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Abstract

The growing integration of machine learning (ML) and artificial intelligence (AI)
models into high-stakes domains such as healthcare and scientific research calls for
models that are not only accurate but also interpretable. Among the existing ex-
plainable methods, counterfactual explanations offer interpretability by identifying
minimal changes to inputs that would alter a model’s prediction, thus providing
deeper insights. However, current counterfactual generation methods suffer from
critical limitations, including gradient vanishing, discontinuous latent spaces, and
an overreliance on the alignment between learned and true decision boundaries. To
overcome these limitations, we propose LEAPFACTUAL, a novel counterfactual
explanation algorithm based on conditional flow matching. LEAPFACTUAL gener-
ates reliable and informative counterfactuals, even when true and learned decision
boundaries diverge. Following a model-agnostic approach, LEAPFACTUAL is not
limited to models with differentiable loss functions. It can even handle human-in-
the-loop systems, expanding the scope of counterfactual explanations to domains
that require the participation of human annotators, such as citizen science. We pro-
vide extensive experiments on benchmark and real-world datasets highlighting that
LEAPFACTUAL generates accurate and in-distribution counterfactual explanations
that offer actionable insights. We observe, for instance, that our reliable counterfac-
tual samples with labels aligning to ground truth can be beneficially used as new
training data to enhance the model. The proposed method is diversely applicable
and enhances scientific knowledge discovery as well as non-expert interpretability.
The code is available on https://github.com/caicairay/LeapFactual.

1 Introduction

The widespread adoption of machine learning (ML) and Artificial Intelligence (AI) models in
high-stakes domains — such as healthcare [1–7] or scientific research [8–10] — demands not only
high performance but also transparency, reliability, and interpretability. In the context of scientific
discovery, where reproducibility, verifiability, and a deep understanding of underlying mechanisms
are paramount, opaque "black-box" models can hinder progress and erode trust in computational
findings. Without interpretability, the outputs of ML models remain inscrutable, limiting their utility
for hypothesis generation, experimental validation, and the advancement of scientific knowledge.
In response, a variety of explainability methods have emerged to illuminate the inner workings of
black-box models. Among the most common are gradient-based methods [11] and perturbation-based
techniques [12, 13]. These methods generate a map of the regions that contribute most to the decision
by either taking the backpropagation through the neural network or perturbing the input data. While
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these methods offer insights on the location of the class-related features, they do not expose residual
features (e.g., pattern in the location) or guide practitioners toward meaningful model refinements.

Counterfactual explanation (CE) has recently gained attention as a complementary, more informative
alternative. By answering ‘What would have needed to be different for the outcome to be different?’,
counterfactuals expose decision boundaries more clearly and can also be used to generate new,
informative training samples that improve generalization and fairness [3, 7]. Despite their promise,
existing counterfactual generation algorithms face significant limitations. Many struggle with gradient
vanishing [14–18] or discontinuous latent spaces [19–24], leading to uninformative or unrealistic
counterfactuals (see Sections 2.1 and 3.1). Moreover, CEs are typically located near the decision
boundary. While this aligns with the definition of a counterfactual, it often fails to lie within the
data distribution, thereby failing to accurately represent it (see Figure 1). Our algorithm generates
counterfactual samples that remain within the distribution, a characteristic we refer to as reliability.

Addressing the aforementioned limitations is essential to realize the full potential of CEs for inter-
pretability and model enhancement.

To address these challenges, our main contributions are:

• We introduce LEAPFACTUAL, a novel, reliable CE algorithm based on conditional flow matching.
It retains the strengths of existing approaches while overcoming several critical shortcomings and
handles scenarios where the true decision boundary deviates from the learned model.

• We propose the CE-CFM training objective, and provide theoretical motivation showing that
flow matching naturally disentangles the class-related information from residual information. This
clarifies how important features are isolated for counterfactual generation.

• We validate the effectiveness of LEAPFACTUAL on diverse benchmark datasets from different do-
mains, including astrophysics, to demonstrate its applicability and performance across disciplines.

• We generate counterfactuals using non-differentiable models, such as human annotators, to
illustrate that LEAPFACTUAL is model-agnostic, which significantly expands the applicability of
CE to fields such as citizen science.

2 Preliminary and Related Work

Figure 1: (Left) Conceptual illustration of 1D data embedded in
2D space. Blue and red circles denote data of two MNIST
classes (8 and 6, resp.), with the dotted line representing the
data manifold. The true decision boundary is , while the solid
line is the learned boundary. The background color indicates
the output of the binary classifier. Adversarial attack , CGM-
generated CE , and Opt-based CE examples originate from
the starting point . (Right) Conceptual multi-class 3D exam-
ple. Each color represents an MNIST digit class. A sample
from the blue cluster is transported along the olive path to reach
the red cluster, forming a CE. The purple line shows the large
distance between CE and the source, highlighting gradient van-
ishing issues. More details can be found in Section 3.1.

We denote random variables with
capital letters (e.g., X , Y , Z) and
sets with script letters (e.g., X , Y ,
Z). The realizations of variables
are shown with lowercase letters
(e.g. x, y, z). The probability den-
sity function of a distribution P(X)
is represented by p(x) or q(x). The
expectation with respect to p(x) is
denoted as Ep(x)[·]. We use lower-
case letters, such as f , g, and l, to
represent functions. The function
of a neural network with parame-
ters θ is represented as fθ. Loss
functions are denoted as L.

2.1 Counterfactual
Explanation (CE)

Counterfactual explanations (CEs)
[25, 26] modify an input data point
in a semantically meaningful way
to produce a similar counterpart
with a different target label, offer-
ing deeper insight into model decisions. Unlike other explainability methods, CEs not only emphasize
important features, but also provide actionable changes [3, 7], making them especially useful in
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domains requiring transparency. Recently, generative models are the standard paradigm to produce
in-distribution counterfactuals and avoid adversarial artifacts (see Section 3). There are two paradigms
depending on the usage of generative models: Optimization (Opt)-based methods and conditional
generative model (CGM)-based methods (see Figure 2).

Formally, given a classifier fθ : Rd → [0, 1]n and an input x ∼ P(X), the general objective
for an Opt-based method [14–18] is to find a counterfactual xCE by minimizing: LCE(xCE) =
LCLS(fθ(xCE), ŷc) + λLDIS(x, xCE), where LCLS encourages the classifier fθ to predict the target
label ŷc and LDIS enforces similarity to x, with λ balancing the two terms. Note that overemphasis
on similarity can yield adversarial examples ([27–29]) since the data ambient dimension is usually
higher than the intrinsic dimension [30, 31] (see also Figure 1). A common solution is to prepend a
generative model gϕ (e.g., VAE [32], GAN [33]) to fθ to ensure the modification is in-distribution.
This reformulates the loss to:

LCE(zCE) = LCLS(fθ(gϕ(zCE)), ŷc) + λLDIS(gϕ(z), gϕ(zCE)), (1)

where z is the latent vector corresponding to the input x from a VAE encoder or GAN inversion.

