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ABSTRACT

Modeling the dynamics of cellular differentiation is fundamental to advancing
the understanding and treatment of diseases associated with this process, such
as cancer. With the rapid growth of single-cell datasets, this has also become a
particularly promising and active domain for machine learning. Current state-
of-the-art models, however, rely on computationally expensive optimal transport
preprocessing and multi-stage training, while also not discovering explicit
gene interactions. To address these challenges we propose Cell-Mechanistic
Neural Networks (Cell-MNN), an encoder-decoder architecture whose latent
representation is a locally linearized ODE governing the dynamics of cellular
evolution from stem to tissue cells. Cell-MNN is fully end-to-end (besides
a standard PCA pre-processing) and its ODE representation explicitly learns
biologically consistent and interpretable gene interactions. Empirically, we show
that Cell-MNN achieves competitive performance on single-cell benchmarks,
surpasses state-of-the-art baselines in scaling to larger datasets and joint training
across multiple datasets, while also learning interpretable gene interactions that
we validate against the TRRUST database of gene interactions.

1 INTRODUCTION

The process by which stem cells differentiate into specialized tissue cells is poorly understood,
and prediction of cellular fate remains an open problem in systems biology. Deeper understanding
of the differentiation dynamics is essential for advancing treatment of diseases such as cancer (Chu
et al., 2024), neurodegenerative diseases (Cuomo et al., 2023), and to improving wound healing (Ro-
drigues et al., 2019). While all cells in an organism share the same genome, the level of expression of
genes varies over time as differentiation progresses. During this process, genes activate or repress the
expression of other genes through complex regulatory mechanisms, causing the cell to differentiate.

Today, only a small subset out of the large number of possible gene interactions has been thoroughly
studied. This is due to both the vast combinatorial search space, with ∼ 108 theoretically possible
gene interactions, and the experimental effort required to validate specific mechanisms. However,
recent advances in single-cell sequencing technology (Macosko et al., 2015; Zheng et al., 2017) have
enabled high-throughput measurements that were previously prohibitively expensive, producing
datasets that are growing at a pace exceeding Moore’s law (Kharchenko, 2021). This rapid growth,
coupled with the limitations of direct experimental approaches, presents a unique opportunity to
apply machine learning methods to study single-cell dynamics.

In this work we propose Cell-MNN, a method to jointly tackle the challenges of predicting cell fate
and discovering gene regulatory interactions. Cell-MNN is an end-to-end encoder-decoder architec-
ture whose representation is a locally linear ordinary differential equation (ODE) that governs the
dynamics of cellular evolution from stem to tissue cells. The ODE representation of Cell-MNN can
learn explicit, biologically consistent, and interpretable gene interactions.

A key challenge in modeling single-cell dynamics is that cells are destroyed by measurement, re-
sulting in datasets that contain a single point along each cell’s trajectory (Tong et al., 2020), i.e., a
snapshot observation. This motivated a line of work on reconstructing trajectories from snapshot
data: The best-performing methods in this setting rely on optimal transport (OT) preprocessing to
create label trajectories (Tong et al., 2024a; Zhang et al., 2025; Kapusniak et al., 2024; Wang et al.,
2025), which becomes a computational bottleneck for large datasets due to quadratic scaling of the
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Validation: 

(a) Single-cell interpolation problem

Cell-MNN predicts 
a linear ODE

analytical solve

NODE / FM predicts 
a velocity

(b) Difference of Cell-MNN with respect to NODEs

Figure 1: (a) Single-cell interpolation: trajectories are evaluated by the earth mover’s distance
(EMD) between predictions and the marginal distribution at a held-out time tval. (b) Like a hy-
pernetwork, Cell-MNN predicts a linear operator Aθ(z, t) that approximates the local dynamics
explicitly, whereas Neural ODEs (NODE) and Flow Matching (FM) models only output a velocity.

Sinkhorn algorithm with the number of samples (Cuturi, 2013). In contrast, Cell-MNN eliminates
OT preprocessing entirely and is designed to be end-to-end. Another bottleneck of state-of-the-art
(SOTA) models such as OT-MFM (Kapusniak et al., 2024) and DeepRUOT (Zhang et al., 2025) is
that they involve multiple training stages and networks, making amortized training across datasets
challenging, whereas Cell-MNN is trained in a single stage, enabling straightforward amortized
training across multiple datasets. Furthermore, existing SOTA methods focus primarily on accu-
rate interpolation of empirical distributions and do not learn explicit gene regulatory interactions.
By comparison, Cell-MNN learns biologically interpretable interactions through its ODE represen-
tation, which explicitly models the interactions governing the predicted cellular evolution. While
there are dedicated methods for discovering gene regulatory interactions (Lin et al., 2025), to the
best of our knowledge, no such method achieves SOTA predictive performance on single-cell in-
terpolation benchmarks. Cell-MNN addresses both challenges simultaneously, bridging the gap
between predictive performance and interpretable gene regulatory modeling.

Contributions. Our main contributions are: (i) we propose Cell-MNN, an architecture that models
single-cell dynamics via a locally linearized ODE representation; (ii) we demonstrate SOTA average
performance on three benchmark datasets; (iii) we show that eliminating OT preprocessing enables
scalability, with Cell-MNN outperforming all baselines on upsampled datasets; (iv) we leverage the
end-to-end design for amortized training across datasets, surpassing a strong amortized baseline;
and (v) we exploit the explicit ODE representation to extract gene interactions and quantitatively
validate them against the TRRUST database (Han et al., 2018) of gene interactions.

2 LEARNING THE DYNAMICS OF CELLS

Formalizing the Problem. We assume a data-generating process consisting of a cell state c(t) ∈ C
evolving over time in a high-dimensional state space C that includes all relevant molecular, physical,
and biochemical variables, and an observation function mapping this state to data. The measurement
process observes only a subset of the full state mapping it to the gene expression vector of dx genes
xt ∈ Rdx via an unknown, potentially noisy measurement process m : C → Rdx , so that x(t) =
m(c(t)). Measuring the system involves deconstructing the observed cell, which implies that each
measurement corresponds to a single point along its trajectory, i.e., a snapshot observation. We
assume time t ∈ R to be a continuous variable and denote an arbitrary time interval by ∆t ∈ R. In
practice, the lab schedules a discrete set of experimental time points T = {t1, t2, . . . , tK} at which
cell populations are sampled. We denote by pt the distribution of xt at time t. The dataset of snap-
shot observations is D = {x(i), t(i)}Ni=1 with t(i) ∈ T , and our goal is to learn a best-fit mechanistic
model for the dynamics of the observable xt that is consistent with the family of marginals {pt}t∈T .
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2.1 CELL-MNN

SOTA models on single-cell interpolation benchmarks face scalability issues from OT preprocess-
ing and do not learn interpretable gene interactions that can be cross-validated against biological
evidence. Our goal is to design a scalable mechanistic model of single-cell dynamics using an ODE
representation, enabling accurate forecasting and discovery of interpretable gene interactions.

