Perceptually Constrained Precipitation Nowcasting Model
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Abstract

Most current precipitation nowcasting methods
aim to capture the underlying spatiotemporal dy-
namics of precipitation systems by minimizing
the mean square error (MSE). However, these
methods often neglect effective constraints on the
data distribution, leading to unsatisfactory pre-
diction accuracy and image quality, especially
for long forecast sequences. To address this lim-
itation, we propose a precipitation nowcasting
model incorporating perceptual constraints. This
model reformulates precipitation nowcasting as
a posterior MSE problem under such constraints.
Specifically, we first obtain the posteriori mean se-
quences of precipitation forecasts using a precipi-
tation estimator. Subsequently, we construct the
transmission between distributions using rectified
flow. To enhance the focus on distant frames, we
design a frame sampling strategy that gradually
increases the corresponding weights. We theoret-
ically demonstrate the reliability of our solution,
and experimental results on two publicly avail-
able radar datasets demonstrate that our model is
effective and outperforms current state-of-the-art
models.

1. Introduction

Weather forecasting is an important spatial and temporal
prediction task that affects the comfort and safety of peo-
ple’s daily lives and profoundly affects a number of key
industries, such as agriculture, aviation, navigation, and en-
ergy supply. Accurate weather forecast plays a crucial role
in safeguarding people’s lives and promoting economic and
social development.
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Figure 1. Illustration of the accuracy-perception tradeoff in pre-
cipitation prediction. Historical data (center) are input into two
state-of-the-art algorithms for forecasting precipitation. The scat-
ter plot demonstrates the performance of current state-of-the-art
methods in terms of the accuracy-perception tradeoff, with CSI as
the primary metric for precipitation prediction.

Precipitation nowcasting aims to predict rainfall within the
next six hours, characterized by high spatiotemporal resolu-
tion and uncertainty about the future. Most of the current
precipitation prediction methods are dedicated to improv-
ing the accuracy where the forecast image quality is ne-
glected. However, image quality can reflect to a certain ex-
tent whether the model can simulate the real-world physical
state, which is especially important in long-term prediction.
As shown in the left part of Figure 1, the model-smoothed
prediction is obtained on the left side, and the physically
realistic prediction is obtained on the right side.

Existing precipitation nowcasting models can be broadly
divided into two categories, deterministic models(Bai et al.,
2022; Ning et al., 2023; Wu et al., 2021) and probabilistic
models(Chang et al., 2022; Luo et al., 2022; Zhang et al.,
2023). Deterministic models such as ConvLSTM(Shi et al.,
2015), Transformer(Vaswani et al., 2017), SimVP(Gao et al.,
2022b), are designed to predict future sequences by gener-
alizing spatiotemporal patterns from historical sequences.
These models reduce the MSE and tend to produce an av-
erage prediction over all possible future states in the case
of uncertainty. However, this line of methods cannot match
the expected distribution of ground-truth data and thus suf-
fers from the problems of absent details and intensity de-
cay, which is often shown as a better accuracy performance
(lower MSE) but a worse perceptual performance (higher
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LPIPS).On the other hand, probabilistic models, such as
STRPM(Chang et al., 2022) and PreDiff(Gao et al., 2024),
predict future image sequences by learning their distribu-
tion from current observations. While these methods can
produce predictions with better detail and intensity (lower
LPIPS), they often struggle with accuracy in positioning
(higher MSE), as the space of samples following the target
distribution is infinite.

In long-sequence precipitation nowcasting, neither mean
squared error nor perceived quality fully measures forecast
accuracy, as shown on the right side of Figure 1. Accu-
rate forecasts must satisfy both criteria, along with other
key metrics (e.g., CSI). Therefore, achieving high-quality
predictions with low error is a key challenge.

In this paper, we propose a novel perceptual constrained
precipitation forecast model, named PercpCast, which effec-
tively addresses the limitations of the existing methods by
constraining the data distribution of the prediction sequence,
thereby improving the accuracy of the resulting predictions.
First, we use a precipitation estimator to obtain the approxi-
mate posteriori mean sequence of the predicted target. Then,
we train a rectified flow model to predict the straight line
between the corresponding posteriori mean sequence and
the target sequence. Specifically, we use the autoregres-
sive structure of ConvLSTM as a precipitation estimator
to capture the underlying spatiotemporal dynamics of the
precipitation system and obtain a continuous sequence of
posteriori mean values. However, affected by the cumula-
tive error, the distribution difference between the frames
forming the posteriori mean sequence becomes more signif-
icant with time, so the path from each predicted frame to
the target frame is different. To better model the transition
from predicted frames to target frames, we design a frame-
sampled rectified flow model that models each predicted
frame individually and provides weighted scheduling that
lets the model focus on frames with longer prediction times.
The entire model is trained in an end-to-end manner, and
the set of a posteriori mean sequences is fed into the flow
model as an initial state to solve the ODE, which avoids
falling into a local optimum.

The main contributions of this paper are summarized as
follows:

* We propose an end-to-end precipitation prediction
model based on perceptual constraints by constraining
the data distribution while achieving better prediction
error and image quality.

* We propose a novel video-rectified flow model that
uses sampling training to simulate the path from the
posteriori mean sequences to the real sequences and
employs lpips loss for backward propagation to ensure
perceptual consistency.

* We propose a temperature-distance weighted schedul-
ing that lets the model focus on frames at the tail of the
sequence.

* Our method achieves optimal performance on both
Sevir and MeteoNet datasets.