In contrast, CGM-based methods [19–24] integrate the information encoded in the classifier directly
into the generative model, by training it conditioned on the output of the classifier.

Among various data modalities, generating CEs for visual data remains particularly challenging due
to the high input dimension. Note, while our method focuses on visual data, it can be generalized to
other data types. In the following, we summarize related work on visual counterfactual explanations
regarding Opt-based and CGM-based methods.

c cc
Optimization

Flow

c Classifier output

Opt-based CGM-based

Structured representationFlattened representation

LeapFactual

Figure 2: Overview of architectures - Opt-based models,
CGM-based models and LEAPFACTUAL. Trapezoids repre-
sent generative models. Opt-based and CGM-based methods
employ only flattened or structured representation (see Sec-
tion 3.1), while LEAPFACTUAL combines both.

Optimization (Opt)-based Methods
Opt-based methods prepend a gener-
ative model before the classifier to be
studied, and optimize the latent vec-
tor corresponding to the input image
towards the target label to generate
CEs. REVISE [14] is a gradient-based
method that samples from a genera-
tive model’s latent space to find min-
imal changes altering predictions. In-
stead of directly optimizing latent vec-
tors, Goetschalckx et al. [15] learn latent directions by differentiating through both generator and
classifier. Other works consider training linear Support Vector Machines in latent space to control
facial attributes [16] or using a GAN for image editing, guided by gradients to generate target-class
images with minimal changes [17]. Dombrowski et al. [18] propose a theoretically grounded approach
optimizing in the latent space of Normalizing Flows.

Table 1: Key characteristics of proposed
method and baseline methods.

Opt CGM Ours

Continuous latent space ✓ ✗ ✓
No gradient vanishing ✗ ✓ ✓
Pre-trained generator ✓ ✗ ✓
Model-agnostic ✗ ✓ ✓
Reliable CE ✗ ✗ ✓

Conditional Generative Model (CGM)-based Methods
CGM-based methods incorporate the output of the classi-
fier as a condition of the generative model, by replacing the
condition counterfactual samples are generated. Saman-
gouei et al. [19] jointly train classifier-specific encoders
with a GAN to produce reconstructions, counterfactuals,
and modification masks. To ensure realisitic counterfactu-
als, Singla et al. [20] use a GAN conditioned on classifier
predictions with an encoder. DCEVAE [22] generates
counterfactuals conditioned on input and target label. Other directions include training StyleGAN
with classifier-specific style spaces for counterfactual manipulation [23], employing Normalizing
Flows with a Gaussian mixture latent space and an information bottleneck to disentangle class
information [24], and generating residuals added to the input to flip classifier decisions [21].

Unfortunately, both paradigms face significant drawbacks: Opt-based approaches enable continuous
latent space exploration but face gradient vanishing and require differentiable classifiers; CGM-based
methods mitigate vanishing gradients and offer structured representations but lack continuous latent
spaces and often need separate generative models per classifier. The characteristics are summarized
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in Table 1. The proposed method LEAPFACTUAL overcomes these issues and considers the mismatch
between the learned and true decision boundaries to generate reliable CEs (see Section 3.1).

2.2 Flow Matching

The development of flow-based generative models dates back to Rezende et al. 2015 [34], which
introduced Normalizing Flows—an invertible and efficiently differentiable mapping between a fixed
distribution and the data distribution. Initially, these mappings were constructed as static compositions
of invertible modules. Later, continuous normalizing flows (CNFs) were introduced, leveraging
neural ordinary differential equations (ODEs) to model these transformations dynamically [35].
However, CNFs face significant challenges in training and scalability, particularly when applied
to large datasets [35–37]. More recently, many works [38–42] demonstrated that CNFs could be
trained using an alternative approach: regressing ODE’s drift function, similar to how diffusion
models are trained. This method, known as flow matching (FM), has been shown to improve sample
quality and stabilize CNF training [38]. Initially, FM assumed a Gaussian source distribution, but
subsequent generalizations have extended its applicability to more complex manifolds [43], arbitrary
source distributions [44], and couplings between source and target samples derived from input data
or inferred via optimal transport. In this work, we build upon I-CFM, the theoretical framework
established by Tong et al. [42].

Formally, flow matching [38–42] learns a time-dependent vector field ut(z) whose flow pushes a
source distribution p0 to a target p1. The dynamics

dz = ut(z) dt

induce a probability path pt with pt=0 = p0 and pt=1 = p1. In conditional flow matching (CFM),
pt(z) is represented as a mixture over conditional paths pt(z | h) with h := (z0, z1) [42]. Under
independent coupling, q(h) = q(z0)q(z1), the conditional path and target vector field are

pt(z | h) = N
(
z
∣∣ (1− t)z0 + tz1, σ

2I
)
,

ut(z | h) = z1 − z0, (2)

which defines I-CFM via a Gaussian flow with fixed variance σ2I .

In practice, a neural network vψ(t, z) is trained to regress the target field ut(z | h) specified in
Equation (2). Concretely, we sample

t ∼ Unif[0, 1], (z0, z1) ∼ q(z0)q(z1), z ∼ pt(· | h),

and minimize a regression loss so that vψ(t, z) ≈ ut(z | h). In I-CFM the target simplifies to the
constant vector z1 − z0, independent of t and z; the conditioning h and the sampling of z ensure the
model learns the correct field along the path. At inference, integrating the learned field produces
the flow map that transports samples from p0 to p1. Additional training details are provided in
Section 3.2.1.

3 LEAPFACTUAL: A Counterfactual Explanation Algorithm

We motivate our approach by analysing the latent space of generative models in Section 3.1. We then
demonstrate the flexibility of CFM in Section 3.2 and introduce our new algorithm LEAPFACTUAL.

