
Flopping for FLOPs: Leveraging Equivariance for Computational Efficiency

Georg Bökman 1 David Nordström 1 Fredrik Kahl 1

Abstract
Incorporating geometric invariance into neural
networks enhances parameter efficiency but typ-
ically increases computational costs. This paper
introduces new equivariant neural networks that
preserve symmetry while maintaining a compara-
ble number of floating-point operations (FLOPs)
per parameter to standard non-equivariant net-
works. We focus on horizontal mirroring (flop-
ping) invariance, common in many computer vi-
sion tasks. The main idea is to parametrize the
feature spaces in terms of mirror-symmetric and
mirror-antisymmetric features, i.e., irreps of the
flopping group. This decomposes the linear layers
to be block-diagonal, requiring half the number of
FLOPs. Our approach reduces both FLOPs and
wall-clock time, providing a practical solution for
efficient, scalable symmetry-aware architectures.

1. Introduction
One of the main drivers of progress in deep learning is the
scaling of compute. This idea is perhaps best summarized
in Sutton’s Bitter Lesson (Sutton, 2019). As Sutton states:

Seeking an improvement that makes a difference
in the shorter term, researchers seek to leverage
their human knowledge of the domain, but the
only thing that matters in the long run is the lever-
aging of computation.

It follows from the Bitter Lesson that a guiding principle
for designing deep learning models should be to find simple
models that scale well. In computer vision, this has proven
fruitful and led to models such as the Vision Transformer
(ViT) (Dosovitskiy et al., 2021). However, a straightfor-
ward critique of Sutton’s argument is that leveraging domain
knowledge can yield algorithms that better utilize computa-
tion. This paper explores common image symmetries that

1Chalmers University of Technology. Correspondence to:
Georg Bökman <bokman@chalmers.se>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Figure 1: Common image classification tasks are invariant to
flopping (horizontal mirroring). In our implementation, this
invariance is enforced through equivariant network layers,
halving the required floating-point operations (FLOPs).

enable more efficient computations. In a nutshell, our case
is that equivariant neural networks can be simple models
that scale well.

Many vision problems are invariant (or more generally
equivariant) to horizontal mirroring, also known as flop-
ping1, and partially invariant to other geometric transforma-
tions such as rotations. For instance, both images in Figure 1
show a butterfly of the same species. Enforcing geometric
invariance in a neural network architecture can be done by
hard-coding the symmetry in each network layer, by enforc-
ing specific weight sharing (Wood & Shawe-Taylor, 1996;
Cohen & Welling, 2016). It has been shown in the literature
that such architectural symmetry constraints typically im-
prove the parameter efficiency of neural networks (Cohen &
Welling, 2016; Bekkers et al., 2018; Weiler & Cesa, 2019).
However, this comes at the cost of requiring more compute
per parameter. For instance, Klee et al. (2023) found that
rotation invariant ResNets typically outperformed ordinary
ResNets on ImageNet-1K in the equal-parameter setting,
but that the training time of the invariant ResNets far ex-
ceeded that of the ordinary ResNets. This is because the
symmetry-induced weight sharing means that each trainable
parameter is used in more computations.

In this paper, we show that invariant neural networks can
achieve a comparable number of floating-point operations
(FLOPs) per parameter to ordinary neural networks. Imple-

1See Wikipedia article or Oxford definition.

1

https://en.wikipedia.org/w/index.php?title=Flopped_image
https://www.oxfordreference.com/view/10.1093/oi/authority.20110803095824114

Flopping for FLOPs: Leveraging Equivariance for Computational Efficiency

menting these networks improves both FLOPs and actual
wall-clock time. Our FLOP-efficient design is enabled by
parametrizing features using irreducible representations of
the flopping group.

Section 2 reviews related work on equivariant networks and
Section 3 provides an exposition of flopping-equivariant
networks for image classification, while Section A lays
out the underlying mathematical background in detail. In
Section 4, we design flopping-equivariant versions of popu-
lar modern vision architectures. Experiments in Section 6
on ImageNet-1K demonstrate that as network size scales
up, flopping-equivariant models achieve comparable or im-
proved classification accuracy for ResMLPs (Touvron et al.,
2023), ConvNeXts (Liu et al., 2022) and ViTs (Dosovitskiy
et al., 2021), while requiring only half the FLOPs.

2. Related Work
Our work is part of the broad field of geometric deep learn-
ing (Bronstein et al., 2021). In this section, we aim to
discuss the most relevant work to the present paper, but we
reference many other relevant works throughout.

2.1. Equivariant Networks for Image Input

Most work on equivariant networks on image input concerns
convolutional networks (ConvNets) (Fukushima, 1975; Le-
Cun et al., 1989). ConvNets are themselves equivariant to
(cyclic) image translations. The ConvNets in this paper are
built on ConvNeXt (Liu et al., 2022), which is a modern
variant with state-of-the-art classification performance.

Making ConvNets equivariant to rotations and reflections
was done by Cohen & Welling (2016) and Dieleman et al.
(2016), with many follow-up works. The unifying frame-
work of steerable E(2)-equivariant ConvNets (Cohen &
Welling, 2017; Weiler & Cesa, 2019), subsumes much of
the prior and subsequent work and proposes decomposing
the feature spaces into irreps (irreducible representations,
see Section A) of the symmetry group. Our ConvNeXt-
variants are special cases of this general framework too.

Apart from ConvNets, there are works proposing
attention- and transformer-based equivariant vision architec-
tures (Romero et al., 2020; Xu et al., 2023). Most similar to
our ViT-based networks are the SO(2)-steerable transform-
ers by Kundu & Kondor (2024). The main differences are
the group considered, the fact that they use complex-valued
features, the nonlinearities used and the type of positional
embeddings. However, the main idea of parametrizing the
features in terms of irreps (following steerable ConvNets)
and modifying the ViT architecture accordingly is the same
in our ViTs and the one by Kundu & Kondor (2024).

2.2. Equivariant Networks for Other Input Than Images

Equivariant networks constitute a broad research direc-
tion. One early line of research is by Wood & Shawe-
Taylor (1996) and going back earlier the topic connects to
steerable filters (Knutsson & Granlund, 1983; Freeman &
Adelson, 1991). Recent approaches include canonicaliza-
tion (Kaba et al., 2023; Mondal et al., 2023), learned equiv-
ariance (Gupta et al., 2024), structured matrices (Samudre
et al., 2025) et cetera. We will use the standard approach
of enforcing each layer of the network to be equivariant
through constraints on the weight matrices (Wood & Shawe-
Taylor, 1996; Cohen & Welling, 2016).

There has been recent interest in the scaling properties of
equivariant networks. Brehmer et al. (2024) find that the
equivariant transformer GATr (Brehmer et al., 2023) outper-
forms non-equivariant transformers on a task of 3D rigid-
body interactions, both in terms of parameter-efficiency and
learning-efficiency, i.e., the number of FLOPs required dur-
ing training.

Bekkers et al. (2024) propose a fast equivariant group con-
volutional network on point cloud input by using separable
group convolutions on position orientation space R3 × S2

and parallelizing the message passing step. Their networks
use ConvNeXt-style blocks, as do some of our networks.
Follow-up work extends the message passing to use uni-
versal invariants (Bellaard et al., 2025), and experimentally
analyzes the benefits of equivariance in different point cloud
processing tasks (Vadgama et al., 2025).

In contrast to our networks, none of the mentioned works
develop networks that are directly comparable with non-
equivariant ones, with a similar FLOPs-per-parameter ratio.

3. Flopping Equivariance
We focus on horizontal mirroring invariance in image classi-
fication as a simple prototype task, aiming to inspire further
research on scaling equivariant neural networks. Readers
interested in a more abstract discussion in terms of general
mathematical groups are referred to Section A. This section
provides an accessible introduction to equivariant neural
networks with minimal prerequisites. By emphasizing com-
putational aspects, we aim to offer an intuitive motivation
for our approach, making the key ideas easier to grasp.

The core idea is to split all feature maps in our network
into two types: flopping-invariant features, which remain
unchanged when the image is flopped, and flopping (−1)-
equivariant features, which flip sign under flopping. By
explicitly keeping track of how the features transform, it is
possible to feed only invariant features into the final classifi-
cation layer and guarantee flopping invariant predictions.

