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Figure 1: RAD learns from human and robot data through reasoning. RAD learns how to reason
through high level task plans, subtasks, and movements from human data, and how to map reason-
ings to action from robot data. Thus, RAD generalizes to tasks unseen in human and robot data.

Abstract: End-to-end imitation learning offers a promising approach for training
robot policies. However, generalizing to new settings—such as unseen scenes,
tasks, and object instances—remains a challenge. Although large-scale robot
demonstration datasets have shown potential for inducing generalization, they are
resource-intensive to scale. In contrast, human video data is abundant and di-
verse, but human videos lack action labels, complicating their use in imitation
learning. Existing methods attempt to extract grounded action representations
(e.g., hand poses), but resulting policies struggle to bridge the embodiment gap
between human and robot actions. We propose an alternative approach: lever-
aging language-based reasoning from human videos to train generalizable robot
policies. Our method, Reasoning through Action-free Data (RAD), learns from
both robot demonstration data (with reasoning and action labels) and action-free
human video data (with only reasoning labels). The robot data teaches the model
to map reasoning to low-level actions, while the action-free data enhances reason-
ing capabilities. Our experiments demonstrate that RAD enables effective transfer
across the embodiment gap, allowing robots to perform tasks seen only in action-
free data (+30% success). Furthermore, scaling up action-free reasoning data sig-
nificantly improves policy performance and generalization to novel tasks (+25%
success). Additionally, we are releasing a dataset of 3,377 human-hand demon-
strations compatible with the Bridge V2 benchmark, including chain-of-thought
reasoning annotations and hand-tracking data to help facilitate future work. See
website with videos: https://rad-generalization.github.io.
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1 Introduction

Training visuomotor policies via imitation learning is a promising paradigm for robot control. How-
ever, current end-to-end learning methods struggle to generalize to new settings beyond their training
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data, such as new scenes, new task instructions, and new object instances. For example, a robot that
learns to pick up a video game controller in a lab setting should be able to generalize if it encounters
the same controller on a couch in a home setting. Generalizing to novel scenarios is essential for
deploying learning-based policies in the diverse and unpredictable scenarios in the real world.

One approach to achieving generalizable policies is to collect diverse large-scale robot demonstra-
tion data to train expressive multi-task policies [1, 2, 3, 4]. while there are promising signs of scaling
up datasets being the solution, we have yet to reach the scale needed for comprehensive generaliza-
tion, and collecting data at even larger scales is even more expensive.

On the other hand, many see tapping into human video datasets, consisting of humans directly
performing tasks as opposed to collecting robot data, as the answer [5, 6, 7]. This data is cheap
to collect and already present at scale in Internet datasets. However, human videos lack action
labels, making supervised learning methods like imitation learning very difficult. Some works tackle
this challenge by extracting grounded action-like representations from video as action labels, for
example hand poses or object affordances [8, 9, 10, 11]. However, extracting grounded actions from
human videos often makes assumptions about the scene and the embodiment gap (e.g., how the
hand pose maps to the robot action or relying on paired human and robot data) which can limit their
practicality at scale.

Instead of extracting grounded actions from videos and the restrictive assumptions that come with
it, we ask: is there any other behavioral information—representations that directly influence robot
actions—that we can extract from human videos? Our insight is that human videos contain vast
amounts of higher-level reasoning that guide robot action prediction. For example, if the task is to
pick up a cup, a human might reason about moving the hand towards the cup, then grasping the cup,
and then lifting the cup. Prior works have shown the generalization benefits of this style of language
reasoning, however they often learn reasoning from just robot demonstrations [12, 13]: our key idea
is to instead extract such reasoning from action-free human videos—significantly scaling up data
that informs robot actions.

We introduce our method, Reasoning through Action-free Data (RAD), a robot policy that leverages
reasoning traces extracted from action-free data. RAD trains a large transformer model on a mixture
of robot demonstration data with both reasoning and robot action labels, and action-free (human
video) data labeled with just reasoning. The robot data teaches the model to autoregressively go
from reasoning to low-level actions, while the action-free data augments the reasoning capabilities
of the model. We label reasoning traces by leveraging pretrained vision-language models such as
Gemini [14] with hindsight knowledge as done in prior work [12].