3.1 Analysis of Latent Spaces

It is important to distinguish the latent representations used in unconditional generative models,
employed by Opt-based methods, and conditional generative models, used in CGM-based methods.
Let us assume a latent vector z that is defined to be the result of a mapping function m, that maps
class-related (C) and residual features (R) to the latent space: z = m(c, r). For instance, in the
MNIST dataset, C denotes the digit identity, while R captures the handwriting style. Ideally, a CE
modifies only C, resulting in zCE = m(cCE, r). In unconditional generative models, the latent space
is flattened (Figure 3, left), meaning both C and R are entangled in Z. As a result, modifying z
inevitably affects both components, making it difficult to isolate class-related changes. Additionally,
such models are trained to densely populate the latent space to cover the full data distribution
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(Figure 1, right), which increases optimization complexity. Conversely, CGMs employ structured
representations (Figure 3, middle), where class-related features C are provided as external conditions,
and the latent vector Z encodes only the residual information R. In this case, z = zCE, enabling CE
generation by simply altering c while keeping r fixed. However, this structure leads to a discontinuous
latent space, i.e., latent spaces of different classes are separated. This makes interpolation between
samples non-trivial.

X

Z

CR

X

Z

CR

X

Z1

CR

Z0

Figure 3: (Left) Flattened latent representation,
(Middle) structured latent representation, and
(Right) proposed latent representation, where X ,
Z, C, and R represent input, the corresponding
latent variable, class-related information, and resid-
ual information. The distributions connected by
flow matching are Z0 and Z1.

These limitations are illustrated in Figure 1. On
the left, we depict data points on a 1D intrin-
sic manifold embedded in a 2D space. Gener-
ative models constrain CE samples to remain
in-distribution, thereby avoiding adversarial ar-
tifacts . In Opt-based methods, CEs are ob-
tained by optimizing the objective in Section 2.1.
Typically, the optimization stops after crossing
the learned decision boundary, without reaching
the true decision boundary . This results in
uninformative and potentially misleading CEs,
e.g., in the MNIST case, a CE classified as ‘6’
may fail to exhibit key features of a genuine ‘6’.
More generally speaking, CEs close to the learned boundary are often not typical examples of their
class. Further, samples between the learned and true decision boundaries are critical for improving
model performance because they provide insights into the class features, which are unexplored under
the Opt-based paradigm. This problem becomes more severe in multi-class scenarios (Figure 1, right),
where the latent space is fully occupied and CEs may be far from the original input and pass through
regions corresponding to other classes, making the gradient vanishing problem more significant. As a
result, most Opt-based approaches are either limited to binary classification or require decomposition
into binary subproblems. CGM-based methods alleviate some of these issues through structured and
disentangled representations. However, they do not guarantee that the generated CE is close to the
actual decision boundary. Moreover, their discontinuous latent spaces make reversing from the CE
sample towards the decision boundary infeasible.

In addition, both Opt-based and CGM-based methods have practical limitations. Optimization-based
approaches require a differentiable loss and are vulnerable to gradient decay in the generative model
or classifier. CGM-based methods, on the other hand, must retrain the generative model for each new
classifier — a costly and complex process — and demand careful architectural design [45] to ensure
that conditioning information is preserved during training.

LEAPFACTUAL combines the advantages of both paradigms while mitigating the drawbacks. To
achieve this, we propose a mapping between flattened and structured latent spaces by introducing
a new latent dimension (Figures 1 to 3 right). Progressing along this axis removes class-related
information, while reversing the direction re-injects it. Below, we present the algorithm in detail.

3.2 LeapFactual

In Section 3.2.1, we introduce the CE-CFM training objective and its theoretical justification for
bridging the flattened and structured representations. Then, in Section 3.2.2, we show how a flow
matching model trained with the CE-CFM objective can generate high-quality and reliable CEs.

3.2.1 Training Phase

We aim to leverage flow matching to bridge the gap between flattened and structured latent represen-
tations, as illustrated in the left and middle columns of Figures 2 and 3. However, this integration
is not straightforward. As shown in the right column of the figures, our approach introduces a flow
between Z0 (structured encoding) and Z1 (flattened encoding), mediated by their shared parent
R. This design violates the independent coupling assumption inherent to the I-CFM framework,
necessitating a modification of the original formulation. Given an input image X , a classifier fθ
extracts class-relevant information C, from which the residual R can be subtracted. In MNIST digit
classification, C captures the digit identity, while R corresponds to the writing style. Once R is
inferred from samples drawn from the data distribution X and their corresponding class predictions
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C, the latent variables Z0 and Z1 become d-separated [46]; i.e., they are conditionally independent
given their only common parent R.

To address this, we redefine the conditioning term in I-CFM to h := (z0, z1,c). Hereby, z1,c ∼ q(z1 |
c) denotes the latent vectors specific to the class c = fθ(x) being predicted by the model, z0 ∼ q(z0)
is randomly sampled from a Gaussian distribution.

The joint distribution can be expressed as q(h) = q(z0)q(z1 | c) (derivation in Appendix A.1). To
construct the probability path pt(z | h) and the corresponding vector field ut(z | h) as outlined in
Equation 2, we sample from q(z0) and q(z1 | c). The samples are then inserted into the equation,
thereby defining a transition from a Gaussian prior q(z0) to the class-specific distribution q(z1 | c).
To generalize across classes, we condition the network on the predicted label c = fθ(x), leading to
our Counterfactual Explanation - Conditional Flow Matching (CE-CFM) objective:

LCE-CFM(ψ) := Et,q(h),pt(z|h) ∥vψ(t, z, c)− ut(z | h)∥2 , (3)

where vψ is a neural network parameterized by ψ. Unlike the original I-CFM formulation [42],
the CE-CFM objective explicitly incorporates the classifier output c into vψ. Architecturally, this
allows a single network to represent multiple class-specific flows. From an information-theoretic
perspective, the Gaussian nature of Z0 ∼ q(z0) acts as an information bottleneck, compressing the
content of Z1. By including class information C as a condition, the network can more efficiently
discard class-related features during compression:

Theorem 1. Let Z1 denote the original representation and Z0 its counterpart obtained
via flow matching conditioned on class information C. Then, Z0 is a compressed repre-
sentation of Z1, and the optimized information loss incurred through this transformation
corresponds exactly to the class-related information C that is provided as a condition.

Proof. in Appendix A.2.

Once the model is trained, Z0 and Z1 are linked through invertible transformations: a backward
integral

∫ 0

t=1
vψ(t, z, c) dt and a forward integral

∫ 1

t=0
vψ(t, z, c) dt. The backward pass effectively

removes class-relevant information (compression), while the forward pass reintroduces it (reconstruc-
tion). For conceptual clarity, we refer to these two operations as the lifting and landing transports.