2

Flopping for FLOPs: Leveraging Equivariance for Computational Efficiency

3.1. Linear Layers

Beyond ensuring flopping-invariant predictions, splitting
features into invariant and (−1)-equivariant components
also provides a significant computational advantage. Con-
sider a linear mapping W from Rc to Rd. Assume that the
first c/2 dimensions of the input are flopping invariant while
the last c/2 dimensions are (−1)-equivariant, and likewise
that the first d/2 dimensions of the output are invariant,
while the last d/2 dimensions are (−1)-equivariant. We
split the linear map W into four parts,(

y1
y−1

)
=

(
W1,1 W1,−1

W−1,1 W−1,−1

)(
x1

x−1

)
(1)

where x1 are the invariant input features and x−1 the (−1)-
equivariant input features and likewise for y. Now, by in-
spection, if any element of W1,−1 is non-zero, then y1 will
change when x−1 changes sign and if any element of W−1,1

is non-zero, then y−1 can not transform by multiplication
with −1 jointly with x−1. We conclude that W1,−1 and
W−1,1 must be zero so that (1) actually reads(

y1
y−1

)
=

(
W1,1 0
0 W−1,−1

)(
x1

x−1

)
. (2)

This result reveals a key computational benefit: instead of
performing a full d × c by c matrix-vector multiplication,
we only need two smaller ones of size (d/2)× (c/2) by c/2.
This effectively reduces the FLOPs by half while preserv-
ing equivariance. More generally, the block-diagonalization
from (1) to (2) follows from Schur’s lemma (Lemma A.2)
which applies to all finite symmetry groups. It is closely
related to the fact that convolutions reduce into elementwise
multiplications in the Fourier domain.

Linear layers of the form (2) are called equivariant. In gen-
eral, any layer that preserves the transformation properties
of the input is called equivariant. For instance, we can add
a bias parameter to the equivariant linear layer if we en-
force the bias to be zero for the (−1)-equivariant features.
We give a more formal definition of equivariance in Sec-
tion A, cf. (11). The stacking of equivariant layers to build
a symmetry-respecting network is sometimes called the ge-
ometric deep learning blueprint (Bronstein et al., 2021),
which goes back at least to the 90’s with the works by
Wood & Shawe-Taylor (1996). Using flopping invariant and
(−1)-equivariant features is a special case of the steerable
features proposed by Cohen & Welling (2017). However,
general convolutional layers can not be be as straightfor-
wardly block-diagonalized as in (2), since the convolutional
kernels have a spatial extent. In particular, in the networks
by Cohen & Welling (2017), the described computational
boost is not realized, as the equivariant convolutions are
implemented in terms of ordinary convolutions. We will
discuss this in more depth in Section 4.4.

Figure 2: Patch embedding layer. The patch embed-
ding (PatchEmbed) layer is common in modern networks,
proposed with the ViT-model (Dosovitskiy et al., 2021).
PatchEmbed is a convolutional layer with stride equal to
the kernel size of the convolution filters. In our equivariant
architectures, we enforce half of the filters to be symmet-
ric and half to be antisymmetric. When the input image
is flopped, the output feature map of a symmetric filter is
flopped as well. The output feature map of an antisymmet-
ric filter is flopped and changes sign. Half of the features
output from our PatchEmbed layer are flopping invariant,
while half are (−1)-equivariant, enabling efficient equiv-
ariant processing in subsequent linear layers, as detailed in
Section 3.1.

Three important questions remain and will be discussed next.
First, how do we obtain features that are invariant and (−1)-
equivariant? Second, how do we design the other parts of
the network? Third, do we reduce representation power by
forcing our features to be invariant and (−1)-equivariant?

3.2. Patch Embedding Layer

Obtaining invariant and (−1)-equivariant features from an
image is easy. One straightforward manner is to convolve
the image with symmetric and antisymmetric filters as illus-
trated in Figure 2. Such convolutions can be incorporated as
the first layer in convolutional neural networks and vision
transformers alike (the so-called patch embedding layer,
or “PatchEmbed”) and correspond to the lifting layer in an
equivariant ConvNet (Cohen & Welling, 2016).

3

Flopping for FLOPs: Leveraging Equivariance for Computational Efficiency

3.3. Non-Linear Layers

Non-linear layers of the neural network also need to be
equivariant, i.e. respect the transformation rules of the fea-
tures. For instance, common layers in modern networks
include layer normalization (Ba et al., 2016), activation
functions such as GELU (Hendrycks & Gimpel, 2016), as
well as multi-head self-attention (Bahdanau et al., 2015;
Vaswani et al., 2017). Layer normalization is equivariant
without modification since the norm of neither x1 nor x−1

changes as the input is flopped. For pointwise activation
functions σ, we can create equivariant versions by comput-
ing the output y1, y−1 through

s←[σ
(
(x1 + x−1)/

√
2
)
, t← [σ

(
(x1 − x−1)/

√
2
)

y1 ←[(s+ t)/
√
2, y−1 ← [(s− t)/

√
2.

(3)

The reader is encouraged to check that when x−1 is multi-
plied by −1, y1 remains constant and y−1 is multiplied by
−1. Here (3) can be interpreted as transforming from the
“Fourier” domain to the “spatial” domain (s and t permute
when x−1 changes sign), applying σ there and transforming
back. We include the factor 1/

√
2 to preserve the norm of

the features. The computation in (3) is heavier than just
applying σ, but this overhead is negligible compared to, for
instance, linear layers.

3.4. Attention

For self-attention, if the queries qi and keys kj are split into
flopping invariant and (−1)-equivariant features, their dot
products form an invariant quantity:

aij = qi,1·kj,1+qi,−1·kj,−1 = qi,1·kj,1+(−qi,−1·−ki,−1).
(4)

The aij’s are then normalized using softmax as in standard
scaled dot-product attention and the same attention score
is multiplied by both invariant and (−1)-equivariant values
vj,±1 to obtain the output.

3.5. Limitations of Equivariant Networks

Finally, we need to discuss the limitations put on the model
by enforcing each layer to be equivariant. Prior work has
shown experimentally, and theoretically in some special
cases, that ordinary networks learn to be approximately
equivariant by training on symmetric data (Lenc & Vedaldi,
2015; Olah et al., 2020; Gruver et al., 2023; Bruintjes et al.,
2023; Bökman & Kahl, 2023; Marchetti et al., 2024)2. What
is meant by this is that for a given output feature space of

2Some prior work also found evidence in the other direction,
i.e., that weight symmetries do not always appear in networks
trained on symmetric data (Moskalev et al., 2023). Thus, it is a
partially unsettled question to what extent and in which situations
equivariance can be learned from data. As we argue in this section,
it is however the case that even if we take the least favourable view

a particular layer in the network, there exists a “steering
matrix” A, such that when the input is flopped, the output
feature is (approximately) transformed by A. Since flopping
an image twice returns the original image, we must have
that A2 = I , which means that A can be diagonalized as
A = QDQ−1 with D diagonal containing only entries of
±1. (The generalization of this diagonalization is called the
isotypical decomposition and is possible for more general
symmetry groups as well, due to Maschke’s theorem (The-
orem A.1).) In other words, by changing the basis that we
parametrize the network features in by Q, we get features
that are invariant and (−1)-equivariant as before. Therefore,
restricting the network to be equivariant is not really lim-
iting what features are learnt if the equivariance is learned
even without this restriction.

The emergence of equivariance from data has sometimes
been given as an argument against hard-coding equivariance
in the network. We want to turn this argument around (or
flop it) by saying that if the network learns equivariance in
any case, we might as well hard-code it and take advantage
of the computational benefits that come for free. It should
be mentioned, however, that it is not obvious that the choice
with an equal number of invariant and (−1)-equivariant
features is optimal. In fact, Bökman & Kahl (2023) found
that networks often learn more invariant features than equiv-
ariant features for classification tasks, while Bökman et al.
(2024) found that for keypoint description, networks often
learn an equal amount of invariant and equivariant features3.

It is also not obvious that an equivariant layer has as good
a parametrization as an ordinary layer for network training,
particularly when using standard training recipes developed
for ordinary layers. Recent work by Pertigkiozoglou et al.
(2024) shows that it may be possible to improve the train-
ing of equivariant networks by relaxing the equivariance
constraint during training. In any case, the main aim of
the present paper is to demonstrate that equivariant net-
works, when parametrized right, are as FLOP-efficient per
parameter as ordinary networks. We leave the investigation
of optimal design and training of equivariant networks as
orthogonal research directions for future work.