2. Related Work

Precipitation Nowcasting: For precipitation nowcasting,
deterministic models can effectively capture the overall
trend of precipitation movement by modeling the posteriori
mean sequence of future precipitation. The ConvLSTM(Shi
et al., 2015) model integrates convolution operators into
the LSTM and uses extrapolation loops to maintain consis-
tency of predicted motion. Earthformer(Gao et al., 2022a)
builds an encoder-decoder model with Transformer struc-
tures, which replaces the original attention with elaborate
cube attention. SimVP(Gao et al., 2022b) uses a simplified
encoder and decoder structure based on convolutional neural
networks, significantly improving computational efficiency.
MAU(Chang et al., 2021) improves the precipitation fore-
cast by mining the current and historical spatial states to
extend the time horizon. PhyDNet(Guen & Thome, 2020)
uses partial differential equations (PDEs) to disentangle
PDE dynamics from unknown complementary information
and performs PDE-constrained prediction in the latent space.
However, all these methods suffer from blurring and high
echo fading issues. Probabilistic models make predictions
by modeling the data distribution of future precipitation.
DGMR(Ravuri et al., 2021) uses adversarial training to con-
strain prediction distribution as close to the real precipitation
by introducing spatial and temporal discriminators. PreD-
iff(Gao et al., 2024) constructs a diffusion model of the
potential space and designs a priori knowledge modules to
adjust the predicted distributions. Diffcast(Yu et al., 2024)
simulates local random variations by introducing a residual
diffusion mechanism. This kind of model helps to gener-
ate realistic details in a predictive framework but performs
poorly on predictive metrics.

Image Perception Quality: Image Perceptual Quality As-
sessment is a method of quantifying the quality of an image,
which is widely used in image reconstruction, image com-
pression, and image generation. In image enhancement,
PCSGAN(He et al., 2024) develops a generative adversarial
network with perceptual constraints, which imposes spe-
cific positional and structural constraints on the image and
achieves a better sense of image realism. In image restora-
tion, PiRN(Jaiswal et al., 2023) proposes physically inte-
grated restoration networks that introduce physically based
simulators and stochastic refiners to improve its perceptual
quality. In the field of video generation, STRPM(Chang
et al., 2022) introduces an additional perceptual loss in the
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Figure 2. An overview of the proposed PercpCast for precipitation nowcasting. The model first obtains the posteriori mean sequences of
future precipitation employing a precipitation estimator, then constrains the posteriori distribution to mean sequences using the rectified
flow. It designs a frame-sampling strategy to increase the attention paid to the long-term prediction frames.

generative adversarial network, which is used to constrain
the feature representations of the generated image in the dis-
criminator, thereby improving the perceptual quality of the
prediction. In the field of super-resolution, TDPN(Cai et al.,
2022) defines a new hybrid loss to enhance the boundary
information recovery, which helps to overcome the sub-
optimums of MAE loss.

3. PROBLEM STATEMENT

Precipitation nowcasting can be formulated as a spatiotem-
poral sequence prediction problem(Gao et al., 2022a; Shi
et al., 2015; Tan et al., 2023), which is defined as

min E[||Y — Y[|?]. 0]

Py x

Specifically, given an initial precipitation sequence X =
[z, 2 € REXWXCinthe model predicts that the future
sequence Y = [yz]Z oty € REXWXCout 'where L, and
L.+ denote the lengths of the input and predicted frames,
respectively. H and W denote the heights and widths of
each frame. C;,, and C,,; denote the number of channels
in the input and predicted frames at each time point. In
addition, we use the subscript ¢ to denote the ¢-th frame, e.g.
Yi-

The posteriori mean sequence of the model can be obtained
from Eq.1. However, as the prediction time increases, the
difference between the distribution of the predicted frame
and the distribution of the target frame becomes larger and
larger. To solve this problem, we introduce a perceptual
constraint to align the predicted distribution with the target
distribution. As a result, we reformulate and define the
precipitation task as follows:

min E[||Y — Y]] s.t.

Py =Dy ()
Py x

We assume that Y and Y are independent of each other given
X. In other words, the predicted values depend only on the
historical observations, and there exists Y* = E[Y|X = ],
which is the optimal or approximately optimal solution for
the posteriori mean. Furthermore, inspired by (Freirich
et al., 2021), we give the optimal transport form of Eq.3. as

E[[Y — V"] + E| / 1Y = Zo) — vp(Zer 1) |2 ], (3)

where Zy = Y*, Z, = tY +(1—t)Z. The detailed analysis
is given in Appendix A.

4. The Proposed Model

To address the accuracy and perception dilemma, we pro-
pose a perceptually constrained precipitation nowcasting
model, as shown in Figure 2, which is composed of three
main components: (1) a precipitation estimator to capture
the spatial and temporal dynamics of the precipitation sys-
tem and to obtain a sequence of future posteriori mean val-
ues; (2) a rectified flow network that aligns the distribution
of the posteriori mean sequences to the target distribution, to
simulate physical reality. (3) an end-to-end training scheme.
Next, we elaborate on the proposed PercpCast method by
introducing the three components, respectively.

4.1. Precipitation Estimator

To capture the evolving precipitation patterns from historical
data and to obtain smoother, more continuous forecasts, we
utilize ConvLSTM as the precipitation estimator.