3.2.2 Explaining Phase

In principle, any generative model can be used to realize the proposed mapping—for example,
a VAE encoder/decoder pair, GANs with inversion, or normalizing flows, which are inherently
invertible. However, with flow matching, we achieve significantly greater flexibility, enabling not
only information replacement but also more nuanced operations such as blending and injection.

We visualize the transport processes in Figure 4. Here, the latent space position is defined as
z = cp + rp, where cp ∈ {±0.25}2 denotes the four center positions, and rp ∈ (−0.25, 0.25)2

denotes the relative position. The relative position is constrained so that z lies within the squares
around the centers.

Information Replacement It can be observed from Figure 4 (a) that multiple points from different
classes in Z1 are mapped to the same black point in Z0, indicating that Z0 is a compressed represen-
tation of Z1, which complies Theorem 1. It is also evident in Figure 4 (b), where we fix the relative
position rp while varying the center positions cp, yielding the source points z1,blue , z1,yellow , and
z1,green . During the lifting transport, center information is discarded, resulting in similar transported
points: z0,blue ≈ z0,yellow ≈ z0,green. Consequently, the center information of the source points is fully
replaced by the target label cred during the landing transport, and all points map to locations
around z1,red . This process produces a global counterfactual [47], where counterfactuals from
different classes converge to the same result when their intra-class (residual) information is the same
and targeting the same class, failing to explore inter-class counterfactuals.

Information Blending For effective model explanations, local counterfactuals must preserve both
intra- and inter-class relationships. Instead of fully replacing class-related features, meaningful
counterfactuals blend source (with subscript s) and target (with subscript t) features. As shown in
Figure 4 (c), blended points interpolate between source and target: z = αcs + (1− α)ct + r,
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Figure 4: Toy experiments illustrating lifting and landing transports. The vertical axis represents t.
Hollow circles denote source points; filled circles or triangles indicate transported points. (a) Blue
source points are lifted to t = 0, removing center position information, which is replaced by the red
class during landing. (b) Center information from green, blue, and yellow sources is overwritten
by the red class. (c) Transported points blend center information from source (green, blue, red) and
target (red); dashed lines show interpolation. (d) Target information is injected even when source and
target are both red; dashed lines show interpolation. (e) At t = 1: filled circles mark blended points,
triangles mark injected ones; dashed and dotted lines denote blending and injection interpolations.

with α < 1. This is achieved by adjusting the transport step size γ in
∫
γut dt: γ = 1 yields full

replacement, while γ < 1 enables blending. Blending can be applied progressively, and the classifier
fθ can track the class label at each step. This is useful in multi-class tasks where class identity may
change mid-transport. For instance, in Figure 4 (e), the blue point transitions through the yellow
region before reaching the target, deviating from the dashed interpolation path.

Information Injection Stopping transport when the classifier prediction matches the target label
may be insufficient, as the learned boundary may not reflect the true one (Section 3.1). To refine the
result, target class information must be explicitly injected. Conditional lifting removes source class
information, which cancels the effect of injection when source and target classes coincide (see red
points in Figure 4 (b), (c)). To prevent cancellation, we use a smaller step size for the lifting than
for the landing transport. As shown in Figure 4 (d), where γlift = 0, γland = 1, the target red point
follows: z = (1 + α)ct + (1− α)r, amplifying target class information when cs = ct = cred. The
relative position r is also adjusted to maintain in-distribution samples. As shown in Figure 4 (e), the
progressive injection after blending maximizes target class information.

Algorithm 1 LEAP

Input: Flow matching model vψ trained with CE-CFM objective, source point zsource (at t=1), current label yc,
target label ŷc, step sizes γlift, γland

Step 1: Lift ▷ From Z1 to Z0

zyc(t) = zsource +
∫ t
1
γliftvψ

(
τ, zyc(τ), yc

)
dτ, t ∈ [0, 1].

zlift ← zyc(0)
Step 2: Land ▷ From Z0 to Z1

zŷc(t) = zlift +
∫ t
0
γlandvψ

(
τ, zŷc(τ), ŷc

)
dτ, t ∈ [0, 1].

zland ← zŷc(1)
Output: Transported point zland

Algorithm We define the combination of a lifting transport and a landing transport as a LEAP
(see Algorithm 1). Specifically, a Blending Leap uses step sizes γb = γb,lift = γb,land < 1, while an
Injection Leap sets γi,lift < γi,land. Based on these, we introduce our Algorithm 2: LEAPFACTUAL,
which combines Nb blending leaps and Ni injection leaps. Generally, a small step size is preferred
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Algorithm 2 LEAPFACTUAL

Input: Source point x, target label ŷc, classifier fθ , generative model gϕ, flow matching model vψ trained with
CE-CFM objective

Hyperparameters: Number of blending leaps Nb, blending step size γb, number of injection leaps Ni, injection
step sizes γi, lift < γi,land

Step 1: Preprocessing
z ← g−1

ϕ (x) ▷ Acquiring z via VAE encoder or GAN inversion
yc ← fθ(gϕ(z)) ▷ Determining the current label

Step 2: Information Blending ▷ Generating CE
for j = 0 to Nb − 1 do

z ← LEAP(vψ, z, yc, ŷc, γb, γb) ▷ Blending the source and target classes information
yc ← fθ(gϕ(z))

end for
Step 3: (Optional) Information Injection ▷ Generating Reliable CE

for j = 0 to Ni − 1 do
z ← LEAP(vψ, z, yc, ŷc, γi,lift, γi,land) ▷ Injecting the target class information
yc ← fθ(gϕ(z))

end for
Step 4: Postprocessing

xCE = gϕ(z)
Output: Transported point xCE

for higher precision, although this may require a larger number of leaps and consequently a higher
inference time. The number of steps depends on the dataset and specific target classes. However,
when blending only, the algorithm will automatically stop as soon as the target class is reached due to
information replacement. Generally, starting with a small step size and a large number of steps is
suggested.

4 Experiments

In the following sections, we demonstrate the performance of LEAPFACTUAL across diverse datasets
and experiment setups. We differentiate between LEAPFACTUAL and LEAPFACTUAL_R, the latter
one additionally includes information injection. We refer to CEs generated with LEAPFACTUAL_R as
reliable CEs. In Section 4.1, we compare our method with state-of-the-art methods and demonstrate
the interpretability of our CEs using the Morpho-MNIST dataset [48]. In Section 4.2, we show
that reliable CEs enhance classification performance using the Galaxy 10 DECaLS dataset [49, 50].
Finally, in Section 4.3, we use the FFHQ[51] dataset and StyleGAN3[52] to illustrate scalability and
applicability to non-differentiable methods. We evaluate performance based on correctness, Area
Under the ROC Curve (AUC) and Accuracy (ACC) using the desired target label as ground truth, and
similarity, measures depend on the individual experiments. More experimental details in Appendix B.

