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ABSTRACT

Recent advances in deep learning highlight the need for personalized models that
can learn from small or moderate samples, handle high-dimensional features, and
remain interpretable. To address this challenge, we propose the Sparse Deep Ad-
ditive Model with Interactions (SDAMI), a framework that combines sparsity-
driven feature selection with deep subnetworks for flexible function approxima-
tion. Unlike conventional deep learning models, which often function as black
boxes, SDAMI explicitly disentangles main effects and interaction effects to en-
hance interpretability. At the same time, its deep additive structure achieves higher
predictive accuracy than classical additive models. Central to SDAMI is the con-
cept of an Effect Footprint, which assumes that higher-order interactions project
marginally onto main effects. Guided by this principle, SDAMI adopts a two-
stage strategy: first, identify strong main effects that implicitly carry information
about important interactions; second, exploit this information—through structured
regularization such as group lasso—to distinguish genuine main effects from in-
teraction effects. For each selected main effect, SDAMI constructs a dedicated
subnetwork, enabling nonlinear function approximation while preserving inter-
pretability and providing a structured foundation for modeling interactions. Ex-
tensive simulations with comparisons confirm SDAMI’s ability to recover effect
structures across diverse scenarios, while applications in reliability analysis, neu-
roscience, and medical diagnostics further demonstrate its versatility in addressing
real-world high-dimensional modeling challenges.

1 INTRODUCTION

Deep learning regression now underpins applications across science, engineering, and biomedicine
(Cesario et al., 2024; Collins et al., 2024). Yet most architectures are tuned to data-rich regimes with
large sample sizes (He et al., 2020). In many emerging settings—especially personalized AI—the
reality is the opposite: modest numbers of samples paired with extremely high feature counts. Such
small-n, large-p problems are increasingly common as measurement technologies extract thousands
of variables from limited observations (Jain, 2002; Stefanicka-Wojtas & Kurpas, 2023; Zhou et al.,
2015). Our motivating example comes from neuroscience, where we analyze single-cell activity
with roughly n = 500 observations and over p = 11,000 candidate features. This regime cre-
ates a basic tension. Classical deep models risk overfitting because the effective sample size per
parameter is tiny, while aggressive dimensionality reduction can discard meaningful biological sig-
nal. Addressing this trade-off requires models that scale to high dimensions, remain stable in small
samples, and preserve interpretability for scientific discovery.

When data are abundant, conventional deep models can achieve high predictive accuracy but typi-
cally operate as “black boxes,” obscuring how individual variables and their interactions drive pre-
dictions (Wang & Lin, 2021). That can suffice for tasks like image classification or speech recog-
nition, but scientific studies need insight into which effects matter and why (Molnar, 2020). In
small-n, large-p settings, the stakes are higher: high variance and spurious correlations are easy
to create, making transparency essential for reliability (Hastie et al., 2009). These considerations
motivate structured architectures that explicitly encode regression effects. By modeling main effects
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Figure 1: The formation of complex cells arises from nonlinear activation of quadratic pairs of
simple cells generated by Gabor-wavelet filters applied to the input.

and interactions in a constrained, interpretable form, one can deliver components that aid inference,
support diagnostics, and tie predictions back to hypotheses, even when data are limited.

A concrete illustration comes from modeling visual cortex responses. Images are first passed through
localized, orientation- and phase-sensitive Gabor filters to mimic simple-cell receptive fields; outputs
then undergo nonlinear transforms to produce single-cell responses. Complex cells are formed by
pooling quadrature-phase pairs (square–sum–nonlinearity), yielding phase-invariant responses. This
pipeline generates thousands of features from only a few hundred image–response pairs, creating a
prototypical small-n, large-p scenario. Classical sparse additive models treat simple and complex
cell terms as independent main effects, offering flexibility but ignoring biologically plausible higher-
order associations (Kay et al., 2008; Vu et al., 2008). These limitations motivate us to propose the
Sparse Deep Additive Model with Interactions (SDAMI), a structured deep additive framework that
preserves interpretability while facilitating the discovery of nonlinear effects and interactions.