3.6. Generalization to Other Groups

The argument given for computational savings in linear lay-
ers can be generalized to other groups than the flopping
group. In Section A, we go through the mathematical back-
ground in detail. Importantly, whenever the representations

for motivating hard-coding equivariance—saying that it can be
learned from data—there is still a clear computational argument in
favour of hard-coding.

3Of course, nothing guarantees that training an ordinary net-
work with gradient-based optimization yields the optimal alloca-
tion of invariant and equivariant features.

4

Flopping for FLOPs: Leveraging Equivariance for Computational Efficiency

acting on the feature spaces are completely reducible (i.e.
a direct sum of irreps), linear layers can always be block-
diagonalized by parameterizing them in terms of the irreps.
The computational savings depend on (a) the number of
irreps, (b) the dimensionality of the irreps, and (c) whether
the real irreps are of real, complex or quaternion type. Com-
putational savings are possible in general but the number of
FLOPs per parameter will be higher for irreps with dimen-
sion larger than 1.

4. Modern Neural Networks for Image Data
Since the development of Highway nets (Srivastava et al.,
2015) and ResNets (He et al., 2016a), modern neural net-
works for image data consist of stacking residual blocks

B(x) = x+ ϕ(x). (5)

Often, ϕ is a composition of a normalization layer, such as
batch normalization or layer normalization, and a computa-
tional sequence, such as a two-layer MLP, a self-attention
layer or a two-layer ConvNet. The main reason for using
residual blocks is to facilitate network training by enabling
gradient propagation through many layers.

We cover three architectures based on (5), and outline the
minimal changes to make them flopping-equivariant. We
start with the simplest architecture, ResMLP (Touvron et al.,
2023), working our way through ViT (Dosovitskiy et al.,
2021) and finally ConvNeXt (Liu et al., 2022).

Figure 3 shows a schematic of the network design. All
three network families incorporate a patch embedding layer
(“PatchEmbed”) as the first layer, as outlined in Section 3.2.
We replace all linear layers (except the depthwise convolu-
tions in ConvNeXt) by block diagonal linear layers as in
(2) and use equivariant layer norm, attention and GELU-
nonlinearities as discussed in Section 3. Further special
layers will be discussed in the subsections below.

We chose architectures and training recipes based on three
criteria: the architectures should be well established, a
PyTorch implementation should be available, and train-
ing recipes for ImageNet-1K should be available, as larger
datasets are out of reach for our computational budget.

4.1. ResMLP

Tolstikhin et al. (2021), Melas-Kyriazi (2021) and Touvron
et al. (2023) independently proposed a simplification of
vision transformers, where the attention layers are replaced
by MLPs over the patch dimension. These model types are
most often denoted as MLP-Mixers in the literature, but as
we use the ResMLP version and training recipe by Touvron
et al. (2023), we will usually refer to the models as ResMLP.

To make the linear layers over the patch dimension equivari-

Figure 3: Schematic. Our architectures follow the basic
geometric deep learning blueprint (Wood & Shawe-Taylor,
1996; Cohen & Welling, 2016; Bronstein et al., 2021) in
combination with modern vision models (Dosovitskiy et al.,
2021; Liu et al., 2022; Touvron et al., 2023). The equivariant
PatchEmbed is described in Section 3.2. The residual blocks
differ per architecture and are explained in Section 4. The
classifier head is a single linear layer.

ant and efficient, we decompose the features not only into
invariant and equivariant in the channel dimension, but also
in the patch dimension. This is detailed in Section C.

One unique aspect of ResMLP is that it doesn’t normalize
features, but instead uses an affine layer (over the channel
dimension), in symbols

Affα,β(x) = Diag(α)x+ β, (6)

where α and β are learnable weight vectors. To make (6)
flopping-equivariant we only need to set β to constant 0 for
the (−1)-equivariant features.

Touvron et al. (2021) proposed LayerScale, a learnable di-
agonal matrix applied on the output of each residual block,
initialized close to 0. This is just an affine layer as in (6)
without bias β and is also included in ResMLP.

The ResMLP-blocks are of the form B = B2 ◦B1 with

B1(x) = x+ LS(FCpatches(Aff(x))),

B2(x) = x+ LS(MLPchannels(Aff(x))),
(7)

where LS denotes layer scale, FC a fully connected (block-
diagonal in our case) layer and MLP two fully connected
(block-diagonal) layers separated by GELU.

5

Flopping for FLOPs: Leveraging Equivariance for Computational Efficiency

4.2. ViT

Vision transformers (ViTs) use transformer encoder
blocks (Vaswani et al., 2017) as residual blocks. The layer
closely follows the original transformer implementation and
only deviates by the layer normalization being applied be-
fore the computation, as proposed by He et al. (2016b).

In particular, the residual block can be expressed as B =
B2 ◦B1 with

B1(x) = x+ LS(MSA(LN(x))),

B2(x) = x+ LS(MLP(LN(x))),
(8)

where LS is LayerScale, LN layer normalization, MSA is
multi-head self attention and MLP consists of two fully
connected (block diagonal in our case) layers separated by
GELU. LayerScale was not part of the original ViTs but is
included in the ViTs used as a benchmark in this paper as
we follow the training recipe by Touvron et al. (2022).

To make ViT flopping-equivariant we further modify the
positional encoding to consist of half channels that are sym-
metric about the middle of the image and half channels
that are anti-symmetric, thus forming invariant and (−1)-
equivariant features. Positional encodings are added to the
features after the initial PatchEmbed layer. We also enforce
the classification token appended to the embedded image
patches in ViTs to be constant zero for the (−1)-equivariant
features. Multi-head self attention is made equivariant by
using block-diagonal linear layers for the projections to
queries, keys and values followed by attention as described
in Section 3.4.

To experiment with varying the group representations in
the intermediate layers, we implement ViT-versions that
use only invariant features in half the layers. After the
first half of the network, we map the d/2 invariant dimen-
sions linearly to d invariant dimensions and throw away the
(−1)-equivariant features. The subsequent layers are then
ordinary ViT-layers, which preserve invariance. In these last
layers, we do not get any computational saving compared to
the baseline since the block-diagonalization in (2) will not
have any W−1,−1 or 0-blocks. We denote these half-way
invariantized networks by I(ViT).

Following Weiler & Cesa (2019), we also implement a
hybrid model4 where the first half of the residual blocks
are equivariant and the second half are standard blocks. The
intuition is that inductive bias is most useful in early network
layers for learning general features in all orientations, while
the last layers use more specialized processing. As this is
not the focus of the paper, we include only hybrid versions
of the ViTs, denoted H(ViT), to test the limits of scaling
equivariant layers.

4These are called “restricted” by Weiler & Cesa (2019).

4.3. ConvNeXt

ConvNeXt, proposed by Liu et al. (2022), builds on the
ideas of the ViT architecture, outlined above, to create a
modern family of pure ConvNet models that compare fa-
vorably with ViTs in terms of accuracy and scalability. The
isotropic ConvNeXt architecture, denoted Convnext (iso.),
even more closely resembles ViT as it has no downsampling
layers and keeps the same number of patches/pixels at all
depths. We use the isotropic ConvNeXt architecture in this
paper as it allows for a more efficient implementation. The
reason is that we do not have efficient implementations of
symmetric and antisymmetric convolutions for the down-
sampling layers; refer to Section 4.4.

The main residual block is composed of a depthwise con-
volution, using a 7 × 7 convolutional kernel, followed by
two 1×1-convolutions, separated by a GELU non-linearity.
The residual block can be expressed as B = B2 ◦B1 with

B1(x) = x+ LN(DwConv7x7(x)),

B2(x) = x+ LS(Conv1x1(GELU(Conv1x1(x))),
(9)

where Dw stands for depthwise.

Out of the depthwise convolutions, half are set to be symmet-
ric and half to be antisymmetric. They are alternated so that
out of the invariant input features, half are convolved with
symmetric filters and half with antisymmetric—generating
invariant and (−1)-equivariant features respectively, and
vice versa for the (−1)-equivariant inputs. The 1× 1 convo-
lutions are implemented using the block diagonal form (2).