Specifically, first we applz the patch embedding to the his-

tory sequence X = [x;]; ”{ € REinxHXWXC (5 get the

embedding X pqtcn = [1;1]1 s RLinxH/AXW/4x16C anq

then X pq¢cp is fed into the image encoder to obtain X, =

[:z:l] i g REinxH/AXW/AX16C next we feed Xep. into the
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ConvLSTM and decode it through the decoder to get the
estimated value Y* = [z;] 7 € REwn xH/4xW/4x16C

Finally, the estimated value is optimized using the Mean
Square Error criterion:

Ly =E[JY —¥?]. @

Eq.4 illustrates that the estimated value Y represents the
posteriori mean sequence of the future precipitation. Next,
we detail the construction of perceptual constraints based
on this posteriori mean sequence.

4.2. Frame-sampled Rectified Flow Model

In Section 3, we demonstrated that the precipitation fore-
casting problem under perceptual constraints can be solved
by Eq.3. However, long-term spatiotemporal sequence pre-
diction is highly susceptible to future uncertainty. This
leads to variations in the distribution of each frame in the
posterior mean sequence generated by the precipitation es-
timator over time. For instance, as x — xg, the distribu-
tion of x becomes increasingly realistic as it approaches
x;, while as x — xp, where T' = Ly, the gap between
the distributions of x and z; widens, resulting in smoother
predictions. We attempted to transfer the distribution of
the posterior mean sequence to the target sequence using a
rectified flow model. However, since the posteriori mean
sequence consists of a mixture of distributions, modeling
the entire target sequence becomes challenging due to the
influence of mode overlap. To more effectively model the
transition from the posteriori mean sequence to the target
sequence, we designed a rectified flow model enhanced with
frame sampling.

Specifically, for the posteriori mean sequence obtained
by the precipitation estimator, we first stop the gradient
derivation to ensure that Y* — Y follows a Markov
process. Next, we reshape the posteriori mean sequence
f/* c RBXTXCXHXW jntq f/* c RBTxCxHxW, then we
construct the Frame Indexed Embedding (FIE) based on
the order of the frames in the posteriori mean sequence.
Finally, the FIE and the reshaped posteriori mean sequence
BT % C x H x W are concatenated and fed into the U-Net
structure to learn the velocity field from the posteriori mean
sequence to the target sequence at all frame indexes, with
the objective function as follows:

1
E[/ (Y = Zo) —vo(Ze,t, FIE)|?dt| . (5)
0

Where Y € RBTXCXHXW Zo c RBTXCXHXW FIE €
RETxd_q is the embedding dimension.

Furthermore, to encourage the model to place greater empha-
sis on frames further away from o, we adopt a temperature-
distance weighted frame sampling strategy. In this approach,

only one frame is sampled for each training iteration, with
the probability of selection increasing with the distance from
T, thereby assigning different training weights to the var-
ious prediction frames. Specifically, we first compute the
base weights for each of the T' prediction frames:

w; = exp(k - 1) (6)

k is a fixed parameter that controls the rate of weight growth,
i € [0, T — 1] is the number of each of the frames, and then
the weights are adjusted using a dynamic temperature 7,

w) =w’" (7N
where, depending on the training process, the dynamic tem-
perature can be linear:

t
T(t) = Tstart (Tend - Tstarl) : tf ®)

max

or exponential:

7(t) = Totan - (de ) )

Tstart

we then normalize the adjusted weights to a probability
distribution p; and obtain the cumulative probability distri-
bution (CDF),

!

w’
pi = ﬁ (10)
Zj:O w;
CDFi:ij, iel0,T—1]. (11)
j=0

For sampling, a random number r is generated from a uni-
form distribution r ~ U(0, 1) and then the random number
r is mapped to the corresponding frame sequence number
using a cumulative probability distribution function (CDF).

sampled_index(sid) = min{i | CDF; > r}  (12)

The final rectified flow model objective function with frame
sampling can be written as

1
Ly =E V Y59 = Z§9 — vy (259, ¢, FTE*)|| dt| .
’ (13)

Additionally, to ensure high-quality prediction results and
prevent degradation of the generated model, we employ the
Lpips loss to constrain the velocity field vg, enabling the
model to maintain strong perceptual consistency at each
step of the reversal process.

Ligips = > | (25 +vo( 2, t, FIE") — (V)13
l

(14)
where d)l(f“id) represent the image features extracted by
the deep neural network (such as VGG or AlexNet) at the
l-th layer, o is the weighting coefficient for each layer’s
feature.
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Algorithm 1 Training Process

Algorithm 2 Inference Process

Input: data X = [z;]", z; € REXWxC
initial: &, 7
repeat
h = i)
fori =1to L;, + Loy do
h = PatchEmbeding(h)
9%, 4i = ConvLSTM(h;0:)
h= giLeri
end for
Compute loss Ly,
Sampling a frame Ysid form [91,95-.-91,,,]1 by sam-
pled_index
detach gradient of ysid
Sampling flow step ¢ ~ U[0, 1]
Forward Process: z; = t(Y59) 4 (1 — ¢)Yid
Backward Process v;(z; 05) = Y54 — ysid
Compute loss L, ¢
Update 7
Update Parameters 6, 6
until Loss convergence
RectFlow(optional): (29, Z9) = (Y*,Y).
repeat
Reshape: Merge Channel Batch and Channel Time
Sampling flow step ¢ ~ U[0, 1]
Forward Process: 2, = t(Z9) + (1 — ) Z§
Backward Process v;(z¢; 62) = Yy —v*
Compute loss L, ¢
until Loss convergence

4.3. End-to-End training

To avoid local optima, we implement an end-to-end training
framework while strategically blocking gradient propagation
from the rectified flow model to the precipitation estimator,
thereby preventing the flow model from interfering with the
estimator’s learning of physical motion dynamics. Since
the precipitation estimator consistently converges before
the rectified flow model during training, it can continuously
provide the rectified flow model with augmented samples
from the ¢-th frame, thereby enhancing the robustness of the
rectified flow model.