The Mechanistic Neural Network (MNN) is a recent architecture that Pervez et al. (2024) showed
to outperform NeuralODEs on tasks such as solar system dynamics and the n-body problem, while
also being able to learn explicit models of the underlying dynamics. This motivates us to design
an MNN-inspired architecture for the single-cell setting. However, this domain presents unique
challenges that make the vanilla MNN not directly applicable: for ODE discovery, the MNN has only
been applied with full trajectories and not yet in biological contexts. Moreover, when identifying a
latent space ODE with the MNN, there is typically no way to interpret that ODE in the input space.
In contrast, single-cell dynamics require learning latent space dynamics from snapshot data. To
discover gene interactions, the learned ODE must furthermore be interpretable in the input space.
We therefore adapt the MNN architecture to this setting and refer to the resulting version as Cell-
MNN. Cell-MNN is an encoder–decoder model, learning a mechanistic map

xt+∆t = Cell-MNNθ(xt, t,∆t),

which maps a gene expression vector xt at time t to a predicted state xt+∆t after an arbitrary
time interval ∆t. We define the model-induced distribution at time t + ∆t as qθt+∆t, which is the
distribution of Cell-MNNθ(xt, t,∆t) when xt is drawn from pt. As a core part of the architecture,
Cell-MNN maps to a compressed representation z ∈ Rdz , with dz ≪ dx, of the high-dimensional
gene expression vector x ∈ Rdx , and learns the dynamics in the latent space. Following prior work
(Tong et al., 2024a), we obtain this latent representation by applying principal component analysis
(PCA), with projection matrix VPCA ∈ Rdx×dz , so that z = V ⊤

PCAx.

Locally Linearizing the Latent ODE. The latent vector z ∈ Rdz in the PCA subspace is assumed
to follow non-autonomous, non-linear dynamics ż = f(z, t). In practice, this ODE is often highly
complex, and learning an explicit form that globally approximates it would be intractable due to the
combinatorial search space of basis functions that grows with increasing latent space dimension dz .

To address this, we decompose the intractable global ODE discovery problem into smaller subprob-
lems: at the current state (z(i), t(i)), which we also call the operating point, we approximate the
dynamics by a linear ODE in a small neighborhood. The learning task is then to predict these local
dynamics models from the operating point (z(i), t(i)) using an encoder.

ż = f(z, t)

= A(z, t) z, if f(0, t) = 0, ∀t ∈ R,
≈ Aθ

(
z(i), t(i)

)
z.

We predict the linear operator Aθ ∈ A using a multilayer perceptron MLPθ : Rdz+1 → A. Here
A := L(Rdz ,Rdz ) ∼= Rdz×dz represents the space of linear operators acting on Rdz . Note that,
while the operator governing the local dynamics is linear, it is a non-linear function of the current
latent state z(i) and time t(i). In Appendix D, we show that the reparametrization of the right-hand
side f(z, t) = A(z, t) z always exists under mild assumptions.

This approach is conceptually orthogonal to Neural ODEs (Chen et al., 2018), which learn an uncon-
ditional black-box approximation to f . In the Cell-MNN setting, the MLP functions more like a hy-
pernetwork (Ha et al., 2017), outputting a conditional white-box linear function gθ(z, t|z(i), t(i)) =
Aθ(z

(i), t(i)) z that locally approximates f at the operating point (z(i), t(i)). Unlike most neural
operators (Li et al., 2021; Kovachki et al., 2021) that learn a single global operator, Cell-MNN pre-
dicts a state-conditioned linear operator for each operating point. This makes the learned dynamics
explicit and enables amortization across arbitrarily many states and datasets within a single network.

Decoding by Analytically Solving the ODE. Decoding the ODE representation involves solving
the ODE system. The locally linearized formulation of the dynamics has the advantage that the
latent space ODE admits a local closed-form solution. For fixed Aθ at the operating point, the
system ż = Aθ z is a linear, time-invariant ODE with solution

z(t(i) +∆t) = exp
(
Aθ∆t

)
z
(i)
t .
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Predictions in the gene expression space are obtained by projecting back x(t+∆t) = VPCAz(t+∆t).

Parametrization of the Operator. For more fine-grained control over the parametrization of Aθ,
we let the MLP predict the matrix in an eigen-decomposed form Aθ = Pθ diag(λθ)P

−1
θ , which is

also beneficial to compute the matrix exponential. To ensure invertibility of Pθ, we train with the
additional regularizer Linv(θ) = 1/(det(Pθ)+ ϵ), which is practical if the latent space is small. This
also lets us introduce inductive bias by selectively fixing eigenvalues, for example to zero, if needed.

Optimization. We train the MLP parameters θ by minimizing the Maximum Mean Discrepancy
(MMD, Gretton et al. (2012))1 between the model-induced marginals qθt and the empirical marginals
µt, thereby fitting a mechanistic model whose dynamics align with the target marginals pt under a
future discounting factor γ. All discrepancies are computed in latent space via the pullback kernel

kx(x,x
′) := kz

(
V ⊤

PCAx, V
⊤

PCAx
′),

so that MMD2(qθt , pt; kx) = MMD2(qθ,zt , pzt ; kz). Here, pzt and qθ,zt denote the distributions of the
gene expression marginals in the latent space. The MMD loss is:

LMMD2

(θ) = Et

[
tK∑
t′=t

γt′ MMD2
(
qθt′ , pt′ ; kx

)]
.

Following Tong et al. (2020), we also regularize the kinetic energy to improve generalization:

Lkin(θ) = Et, zt∼qθt

[
∥żt∥2

]
= Et, zt∼qθt

[
∥Aθ(zt, t) zt∥2

]
,

which serves as a soft constraint encouraging trajectories close to optimal transport flows in the
sense of the Benamou & Brenier (2000) formulation. Our final loss then becomes:

Ltotal(θ) = LMMD2

(θ) + λkinLkin(θ) + λinvLinv(θ). (1)

Computational Complexity. With Aθ given in eigendecomposed form at an operating point, eval-
uating the analytical solution (Eq. 2.1) at T time points has time complexity O(T d2z) and space
complexity O(d2z), where dz is the latent space dimensionality. This improves the time and space
complexity over the Scalable Mechanistic Neural Network (S-MNN) (Chen et al., 2025). Forming
the full operator requires computing P−1

θ , incurring a one-time O(d3z) cost per operating point.

Limitations. The cubic time complexity in the latent dimension can become a challenge for high-
dimensional latent spaces but could be mitigated by imposing sparsity assumptions on Aθ. In our
application to single-cell dynamics, we follow the practice (Tong et al., 2020; 2024a) of using a 5-
dimensional PCA space, which we find expressive enough to capture meaningful gene interactions
in the high-dimensional gene expression space as presented later in the paper. Note that OT prepro-
cessing on two time points, when using the Sinkhorn algorithm, scales as O(dz n

2) with the number
of samples n, which becomes a bottleneck for large datasets, as n is usually much larger than dz .
However, approximate batch approaches are also possible to address this (Tong et al., 2024a). A sep-
arate limitation of predicting the local dynamics is that evolving the system too far may cause it to
leave the regime where the linear ODE is accurate, which would require a new forward pass through
the encoder to update the ODE. In our experiments, however, we did not encounter this issue.