4.4. On Efficient Steerable Convolutions

In prior work (Weiler & Cesa, 2019), steerable convolu-
tions were implemented by inputting equivariant filters in
ordinary convolution software routines. This did not pro-
vide any computational benefit over non-equivariant filters,
which use the same routines. Our implementations are more
efficient because the ConvNeXt architecture utilizes depth-
wise convolutions followed by 1× 1-convolutions, and the
1× 1-convolutions are pixel-wise linear layers that can be
decomposed into block-diagonals as in (2). There are pre-
vious works that use separable convolutions in equivariant
networks, but they parametrize the features in the spatial
domain rather than in terms of irreps and do not obtain a
computational advantage over ordinary separable convolu-
tions (Lengyel & van Gemert, 2021; Knigge et al., 2022).

It would actually be possible to implement more efficient
steerable k × k-convolutions as well. For illustration, con-
sider a one-dimensional correlation of a symmetric filter
[a, a] by a signal [x, y, z]. We can reduce the number of

6

Flopping for FLOPs: Leveraging Equivariance for Computational Efficiency

required FLOPs by writing the output as

[a, a] ⋆ [x, y, z] = [ax+ ay, ay + az]

= [a(x+ y), a(y + z)].
(10)

Even more efficiently, one can use so-called Winograd
schemes specific for symmetric or anti-symmetric fil-
ters (Winograd, 1980). We do not pursue this optimization
in the present paper, as it requires significant effort into
writing GPU-code, but we believe that it is a promising
direction for further improving the runtime of steerable Con-
vNets. Thus, the FLOP and throughput values reported for
E(ConvNeXt (iso.)) in Table 1 do not include the possible
further reduction obtainable from more efficient symmetric
and anti-symmetric depthwise convolutions.

5. Equivariant vs. Non-Equivariant Networks
There are a couple of different ways that equivariant net-
works can be compared to ordinary networks. Cohen &
Welling (2016) and most later works compare an equiv-
ariant network with M trainable parameters with ordinary
networks with M parameters. This is a fair comparison from
a learning theory perspective since the parameters can then
store the same amount of information. Subsequent works
noted that this is unfair from a computational perspective,
(Weiler & Cesa, 2019; Klee et al., 2023; Roos & Kroon,
2024), because of the fact that the equivariant ConvNets had
the same computational cost as ordinary network with many
more parameters, since as mentioned they used the same
convolution routines.

The first measure for computational cost that we will use in
this paper is the number of FLOPs required for a forward
pass of the network. This represents a bound on how ef-
ficient the network can be made. In the limit, as feature
spaces grow and dense linear layers dominate the compute,
the number of FLOPs accurately predicts how fast the net-
work will run on modern GPUs. FLOPs are therefore used
for analyzing the compute scaling of large networks (Kaplan
et al., 2020). However, the most direct measure of computa-
tional cost is the network’s throughput in terms of images
per second. This is a somewhat inconsistent measure as it
depends heavily on the hardware used and can sometimes
vary drastically with minor implementation changes. We
believe that the best way to compare networks is to report all
three measures: number of parameters, FLOPs and through-
put, as is usually done in the literature on non-equivariant
networks. One of the main points of this paper is to illus-
trate that contrary to popular belief, flopping equivariant
networks can be designed to have approximately the same
number of FLOPs per parameter as ordinary networks (see
Figure 4).

101 102

Number of Parameters (×106)

101

102

FL
O

P
s

(×
10

9
)

DeiT III
ResMLP
ConvNeXt-ISO
Equivariant

Figure 4: FLOPs scaling by model size. Comparing the
number of FLOPs to the number of parameters in the model.

6. Experiments
In this section, we evaluate the effectiveness of flopping-
equivariant networks. We first briefly discuss the setting
of the experiments. Then we compare the efficiency and
accuracy of equivariant versions of ResMLPs, ViTs and
ConvNeXts from Section 4 to their non-equivariant counter-
parts. For a given architecture X, the equivariant version is
E(X). E(X) always has around half the number of trainable
parameters and FLOPs of X due to the block-diagonalization
of the weight matrices (2). We will release code and weights
at github.com/georg-bn/flopping-for-flops.

Dataset. We benchmark our model implementations on
the ImageNet-1K dataset (Deng et al., 2009; Russakovsky
et al., 2015; Recht et al., 2019), which includes 1.2M images
evenly spread over 1,000 object categories.

Hyperparameters. We use the same training recipes as
the baselines. The complete set of hyperparameters can be
found in Table 2 in the appendix.

Implementation. The major building blocks of modern
deep learning, including linear layers, convolution layers
and attention layers, are all implemented using general ma-
trix multiplications (GEMMs). Modern GPUs enable ef-
ficient GEMMs, typically implemented in a tiled fashion,
processing blocks of the output matrix in parallel. Con-
sequently, reducing the linear layers into block diagonals
does in principle not hinder GPU utilization, as the same
tile-GEMMs can be used for the full product (1) or the
block-diagonal (2) (with the latter requiring half as many).
We use the PyTorch (Paszke et al., 2019) compiler to obtain
efficiently running networks, but writing custom GPU-code
would likely further improve the throughput.

7

https://www.github.com/georg-bn/flopping-for-flops

Flopping for FLOPs: Leveraging Equivariance for Computational Efficiency

8 16 32 64 128

FLOPs (×109)

82.0

82.5

83.0

83.5

84.0

84.5

85.0

85.5

To
p-

1
A

cc
ur

ac
y

(%
)

B

L

H

B

L

H

B

L

H

B

L

H

ViT
E(ViT)
H(ViT)
I(ViT)

(a) DeiT III.

2 4 8 16 32 64

FLOPs (×109)

75

77

79

81

83

T

S

B
L

T

S

B
L

S

B
L

S

B

L

ResMLP
ConvNeXt-ISO
Equivariant

(b) ConvNeXt-ISO and ResMLP.

Figure 5: Validation accuracy on ImageNet-1K versus model complexity as measured by the number of FLOPs required per
image for a forward pass. Letters indicate the respective model sizes, see Tables 1 and 3 for details.

6.1. Results and Discussion

Figure 4 shows that our networks maintain a comparable
number of floating-point operations (FLOPs) per parameter
to standard networks.

In prior work, image classification is often contextualized as
a trade-off between accuracy and measures of model com-
plexity, such as FLOPs and number of parameters. To that
end, in Table 1, we highlight both the theoretical complexity,
i.e. model size, and FLOPs, as well as the empirical speed as
measured by the throughput (images processed per second),
and the Top-1 classification accuracy on ImageNet-1K. Our
results demonstrate that as we increase the scale of the net-
works, flopping-equivariant networks achieve competitive
classification accuracy while requiring half the FLOPs, as
highlighted in Figure 5, and showcase higher throughput
compared to baseline implementations. The hybrid model
H(ViT-H) achieves the best accuracy of all models, align-
ing with the results for hybrid models by Weiler & Cesa
(2019). One reason the smaller equivariant models under-
perform in terms of accuracy is that they are quite limited
in the number of parameters—the regularization methods in
the training recipes for the corresponding non-equivariant
models (with more parameters) may be too heavy. We leave
the compute-heavy task of optimizing the training recipes
for future work, as we believe that our experiments clearly
demonstrate the main point of this paper—that equivariant
networks can be scalable.

As shown in Figure 6, the relative throughput improvement
of the equivariant networks becomes more pronounced as
the size of the model increases, which can be attributed to a
higher proportion of time spent on the linear layers, with the

computational overhead from less optimized kernels becom-
ing less significant. This is best illustrated by the superior
speed of the equivariant ResMLP models for which linear
layers dominate the computation. Our networks have no
throughput improvement for attention or depthwise convo-
lutions, which, despite not contributing the most FLOPs,
are sometimes comparable in runtime to the dense layers.
Future more efficient implementations of these layers, and
further scaling of the embedding dimension, would pro-
nounce the gain in throughput for the equivariant models.5

Notably, for small models, such as ViT-S and ConvNeXt-
S, the equivariant versions have a worse throughput. For
making these efficient, custom GPU-code is likely required.

6.2. Experimental Limitations

We did not do any hyperparameter tuning (so the baselines
we compare against are at an advantage). Particularly, we
noted that some of the training runs were quite unstable:
We were not able to get E(ViT-S) to converge despite trying
different random seeds, and the result of the non-equivariant
ResMLP-L24 (the only model size that we introduced our-
selves and thus trained the baseline for) was unexpectedly
low. We only ran one training per model, as we had a lim-
ited compute budget. This practice aligns with the prior
work. We limited the experiments to supervised training on
ImageNet-1K, while the best results are usually obtained
with pretraining on Imagenet-21K or distillation of larger

5The reader will notice a flattening out of the rate of improve-
ment between ViT-L and -H. ViT-H uses patch size 14× 14 while
the other ViTs use patch size 16× 16. Smaller patch sizes means
more patches and more compute in the attention layers.

