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Abstract

In reinforcement learning, we encode the poten-
tial behaviors of an agent interacting with an en-
vironment into an infinite set of policies, called
policy space, typically represented by a family of
parametric functions. Dealing with such a policy
space is a hefty challenge, which often causes
sample and computational inefficiencies. How-
ever, we argue that a limited number of policies
is actually relevant when we also account for the
structure of the environment and of the policy pa-
rameterization, as many of them would induce
very similar interactions, i.e., state-action distribu-
tions. In this paper, we seek for a reward-free com-
pression of the policy space into a finite set of rep-
resentative policies, such that, given any policy π,
the minimum Rényi divergence between the state-
action distributions of the representative policies
and the state-action distribution of π is bounded.
We show that this compression of the policy space
can be formulated as a set cover problem, and it
is inherently NP-hard. Nonetheless, we propose a
game-theoretic reformulation for which a locally
optimal solution can be efficiently found by iter-
atively stretching the compressed space to cover
the most challenging policy. Finally, we provide
an empirical evaluation to illustrate the compres-
sion procedure in simple domains, and its ripple
effects in reinforcement learning.

1. Introduction
In the Reinforcement Learning (RL) (Sutton & Barto, 2018)
framework, an artificial agent interacts with an environ-
ment, typically modeled through a Markov Decision Pro-
cess (MDP) (Puterman, 2014), to maximize some form of
long-term performance, which is usually the sum of the
discounted rewards collected in the process. The agent’s be-
havior is encoded in a Markovian policy, i.e., a function that
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maps the current state of the environment with a probability
distribution over the next action to be taken. In principle,
if the underlying MDP is small enough, we can represent a
Markovian policy with a table that includes an entry for each
state-action pair, and we call it a tabular policy. However,
most relevant scenarios have too many (possibly infinite)
states and actions to allow for a tabular representation. In
this case, we can turn to function approximation (Sutton &
Barto, 2018) to encode the policy within a family of para-
metric functions, e.g., a linear basis combination or a deep
neural network, and we call it a parametric policy. This set
of parametric policies, which we call the policy space, is typ-
ically infinite. Therefore, learning a policy that maximizes
the performance can be a hefty challenge, and the sheer size
of the policy space often causes sample and computation
inefficiencies.

A setting where these inefficiencies arise clearly and natu-
rally is Policy Optimization (PO) (Deisenroth et al., 2013).
In PO, we aim to find a policy that maximizes the perfor-
mance within the policy space, i.e., an optimal policy, with
the least amount of interactions (Sutton et al., 1999; Silver
et al., 2014; Schulman et al., 2015; Metelli et al., 2018). If
we also account for the performance of the policies that are
actually deployed to collect these interactions, we come up
with an online PO (Papini et al., 2019). In this setting, we
try to minimize the regret that the agent suffers by taking
interactions with a sub-optimal behavior before converging
to an optimal policy. Recent results showed that the regret
of online PO is directly related to the size of the policy
space (Papini et al., 2019; Metelli et al., 2020a). In par-
ticular, online PO with a finite policy space can enjoy a
constant regret, i.e., it does not scale with the number of
interactions, under certain conditions (Metelli et al., 2020a).
Instead, the regret of online PO with an infinite policy space
does scale with the square root of the number of interac-
tions in general (Papini et al., 2019), which means that we
only have asymptotic guarantees of reaching an optimal
policy. In view of these results, one could wonder whether
the expressive power of an infinite policy space is worth the
additional regret it causes: Are all of these infinitely many
policies really necessary for PO? The expressive power of
a policy space is related to the different distributions that
its policies can induce over the states and actions of the
environment, as the whole point of PO is to find a policy
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that maximizes the probability of reaching state-action pairs
associated with high rewards. However, different parame-
terizations might actually induce equivalent policies due to
the specific structure of the policy space. Similarly, even
different policies can induce the same state-action distribu-
tion in a given environment. These two types of policies
are arguably redundant for PO and we would like to find a
policy space that does not include either. Especially, we aim
to answer the following question:

Having an infinite parametric policy space Θ in a given
environmentM, can we compress Θ into a finite subset

that retains most of its expressive power?

In this paper, we formulate this question into the Policy
Space Compression problem, where we exploit the inherent
structure ofM and Θ to compute the compressed policy
space. The general idea is to identify a finite set of repre-
sentative policies, such that for any policy π of the original
space, the minimum Rényi divergence between the state-
action distributions of the representative policies and the
state-action distribution of π is bounded by a given constant.
This compression is agnostic to the reward function, and
thus the resulting policy space can benefit the computational
and sample complexity of any RL task one can later specify
over M, as it is typical in reward-free RL (Hazan et al.,
2019; Jin et al., 2020a).

Especially, the paper includes the following contributions.
First, we provide a formal definition of the policy space com-
pression problem (Section 3). We note that the problem can
be formulated equivalently as a set cover, and that finding
an optimal compression of the policy space is NP-hard in
general (Feige, 1998). Despite this negative result, we pro-
pose a game-theoretic reformulation (Section 4) that casts
the problem to the one of reaching a differential Stackelberg
equilibrium (Fiez et al., 2020) of a two-player sequential
game, in which the first player tries to cover the policy space
with a finite set of policies and the second player tries to find
a policy that falls outside this coverage. Then, we present an
algorithm (Section 5) to efficiently compute a compression
of the policy space by repeatedly solving, with a first-order
method, the two-player game for an increasing number of
covering policies, until the compression requirement is met
globally. In Section 6, we provide a theoretical analysis
of the performance guarantees attained by the compressed
policy space in relevant RL tasks. Finally, in Section 7 we
provide a brief numerical validation of both the compression
algorithm and RL with the compressed policy space. The
proofs of the theorems can be found in Appendix A.

2. Preliminaries
In this section, we introduce the essential background on
controlled Markov processes, policy optimization, impor-

tance sampling estimation and its relationship with the
Rényi divergence.