Uncovering Local Gene Regulatory Interactions. Combining the linear projection to the PCA
subspace z = V ⊤

PCAx with locally linear dynamics around an operating point ż = Aθ z enables
projecting the predicted local dynamics back into the gene expression space with:

d

dt
z = Aθz ⇐⇒ d

dt

(
V ⊤

PCAx
)
= AθV

⊤
PCAx ⇐⇒ d

dt
x = VPCAAθV

⊤
PCAx.

which gives direct access to an explicit form of the predicted local dynamics in the gene expression
space, essentially uncovering the predicted local gene regulatory interactions. We interpret:

wj→i(x, t) :=
[
VPCAAθ(x, t)V

⊤
PCA

]
i,j

· xj ,

as the interaction weight of gene j to gene i. It essentially represents the contribution of gene j’s
expression to the time derivative of xi. This makes our proposed approach fully interpretable, as we
can inspect the learned gene interactions directly.

1A full definition of the MMD is given in Appendix B
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3 RELATED WORKS

Single-cell Interpolation. The single-cell trajectory inference problem, as formalized by Lavenant
et al. (2023), entails reconstructing continuous dynamics from snapshot data. Early work based
on recurrent neural networks (Hashimoto et al., 2016) was followed by NeuralODE-based methods
(Tong et al., 2020; 2023; Zhang et al., 2023; Koshizuka & Sato, 2023; Huguet et al., 2022), in which
a neural network outputs the velocity field governing the dynamics. In contrast, Cell-MNN predicts
an explicit local dynamics model, which not only facilitates the learning of gene interactions but
also circumvents the need for numerical ODE solvers.

A separate line of work avoids simulation by relying on OT preprocessing to approximate cell tra-
jectories (Schiebinger et al., 2019; Bunne et al., 2021), which were also used to train flow-matching
models such as by Tong et al. (2024a); Kapusniak et al. (2024); Zhang et al. (2025); Wang et al.
(2025); Terpin et al. (2024). However, solving the OT coupling with the Sinkhorn algorithm scales
quadratically in the number of samples, creating a major bottleneck for large datasets, which is why
Tong et al. (2024a) proposed batch-wise approximation. To address this scalability bottleneck, Cell-
MNN is designed to eliminate OT preprocessing entirely. Furthermore, SOTA OT-based models
such as OT-MFM and DeepRUOT rely on multiple training stages beyond a standard PCA dimen-
sionality reduction, which complicates amortized training across datasets. In contrast, Cell-MNN
involves only a single training stage while achieving competitive performance on single-cell bench-
marks. Finally, Action Matching (Neklyudov et al., 2023) also avoids OT preprocessing, but unlike
Cell-MNN, it does not learn an explicit form of the underlying dynamics.

Gene Regulatory Network Discovery. A complementary line of work assumes that the interactions
governing cell differentiation can be represented as a graph, known as a gene regulatory network
(GRN) (Davidson et al., 2002). Tong et al. (2024b) demonstrated that such GRNs can to some ex-
tent be recovered from flow-matching models in the setting of low-dimensional synthetic data as
simulated by Pratapa et al. (2020). In contrast, we show that Cell-MNN learns biologically plausi-
ble gene interactions directly from real single-cell data, validating them against the literature-curated
TRRUST database. Additional approaches for GRN discovery include tree-based methods (Huynh-
Thu et al., 2010; Moerman et al., 2018), information-theoretic approaches (Chan et al., 2017),
regression-based time-series models (Lu et al., 2021), Gaussian processes (Äijö & Lähdesmäki,
2009) and ODE-based models such as PerturbODE (Lin et al., 2025) and SCODE (Matsumoto
et al., 2017). However, unlike Cell-MNN, these methods typically learn a static GRN and, to our
knowledge, they are either inapplicable to single-cell interpolation benchmarks or do not deliver
competitive performance.

Orthogonal to these static GRN approaches, recent methods for time-resolved GRN discovery such
as Dynamo (Qiu et al., 2022), SCENIC+ (Bravo González-Blas et al., 2023), Marlene (Hasanaj
et al., 2025), and Dictys (Wang et al., 2023) infer time-varying GRNs from RNA-velocity or paired
scRNA-seq and scATAC-seq data. In contrast, Cell-MNN operates directly on standard scRNA-
seq UMI counts from single-cell interpolation benchmarks and yields context-dependent signed
interaction weights as a by-product of fitting the dynamics.

ODE Discovery. The idea to learn an explicit ODE representation of the cell differentiation dy-
namics as pursued by PerturbODE (Lin et al., 2025) and Cell-MNN relates directly to the broader
problem of ODE discovery. A seminal method in this area is SINDy (Brunton et al., 2016), which
infers governing equations from data but requires access to full trajectories, making it unsuitable for
the snapshot-based single-cell setting. Similar limitations apply to more recent approaches such as
MNN and related methods such as ODEFormer (Pervez et al., 2024; Chen et al., 2025; Yao et al.,
2024; d’Ascoli et al., 2024), which extend ODE discovery to amortized settings by using neural net-
works to predict the underlying dynamics from observed trajectories. In contrast, Cell-MNN is qual-
itatively distinct in learning dynamics from population data. It furthermore learns them in locally
linear form, an idea with strong precedents in physics and control theory such as the Apollo naviga-
tion filter (Schmidt, 1966), the control of a 2-link 6-muscle arm model (Li & Todorov, 2004; Todorov
& Li, 2005) and rocket landing (Szmuk et al., 2020). The locally linear parameterization theoreti-
cally imposes learning control-oriented structure and, in principle, supports the design of performant
controllers as described by (Richards et al., 2023), which could enable design of gene perturbations.
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Table 1: Model comparison for single-cell interpolation across the Cite, EB, and Multi datasets,
sorted by best average performance. We report the mean ± standard deviation of the EMD metric,
along with the average across datasets. Standard deviation is computed over left-out time points.
Lower values indicate better performance. Values marked * are computed by us.

Method Cite (5D) EB (5D) Multi (5D) Average ↓
TrajectoryNet (Tong et al., 2020) – 0.848 – –
WLF-UOT (Neklyudov et al., 2024) – 0.800 ± 0.002 – –
NLSB (Koshizuka & Sato, 2023) – 0.777 ± 0.021 – –

SB-CFM (Tong et al., 2024a) 1.067 ± 0.107 1.221 ± 0.380 1.129 ± 0.363 1.139 ± 0.077

[SF]2M-Sink (Tong et al., 2024b) 1.054 ± 0.087 1.198 ± 0.342 1.098 ± 0.308 1.117 ± 0.074

[SF]2M-Geo (Tong et al., 2024b) 1.017 ± 0.104 0.879 ± 0.148 1.255 ± 0.179 1.050 ± 0.190
I-CFM (Tong et al., 2024a) 0.965 ± 0.111 0,872 ± 0.087 1.085 ± 0.099 0.974 ± 0.107
DSB (De Bortoli et al., 2021) 0.965 ± 0.111 0.862 ± 0.023 1.079 ± 0.117 0.969 ± 0.109
I-MFM (Kapusniak et al., 2024) 0.916 ± 0.124 0.822 ± 0.042 1.053 ± 0.095 0.930 ± 0.116

[SF]2M-Exact (Tong et al., 2024b) 0.920 ± 0.049 0.793 ± 0.066 0.933 ± 0.054 0.882 ± 0.077
OT-CFM (Tong et al., 2024a) 0.882 ± 0.058 0.790 ± 0.068 0.937 ± 0.054 0.870 ± 0.074
DeepRUOT (Zhang et al., 2025)* 0.845 ± 0.167 0.776 ± 0.079 0.919 ± 0.090 0.846 ± 0.071
OT-Interpolate* 0.821 ± 0.004 0.749 ± 0.019 0.830 ± 0.053 0.800 ± 0.044
OT-MFM (Kapusniak et al., 2024) 0.724 ± 0.070 0.713 ± 0.039 0.890 ± 0.123 0.776 ± 0.099

Cell-MNN (ours)* 0.791 ± 0.022 0.690 ± 0.073 0.742 ± 0.100 0.741 ± 0.050

4 EXPERIMENTS

In the following, we present four experiments to evaluate Cell-MNN in terms of predictive accuracy,
suitability for amortized training, scalability, and assessment of the predicted gene interactions.