8

Flopping for FLOPs: Leveraging Equivariance for Computational Efficiency

101 102

FLOPs (×109)

−20

−10

0

10

20

30

40

50

60

Th
ro

ug
hp

ut
G

ai
n

(%
)

ViT-H
ViT-L

ViT-B

ViT-S

ResMLP-L24

ResMLP-B24

ResMLP-S24ResMLP-T12

ConvNeXt-L

ConvNeXt-B

ConvNeXt-S

DeiT III
ResMLP
ConvNeXt-ISO

Figure 6: Throughput gain based on model size. The
throughput gain as measured by the percentage differ-
ence between the equivariant and baseline implementations,
placed according to the baseline’s number of FLOPs.

models. The hardware and software used for our training
runs differed from the baselines, see Section B.

7. Conclusion
In this paper, we have introduced flopping-equivariant neu-
ral networks that maintain a comparable number of FLOPs
per parameter to standard non-equivariant networks. We
showed that these have increased computational efficiency
not only in terms of FLOPs, but also actual throughput.

The considered task of upright image classification is in
a sense the least interesting for equivariant networks as
the symmetry group is small and the output is invariant.
We believe that future efforts should be directed towards
equivariant networks as general visual feature extractors.
Classic and recent works have already demonstrated the
utility of having equivariant features for downstream vision
tasks (Lowe, 2004; Loy & Eklundh, 2006; Lee et al., 2023;
Bökman et al., 2024; Garrido et al., 2024).

We hope that efficient equivariant networks can be adopted
into modern vision backbones and that this work prompts
more researchers to view equivariant architectures as not
only theoretically compelling but also practically useful, not
only for parameter efficiency in the small data regime but
also for compute efficiency in the large data regime.

Table 1: Classification with Imagenet1k training. We
contrast our flopping-equivariant networks to the originals
using the same training recipes. The equivariant version of
architecture X is denoted E(X). H(X) is a hybrid model
with equivariant layers for the first half of the network. The
baselines are not rerun, instead we show the results reported
in their respective papers. The throughput and peak memory
are measured on a single A100-40GB GPU with batch size
fixed to 64 and compiled networks running mixed precision
forward passes with no gradients.

Architecture params throughput FLOPs/img Peak Mem Top-1
(×106) (im/s) (×109) (MB) Acc.

MLP-Mixers (ResMLP (Touvron et al., 2023))
ResMLP-L241 318.1 1107 63.3 1778 80.4
E(ResMLP-L24) 159.2 1756 31.7 1056 81.5
ResMLP-B24 115.7 2482 23.2 779 81.0
E(ResMLP-B24) 58.0 3459 11.7 519 80.8
ResMLP-S24 30.0 6445 6.0 320 79.4
E(ResMLP-S24) 15.1 7025 3.1 249 74.9
ResMLP-T12 15.4 12133 3.0 264 76.6
E(ResMLP-T12) 7.7 13154 1.6 221 72.0

Vision Transformers (DeiT III (Touvron et al., 2022))
ViT-H 632.1 431 168.0 3366 84.6
H(ViT-H) 474.2 466 127.6 3231 85.0
I(ViT-H) 474.2 462 127.6 3231 84.7
E(ViT-H) 316.1 501 87.3 2598 84.4
ViT-L 304.4 1064 61.9 1726 84.2
H(ViT-L) 228.3 1123 47.0 1743 84.5
I(ViT-L) 228.3 1123 47.0 1743 84.1
E(ViT-L) 152.2 1204 32.2 1459 83.4
ViT-B 86.6 3088 17.7 777 83.1
H(ViT-B) 65.0 3162 13.5 936 82.9
I(ViT-B) 65.0 3163 13.5 921 82.5
E(ViT-B) 43.3 3266 9.3 828 82.2
ViT-S 22.1 7174 4.7 338 80.4
E(ViT-S) 11.0 6565 2.6 417 †

Convolutional Networks (ConvNeXt (Liu et al., 2022))
ConvNeXt-L (iso.) 305.9 1284 60.0 1420 82.6
E(ConvNeXt-L (iso.)) 153.1 1527 30.3 935 82.6
ConvNeXt-B (iso.) 87.1 3890 17.0 540 82.0
E(ConvNeXt-B (iso.)) 43.6 4094 8.6 450 81.3
ConvNeXt-S (iso.) 22.3 9649 4.3 226 79.7
E(ConvNeXt-S (iso.)) 11.2 7851 2.3 220 76.8
1ResMLP-L24 was trained by us as a baseline.
†Failed to converge.

9

Flopping for FLOPs: Leveraging Equivariance for Computational Efficiency

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Acknowledgements
This work was supported by the Wallenberg Artificial In-
telligence, Autonomous Systems and Software Program
(WASP), funded by the Knut and Alice Wallenberg Foun-
dation. The computational resources were provided by the
National Academic Infrastructure for Supercomputing in
Sweden (NAISS) at C3SE, partially funded by the Swedish
Research Council through grant agreement no. 2022-06725,
and by the Berzelius resource, provided by the Knut and Al-
ice Wallenberg Foundation at the National Supercomputer
Centre.

References
Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization.

arXiv preprint arXiv:1607.06450, 2016.

Bahdanau, D., Cho, K., and Bengio, Y. Neural machine
translation by jointly learning to align and translate. ICLR,
2015.

Bekkers, E. J., Lafarge, M. W., Veta, M., Eppenhof, K. A.,
Pluim, J. P., and Duits, R. Roto-translation covari-
ant convolutional networks for medical image analysis.
In Medical Image Computing and Computer Assisted
Intervention–MICCAI 2018: 21st International Confer-
ence, Granada, Spain, September 16-20, 2018, Proceed-
ings, Part I, pp. 440–448. Springer, 2018.

Bekkers, E. J., Vadgama, S., Hesselink, R., der Lin-
den, P. A. V., and Romero, D. W. Fast, expressive
$\mathrm{SE}(n)$ equivariant networks through weight-
sharing in position-orientation space. In The Twelfth
International Conference on Learning Representations,
2024. URL https://openreview.net/forum?
id=dPHLbUqGbr.

Bellaard, G., Smets, B., and Duits, R. Universal collec-
tion of euclidean invariants between pairs of position-
orientations. arXiv preprint arXiv:2504.03299, 2025.

Bökman, G. and Kahl, F. Investigating how relu-networks
encode symmetries. In Advances in Neural Information
Processing Systems, volume 36, pp. 13720–13744. Cur-
ran Associates, Inc., 2023.

Bökman, G., Edstedt, J., Felsberg, M., and Kahl, F. Steerers:
A framework for rotation equivariant keypoint descriptors.

In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 4885–4895,
2024.

Brehmer, J., de Haan, P., Behrends, S., and Cohen, T. S.
Geometric algebra transformer. In Advances in Neural
Information Processing Systems, volume 36, pp. 35472–
35496. Curran Associates, Inc., 2023.

Brehmer, J., Behrends, S., de Haan, P., and Cohen, T.
Does equivariance matter at scale? arXiv preprint
arXiv:2410.23179, 2024.

Bronstein, M. M., Bruna, J., Cohen, T., and Veličković,
P. Geometric Deep Learning: Grids, Groups, Graphs,
Geodesics, and Gauges. arXiv:2104.13478 [cs, stat],
May 2021.

Bruintjes, R.-J., Motyka, T., and van Gemert, J. What
affects learned equivariance in deep image recognition
models? In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR)
Workshops, pp. 4838–4846, June 2023.

Cohen, T. and Welling, M. Group equivariant convolutional
networks. In Int. Conf. Machine Learning, 2016.

Cohen, T. and Welling, M. Steerable CNNs. In Int. Conf.
Learn. Represent., 2017.

Dao, T. Flashattention-2: Faster attention with better par-
allelism and work partitioning, 2023. URL https:
//arxiv.org/abs/2307.08691.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and
Fei-Fei, L. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE Conference on Computer Vi-
sion and Pattern Recognition, pp. 248–255, 2009. doi:
10.1109/CVPR.2009.5206848.