2.1. Controlled Markov Processes

A discrete-time Controlled Markov Process (CMP) is de-
fined as a tuple M := (S,A, P, µ, γ), in which S is the
state space, A is the action space, P : S × A → ∆(S)
is a transition model such that the next state is drawn as
s′ ∼ P (·|s, a) given the current state s ∈ S and action
a ∈ A, µ : ∆(S) is an initial state distribution such that
the initial state is drawn as s ∼ µ(·), and γ ∈ (0, 1] is the
discount factor. The behavior of an agent interacting with
a CMP can be modeled through a Markovian parametric
policy πθ : S → ∆(A) such that an action is drawn as
a ∼ πθ(·|s) given the current state s ∈ S, where θ ∈ Θ ⊆
Rm are the policy parameters, and the set ΠΘ is called the
policy space. A policy πθ induces a γ-discounted state
distribution dsπθ

: ∆(S) over the state space of the CMP
M, which is given by dsπθ

(s) = (1− γ)
∑∞
t=1 γ

tPr(st =
s) or the equivalent recursive relation dsπθ

(s) = (1 −
γ)µ(s) − γ

∫
SA d

s
πθ

(s′)πθ(a′|s′)P (s|s′, a′) ds′ da′. Sim-
ilarly, we define the γ-discounted state-action distribution
dsaπθ

: ∆(S × A) given by dsaπθ
(s, a) = πθ(a|s)dsπθ

(s).
With a slight overloading of notation, we will indifferently
denote the parametric policy space ΠΘ by Θ, a paramet-
ric policy πθ ∈ ΠΘ by θ, and its induced distributions
dsπθ

(s), dsaπθ
(s, a) by dsθ(s), dsaθ (s, a).

2.2. Policy Optimization

The process of looking for the policy that maximizes the
agent’s performance on a given RL task with a direct
search in the policy space is called Policy Optimization
(PO) (Deisenroth et al., 2013). The task is generally mod-
eled through a Markov Decision Process (MDP) (Puterman,
2014)MR :=M∪R, i.e., the combination of a CMPM
and a reward functionR : S ×A → [−Rmax,Rmax] such
that R(s, a) is the bounded reward that the agent collects
by selecting action a ∈ A in state s ∈ S, and Rmax < ∞.
The agent’s performance is defined by the expected sum of
discounted rewards collected by its policy, i.e.,

J(θ) := E
s0∼µ(·)

at∼πθ(·|st)
st+1∼P (·|st,at)

[ ∞∑
t=1

γtR(st, at)

]

=
1

(1− γ)
E

(s,a)∼dsaθ

[
R(s, a)

]
,

A Monte-Carlo estimate of the performance can be com-
puted from a batch of N samples {sn, an}Nn=1 taken with
the policy πθ in the γ-discounted MDP MR as Ĵ(θ) =

1
(1−γ)N

∑N
n=1R(sn, an).
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2.3. Importance Sampling and Rényi Divergence

Importance Sampling (IS) (Cochran, 2007; Owen, 2013)
is a common technique to estimate the expectation of a
function under a target distribution by taking samples from
a different distribution. In PO, importance sampling allows
for estimating the performance of a target policy πθ′ through
a batch of samples {sn, an}Nn=1 taken with a policy πθ.
Especially, we define the importance weight wθ′/θ(s, a) :=
dsaθ′ (s, a)/dsaθ (s, a). A Monte-Carlo estimate of J(θ′) via
importance sampling is given by

ĴIS(θ′/θ) =
1

(1− γ)N

N∑
n=1

wθ′/θ(sn, an)R(sn, an).

The latter estimator ĴIS(θ′/θ) is known to be unbiased,
i.e., Eθ[ĴIS(θ′/θ)] = J(θ′) (Owen, 2013). However,
ĴIS(θ′/θ) might suffer from a large variance whenever
the importance weights wθ′/θ(s, a) have a large variance.
The variance of the importance weights is related to the ex-
ponentiated 2-Rényi divergence D2(dsaθ′ ||dsaθ ) (Rényi et al.,
1961) through Var(s,a)∼dsaθ [wθ′/θ(s, a)] = D2(dsaθ′ ||dsaθ )−
1 (Cortes et al., 2010), where

D2(dsaθ′ ||dsaθ ) :=

∫
SA

dsaθ (s, a)

(
dsaθ′ (s, a)

dsaθ (s, a)

)2

dsda.

The last result has been employed in (Metelli et al.,
2018) to upper bound the variance of the importance sam-
pling estimator ĴIS(θ′/θ) as Var(s,a)∼dsaθ [ĴIS(θ′/θ)] ≤(

Rmax

1−γ
)2
D2(dsaθ′ ||dsaθ )/N . In the following, we will refer

to the exponentiated 2-Rényi divergence as the Rény diver-
gence.

3. The Policy Space Compression Problem
Let us suppose to have a CMP M the agent can interact
with, and a parametric policy space Θ from which the agent
can select its strategy of interaction. For the common pa-
rameterization choices, ranging from linear policies to deep
neural networks, the policy space Θ is typically infinite.
Dealing with such a large policy space to address the usual
RL tasks, e.g., finding a convenient task-agnostic sampling
strategy (Hazan et al., 2019) or seeking for an optimal pol-
icy within the set (Deisenroth et al., 2013), it is often a
huge challenge. Furthermore, many policies in Θ are un-
necessary for these purposes, as they induce very similar
interactions, and thus they have very similar performance.
On the one hand, different policy parameters θ ∈ Θ might
induce nearly identical distributions over actions. On the
other hand, even different distributions over actions can lead
to comparable state-action distributions due to the structure
of the environment. Since we do not have any reward en-
coded inM, it would be unwise to deem any state-action

distribution irrelevant without additional information on the
task structure. In this work, we aim to identify a subset of
the policy space Θ′ ⊆ Θ that retains most of the expressive
power of Θ, i.e., the set of the state-action distributions it
can induce, while dramatically reducing its size, to the ad-
vantage of the computational and sample efficiency of future
RL tasks. Especially, we consider a σ-soft compression of
Θ, where for any policy θ ∈ Θ we would like to have a
policy θ′ ∈ Θ′ such that the Rényi divergence between their
respective state-action distributions dsaθ , d

sa
θ′ is bounded by

a positive constant σ. The Rényi divergence is particularly
convenient in this setting due to its relationship with the
variance of the importance sampling in the off-policy es-
timation (Cortes et al., 2010; Metelli et al., 2018). The
following statement provides a more formal definition of
this σ-soft compression.
Definition 3.1 (σ-compression). LetM be a CMP, let Θ
be a parametric policy space forM, and let σ > 0 be a
constant. We call Θσ a σ-compression of Θ inM if it holds
that |Θσ| <∞ and

∀θ ∈ Θ, min
θ′∈Θσ

D2(dsaθ ||dsaθ′ ) ≤ σ.