Datasets. For our experiments, we use 3 commonly studied real single-cell datasets. Following
Tong et al. (2020), we include the Embryoid Body (EB) dataset from Moon et al. (2019), which
after preprocessing contains ∼16 K human embryoid cells measured at five time points over 25
days. For EB, we model the time grid with T = {0, 1, ...4}. We also use the CITE-seq (Cite) and
Multiome (Multi) datasets from Burkhardt et al. (2022), as repurposed by Tong et al. (2024a). Both
consist of gene expression measurements at four time points of cells developing over seven days,
with Cite containing ∼31 K cells and Multi ∼33 K cells after preprocessing. Here we model the time
grid with the days of measurement, namely T = {0, 1, 2, 3, 7}. We use the datasets as preprocessed
by Tong et al. (2020; 2024a), which involves filtering for outliers and normalizing the data.

Training. We use the same hyperparameters for all experiments unless stated otherwise. Following
Tong et al. (2020), we project gene expression to 5D PCA before training. The MLP used to param-
eterize Aθ has depth 4, width 96, leaky ReLU activations, and Kaiming normal initialization (He
et al., 2015). For stability, we scale the MLP’s last layer by 0.01 at initialization so that predictions of
Aθ start near zero. For the MMD, we use the Laplacian kernel k(z, z′) = exp[−max(||z−z′||1,ϵ)

σ·dz
] with

parameters σ = 1 and ϵ = 10−8. We optimize the final loss (Eq. 1) with a batch size per time point of
200, future discount factor γ = 0.1, initialization scale 0.01, and regularization weights λkin = 0.1
and λinv = 1. Optimization is performed using AdamW (Kingma & Ba, 2017; Loshchilov & Hutter,
2019) with a learning rate of 2 × 10−4 and weight decay 1 × 10−5. Hyperparameters are selected
according to grid search and all experiments are run with three random seeds. We validate every
10 steps, with a patience of 40 validation checks and a maximum training time of 200 minutes. All
training runs are performed with one NVIDIA GeForce RTX 2080 Ti per model (11 GB of RAM).

4.1 SINGLE CELL INTERPOLATION

Following Tong et al. (2020; 2024a), we evaluate model performance by measuring how closely it
reproduces the marginal distribution of a held-out time point. Each intermediate day is left out in
cross-validation fashion to obtain one comprehensive score per dataset.

Metric. For easy comparison with SOTA methods, we follow Tong et al. (2020) and report results
in terms of the 1-Wasserstein distance in the PCA subspace (W1 or otherwise EMD). We use the
exact linear programming EMD from the POT (Python Optimal Transport) package (Flamary et al.,
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2021). The EMD metric measures the minimum cost of transporting probability mass to transform
one distribution into another, where a lower score represents a closer match of distributions.

Baselines. We compare with the 3 SOTA methods for this task, namely OT-MFM (Kapusniak
et al., 2024), OT-CFM (Tong et al., 2024a) and DeepRUOT (Zhang et al., 2025). We found the
pre-processing of DeepRUOT to be different from the other approaches, which is why we reran the
experiments for DeepRUOT with exactly the same input data as the other methods. We also report
the performance of other relevant previous works on this problem as indicated in the results Table 1.
As an intuitive bar to cross, we additionally compute the performance of solely interpolating the
optimal transport map between two consecutive time points and refer to it as OT-Interpolate.

Results. Table 1 summarizes the results on all three datasets. Cell-MNN achieves the best per-
formance on EB and Multi, and ranks second on Cite, leading to the highest average performance
across datasets. Notably, Cell-MNN is the only method that outperforms our proposed OT-
Interpolate benchmark on all datasets. We think this is an important additional result, because any
method that trains on velocities that are derived from the OT map implicitly treats OT-Interpolate
as the ground truth. This also explains the strong performance of OT-Interpolate. Given the above,
Cell-MNN delivers highly competitive predictive performance for single-cell interpolation.

4.2 AMORTIZED TRAINING

Model Cite (Inflated) EB (Inflated) Multi (Inflated)

I-CFM 0.0390 ± 0.0249 0.0403 ± 0.0045 0.0482 ± 0.0144
OT-CFM -- OOM Error --
DeepRUOT -- OOM Error --
Batch-OT-CFM 0.0232 ± 0.0041 0.0243 ± 0.0025 0.0302 ± 0.0010

Cell-MNN 0.0225 ± 0.0021 0.0240 ± 0.0039 0.0252 ± 0.0072

(a) Scaling experiment

Cite Multi Average

0.6

0.8

1

E
M

D
↓

I-CFM OT-CFM Cell-MNN

(b) Amortization experiment

Figure 2: (a) Model comparison across the synthetically inflated datasets. We report mean ± stan-
dard deviation of the MMD metric, along with the average across datasets. Lower values indicate
better performance. Standard deviation is computed over left-out time points.(b) Comparison of
models jointly trained on Cite and Multi datasets to test potential for amortization. We report mean
± standard deviation of the EMD metric, along with the average across datasets.

Foundation models have shown strong transfer learning capabilities across datasets in a variety of
domains (Bodnar et al., 2025; Pearce et al., 2025; Bodnar et al., 2025). However, current SOTA
methods for single-cell interpolation, such as OT-MFM and DeepRUOT, rely on multi-stage train-
ing or dataset-specific regularizers, making them less suitable for building foundation models. In
contrast, the end-to-end nature of Cell-MNN enables amortized training across multiple datasets. We
design an experiment to assess which models are promising for amortized training in the single-cell
interpolation setting by jointly training on datasets with the same time scale, namely Cite and Multi.

Training. Our amortized training setup follows the single-cell interpolation experiment described
in Section 4.1, with the only differences being that (i) we iteratively sample batches from Cite and
Multi, (ii) we use a wider network with width 128, and (iii) we pass an additional dataset index into
the model. We do not sample from the marginals at the left-out time point for either dataset. Since
each dataset contains a different set of genes, we use the same PCA embeddings as in the previous
experiment (Section 4.1) and merge datasets in the PCA subspace.

Baselines. We use OT-CFM as a baseline as it is the best-performing alternative model on the
single-cell interpolation task that involves only a single training stage, making it easy to adapt to the
amortized training setting. For each dataset, we compute the OT map on the entire dataset separately
to ensure that the derived velocity labels are accurate. We use the hyperparameters specified by
Tong et al. (2024a) and first reproduce the original results for the separate-dataset setting to verify
our setup. In amortized training, we find that passing the dataset index as input does not affect
OT-CFM’s performance. For additional reference, we also report the performance of I-CFM.

Results. As shown in Figure 2b, Cell-MNN outperforms both OT-CFM and I-CFM in the amortized
setting and achieves performance comparable to training on each dataset separately. Since the gene
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sets differ between datasets, transfer learning may be difficult in this setup. Nevertheless, these
results suggest that for datasets with shared structure, Cell-MNN could enable transfer learning.