We experimentally validate that learning from action-free reasoning data transfers well across the
embodiment gap—showing 20% better performance on tasks only seen in the action-free data over
models not finetuned with RAD. Additionally, we find that action-free reasoning data improves the
capacity of RAD to generalize to tasks that have never been seen in both robot and human data,
with RAD outperforming baselines by 15%. Finally, we trained a RAD model on a portion of the
Something-Something V2 dataset [15], and found that this model was able to to learn new skills
beyond those exhibited in the vanilla RAD model (+15% success rate).

2 Related Work

In this section, we situate our work among prior work on the use of language as a representation of
low-level actions in robot learning, vision-language-action models (VLAs) as a recipe for language-
conditioned robot policies, and approaches that leverage human videos for robot learning.

Language as an Action Representation. Language is commonly used as a high-level repre-
sentation in imitation learning, either for conditioning multi-task policies on specific instructions
[16, 17, 18, 19, 3], or as a way to decompose high-level, long-horizon instructions into lower-
level subtask instructions [20, 21, 22]. More recently, several works have studied the role of more
fine-grained language such as “language motions” as intermediate representations to predict [13] or
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Figure 2: RAD generates reasonings on both human and robot data using a suite of pretrained mod-
els. For both human and robot data, scene descriptors and object bounding boxes are generated
using Prismatic VLM and Grounding DINO. For robot data, SAM and proprioception can be used
to generate movement primitives; for human data, RAD relies on HaMeR to track human hands for
primitive generation. For both data types, the scene descriptions, bounding boxes, and movement
primitives (and actions for robot data) are synthesized by Gemini into a language reasoning. Rea-
sonings are tokenized and fed into a dataset containing both human and robot data for co-finetuning.

explicitly reason over language as well as other visually-grounded features such as bounding boxes
as a way of guiding large pretrained policies [12]. In contrast to prior works which use language as
a goal representation, we explore how reasoning in language can be used as an action representation
for human video data in addition to robot data.

Vision Language Action Models. Recent works have explored the use of pre-trained Vision-
Language Models (VLMs) as backbones for Vision-Language Action Models (VLAs) which directly
predict low-level robot actions. For example, RT-2-X [2] fine-tunes the 55B-parameter PaLI-X VLM
[23] on the Open-X Embodiment dataset [2], and OpenVLA [3] uses a 7B-parameter Llama 2 LLM
backbone with a vision encoder based on DINOv2 [24] and SigLIP [25]. The promise of VLAs for
manipulation is to build off of generalization of VLMs which have been trained on Internet-scale
vision-language data. An additional way to achieve transfer of VLM capabilities to VLAs is to take
advantage of their textual reasoning abilities. For example, Embodied Chain of Thought (ECoT)
uses multiple steps of reasoning prior to predicting robot actions by training on synthetic reasoning
data [12].

Learning from Human Video. A large number of prior works in imitation learning for robotics
focus on learning from demonstrations collected via teleoperation by expert operators. This method
of collecting data is costly, so a number of prior works have investigated ways to leverage existing
data sources of human videos to improve robot policy learning — for example, by pre-training vi-
sual representations [26, 27, 28] or learning reward functions [29, 30, 31]. However, bridging the
gap between human videos and robot actions can be challenging due to embodiment differences and
diversity in videos. Several works learn priors from human video datasets and/or in-domain human
videos [32, 33, 6, 10] or aligning paired/unpaired examples of human videos and robot demonstra-
tion videos [34, 35, 36, 37] or simulations [38]. These works are still fundamentally limited by the
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quantity of robot demonstrations. Another line of work leverages intermediate representations for
predicting robot actions downstream, but make assumptions about the human hand behavior, which
is not necessarily the same as the robot [39, 8]. Our work goes beyond existing methods that rely
on generating intermediate representations for action predictions by generating detailed reasoning
steps about human video demonstrations.

3 Reasoning through Action-free Data
In this section, we will first describe our problem setting and lay out our assumptions, and then we
will outline our method for learning from action-free data using language reasoning chains. As an
overview, RAD involves two major steps. First, annotate action-free data with language reasoning
(Section 3.3). Second, train a reasoning-based policy on a combination of robot demonstration data
with both actions and reasoning chains and action-free data with only reasoning chains (Section 3.4).