Dieleman, S., De Fauw, J., and Kavukcuoglu, K. Exploiting
cyclic symmetry in convolutional neural networks. In
International conference on machine learning, pp. 1889–
1898. PMLR, 2016.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby,
N. An image is worth 16x16 words: Transformers for
image recognition at scale. In International Conference
on Learning Representations, 2021.

Freeman, W. T. and Adelson, E. H. The design and use of
steerable filters. IEEE Trans. Pattern Anal. Mach. Intell.,
13(9):891–906, 1991.

Fukushima, K. Cognitron: A self-organizing multilayered
neural network. Biological cybernetics, 20(3):121–136,
1975.

10

https://openreview.net/forum?id=dPHLbUqGbr
https://openreview.net/forum?id=dPHLbUqGbr
https://arxiv.org/abs/2307.08691
https://arxiv.org/abs/2307.08691

Flopping for FLOPs: Leveraging Equivariance for Computational Efficiency

Garrido, Q., Assran, M., Ballas, N., Bardes, A., Najman,
L., and LeCun, Y. Learning and leveraging world mod-
els in visual representation learning. arXiv preprint
arXiv:2403.00504, 2024.

Gerken, J. E., Aronsson, J., Carlsson, O., Linander, H.,
Ohlsson, F., Petersson, C., and Persson, D. Geometric
deep learning and equivariant neural networks. Artificial
Intelligence Review, 56(12):14605–14662, 2023.

Gruver, N., Finzi, M. A., Goldblum, M., and Wilson, A. G.
The lie derivative for measuring learned equivariance.
In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.
net/forum?id=JL7Va5Vy15J.

Gupta, S., Robinson, J., Lim, D., Villar, S., and Jegelka,
S. Structuring representation geometry with rotationally
equivariant contrastive learning. In The Twelfth Interna-
tional Conference on Learning Representations, 2024.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016a.

He, K., Zhang, X., Ren, S., and Sun, J. Identity mappings in
deep residual networks. CoRR, abs/1603.05027, 2016b.
URL http://arxiv.org/abs/1603.05027.

Hendrycks, D. and Gimpel, K. Gaussian error linear units
(gelus). arXiv preprint arXiv:1606.08415, 2016.

Kaba, S.-O., Mondal, A. K., Zhang, Y., Bengio, Y., and
Ravanbakhsh, S. Equivariance with learned canonicaliza-
tion functions. In International Conference on Machine
Learning, pp. 15546–15566. PMLR, 2023.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Klee, D., Park, J. Y., Platt, R., and Walters, R. A com-
parison of equivariant vision models with imagenet pre-
training. In NeurIPS 2023 Workshop on Symmetry and
Geometry in Neural Representations, 2023. URL https:
//openreview.net/forum?id=3ItzNHPov9.

Knigge, D. M., Romero, D. W., and Bekkers, E. J. Exploit-
ing redundancy: Separable group convolutional networks
on lie groups. In International Conference on Machine
Learning, pp. 11359–11386. PMLR, 2022.

Knutsson, H. and Granlund, G. Texture analysis using two-
dimensional quadrature filters. 01 1983.

Kondor, R., Lin, Z., and Trivedi, S. Clebsch–gordan nets: a
fully fourier space spherical convolutional neural network.
In Advances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc., 2018.

Kundu, S. and Kondor, R. Steerable transformers, 2024.
URL https://arxiv.org/abs/2405.15932.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard,
R. E., Hubbard, W., and Jackel, L. D. Backpropaga-
tion applied to handwritten zip code recognition. Neural
Computation, 1(4):541–551, 1989.

Lee, J., Kim, B., Kim, S., and Cho, M. Learning rotation-
equivariant features for visual correspondence. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pp. 21887–21897, 2023.

Lenc, K. and Vedaldi, A. Understanding image representa-
tions by measuring their equivariance and equivalence. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 991–999, 2015.

Lengyel, A. and van Gemert, J. Exploiting learned symme-
tries in group equivariant convolutions. In 2021 IEEE
International Conference on Image Processing (ICIP),
pp. 759–763. IEEE, 2021.

Liu, Z., Mao, H., Wu, C.-Y., Feichtenhofer, C., Darrell, T.,
and Xie, S. A convnet for the 2020s. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pp. 11976–11986, 2022.

Lowe, D. G. Distinctive Image Features from Scale-
Invariant Keypoints. Int. J. Comput. Vis., 60(2):91–110,
November 2004. doi: 10/bqrmsp.

Loy, G. and Eklundh, J.-O. Detecting symmetry and sym-
metric constellations of features. In Computer Vision–
ECCV 2006: 9th European Conference on Computer
Vision, Graz, Austria, May 7-13, 2006. Proceedings, Part
II 9, pp. 508–521. Springer, 2006.

Marchetti, G. L., Hillar, C. J., Kragic, D., and Sanborn, S.
Harmonics of learning: Universal fourier features emerge
in invariant networks. In The Thirty Seventh Annual
Conference on Learning Theory, pp. 3775–3797. PMLR,
2024.

Melas-Kyriazi, L. Do you even need attention? a stack of
feed-forward layers does surprisingly well on imagenet.
arXiv preprint arXiv:2105.02723, 2021.

Mondal, A. K., Panigrahi, S. S., Kaba, O., Mudumba, S. R.,
and Ravanbakhsh, S. Equivariant adaptation of large
pretrained models. Advances in Neural Information Pro-
cessing Systems, 36:50293–50309, 2023.

11

https://openreview.net/forum?id=JL7Va5Vy15J
https://openreview.net/forum?id=JL7Va5Vy15J
http://arxiv.org/abs/1603.05027
https://openreview.net/forum?id=3ItzNHPov9
https://openreview.net/forum?id=3ItzNHPov9
https://arxiv.org/abs/2405.15932

Flopping for FLOPs: Leveraging Equivariance for Computational Efficiency

Moskalev, A., Sepliarskaia, A., Bekkers, E. J., and Smeul-
ders, A. W. On genuine invariance learning with-
out weight-tying. In Doster, T., Emerson, T., Kvinge,
H., Miolane, N., Papillon, M., Rieck, B., and San-
born, S. (eds.), Proceedings of 2nd Annual Workshop
on Topology, Algebra, and Geometry in Machine Learn-
ing (TAG-ML), volume 221 of Proceedings of Ma-
chine Learning Research, pp. 218–227. PMLR, 28 Jul
2023. URL https://proceedings.mlr.press/
v221/moskalev23a.html.

Olah, C., Cammarata, N., Voss, C., Schubert, L., and
Goh, G. Naturally occurring equivariance in neural net-
works. Distill, 2020. doi: 10.23915/distill.00024.004.
https://distill.pub/2020/circuits/equivariance.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. Pytorch: An imperative
style, high-performance deep learning library. In Wal-
lach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc,
F., Fox, E., and Garnett, R. (eds.), Advances in Neural In-
formation Processing Systems 32, pp. 8024–8035. Curran
Associates, Inc., 2019.

Pertigkiozoglou, S., Chatzipantazis, E., Trivedi, S., and
Daniilidis, K. Improving equivariant model training via
constraint relaxation. In The Thirty-eighth Annual Con-
ference on Neural Information Processing Systems, 2024.

Recht, B., Roelofs, R., Schmidt, L., and Shankar, V. Do
imagenet classifiers generalize to imagenet? CoRR,
abs/1902.10811, 2019. URL http://arxiv.org/
abs/1902.10811.

Romero, D., Bekkers, E., Tomczak, J., and Hoogendoorn,
M. Attentive group equivariant convolutional networks.
In International Conference on Machine Learning, pp.
8188–8199. PMLR, 2020.

Roos, L. and Kroon, R. S. On fairly comparing group equiv-
ariant networks. In ICML 2024 Workshop on Geometry-
grounded Representation Learning and Generative Mod-
eling, 2024.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh,
S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bern-
stein, M., et al. Imagenet large scale visual recognition
challenge. International journal of computer vision, 115:
211–252, 2015.

Samudre, A., Petrache, M., Nord, B., and Trivedi, S.
Symmetry-based structured matrices for efficient approx-
imately equivariant networks. In Li, Y., Mandt, S.,
Agrawal, S., and Khan, E. (eds.), Proceedings of The

28th International Conference on Artificial Intelligence
and Statistics, volume 258 of Proceedings of Machine
Learning Research, pp. 1171–1179. PMLR, 03–05 May
2025. URL https://proceedings.mlr.press/
v258/samudre25a.html.