4.3 SCALABILITY AND ROBUSTNESS TO NOISE

Beyond leveraging multiple datasets to train a single model, the practical usefulness of a method
depends on its ability to handle the increasingly large datasets available in the single-cell dynamics
domain. In this context, performing OT preprocessing over all samples from two consecutive days,
as required by OT-CFM, DeepRUOT, or OT-Interpolate, can become a significant bottleneck due to
the quadratic time and space complexity of the Sinkhorn algorithm (Cuturi, 2013). To experimen-
tally compare the scalability of different methods, we conduct the following scaling experiment.

Training. We synthetically inflate the dataset size of EB, Cite, and Multi to 250,000 cells each
by resampling from each dataset and adding noise drawn from N (0, 0.1) to the PCA embeddings.
Cell-MNN is trained with the same hyperparameters as in our first experiment in Section 4.1.

Baselines. We run OT-CFM and DeepRUOT on the inflated datasets and observe that both meth-
ods encounter out-of-memory (OOM) errors on our hardware (NVIDIA GeForce RTX 2080 Ti per
model, 11 GB RAM) due to the quadratic memory complexity of the Sinkhorn algorithm. To miti-
gate this, Tong et al. (2024a) proposed a minibatch variant of optimal transport for OT-CFM, which
achieves competitive image generation quality compared to dataset-wide OT preprocessing. We
therefore use this mini-batch version as a baseline, denoted Batch-OT-CFM. As I-CFM does not
require OT preprocessing, we also train it on the inflated datasets and report its performance.

Metric. For the larger datasets, computing the EMD metric becomes impractical, as it also requires
estimating the OT map. We therefore use the MMD metric with a Laplacian kernel to compute the
validation score. Since MMD can be computed in a batch-wise fashion, it is more practical for this
experiment. We use the same hyperparameters for the MMD metric as for the training loss.

Results. We present the validation scores for models trained on inflated datasets in Table 2a. Per-
forming dataset-wide OT preprocessing, as required by standard OT-CFM or DeepRUOT, leads to
OOM errors due to the quadratic space complexity of the Sinkhorn algorithm. Batch-OT-CFM out-
performs I-CFM, demonstrating the gains from minibatch OT. However, Cell-MNN achieves the
best performance on all three inflated datasets, highlighting its scalability and robustness to noise.

4.4 DISCOVERING GENE INTERACTIONS
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Figure 3: (a) Strongest predicted gene interactions by Cell-MNN for days 12–17 of the EB dataset,
normalized to the range [−1, 1]. (b) UMAP projection of operators predicted by Cell-MNN on the
EB dataset, showing that the model learns distinct dynamics at different time points. (c) Validation
of predicted gene interactions by two Cell-MNN versions: For each source gene j, we classify each
TRRUST edge j→ i as activating or repressing using the sign of Cell-MNN’s learned weight wj→i.

Cell-MNN predicts the local dynamics of the cell differentiation process in gene expression space,
thereby learning interaction weights wj→i from each gene to every other gene as described in Sec-
tion 2.1. This corresponds to unsupervised learning of local gene interactions. To assess whether
these learned interactions are biologically meaningful, we validate them against the literature-
curated TRRUST database (Han et al., 2018), which contains 8,444 regulatory relationships synthe-
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Figure 4: UMAPs of the predicted operators by Cell-MNN across the five time ranges of EB. Points
are colored by whether joint expression of the EN-1 marker genes FOXA2 and SOX17 is above the
95th percentile. Clustering indicates that Cell-MNN learns distinct dynamics for the EN-1 cell type.

Table 2: GRN discovery on the EB dataset (F1 score in %). For each source gene we report the F1
score of predicting activation vs. repression for labeled TRRUST interactions. Best method per row
is highlighted in bold. Performance is averaged over three seeds for OT-CFM and Cell-MNN.

Source
gene

# Labeled
interactions SCODE OT-CFM (J) Cell-MNN

(1EV=0)

JUN 65 56.34% 64% ± 2% 71% ± 6%
FOS 25 38.10% 50% ± 6% 71% ± 10%
YBX1 24 54.55% 72% ± 4% 51% ± 6%
POU5F1 19 14.29% 13% ± 1% 67% ± 6%
SOX2 16 84.21% 60% ± 0% 71% ± 9%
HMGA1 10 25.00% 31% ± 9% 80% ± 6%

Average 46.32% ± 25.09% 55% ± 22.46% 71% ± 9.50%

sized from 11,237 PubMed articles. While TRRUST represents only a small subset of all potential
relationships, it provides a valuable reference signal for evaluating Cell-MNN’s predictions.

Unsupervised Classification. Using labels from the TRRUST database, we design an unsupervised
classification task for a source gene j: for every interaction j → i listed in TRRUST, we predict
whether the relationship is activating or repressing. Since Cell-MNN outputs wj→i per cell, we av-
erage these values over the dataset to obtain a single prediction for each interaction, classifying it as
activating if

∑
(x,t)∈D wj→i(x, t) > 0 and repressing if smaller than zero. We report results for the

genes j that are in the top 10 most active ones (as by summing over all interaction weights per gene)
for any time point and that have more than 10 matching TRRUST interactions within the EB gene set.

Training and Inductive Bias. We train an ensemble of Cell-MNN models for single-cell interpo-
lation on EB, each with a different left-out marginal. The setup matches Section 4.1 but uses a less
preprocessed EB version, retaining gene names for downstream interaction analysis. To highlight
the benefit of having access to an explicit dynamics model, we also introduce an additional model
version with inductive bias on the parametrization of the linear operator Aθ: in particular, we know
that only some genes vary over time, implying that at least one eigenvalue of Aθ should be zero.
During training, we therefore fix one eigenvalue to zero, forcing the model to learn static directions
in the gene expression space. While this inductive bias reduces predictive performance in the single-
cell interpolation setting by approximately 1%, it significantly improves gene interaction discovery
performance on TRRUST (see Appendix 8 for ablation results).

Baselines. To contextualize the results, we restrict our comparison to approaches that predict signed
GRNs, as this is required for our classification task. As an ODE-based baseline, we run SCODE
(Matsumoto et al., 2017) on the dataset. To compare with the idea of using the Jacobian of Neural
ODEs as a proxy for the GRN (Qiu et al., 2022), we compute the Jacobians of a fully trained
OT-CFM model (OT-CFM (J)). This can be thought of as an alternative to the operators predicted
by Cell-MNN. Similar to Cell-MNN, we use the sign of the Jacobian to classify an interaction as
activating or repressing. Given different models, we only adapt the GRN prediction in our pipeline;
the rest of the evaluation remains the same.

Results. We compute precision, recall, and F1 scores for the unsupervised classification task, with
results presented in Figure 3 with all numerical values in Table 5 and 6. For all but two of the source
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genes, the vanilla Cell-MNN achieves better-than-average performance, indicating that for the tested
gene regulatory interactions, the model can meaningfully discover activation or repression in a fully
unsupervised manner. Interestingly, the Cell-MNN variant with one eigenvalue set to zero signifi-
cantly improves classification performance, demonstrating that the inductive bias introduced on the
operator effectively constrains the solution space. Note that gene interactions are context-dependent
(e.g., varying by cell type or other factors), and therefore the labels in TRRUST may not fully apply
to the context of the EB dataset. Nevertheless, we view the agreement for the most dominant source
genes as a meaningful signal that the mechanisms learned by Cell-MNN are biologically plausible.