3.1 Problem: Learning Reasoning in Action-free Data

In multi-task imitation learning, we are given a dataset D = {(oi, ai, gi)}Ni=1 of observations o ∈ O,
actions a ∈ A, and task specifications g ∈ G (e.g., natural language goals). The objective is to learn
the expert policy P (a | o, g).

In the reasoning-based multi-task imitation learning setting, we assume actions are mediated by a
chain of C intermediate reasoning steps (l1, . . . , lC), where each lj is a language description that
depends on (o, g) and previous reasoning steps (l1, . . . , lj−1). The final action a depends on the full
reasoning chain and (o, g). Our goal is to learn the joint distribution: P (a, l1, . . . , lC | o, g). We
parameterize this with model Pθ and maximize the log-likelihood over the dataset D:

L(θ) =

N∑
i=1

logPθ(ai, l
1
i , . . . , l

C
i | oi, gi)

=

N∑
i=1

logPθ(ai | l1i , . . . , lCi , oi, gi) +
C∑

j=1

logPθ(l
j
i | l<j

i , oi, gi)


where l<j

i denotes (l1i , . . . , l
j−1
i ). We refer to the two terms as Laction(θ) and Lreasoning(θ).

Our key insight in RAD is that action-free datasets—such as human videos—can supervise learn-
ing the reasoning component (Lreasoning(θ)). Specifically, we assume access to a dataset D̃ =

{(õi, g̃i, l̃1i , . . . , l̃
Ci
i )}Mi=1, where each sample provides a partial reasoning chain of length Ci ≥ 1.

Each sample might have different Ci, differing based on annotation confidence levels or quality.

To incorporate this action-free data, we optimize an auxiliary reasoning objective:

L̃reasoning(θ) =

M∑
i=1

Ci∑
j=1

logPθ(l̃
j
i | l̃<j

i , õi, g̃i)

By training on both D and D̃, we aim to improve the reasoning component of the policy, enabling
generalization to new tasks from action-free data.

3.2 Reasoning Steps in RAD

While this setup can in principle work with different formulations of language reasoning
steps, we instantiate our algorithm with the following reasoning steps from prior work [12]:
TaskPlan (l1), SubtaskReasoning (l2), Subtask (l3), MoveReasoning (l4), MovePrimitive (l5),
GripperPosition (l6), VisibleObjects (l7), and finally the action itself (see Section 5.1 for de-
tailed breakdowns of each reasoning step.

These reasoning steps trace through information at an increasing amount of physical and spatial
groundedness—beginning with high-level scene reasoning over tasks and subtasks, transitioning to
reasoning over language motions, followed by spatial information about the gripper and objects, and
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concluding with the low-level robot action. We take advantage of this fact in designing a pipeline to
label reasoning in action-free data, as we describe in the following section.

3.3 Labeling Reasoning in Action-free Data

In order to construct D̃—our dataset of observations, goals and action-free reasoning—we need to
generate labels for the reasoning steps above from human videos. Our pipeline is similar to the au-
tomated procedure used by Embodied Chain-of-Thought (ECoT) [12] for generating reasoning over
robot demonstrations, with some key modifications to handle human videos. To obtain reasoning la-
bels for robot demonstrations, ECoT first generates GripperPositions and VisibleObjects tags
using off-the-shelf object detectors to obtain bounding boxes. Then, it extracts MovePrimitive (e.g.
“move to the left”) directly from actions using an automated heuristic. Conditioned on these more
grounded reasoning steps (l5, l6, l7) and the image observation o, it queries Gemini [14] to label the
prior reasoning steps, from TaskPlan through MoveReasoning (l1, . . . , l4).

In the action-free setting with human videos, we can still extract high-level reasoning with Gemini,
as well as extract VisibleObjects with off-the-shelf object detectors. However, generating the
more action-grounded reasoning steps is challenging: we can no longer extract MovePrimitives or
GripperPositions automatically because we lack explicit action labels. In order to overcome this,
we extract the MovePrimitives and GripperPositions using HaMeR [40], a hand keypoint and
pose tracking method. Given these predictions, we can extract the MovePrimitives from changes
in the hand pose information: first, we study each axis of the change in hand poses for each frame;
then, we label the move primitive based on the dominant axis of motion. In this work we focus on
tracking gripper and positional movement primitives, but also show tracking rotational movement is
feasible with RAD in 5.3. We outline this labeling procedure in Fig. 2.

