less_reg arm:armless 50 48 0
Derivational D02 un+adj_reg able:unable 50 49 0
Derivational DO03 adj+ly_reg according:accordingl... 50 49 0
Derivational D04 over+adj_reg ambitious:overambiti... 50 50 0
Derivational D05 adj+ness_reg amazing:amazingness 50 45 0
Derivational DO06 re+verb_reg acquire:reacquire 50 48 0
Derivational D07 verb+able_reg accept:acceptable 50 49 0
Derivational D08 verb+er_irreg achieve:achiever 50 49 1
Derivational D09 verb+tion_irreg accuse:accusation 50 48 0
Derivational D10 verb+ment_irreg accomplish:accomplis... 50 47 0
Encyclopedic  EO1 country - capital abuja:nigeria 50 37 0
Encyclopedic ~ E02 country - language andorra:catalan 50 36 0
Encyclopedic  E03 UK _city - county aberdeen:aberdeenshi... 50 24 0
Encyclopedic ~ E04 name - nationality aristotle: greek 50 23 0
Encyclopedic ~ E05 name - occupation andersen:writer/poet... 50 27 0
Encyclopedic ~ E06 animal - young ape:baby/infant 50 50 0
Encyclopedic ~ E07 animal - sound alpaca:bray 50 50 0
Encyclopedic ~ E08 animal - shelter ant:anthill/insectar... 50 50 0
Encyclopedic  EQ9 things - color ant:black/brown/red 50 50 0
Encyclopedic ~ E10 male - female actor:actress 50 48 0
Lexicographic LO1 hypernyms - animals allosaurus:dinosaur/... 50 50 0
Lexicographic L02 hypernyms - misc armchair:chair/seat/... 50 50 0
Lexicographic  L03 hyponyms - misc backpack:daypack/kit... 50 50 0
Lexicographic L04 meronyms - substance atmosphere:gas/oxyge... 50 50 1
Lexicographic L05 meronyms - member acrobat:troupe 50 50 0
Lexicographic L06 meronyms - part academia:college/uni... 50 47 4
Lexicographic L07 synonyms - intensity afraid:terrified/hor... 50 50 1
Lexicographic L08 synonyms - exact airplane:aeroplane/p... 50 50 0
Lexicographic  L09 antonyms - gradable able:unable/incapabl... 50 50 0
Lexicographic L10 antonyms - binary after:before/earlier... 50 50 0
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Table 10: Detailed explanation of Google analogy test set. num refers to the whole relation size and

used refers to the number included in the word2vec model.

category  subcategory example num used
Semantic  capital-common-countries  Athens:Greece 506 506
Semantic  capital-world Abuja:Nigeria 4524 4524
Semantic  currency Algeria:dinar 866 866
Semantic  city-in-state Chicago:Illinois 2467 2467
Semantic  family boy:girl 506 506
Syntactic  graml-adjective-to-adverb =~ amazing:amazingly 992 992
Syntactic  gram2-opposite acceptable:unacceptable 812 812
Syntactic  gram3-comparative bad:worse 1332 1332
Syntactic  gram4-superlative bad:worst 1122 1122
Syntactic  gram5-present-participle code:coding 1056 1056
Syntactic  gram6-nationality-adjective ~ Albania:Albanian 1599 1599
Syntactic  gram7-past-tense dancing:danced 1560 1560
Syntactic  gram8-plural banana:bananas 1332 1332
Syntactic  gram9-plural-verbs decrease:decreases 870 870
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Table 11: Model comparison for each subcategory of bigger analogy test set.