Visualizing Operators. To visualize the learned operators, we plot UMAP projections of Aθ com-
puted jointly across all time ranges (Figure 3b) and separately for each time range (Figure 4) in the
EB dataset. The joint projection shows that Cell-MNN captures distinct dynamics across time, while
the separate projections highlight differences between cell types. Additional UMAP visualizations
for the cell types reported in the original EB study (Moon et al., 2019) are provided in Appendix G.

5 CONCLUSION

We introduced Cell-MNN, an encoder-decoder architecture whose representation is a locally linear
latent ODE at the operating point of the cell differentiation dynamics. The formulation explicitly
captures gene interactions conditioned on the time and gene expression. Empirically, we show that
Cell-MNN achieves competitive performance on single-cell benchmarks, as well as in scaling and
amortization experiments. Importantly, the gene interactions learned from real single-cell data ex-
hibit consistency with the literature-curated TRRUST database. Thus, Cell-MNN jointly addresses
the challenges of trajectory reconstruction from snapshot data and gene interaction discovery.

Having shown that Cell-MNN learns biologically plausible gene interactions, a natural next step
is to use it as a hypothesis generation engine for less-studied genes, guiding which interactions to
test experimentally. Moreover, since Cell-MNN models dynamics in locally linear form, it may
be possible to leverage the rich control theory literature on controller design for such locally linear
systems. In principle, this could enable steering gene expression states toward desired configurations
via perturbations, which could for example inform CRISPR-based gene edits (Jinek et al., 2012).

6 ETHICS STATEMENT

All datasets used in this work (EB, Cite, Multi) are publicly available and were preprocessed by prior
works Tong et al. (2024a; 2020). While the gene regulatory interactions predicted by Cell-MNN
are partially validated against the TRRUST database, they should not be interpreted as definitive
biological ground truth without further experimental validation. It is important to note that the model
provides hypotheses for experimental follow-up, not direct medical recommendations. Insights from
the model could eventually inform gene perturbation studies or therapeutic research. To mitigate
potential misuse, we emphasize that the work is intended for advancing computational methodology
in machine learning and computational biology, not for direct clinical application. We provide code
and hyperparameters for reproducibility.

7 REPRODUCIBILITY

We use the datasets in the form as preprocessed by prior work: Cite and Multi from Tong et al.
(2024a)2 and EB from Tong et al. (2020)3. For the gene discovery experiment, we use the less
preprocessed version of EB provided by Tong et al. (2024a). All experiments are run on a single
GPU and hyperparameters are presented in Table 3 in the Appendix together with the hardware and
training time. We fix random seeds and report all results averaged over three runs with different
seeds. Anonymous code is included with the submission as a zip archive, containing environment
specifications in environment.yml. Commands to reproduce results are documented in the
accompanying README.md. We will release the full codebase publicly upon publication.

2https://data.mendeley.com/datasets/hhny5ff7yj/1
3https://github.com/KrishnaswamyLab/TrajectoryNet/tree/master/data
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Tarmo Äijö and Harri Lähdesmäki. Learning gene regulatory networks from gene expression mea-
surements using non-parametric molecular kinetics. Bioinformatics, 25(22):2937–2944, 08 2009.
URL https://doi.org/10.1093/bioinformatics/btp511.
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A USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, we used LLMs for (i) coding assistance during the software development phase, (ii)
identifying relevant literature in response to specific research questions, and (iii) polishing and im-
proving the readability of the paper. All substantive research contributions, analysis, and interpreta-
tions were carried out by the authors.

B DEFINITIONS

Maximum Mean Discrepancy (MMD, Gretton et al. (2012)): Given two distributions p and q over
X and a positive-definite kernel function k : X ×X → R, the squared Maximum Mean Discrepancy
(MMD) is defined as

MMD2(p, q; k) = Ex,x′∼p[k(x, x
′)] + Ey,y′∼q[k(y, y

′)]− 2Ex∼p,y∼q[k(x, y)].

C ARCHITECTURE

global operator

Subspace of 
linear operators

Space of operators

Figure 5: Visualization of the meta-learning task of Cell-MNN’s encoder: Rather than directly
predicting the velocity at a given operating point, as in the NeuralODE framework, the MLP of
Cell-MNN maps to the space of linear operators. Conditioned on the current system state, it predicts
local linear approximations to the global dynamics.

MLP Solve ODEODE Representation

Encoder Decoder

Figure 6: The Cell-MNN architecture first applies the PCA projection matrix to map the gene ex-
pression state x to a latent representation zt. An MLP then predicts a locally linear approximation
ż = Aθz to the dynamics at the operating point (zt, t). To decode, the analytical solution of this
ODE is evaluated at a future time point and projected back into gene expression space.
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Table 3: Collection of training hyperparameters used in all experiments. All models were trained
on a single NVIDIA RTX 2080 Ti GPU. Training on EB, Cite, and Multi separately, as well as on
the amortization experiment, required about 1 hour per run, while training on inflated datasets took
roughly 4 hours. No distributed training or large-scale compute resources were required.

Component Hyperparameter
Data preprocessing PCA projection to 5D
MLP (Aθ) Depth: 4

Width: 96 (128 for amortization experiment)
Activation: Leaky ReLU
Initialization: Kaiming normal
Last layer scale: 0.01

MMD kernel Laplacian kernel k(z, z′) = exp[−max(||z−z′||1,ϵ)
σdz

]

σ = 1, ϵ = 10−8

Optimization Batch size per time point: 200
Future discount factor γ = 0.1
Initialization scale: 0.01
Regularization λkin = 0.1, λinv = 1
Optimizer: AdamW
Learning rate: 2× 10−4

Weight decay: 1× 10−5

Validation Frequency: every 10 steps
Patience: 40 validation checks

Training time 60 minutes (240 minutes for inflated datasets)
Randomness Seeds: 3
Hardware 1× NVIDIA GeForce RTX 2080 Ti (11 GB RAM)

D PROOFS

Proposition 1 (Extension of Proposition 1 of Çimen (2010)). Let f : Rdz × R → Rdz satisfy
f(0, t) = 0 for all t ∈ R, and assume f ∈ Ck(Rdz × R) with k ≥ 1. Then there exists a matrix-
valued map A : Rdz × R → Rdz×dz such that f(z, t) = A(z, t) z for all (z, t) ∈ Rdz × R.

Proof. Fix (z, t) ∈ Rdz × R and define γ : [0, 1] → Rdz by γ(s) := f(s · z, t). Since f ∈ Ck and
k ≥ 1, the map s 7→ γ(s) is differentiable and

d

ds
γ(s) = Dzf(s · z, t) z.

By the fundamental theorem of calculus,

f(z, t)− f(0, t) = γ(1)− γ(0) =

∫ 1

0

Dzf(s · z, t) z ds =
(∫ 1

0

Dzf(s · z, t) ds
)
z.

Using f(0, t) = 0 gives f(z, t) = A(z, t) z.