4.1 Quantitative Assessment

In this section, we compare the performance of our method against two competitors: the Opt-based
and CGM-based methods. Morpho-MNIST [48] provides a modified version of MNIST specifically
designed to benchmark representation learning. We evaluate similarity as the Absolute Relative Error
between morphological properties of counterfactual and reconstructed samples (see Appendix B.2.1).
To ensure a fair comparison, we use the same VAE model for both the Opt-based and proposed
methods, and apply only minimal modifications to the CGM-based method (refer to Appendix B).
We use a 4-layer MLP as the flow matching model and explain a simple MLP classifier, with test
accuracy 96.58%. Implementation details are provided in Appendix B.

As shown in Table 2, the Opt-based method yields the poorest performance across both correctness
and similarity metrics. This is primarily due to gradient vanishing, which causes counterfactual
trajectories to halt before reaching the target decision region. This issue is clearly visible in Figure 5,
where many counterfactuals fail to resemble typical samples from the target class. The CGM-based
method performs significantly better in terms of correctness but introduces greater distortion compared
to the proposed approach. These observations are consistent with the discussion in Section 3.1.
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Table 2: Results on Morpho-MNIST for 5 runs across different methods (columns) and evaluation
metrics (rows). First rows report Accuracy (ACC) and Area Under the ROC Curve (AUC), while
the remaining rows show mean and standard error of Absolute Relative Error (D) in morphological
properties. The 1st, 2nd, and 3rd best performances are indicated by bold, underline, and italic.

Metric Opt-based CGM-based LeapFactual LeapFactual_R

ACC 0.8277±0.0071 0.9422±0.0045 0.9868±0.0026 0.9906±0.0016
AUC 0.8814±0.0061 0.9979±0.0002 0.9990±0.0002 0.9999±0.0000
D(Area) 0.2475±0.0040 0.2556±0.0026 0.1665±0.0035 0.2295±0.0056
D(Length) 0.2472±0.0039 0.2999±0.0017 0.2128±0.0039 0.2732±0.0029
D(Slant) 4.3667±0.2430 3.4613±0.1783 2.5026±0.2554 3.3144±0.3352
D(Thickness) 0.1724±0.0031 0.0859±0.0014 0.0807±0.0011 0.0895±0.0020
D(Width) 0.2912±0.0033 0.3069±0.0012 0.2061±0.0039 0.2784±0.0039
D(Height) 0.0620±0.0005 0.0288±0.0003 0.0265±0.0007 0.0303±0.0007

Target

Input

Reconstruc�on

Opt-based

0 1 2 3 4 5 6 7 8 9

CGM-based

LeapFactual

LeapFactual_R

Figure 5: Qualitative comparison of counterfactual samples
across different methods (rows) and target labels (columns).
The first two rows are randomly sampled target labels and
inputs, followed by the reconstructed images.

In comparison, LEAPFACTUAL demon-
strates superior performance in both cor-
rectness and similarity. It generates cor-
rectly classified counterfactual samples
while minimally modifying the origi-
nal inputs. The information injection
in LEAPFACTUAL_R further improves
correctness without compromising sim-
ilarity. As shown in Figure 5, our
methods produce realistic counterfac-
tual samples that modify only the most
important class-related features, preserv-
ing digit style. This selective modifica-
tion is particularly beneficial for distin-
guishing similar classes (e.g., 9 vs. 7 or
5 vs. 8), thereby enhancing interpretabil-
ity. More qualitative comparisons in Ap-
pendix B.

4.2 Model Improvement

Merging Round Round Cigar

Figure 6: Top to bottom: Input images, CEs, and
reliable CEs. (Left) Merging to Round galaxy.
(Right) Round to Cigar galaxy.

We show the advantages of reliable CEs in model
training on the Galaxy10 DECaLS dataset [49, 50],
a 10-class galaxy morphology classification task.
In the experiment, we fix Nb = 250, γb = 0.1,
γi,lift = 1, and γi,land = 1.025 based on ablation
results in Appendix B.

We train a weak classifier on 20% of the dataset
and use a second VGG model architecture trained
on 100% as baseline. We generate standard and re-
liable CEs (depicted in Figure 6) regarding all
classes other than the original for each image
in the training subset, resulting in two auxiliary
datasets assuming CE target labels as ground truth.
We then blend varying fractions of these auxiliary datasets with the original training subset, used to
train the weak classifier (20%), to evaluate their impact on the models classification performance.

Table 3: Model performance across 5 runs with different fractions (second row) of standard and
reliable CEs added to training set. Baselines trained with 20% and 100% of training set.

Metric Baseline CE Reliable CE

20% 100% 10% 50% 100% 10% 50% 100%

ACC↑ 0.8107 ± 0.0041 0.8530 ± 0.0010 0.7975 ± 0.0016 0.7968 ± 0.0017 0.7967 ± 0.0022 0.8163 ± 0.0020 0.8197 ± 0.0016 0.8237 ± 0.0021
AUC↑ 0.9770 ± 0.0005 0.9813 ± 0.0003 0.9749 ± 0.0002 0.9744 ± 0.0001 0.9738 ± 0.0003 0.9776 ± 0.0002 0.9788 ± 0.0004 0.9793 ± 0.0005
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When standard CEs are blended into the training data, model performance declines as the proportion
of CEs increases, shown in Table 3. In contrast, using reliable CEs leads to improvements in both
accuracy and AUC with increasing fraction. This is because the standard CEs are on the learned
decision boundary of the weak classifier, while reliable CEs align closely with the true decision
boundary (see Appendix B.1). Thus, they can serve as an augmentation strategy for small datasets or
imbalanced classes, thereby addressing fairness and reducing the underrepresentation of minorities.
Further, reliable CEs can improve model validation by keeping class-unrelated features similar to the
original input, improving expressiveness and helping to identify shortcut learning [53, 54]. We will
further investigate these promising results in future work.

4.3 Generalization

Table 4: Quantitative results for FFHQ
using 1,024 samples. Last row reports
results for randomly paired images.