Serre, J.-P. Linear representations of finite groups. Springer,
1977.

Srivastava, R. K., Greff, K., and Schmidhuber, J. Training
very deep networks. Advances in neural information
processing systems, 28, 2015.

Sutton, R. The bitter lesson. Incomplete Ideas (blog), 2019.

Tolstikhin, I. O., Houlsby, N., Kolesnikov, A., Beyer, L.,
Zhai, X., Unterthiner, T., Yung, J., Steiner, A., Keysers,
D., Uszkoreit, J., et al. Mlp-mixer: An all-mlp architec-
ture for vision. Advances in neural information process-
ing systems, 34:24261–24272, 2021.

Touvron, H., Cord, M., Sablayrolles, A., Synnaeve, G., and
Jégou, H. Going deeper with image transformers, 2021.
URL https://arxiv.org/abs/2103.17239.

Touvron, H., Cord, M., and Jégou, H. Deit iii: Revenge of
the vit. In European conference on computer vision, pp.
516–533. Springer, 2022.

Touvron, H., Bojanowski, P., Caron, M., Cord, M., El-
Nouby, A., Grave, E., Izacard, G., Joulin, A., Syn-
naeve, G., Verbeek, J., and Jégou, H. Resmlp: Feed-
forward networks for image classification with data-
efficient training. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 45(4):5314–5321, 2023. doi:
10.1109/TPAMI.2022.3206148.

Vadgama, S., Islam, M. M., Buracus, D., Shewmake, C., and
Bekkers, E. On the utility of equivariance and symmetry
breaking in deep learning architectures on point clouds.
arXiv preprint arXiv:2501.01999, 2025.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Attention
is All you Need. In Adv. Neural Inform. Process. Syst.,
2017.

Weiler, M. and Cesa, G. General E(2)-equivariant
steerable CNNs. In Adv. Neural Inform. Process.
Syst., 2019. URL https://proceedings.
neurips.cc/paper/2019/file/
45d6637b718d0f24a237069fe41b0db4-Paper.
pdf.

Weiler, M., Forré, P., Verlinde, E., and Welling, M. Equivari-
ant and Coordinate Independent Convolutional Networks.
2023.

12

https://proceedings.mlr.press/v221/moskalev23a.html
https://proceedings.mlr.press/v221/moskalev23a.html
http://arxiv.org/abs/1902.10811
http://arxiv.org/abs/1902.10811
https://proceedings.mlr.press/v258/samudre25a.html
https://proceedings.mlr.press/v258/samudre25a.html
https://arxiv.org/abs/2103.17239
https://proceedings.neurips.cc/paper/2019/file/45d6637b718d0f24a237069fe41b0db4-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/45d6637b718d0f24a237069fe41b0db4-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/45d6637b718d0f24a237069fe41b0db4-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/45d6637b718d0f24a237069fe41b0db4-Paper.pdf

Flopping for FLOPs: Leveraging Equivariance for Computational Efficiency

Wightman, R. Pytorch image models. https://github.
com/rwightman/pytorch-image-models,
2019.

Winograd, S. Arithmetic complexity of computations, vol-
ume 33. Siam, 1980.

Wood, J. and Shawe-Taylor, J. Representation theory and
invariant neural networks. Discrete Applied Mathematics,
69(1-2):33–60, August 1996. ISSN 0166218X. doi:
10/c3qmr6.

Xu, R., Yang, K., Liu, K., and He, F. e(2)-equivariant vision
transformer. In Uncertainty in Artificial Intelligence, pp.
2356–2366. PMLR, 2023.

13

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

Flopping for FLOPs: Leveraging Equivariance for Computational Efficiency

A. Groups, Representations and Schur’s
Lemma

This section is not required reading to understand the main
takeaway of the paper. It serves to describe how the con-
tent of Section 3 can be formalized and generalized using
group theory. The theory content of this section is com-
mon knowledge in geometric deep learning (Bronstein et al.,
2021; Gerken et al., 2023; Weiler et al., 2023) and part of
standard representation theory courses (Serre, 1977). Our
contribution is to highlight the computational aspect more
than has perhaps been done in previous work.

We use the language of group representations to facilitate
a precise discussion of symmetries. Groups are the math-
ematical abstraction of sets of symmetry transformations,
such as the flopping of images. A group (G, ◦) is a set G
together with an associative binary composition operation
◦. To be a group it has to have (i) a unit element u ∈ G
such that u ◦ g = g ◦ u = g for all g ∈ G and (ii) for each
g ∈ G an inverse g−1 ∈ G such that g ◦g−1 = g−1 ◦g = u.
For image flopping, the mathematical group is called D2

(the dihedral group with two elements6) and consists of the
identity u and another element h, which are both their own
inverse (flopping an image twice returns the original image).

A group representation concretises the group as a set of
invertible matrices. We denote the set of invertible real
n × n matrices by GL(n), and a representation of G is
a map ρ : G → GL(n), that encodes the composition
operation as matrix multiplication: ρ(g1 ◦g2) = ρ(g1)ρ(g2).
It follows from ρ(u) = ρ(u ◦ u) = ρ(u)ρ(u) that ρ(u) = I
is the identity matrix. Group representations enable us to
discuss the same group acting on vector spaces of different
dimensions. Therefore, group representations are useful to
describe what happens to internal neural network features
when the input is transformed. Specifically, a function f is
said to be equivariant with respect to representations ρ1 and
ρ2 if

f(ρ1(g)x) = ρ2(g)f(x). (11)

If f consists of the first couple of layers of an equivariant
neural network, and ρ1(h) is the permutation of pixels that
flops an image x, then (11) says exactly what happens to the
internal features of the neural network as the input image is
flopped—the features are transformed by ρ2(h).

Following the geometric deep learning blueprint (Bronstein
et al., 2021), to design flopping-invariant neural networks
f = fN ◦ · · · ◦ f2 ◦ f1, we enforce each network layer fi
to be flopping-equivariant. The last layer is designed be
flopping invariant, which is the special case of (11) where
ρ2(g) ≡ I . Designing an invariant neural network hence
involves a choice of intermediate group representation ρi
for the output of each layer. We can write down all possible

6Other names for D2 are C2, Z2, S2 and (confusingly) D1.

choices of ρi in terms of fundamental building blocks called
irreducible representations.

An irreducible representation (irrep) ϱ : G → GL(n) is a
representation of G such that the only subspaces of Rn that
are invariant under all ϱ(g) are Rn itself and the 0-vector
space7. We will use the notation ρ for representations in
general and ϱ for irreducible representations.

Representations that only differ by a change of basis Q are
not qualitatively different mathematically and are called
isomorphic. Maschke’s theorem implies that the feature
spaces in equivariant neural networks are always isomorphic
to concatenations of feature spaces that irreps act on.

Theorem A.1 (Maschke’s theorem). Every representation
ρ : G→ GL(n) of a finite group G is a direct sum of irreps.

Maschke’s theorem means that for every representation ρ,
there exists a change of basis matrix Q ∈ GL(n), non-
isomorphic irreps ϱi (i = 1, . . . ,m) and multiplicities ki ∈
Z≥0 such that

ρ(g) = Q

(
m⊕
i=1

ϱi(g)
⊕ki

)
Q−1, (12)

where
⊕

denotes the direct sum, i.e. assembling the matri-
ces ϱi(g)⊕ki into a block-diagonal matrix and X⊕k means
a block-diagonal matrix with k copies of X along the diag-
onal. (12) is called the isotypical decomposition of ρ.

Having characterized all representations in terms of irreps,
we next characterize all equivariant linear maps through
Schur’s lemma. Given two real representations ρ1 : G →
GL(n1) and ρ2 : G→ GL(n2), we denote the set of linear
maps A : Rn1 → Rn2 that are equivariant under ρ1 and
ρ2 by Hom(ρ1, ρ2). Hom(ρ1, ρ2) is a vector space since
we can add and multiply by scalars without changing the
equivariance property.

Lemma A.2 (Schur’s lemma). Let ϱ1 and ϱ2 be two real
irreps of a group G.