The training and inference processes of the model are out-
lined in Algorithm 1 and Algorithm 2. In the training phase,
the precipitation estimator first generates the posteriori se-
quence Y* and computes the MSE loss, then stops the gradi-
ent of Y* and inputs Y'* as the initial set to the rectified flow
model, which randomly selects a posteriori frame ¥ in each
round according to the frame sampling strategy, and then
performs scheduling as scheduled, computes the forward
paths between the posteriori frame * and the real frame ac-
cording to the acceptance step ¢, and computes the forward

Input: data X = [;]27, z; €

h = To
for:=1to L;, + Ly do
h = PatchEmbeding(h)
9%, +i = ConvLSTM((h)
h=92p, 4
end for
Reshape: Merge Channel Batch and Channel Time
if RectFlow then

RHXWXC

zZ= ’Ut(Y*, t)
z0=20+ 2
else

while t in O-N do
Z = v(z20,1)
20 = 20 + %2
end while
end if
Y =20
Reshape: Split Channel Batch and Channel Time
Return: Y

paths by reducing them through a vector field, and computes
the loss, and finally chooses whether to rectify or not. In
the inference phase, the process is similar. The precipita-
tion estimator first generates the posterior mean sequence
f/*, and then the time dimension of Y* is converted to a
batch dimension. This input is fed into the rectified flow
model, where predicted values with perceptual constraints
are obtained via vector field iteration. The final output is
then produced by separating the time steps from the batch
dimension.

5. Experiments

To validate the effectiveness of the proposed model, we
conduct experiments on two real precipitation datasets and
perform an ablation study to analyze the contributions of
the individual components within the model. The experi-
mental results lead to the following key conclusions: 1) The
proposed model effectively improves both prediction accu-
racy and perceptual quality; 2) The distance-based frame
sampling strategy enhances model performance; 3) The
LPIPS loss contributes to improved visual quality; and 4)
End-to-end training proves to be effective.

Table 1. Statistics of the datasets used in the experiments.

Dataset Size Seq Len | Spatial Resolution
Train  Valid Test | In  Out HxW
SEVIR 13020 1000 2000 | 13 36 128 x 128
MeteoNet | 8640 500 1500 | 13 36 128 x 128
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Table 2. Quantitative evaluation of state-of-the-art spatiotemporal prediction algorithms on Sevir and MeteoNet benchmarks.

Method | SEVIR | MeteoNet

| CSI  HSS SSIM MSE LPIPS| CSI HSS SSIM MSE LPIPS
MAU 0.241 0312 0.705 0.0093 0.348 | 0.197 0281 0.819 0.0029 0.250
ConvLSTM | 0.240 0306 0.711 0.0084 0304 | 0.192 0272 0.811 0.0031 0.256
SimVP 0.241 0306 0.717 0.0083 0.334 | 0.165 0239 0.774 0.0037 0.294
Earthformer | 0.214 0.277 0.685 0.0100 0374 | 0.158 0224 0.765 0.0035 0.303
Earthfarseer | 0.209 0.262 0.675 0.0077 0.385 | 0.161 0.232 0.789 0.0030  0.306
STRPM 0213 0281 0.621 00130 0.322 | 0.154 0223 0.701 0.0064 0.322
CasCast 0238 0301 0709 0.0120 0.285 | 0.183 0274 0.810 0.0062 0.252
DiffCast 0.244 0318 0.692 0.0100 0286 | 0.199 0.287 0.816 0.0054 0.241
PercpCast | 0.267 0.360 0.722 0.0092 0.268 | 0.209 0.305 0.820 0.0049 0.237

Table 3. Quantitative evaluation of state-of-the-art spatiotemporal prediction algorithms on Sevir and MeteoNet benchmarks with different

thresholds for CSI.

Method ‘ SEVIR ‘ MeteoNet

‘ CSI74 CSI133 CSI160 CSI181 CSI219 ‘ CSI16 CSI24 CSI32 CSI36 CSI40
MAU 0.484 0.206 0.096 0.064 0.020 0.348 0.236 0.092 0.039 0.023
ConvLSTM | 0.497 0.203 0.085 0.052 0.013 0.349 0.218 0.079 0.031 0.021
SimVP 0.490 0.177 0.090 0.064 0.026 0.307 0.181 0.053 0.022 0.011
Earthformer | 0.453 0.165 0.066 0.040 0.003 0.308 0.173 0.031 0.010 0.002
Earthfarseer | 0.469 0.110 0.048 0.029 0.012 0.300 0.176  0.041 0.018 0.009
STRPM 0.424 0.164 0.084 0.059 0.025 0.289 0.183 0.084 0.049 0.022
CasCast 0.440 0.193 0.105 0.067 0.023 0.315 0.228 0.108 0.043 0.020
DiffCast 0.449 0.203 0.113 0.084 0.032 0.323 0.242 0.127 0.053 0.024
PercpCast 0.496 0.251 0.134 0.099 0.037 0354 0.276 0.132 0.068 0.027

5.1. Experimental Setting

Datasets. SEVIR: The SEVIR dataset (Veillette et al., 2020)
includes satellite images, NEXRAD VIL radar echograms,
and lightning data from 20,393 weather events. Each event
spans 384 km x 384 km, with 49 images taken every 5
minutes over a 4-hour sequence. The first 13 images are
used to predict the subsequent 36.