Nb ACC↑ AUC↑ SSIM↑ PSNR↑ LPIPS↓
5 0.706 0.706 0.564 18.036 0.149
10 0.957 0.957 0.538 17.126 0.171
15 0.982 0.982 0.531 16.946 0.176
20 0.993 0.993 0.525 16.833 0.180
- - - 0.070 8.848 0.555

In this experiment, we demonstrate that the proposed
method is highly scalable and applicable to non-
differentiable classifiers, such as human annotators. To
simulate this scenario, we employ a pretrained CLIP
model [55] as a proxy for human judgment. The model
is used to classify images as either Smiling Face or Face.
The images are generated by a StyleGAN3 model [52]
pretrained on the FFHQ dataset [51] (10242 pixels). In
this setting, existing Opt-based and CGM-based methods
are infeasible due to their reliance on differentiability or
retraining.

For the flow matching model, we train a 1D U-Net [56] for 120 epochs. A total of 20K images are
randomly sampled from StyleGAN3 and projected into the w-space [51], which serves as input. The
corresponding predicted labels from the CLIP model are used as conditional inputs.

Figure 7: Top to bottom: randomly sampled input images,
CEs, and reliable CEs. (Left) Face to Smiling Face. (Right)
Smiling Face to Face.

In Figure 7, rows 1 and 2 illustrate
image transformations from Face to
Smiling Face, and vice versa, using
our method. Note, even subtle differ-
ences in facial features lead to changes
in classification outcomes. Compar-
ing rows 2 and 3 in Figure 7, we ob-
serve that the target feature –facial
expression– is further accentuated,
providing a clear visual explanation.
Table 4 presents accuracy and similar-
ity metrics for various values of Nb.

5 Conclusion

Our work addresses key limitations in existing counterfactual explanation methods by introducing
LEAPFACTUAL, a novel algorithm comprising the CE-CFM training objective and explanation
procedure. Our analysis shows that LEAPFACTUAL offers a flexible mechanism for generating
counterfactual explanations, capable of producing not only high-quality but also reliable results, even
in the presence of discrepancies between true and learned decision boundaries. While our current
focus is on visual data, the method is broadly applicable to other data modalities as well.

Limitations & Future Work A limitation arises from the dimensionality of the latent space. In
high-dimensional settings, such as those involving diffusion models or normalizing flows, the flow
matching model cost increases significantly, leading to reduced training efficiency. Future work
includes improving LEAPFACTUAL by replacing I-CFM with more efficient approaches like OT-
CFM [42]. However, this improvement is not trivial, since the application of OT-CFM requires
modifications to the transport map on the classifiers’ predictions. Furthermore, we see potential for
future work exploring latent space entanglement and challenges associated with imbalanced datasets.
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paper’s contributions and scope?
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Justification: The abstract and introduction reflect the paper’s contribution and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitation of the work is discussed in the last section.
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only tested on a few datasets or with a few runs. In general, empirical results often
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• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
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• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The code is available. The details of the experiments are provided in the
appendix.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Justification: All the datasets used in the experiments are publicly available. The codes
that produce synthetic data and reproduce the experiments are provided in supplementary
material.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental setting and details are provided in the main paper and the
supplementary material.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
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• We recognize that the procedures for this may vary significantly between institutions
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A Proofs

A.1 Conditional Independence

Proof. We define the joint latent variable representation as h = (z0, z1 | c, x), where x denotes the
input image and c = fθ(x) is the corresponding classifier output. Here, z1 represents the latent
encoding of x, and z0 is sampled from a Gaussian prior. The distribution over h can be expressed as:

q(h) = q(z0, z1 | c, x)

=

∫
q(z0, z1, c, x, r) dr

q(c, x)

=

∫
q(r | x, c) q(z0 | r) q(z1 | r, c) dr

= q(z0) q(z1 | c)

The transition from the second to the third line relies on the conditional dependencies illustrated
in Figure 3. From the third to the fourth line, we use the fact that the auxiliary variable r is fully
determined by x and c. Furthermore, since z1 is an encoded representation of x, we assume that all
relevant information in x is captured by z1. Consequently, the conditioning on x can be omitted in
the final expression. For the same reason, we remove the x-conditioning in the representation and
define h = (z0, z1 | c).

A.2 Mutual Information

Proof. We adopt the information bottleneck framework, which aims to find a representation Z that
balances compression of the input X with retention of information relevant to the target label Y . The
objective is:

min I(X;Z)− βI(Z;Y ),

where I(X;Z) quantifies compression and I(Z;Y ) quantifies predictive power, with β as the trade-
off coefficient.

In our case, Z1 is lifted to Z0 conditioned on the class C. The goal of lifting is to minimize
I(Z0 | C;Z1), effectively compressing Z1 into Z0 while conditioning on class-related information.
Conversely, the landing transport reconstructs Z1 from Z0 conditioned on C, aiming to maximize
I(Z0;Z1 | C). Since the transport is invertible, we assume β = 1.

The information loss is expressed as:

min
ψ

I(Z0 | C;Z1)− I(Z0;Z1 | C)

=min
ψ

[I(Z0, Z1, C)− I(Z1, C)]− [I(Z0, Z1, C)− I(Z0, C)]

=min
ψ
I(Z0, C)− I(Z1, C)

=− C.

where ψ parameterizes the vector field used in flow matching. In the last two steps, we notice from
Figure 3 that the minimum mutual information between Z0 and C is zero because Z0 only depends on
R in optimal setting; the maximum mutual information between Z1 and C is C because Z1 contains
both C and R. This derivation confirms that the information removed during lifting corresponds
precisely to C, the class-related information.
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B Experiments

The following section provides more details regarding experiments including the implementation
(Section B.1) and evaluation metrics (Section B.2).

B.1 Implementation Details

This section provides more details regarding compute resources, datasets and hyperparameters.

B.1.1 Technical Details

We performed our experiments on a single node of a GPU server, which includes one NVIDIA A100
with 80GB of VRAM, and an AMD EPYC 7742 with 1TB RAM shared with the other nodes of the
server.

B.1.2 Quantitative Assessment

Morpho-MNIST Morpho-MNIST [48] is modified version of MNIST. The dataset is designed as a
benchmark dataset aimed at quantitatively assessing representation learning.

Generative Models The VAE model consists of an encoder and a decoder. The encoder architecture
is defined as follows: Conv(3, 8, 3, 2, 1) → BN → LeakyReLU(0.2) → Conv(8, 16, 3, 2, 1) → BN
→ LeakyReLU(0.2) → Conv(16, 32, 3, 2, 1) → BN → LeakyReLU(0.2) → Conv(32, 32, 3, 2, 1) →
BN → LeakyReLU(0.2) → Linear(128, 64), where the final linear layer produces a 64-dimensional
vector, which is split into the mean vector µ and the standard deviation vector σ. The decoder
mirrors the encoder architecture and includes an additional 1× 1 convolutional layer with a Sigmoid
activation at the end to reconstruct the input data.