1. If ϱ1 and ϱ2 are not isomorphic, then Hom(ϱ1, ϱ2)
contains only the zero-map.

2. If ϱ1 and ϱ2 are isomorphic, then Hom(ϱ1, ϱ2) is ei-
ther 1-, 2- or 4-dimensional.

The dimension in case 2 depends on whether the irrep ϱ1 is
of so-called real, complex or quaternary type (Serre, 1977).

We can put Maschke’s theorem and Schur’s lemma to work
in a very useful standard corollary.

7This definition can also be stated for complex vector spaces
and infinite vector spaces, but we will be satisfied with finite-
dimensional real vector spaces in this paper.

14

Flopping for FLOPs: Leveraging Equivariance for Computational Efficiency

Corollary A.3. If ρ1 : G → GL(n1) and ρ2 : G →
GL(n2) are real representations of a finite group G, then
there are Q1 ∈ GL(n1) and Q2 ∈ GL(n2) such that for
any A ∈ Hom(ρ1, ρ2), Q−1

2 AQ1 is block-diagonal with
blocks only mapping between isomorphic irreps.

For discussing image flopping, it is useful to know that
D2 has only two irreps, both one-dimensional, defined by
ϱ1(h) := 1 (the “trivial” irrep) and ϱ−1(h) := −1 (the
“sign-flip” irrep). Therefore, by Corollary A.3, every equiv-
ariant linear map decomposes into a block-diagonal map
with two blocks. Working in this block-diagonal basis hence
gives a computational advantage. Features transforming by
ϱ1 are those called invariant and those transforming by ϱ−1

are called (−1)-equivariant in Section 3.

For larger groups than D2, the number of irreps are more
numerous and so the computational savings in linear layers
can be even larger. However, for groups with irreps of di-
mension > 1 the FLOPs-per-parameter will be worse and
with more irreps, the hyperparameter-task of choosing rep-
resentation in each layer is also more difficult. We believe
that a promising direction for future research on scaling up
efficient equivariant networks is to work with larger dihe-
dral groups such as D8—the symmetry group of the square
pixel grid. D8 has four irreps of dimension 1 and only one
irrep of dimension 2 > 1. Further, dihedral groups have
the conceptual advantage that all of their irreps are of real
type, so that the dimension of Hom(ϱ, ϱ) is 1 according to
Schur’s lemma.

B. Experimental Setting
We train on images of size 224 × 224 throughout. Hyper-
parameters are listed in Table 2. While ConvNeXt uses
exponential moving accuracy by default, we find for the
equivariant nets that the non-averaged model gives better
accuracy and therefore report that accuracy.

Software versioning. Our experiments build upon PyTorch
(Paszke et al., 2019) and the timm (Wightman, 2019) li-
brary. We enable mixed-precision training using the depre-
cated NVIDIA library Apex, this is to mirror the training
recipes of the benchmarks as closely as possible. To en-
able PyTorch’s compiler, we use a modern version (≥ 2.0).
Specifically, we use PyTorch 2.5.1 with CUDA 11.8.

Hardware. All experiments were run on NVIDIA A100-
40GB. The per GPU batch size ranged between 64 (for
larger models) to 256 (for smaller models). The biggest
model requires training on 32 A100 GPUs for c. 2 days.
The baselines were trained on V100 GPUs by the respective
authors.

Model sizes. The model sizes, referred to in the paper
as ”Tiny” (T), ”Small” (S), ”Base” (B), ”Large” (L), and

”Huge” (H) are specified in Table 3.

Accelerating throughput. We use three tools to improve
the throughput of the networks, both the baselines and the
equivariant implementations.

1. Flash Attention (Dao, 2023), used by the ViTs.

2. Mixed-precision training using NVIDIA’s Apex library,
used by all models except the ResMLPs.

3. PyTorch’s compiler and high precision matmul.

Calculating throughput. As is specified in Table 1, the
throughput and peak memory are measured on a single
A100-40GB GPU with batch size fixed to 64 and compiled
networks running mixed precision forward passes with no
gradients. Moreover, we utilize 10 warm-up iterations and
then average over 100 runs. To measure peak memory we
make use of PyTorch’s built in device memory allocation
monitor.

Counting FLOPs. For counting the number of FLOPs, we
use fvcore.nn.FlopCountAnalysis (fvcore). We
further make sure to add support for the operations added
by the flopping-equivariant implementation as the default
counter in fvcore does not count elementwise additions
for instance. FLOPs are normalized with respect to the
batch size.

C. ResMLP Linear Layers Over Patches
To make the linear layers over the patch dimension flopping-
equivariant, we need to keep track of what happens with
the patches as the image is flopped. If we denote by x1 the
N ×N × d/2 tensor of invariant patch embeddings, then
x1[:, k − 1] changes place with x1[:,−k] when the image is
flopped (where we use NumPy-style tensor indexing). Thus,

x1,1[:, k − 1] := x1[:, k − 1] + x1[:,−k]

is actually an invariant quantity while

x1,−1[:, k − 1] := x1[:, k − 1]− x1[:,−k]

is (−1)-equivariant. Similarly, from the (−1)-equivariant
output from PatchEmbed, x−1, we can construct the (−1)-
equivariant

x−1,1[:, k − 1] := x−1[:, k − 1] + x−1[:,−k]

and the invariant

x−1,−1[:, k − 1] := x−1[:, k − 1]− x−1[:,−k].

By keeping track of the four tensors x±1,±1, each of shape
(N ×N/2)× d/2, we can make both the linear layers over

15

https://github.com/NVIDIA/apex
https://github.com/facebookresearch/fvcore

Flopping for FLOPs: Leveraging Equivariance for Computational Efficiency

Table 2: Training recipes for different model architectures. We try to, as closely as possible, replicate the training recipe of
the baselines.

DeiT III (Touvron et al., 2022) ResMLP (Touvron et al., 2023) ConvNeXt (Liu et al., 2022)

Model→ ViT-S ViT-B ViT-L ViT-H ResMLP-T ResMLP-S ResMLP-B ResMLP-L ConvNeXt-S (iso.) ConvNeXt-B (iso.) ConvNeXt-L (iso.)

Batch size 2048 2048 2048 2048 2048 2048 2048 2048 4096 4096 4096
Optimizer LAMB LAMB LAMB LAMB LAMB LAMB LAMB LAMB AdamW AdamW AdamW
LR 3.10−3 3.10−3 3.10−3 3.10−3 5.10−3 5.10−3 5.10−4 5.10−4 4.10−3 4.10−3 4.10−3

LR decay cosine cosine cosine cosine cosine cosine cosine cosine cosine cosine cosine
Weight decay 0.02 0.02 0.02 0.02 0.2 0.2 0.2 0.2 0.05 0.05 0.05
Training epochs 400 400 400 400 400 400 400 400 300 300 300
Warmup epochs 5 5 5 5 5 5 5 5 50 50 50

Label smoothing ε ✗ ✗ ✗ ✗ 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Dropout ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Stoch. Depth 0.0 0.1 0.4 0.5 0.05 0.2 0.2 0.2 0.4 0.5 0.5
Repeated Aug ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗
Gradient Clip. 1.0 1.0 1.0 1.0 ✗ ✗ ✗ ✗ ✗ ✗ ✗
Mixed Precision ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓

Rand Augment ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓
3 Augment ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Mixup alpha 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
Cutmix alpha 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Erasing prob. ✗ ✗ ✗ ✗ 0.25 0.25 0.25 0.25 0.25 0.25 0.25
ColorJitter 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4

Test crop ratio 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Loss BCE BCE BCE BCE CE CE CE CE CE CE CE

Table 3: Specification of model notation in terms of depth
and width (embedding dimension).

Architecture Depth Width

MLP-Mixers (ResMLP (Touvron et al., 2023))
ResMLP-L 24 1280
ResMLP-B 24 768
ResMLP-S 24 384
ResMLP-T 12 384

Vision Transformers (DeiT III (Touvron et al., 2022))
ViT-H 32 1280
ViT-L 24 1024
ViT-B 12 768
ViT-S 12 384

Convolutional Networks (ConvNeXt (Liu et al., 2022))
ConvNeXt-L (iso.) 36 1024
ConvNeXt-B (iso.) 18 768
ConvNeXt-S (iso.) 18 384

the patch dimension (N ×N) and the channel dimension d
efficient through the decomposition (2).

This calculation is an example of a Clebsch-Gordan product
or tensor product of representations, which has been used in
some prior designs of equivariant networks (Kondor et al.,
2018).

16