3.4 Training on Partial Reasoning Chains

To train on mixtures of demonstration and action-free data, we use the ECoT and OpenVLA [12, 3]
architecture, which trains a 7B parameter VLM transformer – pretrained on Internet-scale vision-
language tasks – to predict sequences of language reasoning and then action tokens. In RAD, we
reuse this paradigm for the robot demonstration data, but for the new action-free data, our “labels”
for training contain only reasoning as described in Section 3.3.

Figure 3: RAD outperforms baselines where human video data was trained on, but no new robot data
was provided. RAD-A is RAD trained only on human video data for the given axis of generalization.
ECoT-GT is finetuned on the same data as RAD, but only using human hand locations (and not the
full reasoning data).

4 Experiments
In this section, we evaluate how RAD enables transfer from human videos to robot policies and
generalization beyond settings in the human videos or robot demonstration data. Specifically, we
seek to answer the following questions:

Q1 – Human-to-Robot Transfer: Can RAD enable learning new tasks seen only in the human
video data and not the robot demonstration data?

Q2 – Reasoning Generalization: Does reasoning in RAD enable generalization to novel tasks
beyond both the robot demonstration data and human video data it was trained on?
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Figure 4: RAD compared to ECoT for tasks contained in neither human or robot data. RAD shows
improved performance across all three axes of generalization.

Q3 – Cross-Environment Transfer: Can RAD learn new tasks from human video data in out-of-
domain environments?

4.1 Evaluating Generalization

Next, we discuss the environments, tasks, and model baselines we use to evaluate the reasoning
generalization capabilities of RAD.

Real-World Environments: We use a 6-DoF WidowX robot arm for our experiments. We perform
all evaluations in Section 4.2 and Section 4.3 on the Toy Sink setup from [41], to ensure fair com-
parison with existing pre-trained models. All human video data for Section 4.2 and Section 4.3 was
also collected in the Toy Sink setup (1616 demonstration videos), using both the standard Bridge
V2 camera setup, as well as an additional camera for better hand tracking. Notably, the Bridge
V2 setup is comprised of mostly miniature toy replicas of real world objects such as small kitchen
supplies, blocks, and home supplies. Therefore, we also seek to assess how RAD responds to data
from real-world human environments, and learns to interact with realistically sized objects. We thus
collect data in two additional environments: a plain tabletop and a cluttered desk, as well as various
real home and kitchen environments. This data was used to assess how RAD responds to data from
unstructured environments in Section 4.4.

Generalization Tasks: We evaluate RAD across a variety of generalization tasks. These tasks
comprise three main axes of generalization:

1. Compositional Generalization: In this axis, the objects, tasks, and scenes are all seen in pre-
training data (Bridge V2 data), but not in those particular configurations. For example, pizza and
salt both exist in Bridge V2, but salt is never placed on the pizza.

2. New Object Generalization: This axis introduces unseen objects for known behaviors (e.g.,
pick cup → pick plushie).

3. New Scene Generalization: This axis requires generalizing to novel backgrounds and distractor
objects for seen tasks; for example, picking up a known object with a pot in the background.

Note that the Compositional Generalization axis tests the model’s ability to interpolate the training
data, while New Object and New Scene axes test the model’s ability to extrapolate from the training
data. Exact tasks for each axis can be found in Section 5.3.

Methods: To test the efficacy of reasoning in learning from human video data, we evaluate the
following models in our generalization scenarios. Embodied Chain-of-Thought (ECoT) [12], is
a state-of-the-art action reasoning model trained on Bridge V2, but without any human video data.
ECoT w/ Gripper Tracking (ECoT-GT): is ECoT finetuned on the same human video data as
RAD, but only generates the GripperPosition portion of the reasoning chain. This is analogous to
how prior work learns from extracted pose information only in human videos, but does not extract
higher level language reasoning [39, 10, 9]. RAD (Ours) is ECoT finetuned on the full chain of
reasonings generated from human video data. RAD-A (Ours) is the same as RAD, but trained on
only human videos from one axis of generalization at a time (the axes are described in Section 4.1).
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4.2 Can RAD enable transfer from human-to-robot embodiments?

First, we assess if RAD can learn accurate reasonings and robot actions on new tasks that are present
only in human video demonstrations. We train the axis-specific models (RAD-A) only on human
video data for that axis (8-12 tasks with a total of 320-500 videos per axis). We evaluate these axis-
specific models against zero-shot ECoT, as well as RAD (trained on human video data from all three
axes) and ECoT-GT models trained on our full human video dataset.