We call the task of finding a σ-compression of Θ in M
the policy space compression problem. Notably, for some
M,Θ, σ, a σ-compression of Θ inM might not exist, as
all the policies θ ∈ Θ might induce relevant state-action
distributions. Otherwise, we say that the compression is
feasible. In this case, given M and Θ, we would like to
extract the smallest set of policies Θ′ that is a σ-compression
of Θ in M, and then keep this reduced policy space to
address any RL task one can define overM. Let ΩΘ :=
{dsaθ | ∀θ ∈ Θ} be the set of state-action distributions
induced by the policy space Θ, the compression problem
can be formulated as a typical set cover problem, i.e.,

minimize
∑
ω∈ΩΘ

xω

subject to
∑

ω:D2(υ||ω)≤σ
xω ≥ 1, ∀υ ∈ ΩΘ

xω ∈ {0, 1}, ∀ω ∈ ΩΘ

(1)

where the positive integers xω denote the state-action dis-
tributions that are active in the covering, and the corre-
sponding σ-compression of Θ in M can be retrieved as
Θσ = {θ ∈ Θ | dsaθ = ω ∧ xω = 1}. Unfortunately, the
problem (1) is known to be NP-hard (Feige, 1998), and even
building an instance is far-fetched when ΩΘ is an infinite set.
Two aspects arguably make this problem extremely hard:
On the one hand, we are looking for an efficient solution in
the number of active state-action distributions, secondly, we
are covering the set ΩΘ all at once rather than incrementally.
Instead of considering common relaxations of (1) (John-
son, 1974; Lovász, 1975), which would not strictly meet
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the requirements of Definition 3.1 (Feige, 1998), in the next
section we build on these insights to reformulate the policy
space compression problem in a tractable way.

4. A Game-Theoretic Reformulation
Due to its inherent hardness, we aim to find a tractable
reformulation of the policy space compression problem (1)
whose solution is a valid σ-compression of Θ inM. To this
end, let us consider a game-theoretic perspective to the set
cover problem. In this perspective, a player distributes a
set of K policies (θ1, . . . ,θK) ∈ ΘK with the intention of
covering the set of state-action distributions ΩΘ. A second
player tries to find a policy µ ∈ Θ that is not well covered
by (θ1, . . . ,θK), i.e., a policy that maximizes the Rényi
divergence between its state-action distribution and the one
of the closest θk ∈ (θ1, . . . ,θK). The former player moves
first, and we call it a leader. The latter player makes his
move in response to the other player, and it is then called a
follower. The two-player, zero-sum, sequential game that
we have informally described can be represented as the
optimization problem

min
θ∈ΘK

max
µ∈Θ

f(θ,µ), (2)

f(θ,µ) := min
k∈[K]

D2(dsaµ ||dsaθk),

where θ = (θ1, . . . ,θK) and [K] = {0, . . . ,K}. It
is straightforward to see that if the σ-compression is
feasible for Θ in M and K is large enough, then any
optimal leader’s strategy for the game (2), i.e., θ∗ ∈
arg maxθ∈ΘK minµ∈Θ f(θ,µ), is a σ-compression of Θ
inM. Unfortunately, f(θ,µ) is a non-convex non-concave
function, and finding a globally optimal strategy for the
game (2) is still a NP-hard problem. However, we do not ac-
tually need to find a globally optimal strategy for the leader,
as any θ ∈ ΘK such that minµ∈Θ f(θ,µ) ≤ σ would be a
valid σ-compression of Θ. Thus, we might instead target a
locally optimal strategy for (2), which is a stationary point
of f and it is both a local maximum w.r.t. θ and a local
minimum w.r.t. µ. In the next statement, we formalize this
solution concept as a Differential Stackelberg Equilibrium
(DSE) (Fiez et al., 2020).
Definition 4.1 (Differential Stackelberg (Fiez et al., 2020)).
The joint strategy (θ∗,µ∗) ∈ ΘK+1 in which θ∗k ∈
arg mink∈[K](d

sa
µ∗ ||dsaθ∗k) is a differential Stackelberg equi-

librium of the game (2) if it holds ∇θ∗kf(θ∗,µ∗) =

0,∇µ∗f(θ∗,µ∗) = 0, |∇θ∗k∇
>
θ∗k
f(θ∗,µ∗)| > 0, and

|∇µ∗∇>µ∗f(θ∗,µ∗)| < 0. 1

Luckily, several recent works have established a favorable

1Let f(x) be a function of x ∈ Rm, we denote its gradient
vector as ∇xf(x), its Hessian matrix as ∇x∇>

x f(x), and the
determinant of its Hessian matrix as |∇x∇>

x f(x)|.

complexity for the problem of finding a DSE (Jin et al.,
2020b; Fiez et al., 2020; Fiez & Ratliff, 2020) in a sequen-
tial game. Especially, Jin et al. (Jin et al., 2020b) showed
that a basic first-order method, i.e., Gradient Descent Ascent
(GDA), with an infinite time-scale separation between the
leader’s and follower’s updates is guaranteed to converge to
a DSE under mild conditions. This result might be surpris-
ing, as we started with a fundamentally hard problem (1)
and ended up with a way easier formulation (2) that we can
address with a common methodology, without making any
strong assumption on the structure of the problem. However,
we still have to deal with two crucial issues to solve the pol-
icy space compression problem through the game-theoretic
formulation. On the one hand, it is not enough to look at the
value f(θ∗,µ∗) attained by a DSE (θ∗,µ∗) to guarantee
that θ is a σ-compression of Θ, as we should check that
maxµ∈Θ f(θ∗,µ) ≤ σ, where µ is a global maximizer. On
the other hand, it is not clear how to set a convenient value of
K beforehand. In the next section, we present a first-order
method that addresses these two issues by finding a DSE of
iteratively larger instances of the game (2) (which we will
henceforth call the cover game) until a conservative approx-
imation of the global condition maxµ∈Θ f(θ∗,µ) ≤ σ is
finally met.

5. An Algorithm to Solve the Policy Space
Compression

Optimization problems of the kind of (2) are typically ad-
dressed with a GDA procedure, in which the leader’s pa-
rameters (θ) and the follower’s parameters (µ) are updated
iteratively according to

θ ← θ − α∇θf(θ,µ), µ← µ + β∇µf(θ,µ),

where∇θf(θ,µ) and∇µf(θ,µ) are the respective gradi-
ents of the joint objective function. Especially, if we con-
sider a sufficiently large time-scale separation τ := β/α,
we are guaranteed to converge to a DSE of the game (2) (Jin
et al., 2020b; Fiez & Ratliff, 2020). In this case, we can con-
sider τ =∞, which means we update the follower’s param-
eters until a stationary point is reached, i.e.,∇µf(θ,µ) = 0,
before updating the leader’s parameters. However, to instan-
tiate the cover game, we still need to specify the number K
of leader-controlled policies θ = (θ1, . . . ,θK). A straight-
forward solution is to start with a small number of policies
first, say K = 1, then retrieve a DSE (θ∗,µ∗) via GDA for
a cover-game instance with K policies, and finally check if
the resulting leader’s strategy θ∗ meets the global require-
ment maxµ∈Θ f(θ∗,µ) ≤ σ. If the answer is positive, the
policy space compression problem is solved, and θ∗ is a
σ-compression of Θ inM. Otherwise, we increment K and
we repeat the process to see if we can solve the problem with
more policies in θ. If the policy space compression problem
is feasible, with this simple procedure we are guaranteed to
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Algorithm 1 PSCA