num WV WV+MLP WV +MLP.C WV +AGN
101 90 2(2.22%) 5(5.56%) 10(11.11%)  7(7.78%)
102 90  0(0.00%) 0(0.00%) 8(8.89%) 0(0.00%)
103 90 13(14.44%)  22(24.44%)  20(22.22%) 41(45.56%)
104 90 10(11.11%)  18(20.00%)  25(27.78%) 39(43.33%)
105 90 26(28.89%)  58(64.44%)  52(57.78%) 60(66.67%)
106 90 14(15.56%)  13(14.44%)  19(21.11%) 57(63.33%)
107 90 3(3.33%) 54(60.00%) 42(46.67%) 42(46.67%)
108 90 11(12.22%)  40(44.44%)  51(56.67%) 54(60.00%)
109 90 8(8.89%) 49(54.44%)  53(58.89%) 62(68.89%)
110 90 13(14.44%)  58(64.44%)  60(66.67%) 73(81.11%)
DOl 90 0(0.00%) 0(0.00%) 0(0.00%) 0(0.00%)
D02 90 0(0.00%) 1(1.11%) 0(0.00%) 0(0.00%)
D03 90 1(1.11%) 2(2.22%) 9(10.00%) 5(5.56%)
D04 90 0(0.00%) 0(0.00%) 0(0.00%) 0(0.00%)
D05 72 0(0.00%) 2(2.78%) 13(18.06%)  5(6.94%)
D06 90 0(0.00%) 2(2.22%) 8(8.89%) 0(0.00%)
D07 90 0(0.00%) 0(0.00%) 0(0.00%) 0(0.00%)
D08 90 0(0.00%) 4(4.44%) 1(1.11%) 0(0.00%)
D09 90 3(3.33%) 0(0.00%) 8(8.89%) 7(7.78%)
D10 90 0(0.00%) 4(4.44%) 1(1.11%) 3(3.33%)
EO1 56  0(0.00%) 0(0.00%) 1(1.79%) 2(3.57%)
E02 56 4(7.14%) 14(25.00%)  21(37.50%)  4(7.14%)
E03 20 6(30.00%)  0(0.00%) 0(0.00%) 3(15.00%)
E04 20 2(10.00%) 3(15.00%) 0(0.00%) 4(20.00%)
EO5 30 5(16.67%) 6(20.00%) 8(26.67%) 5(16.67%)
B06 90 4(4.44%) 36(40.00%)  54(60.00%)  42(46.67%)
E07 90 3(3.33%) 18(20.00%) 13(14.44%) 7(7.78%)
E08 90 12(13.33%)  39(43.33%)  37(41.11%) 56(62.22%)
E09 90 10(11.11%)  38(42.22%)  61(67.78%)  35(38.89%)
EI0 90 6(6.67%) 0(0.00%) 7(7.78%) 14(15.56%)
LO1 90  0(0.00%) 52(57.78%)  B5(61.11%)  38(42.22%)
LO2 90 1(1.11%) 15(16.67%)  25(27.78%)  8(8.89%)
LO3 90 0(0.00%) 0(0.00%) 0(0.00%) 0(0.00%)
LO4 90 0(0.00%) 4(4.44%) 10(11.11%)  4(4.44%)
LO5 90 0(0.00%) 1(1.11%) 2(2.22%) 0(0.00%)
LO6 90 9(10.00%)  0(0.00%) 0(0.00%) 6(6.67%)
LO7 90 11(12.22%) 5(5.56%) 0(0.00%) 7(7.78%)
LO8 90 0(0.00%) 0(0.00%) 0(0.00%) 0(0.00%)
LO9 90 0(0.00%) 2(2.22%) 0(0.00%) 0(0.00%)
L1090 0(0.00%) 0(0.00%) 0(0.00%) 0(0.00%)
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Table 12: Model comparison for each subcategory of bigger analogy test set.

num WV WV +MLP WV +MLP.C WV +AGN
101 90 53(58.89%)  5(5.56%) 11(12.22%) 55(61.11%)
102 90 42(46.67%) 0(0.00%) 9(10.00%) 30(33.33%)
103 90 86(95.56%) 22(24.44%) 20(22.22%) 73(81.11%)
104 90 68(75.56%) 18(20.00%) 26(28.89%) 64(71.11%)
105 90 61(67.78%) 58(64.44%) 55(61.11%) 61(67.78%)
106 90 69(76.67%)  13(14.44%) 26(28.89%) 71(78.89%)
107 90 52(57.78%)  55(61.11%) 42(46.67%) 68(75.56%)
108 90 56(62.22%)  42(46.67%) 51(56.67%) 69(76.67%)
109 90 58(64.44%)  50(55.56%) 63(70.00%) 85(94.44%)
110 90 69(76.67%)  61(67.78%) 66(73.33%) 80(88.89%)
DOI 90 0(0.00%) 0(0.00%)  0(0.00%) 0(0.00%)
D02 90 3(3.33%) 3(3.33%)  0(0.00%) 2(2.22%)
D03 90 26(28.89%) 2(2.22%) 9(10.00%) 15(16.67%)
D04 90 11(12.22%) 0(0.00%) 0(0.00%) 3(3.33%)
D05 72 21(29.17%) 2(2.78%) 13(18.06%) 17(23.61%)
D06 90 13(14.44%)  2(2.22%) 10(11.11%) 19(21.11%)
D07 90 1(1.11%) 0(0.00%) 0(0.00%) 4(4.44%)
D08 90 1(1.11%) 4(4.44%) 1(1.11%) 2(2.22%)
D09 90 21(23.33%)  0(0.00%) 9(10.00%) 24(26.67%)
D10 90 6(6.67%) 4(4.44%) 1(1.11%) 12(13.33%)
E01 56 18(32.14%) 0(0.00%) 1(1.79%) 5(8.93%)
E02 56 0(0.00%) 14(25.00%) 19(33.93%)  4(7.14%)
E03 20 0(0.00%) 0(0.00%)  0(0.00%) 0(0.00%)
E0O4 20 0(0.00%) 3(15.00%)  0(0.00%) 4(20.00%)
EO05 30 0(0.00%) 6(20.00%) 6(20.00%) 2(6.67%)
E06 90 5(5.56%) 33(36.67%) 51(56.67%)  47(52.22%)
E07 90  3(3.33%) 17(18.89%) 12(13.33%) 19(21.11%)
E08 90 2(2.22%) 40(44.44%)  35(38.89%) 53(58.89%)
E09 90 12(13.33%)  38(42.22%) 57(63.33%)  33(36.67%)
E1I0 90 43(47.78%) 0(0.00%) 7(7.78%) 38(42.22%)
LO1 90 7(7.78%) 48(53.33%) 50(55.56%) 51(56.67%)
LO2 90 3(3.33%) 15(16.67%) 25(27.78%)  17(18.89%)
LO3 90 3(3.33%) 0(0.00%) 0(0.00%) 2(2.22%)
L04 90 1(1.11%) 3(3.33%) 9(10.00%) 5(5.56%)
LO05 90 1(1.11%) 1(1.11%) 2(2.22%) 1(1.11%)
LO6 90 0(0.00%) 0(0.00%) 0(0.00%) 1(1.11%)
LO7 90 12(13.33%) 4(4.44%) 0(0.00%) 2(2.22%)
LO8 90 27(30.00%) 0(0.00%) 0(0.00%) 17(18.89%)
L09 90 2(2.22%) 5(5.56%)  0(0.00%) 5(5.56%)
L1090 8(8.89%) 1(1.11%) 0(0.00%) 5(5.56%)
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Table 13: Model comparison for each subcategory of Google analogy test set.