MeteoNet: The MeteoNet dataset (Larvor et al., 2020) con-
sists of radar and satellite images, ground-based observa-
tions, and meteorological data. Each event covers an area of
550 km x 550 km, with 49 images captured every 5 minutes
in a 4-hour sequence. As with SEVIR, the first 13 images
are used to predict the next 36.

Both datasets are divided into training, validation, and test
sets. The statistical data for all datasets used in the experi-
ments are summarized in Table 1. The images are rescaled
to the range [0, 1] and normalized.

Evaluation The accuracy metrics include CSI, HSS and

MSE. CSI quantifies the proportion of correct predictions,
reflecting the model’s event identification ability. HSS com-
pares the model’s predictions to random guessing, measur-
ing its forecasting skill. MSE calculates the mean squared
error between the predicted and the real value. Their formu-
las are as follows:

_ TP
" TP+ FN+FP

CSI (15)

where T'P is the number of true positives, F'P is the number
of false positives, and F'N is the number of false negatives.

TP xTN —-FN x FP

HSS=
(TP+FN)(FN+TN)+(TP+FP)(FP+TN)
(16)
where T'N is the number of true negatives.
MSE = 23 (g - )? (17)
n i — Yi

=1
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Figure 3. Performance changes of CSI, HSS, SSIM and LPIPS at
different moments in time on SEVIR.

where y; is the true value and ; is the predicted value.

Image perception metrics include SSIM and LPIPS. SSIM
evaluates perceptual similarity based on brightness, contrast,
and structure, and is related to the overall structure of the
image. LPIPS uses deep learning models to evaluate percep-
tual similarity, focuses on human visual perception, and is
related to image smoothing.

(2papty + C1)(200y + Ca)

SSIM(z,y) =
(@) (12 + p2 + C1) (02 + 02 + C)

(18)

where i, and i, are the mean values of the image patches,
o2 and 05 are the variances, and o, is the covariance.

N
LPIPS(z,y) = %Z Ifi(z) = fi)3  (19)
=1

where f;(z) and f;(y) are the features extracted from the
i-th layer of a pre-trained neural network.

Implementation Details We employ a cosine learning rate
schedule to train the model, with a maximum learning rate
of le-4 and a minimum learning rate of le-7. The warm-up
ratio is set to 20%, with the warm-up learning rate set to
3e-4. The model is trained for 100 epochs using the AdamW
optimizer. A detailed analysis of the model’s hyperparame-
ters is presented in the next section.

Baselines To validate the effectiveness of the proposed
model, we selected several notable works as comparison
baselines, including SimVP (Gao et al., 2022b), Earthformer
(Gao et al., 2022a), MAU (Chang et al., 2021), ConvLSTM
(Shi et al., 2015), DiffCast (Yu et al., 2024), CasCast(Gong
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= Lop

Input 0 16 31 59 74 100 133 160 181 219 255

40Min 60Min B8OMin
o @ .

Target
PercpCast
(ours)
STRPM
DiffCast
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Figure 4. A visual comparison example on a precipitation event
from SEVIR. More cases are in the Appendix D.

et al., 2024), STRPM (Chang et al., 2022) and Earthfarseer
(Wu et al., 2024).

5.2. Experimental Results

From the results presented in Table 2, Table 3, Table4, and
Figure 3, the following key observations can be made: (1)
Compared to state-of-the-art models, our framework demon-
strates marked enhancements in both prediction accuracy
and perceptual quality, achieving average increases of 5%
in CSI and 10% in LPIPS metrics, with pooled CSI showing
2-9% improvements across test scenarios. This result under-
lines the merits of the proposed approach, in particular its
balanced performance in terms of accuracy and perceived
quality. As for mse, our method performs optimally in the
generative model (STRPM,DiffCast), less than twice mse of
any method. (2) The accuracy improvement of our model is
especially notable in high echo regions, where the prediction
outcomes are enhanced by 15% to 22% compared to other
models for CSI thresholds greater than 74 and greater than
24. This suggests that our model exhibits superior robust-
ness in handling high echo regions. (3) As the prediction
time increases, our model continues to maintain the high-
est perceptual quality and prediction accuracy compared to
other models, demonstrating its stability and advantage in
long-term forecasting.

In general, the deterministic models (SimVP, ConvLSTM)
of the compared methods tend to output a sequence of poste-
riori mean values, which are susceptible to high echo value
decay with increasing prediction time, leading to perfor-
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Table 4. Quantitative evaluation of state-of-the-art spatiotemporal
prediction algorithms on Sevir and MeteoNet benchmarks with
different Pooled CSI.

Method SEVIR Meteonet

P1 P4 P16 P1 P4 P16
MAU 0.241 0.268 0.285 0.197 0.231 0.260
ConvLSTM  0.240 0.266 0.292 0.192 0.236 0.264
SimVP 0.241 0.263 0.283 0.165 0.196 0.214
Earthformer 0.214 0.254 0.265 0.158 0.189 0.207
Earthfarseer 0.209 0.252 0.267 0.161 0.193 0.212
STRPM 0.213 0236 0.271 0.154 0.190 0.203
CasCast 0.238 0.262 0.289 0.183 0.207 0.231
DiffCast 0.244 0270 0.294 0.199 0.235 0.265
PercpCast 0.267 0.287 0.299 0.209 0.240 0.268

Table 5. Analysis of different training strategies on SEVIR.