Input: CMPM, policy space Θ, constant σ
initialize K = 0 and the cover guarantee Zθ =∞
while Zθ > σ do
K ← K + 1
initialize the leader θ = (θ1, . . . ,θK) ∈ ΘK

for epoch = 1, 2, . . . , until convergence do
compute the best response µbr to θ
identify the active leader’s component w.r.t. µbr
update the leader θk ← θk − α∇θkf(θ,µbr)

end for
compute the cover guarantee Zθ with (6)

end while
Output: return θ, i.e., a σ-compression of Θ inM

get a valid σ-compression eventually. We call this method
the Policy Space Compression Algorithm (PSCA) and we
report the pseudocode in Algorithm 1. In the following
sections, we describe in details how the optimization of the
follower’s parameters (Section 5.1) and the leader’s parame-
ters (Section 5.2) are carried out in an adaptation of the GDA
method to the specific setting of the cover game. In Sec-
tion 5.3, we discuss how to verify the global requirement
maxµ∈Θ f(θ∗,µ) ≤ σ without actually having to find a
globally optimal follower’s strategy, but instead optimizing
a surrogate objective through a tractable linear program.

5.1. Optimizing the Follower’s Parameters

In principle, we would like to compute the gradient
∇µf(θ,µ) to perform the update µ← µ+β∇µf(θ,µ) as
in a common GDA procedure. Unfortunately, the objective
function f(θ,µ) = mink∈[K]D2(dsaµ ||dsaθk) is not differen-
tiable due to the minimum over the K components of θ.
However, only the leader’s component θk that attains the
minimum of f is actually relevant for the follower’s update,
as the other K−1 components do not affect the value of the
objective. Thus, we call θk ∈ arg minθi∈θD2(dsaµ ||dsaθk)
the active leader’s component. Conveniently, we can update
the follower’s parameters w.r.t. the gradient ∇µf(θk,µ),
which is differentiable w.r.t. µ. The following proposition
provides the formula for this gradient.

Proposition 5.1 (Follower’s Gradient). Let (θ,µ) ∈ ΘK ,
the gradient of f(θ,µ) w.r.t. µ is given by

∇µf(θ,µ) =

2 E
(s,a)∼dsaθk (s,a)

[(
dsaµ (s, a)

dsaθk(s, a)

)2

∇µ log dsaµ (s, a)

]
, (3)

where θk is the leader’s component such that θk ∈
arg minθi∈θD2(dsaµ ||dsaθi ).

To perform a full optimization of the follower’s parameters,

we just need to repeatedly apply the gradient ascent update
with the gradient ∇µf(θ,µ) computed as in (3). Under
mild conditions on the learning rate (Robbins & Monro,
1951), this process is guaranteed to converge to a stationary
point such that ∇µf(θ,µ) = 0. We call the follower’s
parameters µ at this stationary point the best response to the
leader’s parameter θ, and we denote it as µbr.

5.2. Optimizing the Leader’s Parameters

Whenever the follower converges at the best response
µbr to the current leader’s parameters, we would like
to make an update to θ in the direction of the gradi-
ent ∇θf(θ,µ), i.e., θ ← θ − α∇θf(θ,µ). Just as be-
fore, we can pre-compute the active leader’s component
θk ∈ arg minθi∈θD2(dsaµ ||dsaθi ) to make an update to θk in
the direction of the gradient ∇θkf(θk,µ), which is differ-
entiable in θk. Indeed, an update to any other leader’s com-
ponent would not have a meaningful impact on the value of
the objective, whereas updating θk with a sufficiently small
learning rate α is guaranteed to decrease f(θ,µ), possibly
forcing the follower to change its best response in the next
epoch. The following proposition provides the formula for
the gradient.

Proposition 5.2 (Leader’s Gradient). Let (θ,µ) ∈ ΘK , the
gradient of f(θ,µ) w.r.t. θk is given by

∇θkf(θ,µ) =

− E
(s,a)∼dsaθk (s,a)

[(
dsaµ (s, a)

dsaθk(s, a)

)2

∇µ log dsaθk(s, a)

]
. (4)

5.3. Assessing the Global Value of the Leader’s
Parameters

The last missing piece of the PSCA algorithm requires ver-
ifying that the leader’s strategy in the DSE (θ∗,µ∗) ob-
tained from the GDA procedure is actually a σ-compression
of Θ in M. In principle, we should verify that
mink∈[K]D2(θ∗,µ) ≤ σ for any µ ∈ Θ, which is equiva-
lent to controlling if maxµ∈Θ f(θ∗,µ) ≤ σ. Unfortunately,
the follower’s strategy µ∗ is only locally optimal. Thus,
checking f(θ∗,µ∗) ≤ σ is not sufficient, as the globally
optimal follower’s strategy might attain a greater value of f
than µ∗. Instead, we should check Zθ∗ ≤ σ, where Zθ∗ is
given by

Zθ∗ = max
ω∈ΩΘ

min
k∈[K]

∫
SA

(
ω(s, a)

)2(
dsaθ∗k(s, a)

)−1
dsda,

(5)
which can be written as a quadratically constrained quadratic
program (see Appendix B.1). It might come as no surprise
that solving this problem is NP-hard. Indeed, this is equiva-
lent to the problem (2) with a fixed leader’s strategy θ∗, but
the objective f(θ∗,µ) is still non-concave w.r.t. µ. Luckily,
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we can reformulate this NP-hard problem in the surrogate
linear program (see Appendix B.2):

Zθ∗ = max
ω∈ΩΘ

min
k∈[K]

∫
SA

ω(s, a)
(
dsaθ∗k(s, a)

)− 1
2 dsda, (6)

where the value (Zθ∗)2 is a conservative approximation of
Zθ∗ , as stated in the following theorem:

Theorem 5.3. The value (Zθ∗)2 is an upper bound to the
value Zθ∗ , i.e., (Zθ∗)2 ≥ Zθ∗ ,∀θ∗ ∈ ΘK .

6. Theoretical Guarantees of RL with a
Compressed Policy Space

In the previous sections, we have motivated the pursuit of
a compression of the original policy space Θ in the CMP
M as a way to improve the computational and sample effi-
ciency of solving RL tasks defined uponM, and we have
presented a viable methodology for extracting such a com-
pression Θσ. Since this compression procedure induces a
loss, albeit bounded, in the expressive power of the policy
space, it is worth investigating the performance guarantees
that we have when addressing RL tasks with Θσ. We first
analyze policy evaluation (Section 6.1) and then policy op-
timization (Section 6.2). The reported theoretical results
mostly combine techniques from (Metelli et al., 2018; Pap-
ini et al., 2019).