num WV WV + MLP WV +MLP.C WV +AGN
capital-common-... 506 225(44.47%) 0(0.00%) 0(0.00%) 227(44.86%)
capital-world 4524 1168(25.82%)  0(0.00%) 0(0.00%) 1223(27.03%)
currency 866 185(21.36%)  0(0.00%) 0(0.00%) 119(13.74%)
city-in-state 2467 252(10.21%) 0(0.00%) 0(0.00%) 350(14.19%)
family 506 165(32.61%)  161(31.82%) 256(50.59%)  341(67.39%)
gramI-adjective... 992 15(1.51%) 86(8.67%) 156(15.73%) 84(8.47%)
gram2-opposite 812 14(1.72%) 200(24.63%) 286(35.22%) 235(28.94%)
gram3-comparati... 1332 329(24.70%) 242(18.17%) 433(32.51%)  713(53.53%)
gramd-superlati... 1122 124(11.05%)  244(21.75%) 311(27.72%)  406(36.19%)
gram5-present-p... 1056  73(6.91%) 71(6.72%) 219(20.74%) 160(15.15%)
gram6-nationali... 1599 1180(73.80%) 0(0.00%) 0(0.00%) 996(62.29%)
gram7-past-tens... 1560 134(8.59%) 127(8.14%)  252(16.15%)  353(22.63%)
gram8-plural 1332 63(4.73%) 82(6.16%) 92(6.91%) 176(13.21%)
gram9-plural-ve.. 870 106(12.18%)  133(15.20%) 217(24.94%)  293(33.68%)

Table 14: Model comparison for each subcategory of Google analogy test set.

num WV WV + MLP WV +MLP.C WV + AGN

capital-common-... 506 421(83.20%)  0(0.00%) 0(0.00%) 378(74.70%)
capital-world 4524 3580(79.13%) 0(0.00%) 0(0.00%) 2689(59.44%)
currency 866 304(35.10%)  0(0.00%) 0(0.00%) 180(20.79%)
city-in-state 2467 1749(70.90%) 0(0.00%) 0(0.00%) 1223(49.57%)
family 506 428(84.58%)  163(32.21%) 256(50.59%)  448(88.54%)
gramI-adjective... 992 283(28.53%)  93(9.38%) 162(16.33%)  283(28.53%)
gram2-opposite 812 347(42.73%) 201(24.75%) 299(36.82%)  419(51.60%)
gram3-comparati... 1332 1210(90.84%) 248(18.62%) 437(32.81%)  1044(78.38%)
gram4-superlati... 1122 980(87.34%)  246(21.93%) 319(28.43%)  777(69.25%)
gram5-present-p... 1056 825(78.12%)  78(7.39%) 298(28.22%)  729(69.03%)
gram6-nationali... 1599 1438(89.93%) 0(0.00%) 0(0.00%) 1158(72.42%)
gram7-past-tens... 1560 1029(65.96%)  157(10.06%) 283(18.14%) 1061(68.01%)
gram§-plural 1332 1197(89.86%) 103(7.73%)  122(9.16%)  826(62.01%)
gramO-plural-ve.. 870 591(67.93%)  138(15.86%) 238(27.36%)  642(73.79%)
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