D.1 ON THE USE OF LOW DIMENSIONAL PCA EMBEDDINGS

Low-dimensional PCA as standard practice. In line with prior work on single-cell trajectory
inference, we operate in a low-dimensional latent space obtained by PCA on the gene expression
matrix. Concretely, we project each dataset to the first five principal components and train both
Cell-MNN and all baselines in this common representation. This choice follows the prevailing
assumption in computational biology that scRNA-seq data lie near a low-dimensional manifold, and
it is consistent with the implementation of nine previous works reported in Table 1.

Empirical validation of the 5D PCA representation. Figure 7 provides a quantitative and qual-
itative assessment of the 5D PCA space used in our experiments. Figures 7a, 7e and 7e show that
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(e) Embryoid: Explained variance

Figure 7: (a, c, e) Explained variance of each of the principle components plotted for the datasets
Multi, Cite and Embryoid. The first few components capture the majority of the variance. (b, d)
UMAPs computed on the 5 dimensional PCA embedding colored by cell-type. Clustering by cell-
type shows that 5 dimensional PCA embedding retains cell-type information.

the first few principal components account for the large part of the variance in each dataset: using
five components yields a cumulative explained variance above 60% for Cite and Multi and above
40% for Embryoid. Importantly, this low-dimensional representation preserves cell-type structure.
We compute k-nearest neighbor classification in the 5D PCA space with k = 15 and obtain accura-
cies of 87% (Multi) and 90% (Cite); for Embryoid, cell-type labels are not available. Consistently,
the UMAPs computed from the 5D PCA embedding (Figures 7b and 7d) exhibit clear clustering
by cell type, indicating that the embedding retains the information required to distinguish cellular
lineages. To show flexibility with respect to the number of principle components used, we also train
Cell-MNN and OT-CFM in 10 dimensional PCA subspace with no tuning and find that they perform
similarly, see Table 10.

Scope of our contribution. Our focus in this work is orthogonal to learning the optimal represen-
tation: We focus on improving the dynamical model given a standard low-dimensional embedding.
Within the 5D PCA space, Cell-MNN achieves SOTA average performance on single-cell interpo-
lation benchmarks (Table 1), while removing OT preprocessing and learning explicit, local ODEs
that can be interpreted as gene interactions. For scientific questions centered on lineage bifurcations
and fate decisions, the key requirement is that the representation preserves cell-type structure. The
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Table 4: Gene selection specifications for the TRRUST experiment. There are 16 genes that make
up the top 10 predicted high-interaction source genes across the five time points, Of these, 14 are
contained in TRRUST, and 6 have more than 10 interactions overlapping with the training gene set.
This table provides shows how source genes were selected for downstream evaluation.

Top Source Gene In
TRRUST

# Interactions
in TRRUST

# in Training
Gene Set

> 10
Interactions

HMGA1 True 18 10 True
HMGB2 True 2
JUNB True 15 4
FOS True 63 25 True
JUN True 173 65 True
POU5F1 True 25 19 True
HAND1 False 0 0
ID2 True 2
TERF1 True 1
PITX2 True 11 4
ID3 True 2
HMGB1 False 0 0
SOX2 True 23 16 True
HMGA2 True 5
YBX1 True 33 24 True
ID1 True 1

Table 5: Validation of predicted gene interactions on TRRUST: For each source gene j, we classify
each TRRUST edge j→ i as activating or repressing using the sign of the learned weight wj→i from
Cell-MNN with one eigenvalue set to zero (averaged over cells). For each source gene, we report
the number of interactions in TRRUST and classification metrics (precision, recall, and F1) shown
as mean ± std across ensemble models trained on three different seeds.

Source Gene # Interactions ↓ Precision Recall F1
JUN 65 62%± 8% 82%± 3% 71%± 6%
FOS 25 65%± 10% 80%± 10% 71%± 10%
YBX1 24 55%± 10% 48%± 3% 51%± 6%
POU5F1 19 82%± 6% 58%± 11% 67%± 6%
SOX2 16 73%± 12% 69%± 8% 71%± 9%
HMGA1 10 78%± 9% 82%± 2% 80%± 6%

experiments in Figure 7 show that this requirement is met. Exploring richer or alternative represen-
tations is an interesting orthogonal direction, and Cell-MNN can in principle be applied on top of
such alternatives without changing the core methodology.

E GENE REGULATORY INTERACTION RECOVERY

To quantitatively assess the learned gene interactions, we designed an unsupervised classification
task based on the TRRUST database, which contains literature-curated gene regulatory interactions,
many of which are annotated as activating or repressing. For evaluation of our model, we focus
on the most dominant source genes predicted by Cell-MNN, i.e., those with the highest mean in-
teraction strength with other genes. A source gene is included into the experiment if at least 10 of
its interactions are listed in TRRUST. For each such gene, we classify the direction of its effect on
downstream targets as activating or repressing. Since Cell-MNN produces cell-specific predictions
of interaction weights, we average these over 10,000 cells to obtain a robust prediction for each
interaction. Based on these predictions, we compute precision, recall, and F1 scores to quantify how
well the model recovers known regulatory mechanisms and report them in Table 5 and Table 6.
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Table 6: Ablation of models with no eigenvalue forced to zero on predicting gene interactions on
TRRUST as in Table 5.

Source Gene # Interactions ↓ Precision Recall F1
JUN 65 69%± 11% 86%± 7% 76%± 10%
FOS 25 66%± 22% 79%± 19% 72%± 21%
YBX1 24 58%± 11% 45%± 8% 50%± 8%
POU5F1 19 56%± 39% 48%± 26% 51%± 32%
SOX2 16 67%± 12% 62%± 4% 64%± 8%
HMGA1 10 47%± 31% 47%± 34% 46%± 33%

Table 7: Amortized model comparison across the Cite and Multi datasets. We report mean ± stan-
dard deviation of the EMD metric, along with the average across datasets. Lower values indicate
better performance. Standard deviation is computed over left-out time points.

Model Cite Multi Average ↓
I-CFM (Tong et al., 2024a) 0.957 ± 0.211 0.892 ± 0.092 0.925 ± 0.047
OT-CFM (Tong et al., 2024a) 0.849 ± 0.007 0.821 ± 0.013 0.835 ± 0.019

Cell-MNN 0.795 ± 0.022 0.741 ± 0.104 0.768 ± 0.038

Table 8: Cell-MNN ablation study on single-cell interpolation benchmark when setting one eigen-
value (EV) of Aθ to zero. Average predictive performance degrades by less than 1%.

Method Cite EB Multi Average ↓
Cell-MNN (One EV= 0) 0.795 ± 0.016 0.701 ± 0.076 0.746 ± 0.097 0.748 ± 0.049

Cell-MNN (All EVs predicted) 0.791 ± 0.022 0.690 ± 0.073 0.742 ± 0.100 0.741 ± 0.050

E.1 PREDICTING THE EXISTENCE OF INTERACTIONS

Table 9: Comparison of GRN discovery meth-
ods on the EB dataset. We report preci-
sion@500 and AUROC for predicting existence
of TRRUST interactions. Higher is better. All
metrics were computed over three seeds.