6.1. Policy Evaluation

In policy evaluation (Sutton & Barto, 2018), we aim to
estimate the performance J(θ) of a target policy θ ∈ Θ
through sampled interactions with an MDP MR. In our
case, we can only draw samples with the policies in Θσ,
and we have to provide an off-policy estimate of J(θ) via
importance sampling. Since for any target policy θ we
are guaranteed to have a sampling policy θ′ ∈ Θσ such
that D2(dsaθ ||dsaθ′ ) ≤ σ, by choosing a convenient sampling
policy in Θσ, we can enjoy the following guarantee on the
error we would make when evaluating any target policy
θ ∈ Θ in any MDPMR one can build uponM.

Theorem 6.1 (Evaluation Error). Let Θσ be a σ-
compression of Θ in M, let R be a reward function for
M uniformly bounded by Rmax, let θ ∈ Θ be a target
policy, and let δ ∈ (0, 1) be a confidence. There exists
θ′ ∈ Θσ such that, given N samples from θ′, the error
of the importance sampling evaluation of J(θ) in MR,
i.e., ĴIS(θ/θ′) = 1

(1−γ)N

∑N
n=1 wθ/θ′(sn, an)R(sn, an),

is upper bounded as |J(θ)− ĴIS(θ/θ′)| ≤ Rmax

1−γ
√
σ/δN

with probability at least 1− δ.

Notably, given a budget of samples N , a confidence δ, and
a requirement on the evaluation error beforehand, we could
select a proper σ to build a σ-compression that meets the

requirement in any policy evaluation task. However, choos-
ing a sampling policy θ′ ∈ Θσ that is best suited for a given
task might be non-trivial. Thus, one can instead take a batch
of Nk samples with each policy in Θσ, and then perform
the policy evaluation via Multiple Importance Sampling
(MIS) (Owen, 2013; Papini et al., 2019).

Corollary 6.2. Let Θσ be a σ-compression of Θ inM such
that |Θσ| = K, letR be a reward function forM uniformly
bounded by Rmax, let θ ∈ Θ be a target policy, and let
δ ∈ (0, 1) be a confidence. Given Nk samples from each
θk ∈ Θσ, the error of the multiple importance sampling
evaluation of J(θ) inMR, i.e.,

ĴMIS(θ/θ1, . . . ,θK) =

1

(1− γ)

K∑
k=1

Nk∑
n=1

dsaθ (sn,k, an,k)∑K
j=1Njd

sa
θj

(sn,k, an,k)
R(sn,k, an,k),

is upper bounded as |J(θ) − ĴMIS(θ/θ1, . . . ,θK)| ≤
Rmax

1−γ
√
D2(dsaθ ||Φ)/δN with probability at least 1 − δ,

where N =
∑K
k=1Nk is a number of samples and Φ =∑K

k=1
Nk
N dsaθk is a finite mixture.

Thanks to the result in (Metelli et al., 2020b, Theorem 1),
in tabular MDPs the evaluation error of the MIS estimator
is guaranteed to be lower than the one of the IS estimator of
Theorem 6.1 (as long as Nk ≥ N , where N is the number
of samples considered by the IS estimator).

6.2. Policy Optimization

In policy optimization (see Section 2.2), we seek for the pol-
icy θ that maximizes J(θ) within a parametric policy space.
In principle, we could look for the policy that maximizes
the performance within the σ-compression Θσ, which can
be found efficiently with the OPTIMIST algorithm (Papini
et al., 2019). Especially, in this setting OPTIMIST yields
constant regret for tabular MDPs (Metelli et al., 2020a), as
the set Θσ is finite and it is composed of stochastic poli-
cies such that ∀θ,θ′ ∈ Θσ, D2(dsaθ ||dsaθ′ ) < ∞. However,
this optimal policy within Θσ might be sub-optimal w.r.t.
the optimal policy within the original policy space Θ. We
can still upper bound this sub-optimality, as reported in the
following theorem.

Theorem 6.3 (Policy Optimization in Θσ). Let Θσ be a
σ-compression of Θ in M, and let R be a reward func-
tion for M uniformly bounded by Rmax. The policy
θ∗σ ∈ arg maxθ∈Θσ J(θ) is ε-optimal for the MDP MR,
where ε := |maxθ∈Θ J(θ)− J(θ∗σ)| ≤ Rmax

1−γ
√

log σ.

Notably, the latter guarantee does not involve any estima-
tion, and the policy θ∗ can be obtained in a finite number
of interactions. Nonetheless, one can shrink even more
the sub-optimality ε, and without deteriorating the sample
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complexity, by coupling the OPTIMIST algorithm with an
additional offline optimization procedure. The idea is to
return the policy θ ∈ Θ that maximizes the importance sam-
pling evaluation obtained with the samples from the policies
in Θσ .

Theorem 6.4 (Off-Policy Optimization in Θ). Let Θσ be a
σ-compression of Θ inM such that |Θσ| = K, letR be a
reward function forM uniformly bounded by Rmax, and
let δ ∈ (0, 1) be a confidence. Given Nk samples from each
θk ∈ Θσ , we can recover an ε-optimal policy forMR as(

_ , θ∗IS
)
∈ arg max
θk∈Θσ,θ∈Θ:D2(dsaθ ||dsaθk )

1

(1− γ)Nk

Nk∑
n=1

wθ/θk(sn, an)R(sn, an), (7)

such that ε :=
∣∣maxθ∈Θ J(θ) − J(θ∗IS)

∣∣ ≤
Rmax

1−γ
√

2σ/Nkδ with probability at least 1− δ.

Although, contrary to the guarantee in Theorem 6.3, ε van-
ishes with the number of samples in the latter result, solving
problem (7) is non-trivial in general, as the policy space Θ
is often infinite.

7. Numerical Validation
In this section, we provide a brief numerical validation of
the policy space compression problem (Section 7.1) and
how it benefits RL (Section 7.2, 7.3). To the purpose of
the analysis, we consider the River Swim domain (Strehl
& Littman, 2008), in which an agent navigates a chain of
six states by taking one of two actions: either swim up, to
move upstream towards the upper states, or swim down, to
go downstream back to the lower states. In Appendix C,
we report further details on the experimental settings, along
with some additional results in a Grid World environment.
We leave as future work a more extensive experimental
evaluation of the policy space compression problem beyond
toy domains.