The model is trained for 100 epochs using the Adam optimizer with a learning rate of 5× 10−3 and a
batch size of 256. The loss function combines the mean squared error (MSE) reconstruction loss and
the Kullback–Leibler divergence (KLD), with a weighting ratio of 4,000 between the MSE and the
KLD terms.

Opt-based Method For each batch of input, we optimize Equation (1) using the Adam optimizer
with a learning rate of 0.2 for 1,000 epochs. The hyperparameter λ is set to 0.0006 to mitigate
gradient vanishing.

We also experimented with ReLU activation functions in the VAE architecture. However, the
results show that the counterfactual explanations (CEs) remain unchanged due to gradient decay.
Consequently, we retain the LeakyReLU activation with a negative slope of 0.2 throughout the
experiment.

CGM-based Method To incorporate conditional information, we extend the input dimension of
the linear layer at the end of the encoder and the linear layer at the beginning of the decoder from
128 to 138. This allows the model to accept a 10-dimensional one-hot encoded class label from the
Morpho-MNIST dataset as the condition input. The training procedure remains the same as that of
the standard VAE model.

LeapFactual The architecture of the flow network is defined as follows: Linear(32 + 1 + 10, 64)
→ SiLU → Linear(64, 64) → SiLU → Linear(64, 64) → SiLU → Linear(64, 32), where the input
dimensions 32, 1, and 10 correspond to the latent vector from the VAE, a time conditioning variable,
and a one-hot encoded class label, respectively. The flow matching noise parameter σ is set to 0. The
model is trained using the Adam optimizer with a learning rate of 0.005 and a batch size of 256 for
30 epochs, taking approximately 80 seconds to complete.

For this experiment, the hyperparameters of LEAPFACTUAL are set as follows: γb = 0.1 andNb = 15
for blending, and γi, lift = 0, γi, land = 0.1, and Ni = 5 for injection.

Additional qualitative results from LEAPFACTUAL are provided in Figure 8.
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Figure 8: Morpho-MNIST: different input (rows) and target labels (columns). In each column, the
input, CEs, and reliable CEs are shown from left to right.

Table 5: Galaxy10 ablation experiment of Nb with fixed γb = 0.1

.

Nb ACC↑ AUC↑ ACCr↑ AUCr↑ SSIM↑ PSNR↑ LPIPS↓
100 0.9718 0.9855 0.4868 0.8798 0.8579 22.8416 0.0641
150 0.9772 0.9884 0.4862 0.8829 0.8562 22.3836 0.0655
200 0.9814 0.9896 0.4880 0.8832 0.8551 22.1526 0.0663
250 0.9832 0.9901 0.4892 0.8836 0.8544 21.9950 0.0668
300 0.9832 0.9898 0.4874 0.8835 0.8538 21.8846 0.0673

B.1.3 Model Improvement

This experiment deals with Model improvement.

Dataset The Galaxy10 DECaLS dataset is publicly available: Galaxy10 DECaLS. It includes
around 18,000 colored images and deals with a 10-classes galaxy morphology classification task. The
dataset is split into training and test sets with a fraction of 90% and 10%. The pre-processing includes
random rotation augmentation, cropping to the center 150× 150 pixels, and resizing to 128× 128.

VAE Model The architecture of the VAE is adapted from Ditria and Drummond [57], with all ELU
activation functions replaced by LeakyReLU. For latent space regularization, we substitute the KL
divergence penalty with the Maximum Mean Discrepancy (MMD) [58].

Flow Model The architecture of the flow network is defined as follows: Linear(64 + 1 + 10, 256)
→ SiLU → Linear(256, 256) → SiLU → Linear(256, 256) → SiLU → Linear(256, 256) → SiLU →
Linear(256, 256) → SiLU → Linear(256, 64), where the input dimensions 64, 1, and 10 correspond
to the latent vector from the VAE, the time conditioning variable, and the one-hot encoded class label,
respectively. The flow matching noise parameter σ is set to 0. The model is trained using the Adam
optimizer with a learning rate of 10−4, a batch size of 256, and for a total of 500 epochs. Training
takes approximately 2 hours.

Ablation Study We begin with an ablation study to identify the optimal value of Nb for blending,
while keeping γb = 0.1 fixed. As shown in Table 5, the best performance is achieved with Nb = 250.
Next, we fix Nb = 250 and γb = 0.1, and proceed to tune the injection hyperparameters.

To evaluate reliable counterfactual CEs, we train two VGG16 classifiers using 20% and 100% of
the dataset, referred to as the weak and strong classifiers, respectively. Their test accuracies are
approximately 81% and 85%. We generate both standard and reliable CEs from the weak classifier
and evaluate them using accuracy (ACC) and area under the curve (AUC) metrics, as assessed by the
strong classifier. These are denoted as ACCr and AUCr, respectively. These two metrics are used to
select the best injection hyperparameters for generating reliable CEs.

To tune the injection parameters, we first fix the difference γi,land − γi,lift and vary γi,lift, followed
by optimizing γi,land. As shown in Figure 9, the best performance is obtained with γi,lift = 1 and
γi,land = 1.025.
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Figure 9: Hyperparameter ablation (Left) Ablation of γi,lift with γi,land − γi,lift = 0.025. (Right)
Ablation of γi,land with γi,lift = 1. Line color intensity increases with Ni in steps of 10, starting at 10.

Finally, we observe the effect of Ni. In Table 6, we can find that reliable metrics improve with
injection steps. Notably, ACCr rises from 47% to 82% without degrading the weak classifier’s
accuracy. This confirms that the standard CE is lying around the weak classifier’s decision boundary,
while reliable CE is more aligned with the true decision boundary.

More qualitative results are shown in Figure 10.

Table 6: Quantitative results for Galaxy10 reliable CEs. Uncertainties calculated across 10 runs.
Metric Ni = 0 Ni = 5 Ni = 15 Ni = 25 Ni = 35

ACC↑ 0.9821 ± 0.0008 0.9439 ± 0.0017 0.9599 ± 0.0011 0.9612 ± 0.0012 0.9545 ± 0.0011
AUC↑ 0.9897 ± 0.0003 0.9934 ± 0.0003 0.9973 ± 0.0001 0.9975 ± 0.0001 0.9974 ± 0.0001
ACCr↑ 0.4738 ± 0.0034 0.6620 ± 0.0040 0.7899 ± 0.0023 0.8171 ± 0.0028 0.8135 ± 0.0031
AUCr↑ 0.8797 ± 0.0012 0.9404 ± 0.0009 0.9740 ± 0.0006 0.9815 ± 0.0005 0.9832 ± 0.0005
SSIM↑ 0.8577 ± 0.0007 0.8255 ± 0.0009 0.7774 ± 0.0010 0.7417 ± 0.0010 0.7122 ± 0.0010
PSNR↑ 22.4959 ± 0.0778 21.0064 ± 0.0826 19.2938 ± 0.0768 18.0882 ± 0.0787 17.0410 ± 0.0733
LPIPS↓ 0.0651 ± 0.0005 0.0821 ± 0.0006 0.1095 ± 0.0006 0.1324 ± 0.0007 0.1524 ± 0.0007

B.1.4 Generalization

This section deals with the experiment setup regarding the generalization experiment.