METHOD CSI HSS SSIM  LPIPS
WITH GRADINET 0.258 0.338 0.694 0.292
TWO STAGE 0.249 0.321 0.694 0.289
LPIPS(0.0) 0.256 0.328 0.701 0.324
LPIPS(0.5) 0.267 0.360 0.722 0.268
LPIPS(1.0) 0.265 0.358 0.711 0.272
K=0.00 0.262 0.348 0.703 0.278
K=0.02 0.263 0.343 0.709 0.276
K=0.05 0.267 0.360 0.722 0.268
K=0.1 0.266 0.346 0.705 0.280

mance degradation. On the other hand, while probabilis-
tic models account for the modelled data distribution, the
STRPM model suffers from an excessive number of degrees
of freedom, preventing it from effectively capturing future
changes. The residual nature of DiffCast limits its focus to
local distributions, while its ability to capture global infor-
mation is insufficient.

In Figure 4, we present and compare the results of different
methods for the precipitation forecasting task. The cases
represent three typical precipitation processes: precipitation
attenuation and separation (highlighted in the red box), pre-
cipitation dissipation (in the black box), and precipitation
formation (between the red and black boxes). Overall, Con-
vLSTM suffers from cumulative errors, leading to a rapid
decay in intensity (red box). SimVP captures the attenua-
tion and dissipation processes well but struggles to model
precipitation formation (between the red and black boxes).
Earthformer effectively models the formation of the inter-
mediate rainbands as a transfer of precipitation within the
black box, but its prediction is too widespread in the red
box. STRPM and DiffCast both preserve good precipitation
details, but STRPM exhibits overly broad precipitation ex-
tent and a rapid intensity decay (120-180 min) in the red

() (b)

Figure 5. Sampling probability: (a) probability over time at dif-
ferent k values. (b) probability per frame in the 60th epoch at
different k values

box. DiffCast’s residual nature leads it to focus mainly on
local distributions, limiting its ability to capture global infor-
mation and resulting in poor performance for longer-term
forecasts (red box).

5.3. Analysis and Discussions

Is end-to-end training preferable to two-stage training?
The present model has been trained in an end-to-end manner,
aiming to optimize both the precipitation estimator and the
rectified flow module simultaneously. In theory, the model
could also be trained in a two-stage manner, where the opti-
mal precipitation estimator is first determined, then frozen,
followed by modeling the posteriori mean sequence using a
rectified flow model. To validate the performance of these
two training methods, we experimented with the two-stage
training strategy. The results, shown in Table 5, reveal that
our end-to-end approach outperforms the two-stage method.
During end-to-end training, the gradient transfer between
the precipitation estimator and the rectified flow model is
stopped, ensuring that the performance of the precipitation
estimator remains stable, regardless of the training approach.
By treating the posteriori mean sequence as conditional, the
rectified flow model can learn a mapping from the data dis-
tribution (i.e., the posteriori frame distribution) to the target
frame distribution at each index. As training progresses,
the precipitation estimator gradually converges, and the pos-
teriori frame at each position in each iteration becomes a
sample of the data distribution at that position, enhancing
the robustness of the rectified flow model. Additionally,
experiments with end-to-end training without gradient stop-
ping also outperformed the two-stage method, despite not
meeting the theoretical requirements.

Is the loss of Lpips necessary? We used Lpips loss to
constrain the perceptual ability of the flow model at each
time step during the transport process. We conducted ex-
periments with different weights for the LPIPS loss, setting
them to 0, 0.5, and 1. The experimental results are shown
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in Table 5, where the perceptual quality of the model de-
creases by 22% and the prediction performance drops by
5% when the LPIPS loss weight is set to 0. When the LPIPS
loss weights are set to 0.5 and 1, the metrics remain essen-
tially unchanged. Additional experiments with varying loss
weights can be found in Appendix C.

Analysis of different hyperparameters of frame sampling
strategies. We employ the distance-weighted sampling
strategy in an attempt to focus the rectified flow model on
longer predicted frames. This strategy involves two hyper-
parameters: the weight growth factor k£ and the temperature
parameter t. The temperature parameter ¢ is empirically
set with a maximum value of ¢,,, = 50 and a minimum
value of ¢, = 0.5. We then investigate the impact of the
weight growth factor k on training performance. Notably,
k is typically sampled uniformly as it approaches 0; the
greater the deviation of k from 0, the higher the probability
that distant samples will be selected. To evaluate this, we
conducted experiments with sampling strategies for k = 0,
k = 0.02, k = 0.05, and k£ = 0.1, respectively. The prob-
ability density curves for these values of k are shown in
Figure 5. As illustrated in Table 5, appropriate distance
weighting improves the prediction accuracy and perceptual
quality of long-distance frames. However, excessive empha-
sis on distant frames reduces attention to other frames with
distributional differences (e.g., intermediate frames), lead-
ing to a degradation in performance. Further experiments
with hyperparameters are provided in Appendix C.

6. Conclusion

This paper presents a precipitation nowcasting method based
on perceptual constraints, addressing the challenge that tra-
ditional approaches struggle to effectively capture future
uncertainty in long-term sequences. The method transforms
posteriori mean sequences into a real distribution using
rectified flow and introduces a frame sampling strategy to
enhance focus on frames further into the future. Experimen-
tal results demonstrate that the proposed model outperforms
existing techniques on publicly available radar datasets, val-
idating its effectiveness and reliability.