7.1. Policy Space Compression

In the River Swim, we consider the policy space
Θ ⊆ R|S|×(|A|−1) of the softmax policies πθ(a|s) =
exp(θsa)/

∑
j∈A exp(θsj), and we seek for a compression

Θσ with the requirement σ = 10, such that Θσ is a valid
σ-compression if minθ∈Θσ maxµ∈Θ f(θ,µ) ≤ 10. In Fig-
ure 1a, we report the values of Z = maxµ∈Θ f(θ,µ) (5)
and its upper bound Z ≥ Z (6). Especially, we can see that
PSCA effectively founds a valid σ-compression Θσ of just
K = 3 policies (Figure 1a, left), and that the values of Z
and Z smoothly decreases during the GDA procedure for a
fixed number of policies (Figure 1a, right). Notably, K = 2
policies are actually sufficient to meet the σ requirement in

this setting. However, PSCA cannot access Z but its conser-
vative approximation Z , and thus stops whenever Z ≤ σ.
In Appendix C, we report an illustration of the obtained
policies θk ∈ Θσ .

7.2. Policy Evaluation with a Compressed Policy Space

We now aim to show that the obtained σ-compression Θσ

can be employed with benefit in the most challenging policy
evaluation task one can define in the River Swim, which
is the off-policy evaluation of an ε-greedy policy θ for the
reward function R that assigns Rmax = 100 for taking
the action swim up in the final state. In Figure 1c, we
show that sampling with the policies θ1,θ2 ∈ Θσ lead to
an IS off-policy evaluation that is comparable to the exact
J(θ) (dashed line) and its on-policy estimate (θ). Even by
sampling from a uniform mixture of the policies in Θσ , the
performance of the MIS evaluation is significantly better
than the one obtained by a uniform mixture of three random
policies (Θ3), as reported in Figure 1d. For both the IS and
the MIS regime, we provide the empirical evaluations (on
the left) and the hindsight evaluations (right) obtained with
the exact values of the importance weights wθ/θ′ and the
confidence bounds of the Theorem 6.1, 6.2 respectively.

7.3. Compression for Policy Optimization

Finally, we show that the compression Θσ allows for ef-
ficient policy optimization. We consider the same reward
functionR of the previous section, and the OPTIMIST (Pa-
pini et al., 2019) algorithm equipped with Θσ , or a uniform
discretization of the original policy space Θ with either
three policies (Θ3) or twenty policies (Θ20). In Figure 1b,
we show that OPTIMIST with Θσ swiftly converges (less
than five iterations) to the optimal policy within the space.
Instead, the policy space Θ3 leads to a huge sub-optimality
in the final performance, and OPTIMIST with Θ20 is way
slower to converge to the optimal policy within the space.
These results are a testament of the ability of PSCA to incor-
porate the peculiar structure of the domain in a small set of
representative policies Θσ, and to allows for a remarkable
balance between sample efficiency and sub-optimality in
subsequent policy optimization.

8. Conclusions
In this paper, we considered the problem of compressing an
infinite parametric policy space into a finite set of represen-
tative policies for a given environment. First, we provided
a formal definition of the problem, and we highlighted its
inherent hardness. Then, we proposed a tractable game-
theoretic reformulation, for which a locally optimal solution
can be efficiently found through an iterative GDA procedure.
Finally, we provided a theoretical characterization of the
guarantees that the compression brings to subsequent RL
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Figure 1. Set of experiments in the River Swim domain. (a) The value of the compression guarantee Z , its upper bound Z , and the
requirement σ as a function of the number of policies K (left) and as a function of the iterations with K = 1 (right) obtained with
PSCA. (b) The average return J(θ) obtained by OPTIMIST with the σ-compression Θσ (3 policies), a 3-policies discretization Θ3, and
a 20-policies discretization Θ20 (95% c.i. over 50 runs). (c,d) IS and MIS evaluation of J(θ) by taking samples with θ, θk ∈ Θσ , a
uniform policy θU , the mixture Θσ , or a mixture of 3 random policies Θ3. We provide both the empirical (left, 95% c.i. over 50 runs) and
the hindsight (right) values.

tasks, and a numerical validation of the proposed approach.

Future works might target the compression problem from
interactions with an unknown environment, to pave the way
for scalable policy space compression. Especially, such an
extension would require sample-based estimates of the gradi-
ents (3), (4), and the global guarantee (6). Whereas estimat-
ing the gradients of state-action distributions is not an easy
feat, previous works provide useful inspiration (Morimura
et al., 2010; Schroecker & Isbell, 2017; Schroecker et al.,
2018). Other interesting future directions include an ex-
tension of the policy space compression problem to the
parameter-based perspective (Sehnke et al., 2008; Metelli
et al., 2018; Papini et al., 2019), and the development of
policy optimization algorithms that are tailored to exploit a
compression of the policy space.
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A. Proofs
A.1. Proofs of Section 5

Proposition 5.1 (Follower’s Gradient). Let (θ,µ) ∈ ΘK , the gradient of f(θ,µ) w.r.t. µ is given by

∇µf(θ,µ) =

2 E
(s,a)∼dsaθk (s,a)

[(
dsaµ (s, a)

dsaθk(s, a)

)2

∇µ log dsaµ (s, a)

]
, (3)

where θk is the leader’s component such that θk ∈ arg minθi∈θD2(dsaµ ||dsaθi ).

Proof. Let θk be the active leader’s component, i.e., θk ∈ arg minθi∈θD2(dsaµ ||dsaθi ). We can compute the gradient of the
objective f(θ,µ) w.r.t. µ as

∇µf(θ,µ) = ∇µD2(dsaµ ||dsaθk)

= ∇µ
∫
SA

dsaθk(s, a)

(
dsaµ (s, a)

dsaθk(s, a)

)2

dsda

= 2

∫
SA

dsaθk(s, a)

(
dsaµ (s, a)

dsaθk(s, a)

)2

∇µ log dsaµ (s, a) dsda.

Proposition 5.2 (Leader’s Gradient). Let (θ,µ) ∈ ΘK , the gradient of f(θ,µ) w.r.t. θk is given by

∇θkf(θ,µ) =

− E
(s,a)∼dsaθk (s,a)

[(
dsaµ (s, a)

dsaθk(s, a)

)2

∇µ log dsaθk(s, a)

]
. (4)

Proof. We can compute the gradient of the objective f(θ,µ) w.r.t. θk ∈ θ as

∇θkf(θ,µ) = ∇θkD2(dsaµ ||dsaθk)

= ∇θk
∫
SA

dsaθk(s, a)

(
dsaµ (s, a)

dsaθk(s, a)

)2

dsda

= −
∫
SA

dsaθk(s, a)

(
dsaµ (s, a)

dsaθk(s, a)

)2

∇θk log dsaθk(s, a) dsda.