CLIP We use a CLIP model with a Vision Transformer (ViT-B/32) as the image encoder. The data
is transferred from [-1, 1] to [0, 1] before being fed into the transformation of the CLIP model. The
model is trained to differentiate between face and smiling face. We determine the labels based on the
higher score among Smiling face and Face predicted by the CLIP mode.

StyleGAN3 We use a StyleGAN3 [52] pretrained on the FFHQ dataset (checkpoint name stylegan3-
r-ffhq-1024x1024.pkl from here). The noise mode is set to ‘const’ and the truncation_psi is set to 1.
We randomly sample from a Gaussian distribution and project them to w-space and image space via
the mapping function and decoder.

LeapFactual In this experiment, we use a 1D U-Net [56] as the flow matching model. To train the
model, we first sample 20,000 random latent vectors from a Gaussian distribution and map them to
the w-space as the input. Then we use the classifier output of corresponding images as the condition
of the U-Net. We use Adam optimizer to train the model for 120 epochs with a batch size of 32,
a learning rate of 2 × 10−4, and a weight decay of 1 × 10−5. Training is performed on a single
NVIDIA A100 GPU and takes approximately 22 hours.

The hyperparameters for the blending parameters are γb = 0.8 and Nb = 10. For information
injection, we set γi,lift = 0.8, γi,land = 0.83, and Ni = 5. The flow matching σ is set to 10−4.

B.2 Evaluation Metrics

This section introduces the evaluation metrics we employed for the evaluation of our experiments.
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B.2.1 Morphometrics

[48] proposed the Morpho-MNIST dataset as well as measurable properties known as morphometrics
to evaluate differences regarding characteristics like stroke thickness and area, length, width, height
and slant of the depicted digits. The assessment of these metrics begins with first binarizing the image,
followed by measuring various features about the resulting skeleton including: the length of the
skeleton (length), average distance between the center of skeleton and its closest borders (thickness),
horizontal shearing angle (slant) and the dimensions of a bounding box (width, height and area).

We report the absolute of the relative error regarding the morphometrics:

Absolute Relative Error =
∣∣∣∣Absolute Error

True Value

∣∣∣∣,
with the absolute error being the difference between measured and true value. We employ the absolute
value, since the angle reported for slant may be negative.

We used the official implementation available online: Morpho-MNIST git. For more details, please
refer to [48].

B.2.2 Metrics

We assess the correctness of the generated CE employing accuracy (ACC) and area under the Receiver
Operating Curve (AUROC), using the implementations provided by torchmetrics. For both metrics
higher is better. While accuracy provides a quick overview of how often the model provides the
correct prediction (correct predicitons / total predictions). Since AUROC denoted the area under the
curve between true positive rate and false positive rate, it provides a deeper insight and is favourable
especially when the dataset is imbalanced.

To evaluate the similarity between original image and CE, we employ three well-known Perceptual
Similarity Metrics working on different levels. Including Structural Similarity Index (SSIM) [59],
Learned Perceptual Image Patch Similarity (LPIPS) metric [60], and Peak Signal-to-Noise Ratio
(PSNR).

SSIM evaluates similarity based on comparing three concepts: luminance, structure and contrast.

SSIM(x, xCE) =
(2µxµxCE + C1) (2σxxCE + C2)(

µ2
x + µ2

xCE
+ C1

) (
σ2
x + σ2

xCE
+ C2

) (4)

The influence of luminace is included as the means of pixel values denoted as µx and µxCE , contrast
is included with the standard deviations σx and σxCE and finally the covariance σxxCE is employed to
take account for structure.

PSNR, in contrast, is a more simple metric building on the mean-squared error and comparing on a
pixel-wises basis.

PSNR(x, xCE) = 10 ∗ log10
(

max(x)2

MSE(x, xCE)

)
(5)

Unlike PSNR or SSIM, LPIPS evaluates the similarity of two images based on deep features extracted
from a neural network, as a feature extractor we set Squeezenet. The similarity is evaluated by com-
paring layer-wise computed euclidean distances of the normalized images. Which are subsequently
being accumulated as a weighted-sum, the weights being learned. The score can then denotes the
distance between the two images, therefore a lower LPIPS score resembles a higher similarity.

More details can be found in the original publications. In our experiments, we use the implementations
provided by torchmetrics, setting Squeezenet as backbone network for LPIPS while keeping all other
parameters at their default values.

C Broader Impacts

Our work introduces a method to generate realistic and reliable counterfactuals, aiming at inter-
pretability. By demonstrating how input data has to be modified in order to obtain a different decision
and providing actionable changes, we promote transparency and reduce of barriers to the application
of Machine Learning models.
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Potential positive impacts of our approach may include, supporting non-expert users in understanding
decisions, enhancing scientific knowledge discovery and enabling future works regarding fairness.
Our method could be extended to generate counterfactual samples for underrepresented minorities in
datasets. Additionally, counterfactual explanations can be utilized to investigate features contributing
to the decision, thereby facilitating bias detection.

However, there are risks for potential misuse, such as the creation of deep fakes. Our approach allows
changing the input data towards specific classes, thus allowing to generate new data. Another concern
may be that a simplified representation of the decision-making process could mislead users. While
we have no opportunity to mitigate the risk towards deep fakes, we advocate for the use of reliable
CEs to minimize potential oversimplifications. These CEs ensure, that the generated counterfactual
sample remain in the distribution of the data, avoiding out-of-distribution artifacts that could mislead
the user.
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Figure 10: In each group (two rows), the column with a single image is the input, the remaining
are CEs (top) and reliable CEs (bottom). From top to bottom, the input image are in the classes
of Distributed, Merging, Round Smooth, In-between Round Smooth, Cigar Round Smooth, Barred
Spiral, Unbarred Tight Spiral, Unbarred Loss Spiral, Edge-on without Bulge, Edge-on with Bulge
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