Limitations and Future work

PercpCast achieves competitive performance on different
datasets, but it may not be able to predict sudden convec-
tive storms, that is, storms that suddenly form precipitation
without storm signals in the initial stage. Improving such
predictions requires incorporating atmospheric variables
such as temperature, humidity, and wind direction during
the precipitation formation process. Our future work aims
to explore how to integrate atmospheric variables to build a
unified prediction precipitation model.
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A. Analysis and Proof

According to (Freirich et al., 2021; Blau & Michaeli, 2018),
Eq. 2 can be obtained by solving the optimal transport
problem,

E[lU = V'|?],  (20)

min

pu,v € arg
pyr v €EL(PY .py«)

i.e., given an observation X, first predict the posteriori mean
YV* = E[Y|X = z], and then get the optimal transport plan
from py-. to py, which get the twice minimal mean square
error(2MMSE).

Similar to (Freirich et al., 2021), in precipitation forecast-
ing, we can assume that given the historical precipitation
X, the real precipitation Y and the estimated precipita-
tion Y are independent of each other, and Y* is the opti-
mal solution for the posteriori mean, and then we can get
Y « Y* < X — Y, which can satisfy the above process
for the two-stage training, but in the end-to-end training,
the Y can affect Y*, and although this may not affect our
ability to construct the optimal transfer from Y*toY, it
does impact the analysis of property b. Therefore, to make
the above process satisfy the independence principle, we
stop the gradient backpropagation from Y to Y.

For this optimal transport problem, (Liu et al., 2022) pro-
posed a flow matching algorithm based on straight lines
transportation. The algorithm is composed of two processes:
the forward process is given by: Z, = tZ; + (1 — t)Z, and
the backward process is: vg(Z;,t) = E[Z1 — Zy|Z,], (Liu
et al., 2022) noted that solving the ODE with vy provides an
approximation of the optimal transport map from the source
distribution to the target distribution, especially when the
process is repeated multiple times (i.e., reflow). To learn vy,
the model is trained by minimizing the following loss:
1

/0 E[[I(v1 = Yo) —ve(Ye. ) dt, QD)
where Y7, = Y)Y, = Y According to (Freirich et al.,
2021) and Eq. 21, we get Eq. 3. From Eq. 3, we can get
these properties as follows:

(@ py =py

(b) The MSE of Z; is smaller than the MSE of the solu-
tion in Eq. 20.

Proof. (a) We assume Eq. 22 exists a unique solution. From
Theorem 3.3 in (Liu et al., 2022), we have p 2, =Dz, for
every t € [0, 1]. This implies that Pz, =Pz, =Py, ie. our
method satisfies the constraints of Eq. 2.

dZ; = vg(Zy,t) dt, with Zo=Zo=Y*. (22
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(b) From (Freirich et al., 2021), E[[[Y — Y”||?] can be decom-
posed as E[||Y —Y*||?] + E[||Y’" — Y*||?]. Since py, . =
Py g it follows that E[||Y" — Y*|?] = E[|Y — Y*|]?],
it means E[||Y — Y'||?] = 2E[|Y — Y*|?] = 2M M SE.
Following arguments similar to those used in the proof of
Theorem 3.5 in (Liu et al., 2022), it holds that

. .
Bllz -7 = |( | vRF@t,t)dt” ©3)
0
o )
-E (/ vRF(Zt,t)dt” (24)
0
- 1
<E / ||vRF(Zt,t)||2dt} (25)
L/ O
r prl
=E / E[(Y—Y*)2|Zt]dt} (26)
L/ O
r prl
<e|[ Bl -vPizie| o
O )
:/ E[BIY - 7P|z dt - 28)
0
1
= [ E[lY - V7| dt (29)
0
=E[]Y - Y|, (30)

Equation (23) follows from the definition of Z1 and Y.
Equation (24) follows from the fact that p, = pz,. Equa-
tion (25) follows from Jensen’s inequality. Equation (26)
follows from the definition of vy(Z;,t). Equation (27)
follows from Jensen’s inequality. Equation (28) follows
from the linearity of the integral operator. Equation (29)
follows from the law of total expectation, then we get
E[|Z, — Y*||?] < E[|]Y — Y*||?]. Since Z, is the final
output under the independence assumptions, we can get the
conclusion by using the following equation:
]

(3D
which means that the MSE of our method is less than 2
MMSE.

A |12 N
E [HY—Zlu ] —E [HY—Y*

2 ~ N
] +E {Hzl v

<9E [HY _y

2
} = 2MMSE,

B. Datasets

SEVIR: The SEVIR (Storm EVent ImagRy) dataset, as
described by Veillette(Veillette et al., 2020), includes vis-
ible and infrared satellite images, NEXRAD VIL radar
echograms, and surface lightning events. This study fo-
cuses on VIL radar echograms from 20,393 weather events
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recorded between 2017 and 2020. Each event spans a 384
km x 384 km area and 1 km spatial resolution, with a 4-
hour sequence consisting of 49 images taken at 5-minute
intervals.

For the analysis, 49 consecutive images from each event
are used to predict the next 36 VIL images (180 min-
utes) based on the first 13 observed images (65 min-
utes). The data is split into training (October 2018—Au-
gust 2019), validation (September—October 2019), and test
(October—November 2019) sets. The images are rescaled
to the range of 0-255 and binarized using specific thresh-
olds[16,74,133,160,181,219]. Performance is evaluated us-
ing the Critical Success Index (CSI), Heidke Skill Score
(HSS), Structural Similarity Index (SSIM), Learned Percep-
tual Image Patch Similarity (LPIPS), and Mean square error
(MSE), with mean values reported.

MeteoNet: The MeteoNet dataset, as described by Lar-
vor(Larvor et al., 2020), is a multimodal dataset that includes
satellite and radar imagery, ground-based observations, and
meteorological data. It covers a 550 km x 550 km area
and 1 km spatial resolution in the northwest of France, with
each 4-hour sequence consisting of 49 images taken every 5
minutes.