Method Enrichment@500 AUROC

GRNBoost2 20.429 0.633
SCODE 16.714 0.686
OT-CFM (J) 20.429 0,661

Cell-MNN (ours) 18.572 0.659

As an additional validation of the gene interac-
tions predicted by Cell-MNN, we evaluate its per-
formance at predicting the existence of regulatory
links. To this end, we first rank all predicted in-
teractions by their inferred strength and then as-
sess this ranking against the TRRUST database.
To restrict TRRUST to interactions that are plau-
sibly involved in the differentiation dynamics of
the EB dataset, we subset the database to inter-
actions whose transcription factor (TF) regulator
is mentioned as relevant in the original analysis
of Moon et al. (2019) (Fig. 6d). This yields 447
interactions regulated by 70 TFs, which we treat
as our ground-truth signal. This restriction is also
necessary to keep the evaluation of the baselines computationally tractable. We define the candidate
interaction set as all directed TF-target pairs where the TF is among the 70 EB regulators and the
target is any gene in the EB dataset.

Baselines. As this experiment only requires a ranking of interactions, we can compare against
methods that predict unsigned GRNs. We therefore include the widely used GRN discovery methods
GRNBoost2 and SCODE as baselines. We also compute the performance of OT-CFM (J) on this
task. Because we are only interested in the presence of a regulatory link, we evaluate all methods on
the absolute interaction strength, ignoring the sign of the effect.

Evaluation and Metrics. For each method, we obtain a scalar interaction score for every TF-target
pair in the candidate set, and assemble these into a TF-target score matrix in the common gene
space. For Cell-MNN, interaction scores are derived from an average over 100 operators from each
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time point in the dataset. We use an ensemble of three Cell-MNN models each trained with a differ-
ent left-out time point. For GRNBoost2 and SCODE we use their reported importance scores. We
evaluate all methods using AUROC and Precision@K. The AUROC measures how well a method
separates interacting from non-interacting pairs across all possible thresholds, whereas Precision@K
measures the proportion of true interactions among the top-K ranked edges. To make Precision@K
more interpretable, we normalize it by the base precision of a uniform ranking over all candidate
interactions and refer to the resulting quantity as Enrichment@K. Intuitively, Enrichment@K mea-
sures by which factor a method outperforms random guessing.

Results and Discussion. The results of this experiment are summarized in Table 9. We find that
Cell-MNN performs competitively with the baselines in terms of both AUROC and Enrichment@K.
We note that we restrict GRNBoost2 to learning interactions only for the 70 EB regulators, which
effectively provides them with additional prior knowledge. For both Cell-MNN and OT-CFM,
we also substantially coarse-grain their outputs by averaging interaction scores across cells
and discarding sign information. Consequently, both methods, which in principle can produce
context-dependent, signed predictions, are evaluated here in a much more restricted, global setting.

F ADDITIONAL INTERPOLATION RESULTS

Table 10: Model comparison on a 10-dimensional PCA embedding. We report the mean ± standard
deviation of the EMD metric across the Cite, EB, and Multi datasets, along with the average across
datasets. Lower values indicate better performance.

Method Cite (10D) EB (10D) Multi (10D) Average (10D)

OT-CFM 1.491 ± 0.013 1.607 ± 0.074 1.678 ± 0.248 1.592 ± 0.112
Cell-MNN (ours) 1.502 ± 0.012 1.587 ± 0.113 1.709 ± 0.177 1.599 ± 0.101

We provide further numerical results complementing the main experiments. For the single-cell
interpolation task (Section 4.1), Table 8 reports an ablation in which the model is trained with one
eigenvalue set to zero, as later used in the gene interaction discovery experiment. Table 7 presents
the results of the amortization experiment across datasets (Section 4.2).

F.1 HIGH DIMENSIONAL EXPERIMENTS

In this section, we evaluate the performance of Cell-MNN in higher-dimensional latent spaces.
To this end, we train the same model, with slightly modified hyperparameters, in 50- and 100-
dimensional PCA subspaces. Following Neklyudov et al. (2024), we do not whiten the data in PCA
space to preserve the empirical variance structure. To keep feature magnitudes in a numerically
well-conditioned range for MLP training while preserving their relative variance, we rescale all
components by the standard deviation of the first principal component. We find that this improves
the stability of training Cell-MNN. Since the EMD is homogeneous under a global rescaling of both
distributions (EMD(λX, λY ) = λ EMD(X,Y ), λ > 0), we multiply the EMD scores computed
on the rescaled PCA coordinates by the standard deviation of the first principal component so that
they are comparable to those obtained on the original (unscaled) PCA space.

Due to increased RAM requirements, we use a different GPU, namely an NVIDIA L40S (48 GB
RAM). This also allows us to train with a larger batch size of 1028. We set the learning rate to
1×10−3 (50D) and 5×10−5 (100D), patience for early stopping to 10 evaluation steps and keep the
remaining hyperparameters unchanged. We train on the Cite and Multi and find that the runtimes
range from 4m 25s to 31m 29s, depending on the seed and left-out time point. Memory usage
remains below 25 GB of RAM in this setup.

We report the results of the experiments in Table 11. Without tuning the hyperparameters further,
we find that Cell-MNN performs within error bars of SOTA approaches for the Multi dataset.

We remark that, due to the analytical solution of the ODE, one can choose to decode the trajectories
at fewer time discretization points without impacting the accuracy of the predicted trajectories. This
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Table 11: Single-cell interpolation on 50- and 100-dimensional PCA embeddings across the Cite
and Multi datasets. We report the mean ± standard deviation of the EMD metric computed over
three seeds. Values marked * are computed by us.

Method Cite (50D) Multi (50D) Cite (100D) Multi (100D)

I-CFM 41.834 ± 3.284 49.779 ± 4.430 48.276 ± 3.281 57.262 ± 3.855
WLF-SB 39.695 ± 1.935 47.828 ± 6.382 46.131 ± 0.083 55.065 ± 5.499
WLF-OT 38.352 ± 0.203 47.890 ± 6.492 44.821 ± 0.126 55.416 ± 6.097
OT-CFM 38.756 ± 0.398 47.576 ± 6.622 45.393 ± 0.416 54.814 ± 5.860

[SF]2M-Exact 40.009 ± 0.783 45.337 ± 2.833 46.530 ± 0.426 52.888 ± 1.986

[SF]2M-Geo 38.524 ± 0.293 44.795 ± 1.911 44.498 ± 0.416 52.203 ± 1.957
WLF-UOT 37.007 ± 1.200 46.286 ± 5.841 43.731 ± 1.375 54.222 ± 5.827

Cell-MNN (ours)* 38.803 ± 0.635 43.926 ± 2.590 46.020 ± 1.177 52.698 ± 2.341
OT-CFM* 38.576 ± 0.429 43.141 ± 3.918 45.368 ± 0.473 51.399 ± 3.972
OT-MFM 36.394 ± 1.886 45.160 ± 4.960 41.784 ± 1.020 50.906 ± 4.627

can be used to reduce the RAM requirements of the method and is unique when compared to Neural
ODEs, whose accuracy depends on the step size due to numerical solving.

G ADDITIONAL QUALITATIVE RESULTS

In Figures 8, 9, 10, 11, we present UMAP projections of the learned operators for each time range,
colored by all the cell types reported in the developmental graph of Moon et al. (2019). These
correspond to the same UMAPs described in Section 2.1, recolored by different cell type to highlight
the cell-type dependence of the predicted dynamics. Cells are assigned to a type when the joint
expression of the associated marker genes exceeds the 95th percentile. This analysis is enabled
by having access to an explicit dynamics model conditioned on time and gene expression, which
potentially allows inferences such as identifying when two cell types share similar dynamical laws
within a given time range.
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