In Fig. 3, we find that despite having no new robot demonstration data for these new tasks, RAD-A
achieves consistently higher success rates than zero-shot ECoT and ECoT-GT across all areas of
generalization (Q1).

Compositional: On compositionally new tasks, RAD-A outperforms ECoT by 23% and ECoT-GT
by 20%. RAD outperforms ECoT and ECoT-GT by 17% and 13% respectively. Qualitatively, RAD
models demonstrates significantly better reasoning capability, particularly in the second step of pick
place tasks (such as placing the object of interest in the desired location).

New Object: On tasks with new objects, RAD and RAD-A both improves on ECoT and ECoT-GT
by 25% and 20%, respectively. RAD models demonstrate substantially better ability to reason about
grasp points on new objects, such as moving towards the sides of large cups instead of the middle.

New Scene: RAD models also substantially outperform baselines on novel scenes (containing dis-
tractors and other scene modifications). RAD-A outperforms ECoT by 12% and ECoT-GT by 15%.
The full RAD model had stronger performance, outperforming ECoT by 27% and ECoT-GT by
30% - potentially due to improved ability to ignore distractors as a result of training on a larger
more diverse dataset. Reasoning traces on RAD models also appeared to be more accurate, with
ECoT often becoming distracted and generating non-sensical reasonings. These results indicate that
augmenting chain-of-thought models with reasoning from human video data improves their ability
to reason and infer robot actions on previously unseen task configurations.

4.3 Can RAD train more generalizable policies?

Ultimately, training on large datasets of human video data should enable VLAs to generalize not only
to human demonstrated tasks, but also to completely unseen scenarios. To explore if RAD enables
training more general models, we evaluate our model against ECoT on 10 novel tasks (unseen in
both human and robot data) comprising all three generalization axes. Results are presented in Fig. 4.

Compositional: On novel compositional tasks, RAD outperforms ECoT by 5%. RAD reasoned
better than ECoT over multi-step tasks, such as knowing where to place the salt after picking it up.

New Object: RAD substantially improves performance on tasks with unseen objects, such as bowls
and large cups, despite not seeing such objects in human or robot training data. RAD achieves 30%
higher success compared to ECoT.

New Scene: In novel scenes (environments with large distractors in the scene, such as cloth, pots,
and a large plushie), RAD reached 18% higher success rate than ECoT. Qualitatively, ECoT strug-
gled to reason about the new scene and would often generate poor reasonings and execute seemingly
random actions, whereas RAD generated correct reasoning which informed action prediction.

This indicates that reasoning in RAD enables better generalization to a variety of unseen tasks,
without training on any new human or robot data (Q2).

4.4 Can RAD leverage data from new environments?

The previous experiments demonstrate strong generalization from human data collected in the same
environment – but to truly leverage large-scale video data, generalist robot policies must learn from
demonstrations in diverse scenes. Thus, we first train RAD with small-scale human video data in
unseen environments to see how well it can incorporate this data, and we study its scaling properties
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Table 1: Cross-Environment and Internet-Data Results

(a) Cross-Environment Transfer

Task ECoT RAD ECoT-GT
pick up the cup 3/10 6/10 4/10
put the sushi on the book 4.5/10 6.5/10 5/10
pick up the tiger 3/10 3/10 3/10
pick up the controller 2/10 3.5/10 2/10

(b) Internet Data Transfer

Task ECoT RAD RAD-SS
Hold the bowl with the markers on it 1/10 2.5/10 3.5/10
Cover the car key with the cloth 2/10 1.5/10 3.5/10
Lift the computer charger 1/10 3/10 5/10

compared to data from the same environment. Then, we study the performance of RAD with larger
scale in-the-wild human video data.

Human Videos from New Environment: We first collect human data for two unseen tasks in a
brand new tabletop setup (unseen in Bridge V2 data). Then, we evaluate models trained on this
new enviroment data in the original Bridge Toy Sink environment. In Table 1a, we see that models
trained on this data outperform ECoT by 16% and ECoT-GT by 13%. Similarly to Section 4.2 and
Section 4.3, RAD models reasoned better about grasp points (e.g. where to pick up the controller)
despite the data being in a different environment (Q3).