For the analysis, 49 consecutive images from each event are
used to predict the next 36 VIL images (180 minutes) based
on the first 13 observed images (65 minutes). The data is di-
vided into training (October 2016—August 2019), validation
(September—October 2019), and test (September—October
2019) sets. The images are rescaled to the range of 0-70
and binarized using specific thresholds[8,16,24,32,36,40].
Performance is evaluated using the CSI, HSS, SSIM, LPIPS,
and MSE, with mean values reported.

C. More Experiment Analysis

Table 6. Results of different weights of the losses on SEVIR.

(Lpes Lopy Lipips)  CSI HSS  SSIM LPIPS  MSE
0,1,0.5) 0.044 0.312 0.311 0.369 0.0217
(1,0,0.5) 0.240 0.307 0.663 0.233  0.0085
(1,1,0.0) 0.256 0.328 0.701 0.324 0.0102
(2,1,0.5) 0.266 0.360 0.717 0.269  0.0091
(1,2,0.5) 0.264 0.355 0.712 0.270 0.0093
(1,1,0.5) 0.267 0.360 0.722  0.268  0.0092
(1,1, 1.0) 0.265 0.358 0.711 0.272  0.0094
Weighted of Losses

There are there losses in our method, L,c, £, 5 and Lypps,
in Table 6 and Figure 6, We analysed the weights of the
three losses. In our experiments, firstly, because the gradi-
ents of the previous and subsequent parts of our model are

separated, the weights of £, and £,y do not have much
effect on the training, secondly, we set the weight of L,
to 0 and do not use supervised signals for the precipitation
estimator, which results in the training not being able to
converge, and then, we set the weight of L5 to 0, which
can lead to a tessellated artefacts problem, and lastly, the
rectified flow part will be not be used, the Although lower
Ipips are obtained the lack of effective estimation of the
data distribution leads to poor mse and accuracy. In fact, in
precipitation prediction, image quality assessment is a com-
plex task, simply using LPIPS does not accurately reflect
the structural information of the image, but Ipips is the most
important factor in it, who is directly related to whether the
image is smooth or not, which is the main problem solved
by our model. Since diversity metrics such as FID are not
applicable to this problem, in order to get a better image
quality assessment we suggest combining metrics such as
SSIM at the same time, on the sevir dataset, our experience
suggests that a relatively good visual quality can be obtained
with LPIPS below 0.29 and SSIM above 0.7.

Scale factor K

Table 7. Results of different K on SEVIR.

K CSI HSS SSIM LPIPS
0.00 0.262 0.348 0.703 0.278
0.02 0.263 0.343 0.709  0.276
0.05 0.267 0.360 0.722  0.268
0.07 0.266 0.352 0.716  0.265
0.1 0.266 0.346 0.705 0.280
0.2 0.250 0.327 0.682  0.292

In our experiments k represents the level of focus on dif-
ferently located frames, and we analysed the magnitude of
different. Table 7, Figure 7 and Figure 9 shows that overfo-
cusing on distant frames leads to performance degradation.

Table 8. Results of different scheduler on SEVIR.

(SCHEDULER) CSI HSS SSIM LPIPS MSE
LINEAR 0.262 0.354 0.701 0.269 0.0089
EXPONENTIAL 0.267 0.360 0.722 0.268 0.0092

Temperature We experimented with both linear and ex-
ponential temperature scheduling, and the results of the
experiments are shown in Table 8 and Figure 8

Rectflow We performed 1-rectflow according to (Liu et al.,
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Figure 6. Cases of different loss weights for a precipitation event from SEVIR.
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Figure 7. Performance changes of CSI at different moments in time
on SEVIR.

2022) and the results of the experiment are shown in Table
9 and Figure 10.

About the Precipitation Estimator

For the choice of the precipitation estimator, we considered
two aspects: firstly, stability, which ensures a continuous
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Figure 8. scheduler loss on SEVIR

frame to frame transition and can be consistent with the
physical motion, and secondly, ease of training, we evalu-
ated a variety of models as the precipitation estimator, and
found that some of the models are unstable in training and
rely heavily on the selection of hyperparameters, overall,
we chose the ConvLSTM as the precipitation estimator. in



Perceptually Constrained Precipitation Nowcasting Model

Table 9. Results of 1-rectified flow on SEVIR.

REFLOW CSI HSS SSIM  LPIPS MSE

1-RECTIFIED FLOW 0.263 0.356 0.717 0.265 0.0089
WITHOUT RECTIFIED FLOW ~ 0.267 0.360 0.722 0.268 0.0092

Table 10 and Figure 11, We give the forecast performance
and a case of SimVP as a precipitation estimator.

Table 10. Results of the precipitation estimation with SimVP on
SEVIR.

PRECIPITATION ESTIMATOR ~ CSI HSS SSIM LPIPS MSE

SIMVP 0.246 0.321 0.701  0.297 0.0091
CONVLSTM 0.267 0.360 0.722  0.268 0.0092

D. More Precipitation Case

14
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Figure 9. Cases of different k for a precipitation event from SEVIR.
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Figure 10. Cases of 1-reflow for a precipitation event from SEVIR.
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Figure 11. Cases of precipitation estimation with SimVP for a precipitation event from SEVIR.
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Figure 12. Cases of different methods for a precipitation event from MeteoNet.
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Figure 13. Cases of different methods for a precipitation event from SEVIR.
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Figure 14. Cases of different methods for a precipitation event from MeteoNet.
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