Theorem 5.3. The value (Zθ∗)2 is an upper bound to the value Zθ∗ , i.e., (Zθ∗)2 ≥ Zθ∗ ,∀θ∗ ∈ ΘK .

Proof. The result is straightforward from

(Zθ∗)2 = max
ω∈ΩΘ

min
k∈[K]

(∫
SA

ω(s, a)
(
dsaθ∗k(s, a)

)− 1
2 dsda

)2

≥ max
ω∈ΩΘ

min
k∈[K]

∫
SA

(
ω(s, a)

(
dsaθ∗k(s, a)

)− 1
2

)2

dsda = Zθ∗ .
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A.2. Proofs of Section 6

Lemma A.1 (Variance of the IS Estimator). LetM be a CMP, and let θ ∈ Θ be a target policy. Let {sn, an}Nn=1 be a
sample of state-action pairs taken with the policy θ′ inM. Then, the variance of the importance sampling evaluation of
J(θ) inM, i.e., ĴIS(θ/θ′) = 1

(1−γ)N

∑N
n=1 wθ/θ′(sn, an)R(sn, an), can be upper bounded as

Var
(s,a)∼dsa

θ′

[
ĴIS(θ/θ′)

]
≤ (Rmax)2D2(dsaθ ||dsaθ′ )

(1− γ)2 N
.

Proof. The proof follows the derivation in (Metelli et al., 2018, Lemma 4.1). When considering state-action pairs (as
opposed to trajectories in (Metelli et al., 2018)) one should account for the dependency between state-actions in the same
trajectory. Here we consider a batch of N samples taken within a single trajectory, in which the dependency vanishes as the
CMP mixes to the steady-state, and thus it can be neglected. Especially, we write

Var
(s,a)∼dsa

θ′

[
ĴIS(θ/θ′)

]
≤ 1

(1− γ)2N
Var

(s,a)∼dsa
θ′

[
wθ/θ′(s, a)R(s, a)

]
≤ 1

(1− γ)2N
E

(s,a)∼dsa
θ′

[(
dsaθ (s, a)

dsaθ′ (s, a)
R(s, a)

)2]
≤ (Rmax)2

(1− γ)2N
E

(s,a)∼dsa
θ′

[(
dsaθ (s, a)

dsaθ′ (s, a)

)2]
=

(Rmax)2D2(dsaθ ||dsaθ′ )
(1− γ)2 N

.

In episodic settings, one can refine this result to account for dependent data by exploiting the Bellman equation of the
variance (see Sobel, 1982; Xie et al., 2019).

Theorem 6.1 (Evaluation Error). Let Θσ be a σ-compression of Θ inM, let R be a reward function forM uniformly
bounded by Rmax, let θ ∈ Θ be a target policy, and let δ ∈ (0, 1) be a confidence. There exists θ′ ∈ Θσ such
that, given N samples from θ′, the error of the importance sampling evaluation of J(θ) in MR, i.e., ĴIS(θ/θ′) =

1
(1−γ)N

∑N
n=1 wθ/θ′(sn, an)R(sn, an), is upper bounded as |J(θ)− ĴIS(θ/θ′)| ≤ Rmax

1−γ
√
σ/δN with probability at least

1− δ.

Proof. We would like to bound the difference |J(θ)− ĴIS(θ/θ′)| for a policy θ′ ∈ Θσ . By the definition of σ-compression,
there exists at least a policy θ′ ∈ Θσ such that D2(dsaθ ||dsaθ′ ) ≤ σ. Since the IS estimator ĴIS(θ/θ′) is unbiased, and
Var(s,a)∼dsa

θ′

[
ĴIS(θ/θ′)

]
<∞ through Lemma A.1, we can use the Chebichev’s inequality to write, ∀ε > 0,

Pr(|J(θ)− ĴIS(θ/θ′)| ≥ ε) ≤
Var(s,a)∼dsa

θ′

[
ĴIS(θ/θ′)

]
ε2

.

Then, by calling δ =
Var(s,a)∼dsa

θ′

[
ĴIS(θ/θ′)

]
ε2 and considering the complimentary event, we get

Pr
(
|J(θ)− ĴIS(θ/θ′)| ≤ Rmax

1− γ
√
σ/δN

)
≥ 1− δ

where we upper bounded the variance of ĴIS(θ/θ′) as in Lemma A.1 and the Rényi D2(dsaθ ||dsaθ′ ) with σ.

Corollary 6.2. Let Θσ be a σ-compression of Θ inM such that |Θσ| = K, letR be a reward function forM uniformly
bounded by Rmax, let θ ∈ Θ be a target policy, and let δ ∈ (0, 1) be a confidence. Given Nk samples from each θk ∈ Θσ,
the error of the multiple importance sampling evaluation of J(θ) inMR, i.e.,

ĴMIS(θ/θ1, . . . ,θK) =

1

(1− γ)

K∑
k=1

Nk∑
n=1

dsaθ (sn,k, an,k)∑K
j=1Njd

sa
θj

(sn,k, an,k)
R(sn,k, an,k),

is upper bounded as |J(θ) − ĴMIS(θ/θ1, . . . ,θK)| ≤ Rmax

1−γ
√
D2(dsaθ ||Φ)/δN with probability at least 1 − δ, where

N =
∑K
k=1Nk is a number of samples and Φ =

∑K
k=1

Nk
N dsaθk is a finite mixture.
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Proof. Through the combination of (Papini et al., 2019, Lemma 1) and Lemma A.1, it is straightforward to derive

Var
(s,a)∼dsaθk

[
ĴMIS(θ/θ1, . . . ,θK)

]
≤ (Rmax)2D2(dsaθ ||Φ)

(1− γ)2 N
. (8)

Then, similarly as in Theorem 6.1, we can use the Chebichev’s inequality to write, ∀ε > 0,

Pr(|J(θ)− ĴMIS(θ/θ1, . . . ,θK)| ≥ ε) ≤
Var(s,a)∼dsaθk

[
ĴMIS(θ/θ1, . . . ,θK)

]
ε2

.

By calling δ =
Var(s,a)∼dsa

θk

[
ĴMIS(θ/θ1,...,θK)

]
ε2 and considering the complimentary event, we get

Pr
(
|J(θ)− ĴMIS(θ/θ1, . . . ,θK)| ≤ Rmax

1− γ

√
D2(dsaθ ||Φ)

δN

)
≥ 1− δ

where we upper bounded the variance of ĴMIS(θ/θ1, . . . ,θK) as in (8).