In-distribution vs. Out-of-Distribution Human Data: Next, we assess how RAD performance
scales with increased data for the same tasks collected in-distribution (in the miniature Toy Sink
setup) versus out-of-distribution (various real world kitchen and office environments). To do so,
we collected 100 additional demos for the pick up the tape task in the Toy Sink setup. We also
collected 250 out-of-domain demos for pick up the tape in novel environments such as real kitchens,
countertops, and desks. Then, we trained RAD on two different data mixtures: (1) The original
RAD data mix (which already contains 40 pick up the tape demos) + in-distribution data and (2) the
original RAD data mix + out-of-domain data.

Table 2: Data Scaling

Data Model Success Rate

Original Model
(40 Demos)

ECoT 2/10
ECoT-GT 3/10
RAD 4/10
RAD-A 5/10

Same Environment
(+100 ID Demos)

RAD 7/10
ECoT-GT 4/10

New Environments
(+250 OOD Demos)

RAD 6.5/10
ECoT-GT 5/10

Results for both mixtures are shown in Table 2. We find
that RAD models trained on both in-domain (+30% suc-
cess) and out-of-domain data (+25% success) show im-
proved performance over the original model (Q3). Qual-
itatively, RAD models were better able to reason about
when to bring the gripper to the level of the tape, with
ECoT models often moving too low and knocking over
the tape, which is taller than objects in Bridge V2.

Leveraging In-the-Wild Data: Finally, we labeled rea-
soning for 31,656 videos from the Something-Something V2 dataset as described in Section 5.1. We
trained RAD on this data mixed with Bridge V2 and our original mixture, and we call this model
RAD-SS. We evaluated this model on 3 out-of-distribution tasks containing real world objects like
a car key and computer charger as well as new task descriptions such as “lift” or “cover”. We found
RAD-SS outperformed both the vanilla RAD model (+15%) and ECoT (+26.7%) on these tasks as
seen in Table 1b. Qualitatively, RAD-SS showed improved reasoning on semantically new tasks like
“cover” or “hold” in addition to robustness to distractors.

5 Discussion
In this work we present RAD, a new way to train generalist robot policies from human video data.
RAD learns to predict reasoning, which can be labeled on both robot and human video data. We
find that RAD enables VLAs to cross the embodiment gap, and to learn tasks represented in only
human video data. Models trained with RAD are also able to generalize to completely unseen tasks
(not present in either robot or human data). Finally, we find RAD responds positively to data from
out-of-domain environments and even in-the-wild datasets, enabling models to learn new tasks from
environments completely separate from the target domain. These results demonstrate that RAD is
a promising step towards training generalist robot policies, laying the groundwork for models that
can leverage both robot data and large-scale human video data.
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Limitations: Our work demonstrates the promise of using human video data to improve generaliza-
tion in robot policies; however, there are key challenges to address before scaling up the method to
fully tap into larger and noisier datasets of human videos, such as those found on the Internet. As
human hand pose estimation methods become more accurate, we anticipate that this limitation will
be partially mitigated and allow us to better leverage more natural videos of human hands, as well
as to expand the set of language motions in our labeling pipeline. Additionally, we scope our work
to focus our study of generalization on pick-and-place tasks with rigid objects, characteristic of the
tasks in prior work on reasoning-based imitation learning [12]. Expanding the set of tasks to include
more fine-grained and dexterous manipulation provides a rich area for future work.
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Appendix

We outline the dataset collection and reasoning generation procedure in Section 5.1. The models,
training procedure, and baselines are described in detail in Section 5.2. Finally, Section 5.3 provides
examples of results and description of reported success rates.

5.1 Dataset Details

Reasoning Steps: The exact reasoning steps we use in RAD follow prior work [12]:

• TaskPlan (l1): describes a list of subtasks to achieve g.

• SubtaskReasoning (l2): reasons about which subtask currently needs to be executed in
the plan.

• Subtask (l3): predicts the subtask that currently needs to be executed.

• MoveReasoning (l4): reasons about the motion needed to achieve the subtask in the scene.

• MovePrimitive (l5): predicts a movement primitive in language.

• GripperPosition (l6): predicts the pixel position of the end-effector.

• VisibleObjects (l7): predicts the bounding box coordinates of objects in the scene.

• Action (a): predicts the low-level robot action as an end-effector position delta.