Theorem 6.3 (Policy Optimization in Θσ). Let Θσ be a σ-compression of Θ in M, and let R be a reward function
for M uniformly bounded by Rmax. The policy θ∗σ ∈ arg maxθ∈Θσ J(θ) is ε-optimal for the MDP MR, where ε :=

|maxθ∈Θ J(θ)− J(θ∗σ)| ≤ Rmax

1−γ
√

log σ.

Proof. Let be θ∗ ∈ arg maxθ∈Θ J(θ). From the definition of σ-compression we have that there exists at least a policy
θ′ ∈ Θσ such that D2(dsaθ∗ ||dsaθ′ ) ≤ σ. Then, we can write

(1− γ)|J(θ∗)− J(θ′)| =
∣∣∣∣ ∫
SA
R(s, a)

(
dsaθ∗ − dsaθ′

)
dsda

∣∣∣∣ (9)

≤ Rmax

∫
SA

∣∣dsaθ∗ − dsaθ′ ∣∣dsda (10)

≤ Rmax

√
dKL(dsaθ∗ ||dsaθ′ ) (11)

≤ Rmax

√
log
(
D2(dsaθ∗ ||dsaθ′ )

)
= Rmax

√
log σ (12)

where (9) is from the definition of J given in Section 2.2, (11) is obtained from (10) through the Pinsker’s inequality, and
(12) derives from dKL(p||q) = d1(p||q) ≤ d2(p||q) = D2(p||q), which is straightforward from the definition of Rényi
divergence. Finally, it is trivial to see that J(θ∗σ) ≥ J(θ′) for θ∗σ ∈ arg maxθ∈Θσ J(θ).

Theorem 6.4 (Off-Policy Optimization in Θ). Let Θσ be a σ-compression of Θ inM such that |Θσ| = K, let R be a
reward function forM uniformly bounded by Rmax, and let δ ∈ (0, 1) be a confidence. Given Nk samples from each
θk ∈ Θσ , we can recover an ε-optimal policy forMR as(

_ , θ∗IS
)
∈ arg max
θk∈Θσ,θ∈Θ:D2(dsaθ ||dsaθk )

1

(1− γ)Nk

Nk∑
n=1

wθ/θk(sn, an)R(sn, an), (7)

such that ε :=
∣∣maxθ∈Θ J(θ)− J(θ∗IS)

∣∣ ≤ Rmax

1−γ
√

2σ/Nkδ with probability at least 1− δ.

Proof. Thanks to the definition of σ-compression and the guarantee provided by Theorem 6.1, from the collected samples
we have that there exists θk ∈ Θσ such that

ĴIS(θ/θk)− Rmax

1− γ

√
2σ

Nkδ
≤ J(θ) ≤ ĴIS(θ/θk) +

Rmax

1− γ

√
2σ

Nkδ
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holds ∀θ ∈ Θ with probability at least 1− δ/2. Then, let θ∗IS be a policy obtained as in (7), and let θ∗ ∈ arg maxθ∈Θ J(θ).
We consider the event in which J(θ∗IS) falls below its lower confidence bound and J(θ∗) exceeds its upper confidence
bound. It is easy to see that this event happens with probability at most δ, whereas the complimentary event guarantees that

|J(θ∗)− J(θ∗IS)| ≤ Rmax

1− γ

√
2σ

Nkδ
.

B. Optimization Problems
B.1. Quadratic Program Formulation of (5)

The optimization problem in (5) can be formulated into a quadratically constrained quadratic program as

maximize
z∈R,ω∈RSA

z

subject to z −
∫
SA

(
ω(s, a)

)2
dsaθ∗k

(s, a)
dsda ≤ 0, ∀k ∈ [K]∫

A
ω(s, a) da = (1− γ)µ(s) + γ

∫
SA

ω(s′, a′)P (s|s′, a′) ds′ da′, ∀s ∈ S

ω(s, a) ≥ 0, ∀s ∈ S,∀a ∈ A.

B.2. Linear Program Formulation of (6)

The optimization problem in (6) can be formulated into a linear program as

maximize
z∈R,ω∈RSA

z

subject to z −
∫
SA

ω(s, a)

dsaθ∗k
(s, a)

dsda ≤ 0, ∀k ∈ [K]∫
A
ω(s, a) da = (1− γ)µ(s) + γ

∫
SA

ω(s′, a′)P (s|s′, a′) ds′ da′, ∀s ∈ S

ω(s, a) ≥ 0, ∀s ∈ S,∀a ∈ A.

C. Further Details on the Numerical Validation
In Section 7.1, we commented the results of PSCA in the River Swim domain. For the sake of clarity, here we report
an illustration of the River Swim CMP (Figure 2a), heatmap visualizations of the policies in the σ-compression obtained
by PSCA (Figure 2b-2d), and the set of parameters we employed (σ = 10, α = 0.005, β = 0.1). We further report the
results of an additional policy space compression experiment in a Gridworld domain (|S| = 9, |A| = 4). In this setting, we
considered σ = 40, α = 0.005, β = 0.1, and the resulting σ-compression is composed of K = 4 policies (a visualization is
provided in Figure 3a-3d).

In Section 7.2, we reported a set of policy evaluation experiments in the River Swim domain. Especially, we considered an
IS off-policy evaluation setting, in which we take a batch of samples with each policy θk ∈ Θσ, or with a uniform policy
θU , or with the target policy itself θ. For every policy, the batch is composed of N = 100000 samples, and it is obtained
by drawing 5000 trajectories of 20 steps. Similarly, we considered a MIS off-policy evaluation setting, in which we take a
batch of samples with the σ-compression Θσ , or a set of three random policies Θ3. In both the cases, the batch is composed
of N = 300000 samples (Nk = 100000 for each policy in the space), obtained by drawing 15000 trajectories of 20 steps.

In Section 7.3, we reported a policy optimization experiment in the River Swim domain. To run this experiment, we
implemented the action-based formulation of the OPTIMIST algorithm (Papini et al., 2019, Algorithm 1). For each seed, we
run the algorithm for 100 iterations, in each iteration we collect N = 1000 samples, which are obtained from 50 trajectories
of 20 steps. The value of the importance weights truncation M and the confidence schedule δt are taken from the theoretical
analysis in (Papini et al., 2019).
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Figure 2. (a) Illustration of the River Swim CMP. (b, c, d) Heatmap visualization of the policies in the σ-compression θk ∈ Θσ for the
River Swim domain. The background color and the label denote the state probability, the green arrows represent the policy in the state.
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(a) θ0 (b) θ1

(c) θ2 (d) θ3

Figure 3. (a, b, c, d) Heatmap visualization of the policies in the σ-compression θk ∈ Θσ for the Gridworld domain. The background
color and the label denote the state probability, the green arrows represent the policy in the state.