Data Collection: Our main human video data collection was on the Bridge V2 Toy Sink setup. We
aligned one camera based on the original Bridge V2 scene. We also set up a second camera from
directly behind the WidowX gripper to better track hand movement as seen in Fig. 5. Example tasks
are shown in Fig. 6. We used HaMeR to track the hand using the secondary camera perspective.
We used the average location of the thumb tip and index finger tip points tracked by HaMeR as the
gripper location. Based on the delta gripper position between frames, we characterized every frame
as “stop”, “move forward”, “move backward”, “move left”, “move right”, “move up”, or “move
down” movement primitives. We used the average distance between the thumb tip and index tip to
determine “close gripper” and “open gripper” primitives. For reasoning generation on the human
videos, we followed the the pipeline of [12], but used this HaMeR tracking in place of proprioception
and SAM to generate movement primitives and gripper locations.

Figure 5: The main Bridge V2 perspective (right) versus the secondary perspective used for hand
tracking (left).

Data Mixtures: For RAD-A models in Section 4.2 we collected 392 demonstrations for the compo-
sitional generalization dataset, 304 demonstrations for the new object dataset, and 280 demonstra-
tions for the new scene dataset. The full RAD model as well as ECoT-GT model were both trained
on all three of these datasets as well as 640 additional demos to make 1616 total demonstrations.
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Figure 6: Example human video tasks collected.

Figure 7: Task demonstrations collected in environments outside of Bridge V2 to assess how RAD
responds to data from different types of scenes.

Figure 8: Real world environment data RAD is trained with for Section 4.4.

Data for Table 1a was collected from two new tabletop environments as shown in Fig. 7. Each task
in Table 1a had 40 total demos collected. For Table 2 we collected 100 additional demos in the Toy
Sink setup for the “in-distribution” evaluation. For the “OOD” data, we collected 50 demos from 5
different scenes as show in Fig. 8. In general we weighted data mixtures so that human video data
and robot data were weighted approximately 50 percent each.

Something-Something V2 Data: We selected a subset of the Something-Something V2 data we
deemed relevant based for robotics pick and place tasks on task types. For example, we selected
tasks with tasks involving movements like ”cover”, ”place”, or ”hold” but did not include tasks for
movements a robot could not complete such as ”move the camera”. We used the same annotation
pipeline for reasonings for both Something-Something V2 data as well as our other data mixes.

5.2 Training Details

RAD uses the Prismatic VLM [35] architecture from OpenVLA [3], which fuses pre-trained SigLIP
[25] and/or DinoV2 [24] features for the visual encoder, and a LLaMA 2 7B [42] language backbone.
We adopt the same model architecture (7B Prismatic VLM), action space (7-DoF discrete action
space), observation space (image and natural language task), and prediction horizon (single step) as
OpenVLA [3]. All models are fine-tuned to convergence with a learning rate of 2e-4, a LoRA batch
size of 2, and anywhere from 2 to 8 GPUs (L40s or A40). Training of the ECoT-GT baseline is the
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same as RAD except the loss term for the stop token is omitted and we also adjust the query prompt
from ”What action should the robot take to [task]?” to “Where is the robot hand in the image?”.

Figure 9: Example tasks for compositionally new tasks (left), new objects (middle), and new scenes
(right).

5.3 Results

Rotation experiments: We conducted an additional experiment to assess if RAD could respond to
data with significant hand rotations. We adjusted the reaosning generation pipeline to learn gripper
rotation primitives, and then designed three tasks that required the gripper to rotate. We found that
RAD showed a similar performance boost over ECoT to in-distribution results in 4.2 with a 38.3%
boost in success rate as shown in 3.

Table 3: Rotation Experiments
Task ECoT RAD
pick up the corn 2/10 6/10
pick up the carrot and rotate counterclockwise 1.5/10 4/10
rotate to pick up the cereal box 2/10 6/10

Evaluation Details: Every task was evaluated 10 times. Objects were randomly placed throughout
the scenes in a different spot for all 10 trials. For pick and place tasks, partial credit (0.5) was
given for successfully picking up the object, but placing in the wrong location. For pick objects, no
partial credit was given except for the “pick up the controller” task, which had an exceptionally high
payload. Thus partial credit was given for grasping the object, even if the object slipped out of grasp
upon being lifted.
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