The Sparse Deep Additive Model with Interactions (SDAMI) is motivated by a new principle we
introduce in this study, the notion of the Effect Footprint. The Effect Footprint posits that higher-
order interactions leave detectable marginal signatures on main effects, thereby providing a pathway
for discovering interactions even when direct estimation is statistically expensive in small-sample
regimes. While related ideas have appeared in the statistical literature under hierarchical sparsity
and the heredity principle (Bien et al., 2013; Lim & Hastie, 2015), the Effect Footprint is novel in
explicitly formalizing this marginal-to-interaction connection and operationalizing it in a deep addi-
tive framework. SDAMI leverages this idea in a two-stage procedure. In the first stage, it identifies
strong main effects whose marginal signals implicitly carry information about potential interactions.
In the second stage, it employs structured regularization—such as group penalties or hierarchical
sparsity (Simon et al., 2013; Yuan et al., 2009; Zhao et al., 2009)—to disentangle true main effects
from interaction effects and to introduce nonlinear interaction subnetworks only when justified by
the data. For each selected main effect, SDAMI constructs a dedicated subnetwork, enabling non-
linear function approximation while retaining interpretability at the effect level. In this way, SDAMI
achieves a balance between flexibility and transparency: it adapts deep subnetworks to capture com-
plex nonlinearities while organizing them in an additive structure that preserves clarity. Extensive
simulations show that the proposed approach recovers effect structure across diverse scenarios and
avoids the pitfalls of either underfitting main effects or overfitting interactions.

Related Work and Differences. To clarify SDAMI’s distinct role, we compare it with two es-
tablished model families: deep models with interactions and additive models with deep structure.
Conventional deep learning with entangled architectures can represent complex interactions im-
plicitly (He et al., 2020), but typically offers little insight into which variables matter or how they
contribute. Many studies attempt to compensate by adding external attribution modules or post-
hoc diagnostics, yet these approaches often rest on restrictive assumptions (e.g., linearized effects),
miss general nonlinearities, and are prone to instability when samples are scarce or signals are weak
(Molnar, 2020). In contrast, SDAMI is designed to be additive at the top layer: each selected vari-
able receives a dedicated subnetwork, and interaction blocks are introduced only when warranted
by estimated footprints. This design provides a direct, training-time pathway that aligns feature at-
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tributions with the generative structure, rather than relying on surrogate explanations after the fact.
The result is effect-level interpretability, reduced variance, and targeted capacity allocation. Neural
additive models likewise attach subnetworks to inputs but usually treat interactions as optional or
probe them in an unstructured manner (Agarwal et al., 2021; Xu et al., 2023). SDAMI goes further
by embedding interaction discovery into the objective via structured penalties that promote sparsity
and respect grouping, allowing statistically disciplined selection of both main effects and interac-
tions (Patel et al., 2020; Shah, 2016). Overall, SDAMI combines interpretable decomposition with
expressive subnetworks and data-driven interaction modules, yielding a principled framework for
identifying and estimating effects without sacrificing stability in small-n, large-p regimes. It also
preserves sample efficiency by allocating capacity only where evidence supports complexity and
robustness.

Our Contribution. SDAMI connects three strands of literature. First, sparse additive model-
ing (e.g., SpAM [SpAM]) attains interpretability via main-effect decompositions with sparsity, but
struggles with rich nonlinear interactions (e.g., Fan et al. (2011a); Ravikumar et al. (2009); Fan et al.
(2011b)). Second, neural additive frameworks replace basis expansions with subnetworks, enhanc-
ing flexibility yet typically handling interactions ad hoc (e.g., Agarwal et al. (2021); Vaughan et al.
(2018); Yang et al. (2021)). Third, structured sparsity in deep learning selects parameter groups via
group/hierarchical penalties (e.g., Yuan & Lin (2006); Scardapane et al. (2017); Wen et al. (2016)).
SDAMI builds on these by tailoring structured sparsity to the hierarchy of regression effects and
by operationalizing the Effect Footprint principle so evidence in main effects guides interaction dis-
covery, shrinking search, improving stability, and yielding interpretable recovery under small-n,
large-p. Our main contributions are summarized below:

• Introduce the effect footprint and a response-guided framework for nonlinear model-
structure selection in deep models.

• Propose a structured deep additive model with interactions: each fj and f(·) is a dedicated
subnetwork; norm-based input constraints (3) gate connections (pruning when ∥fj∥=0 or
∥fI∥=0), yielding sparse, effect-level interpretability.

• Provide theory: (i) conditions under which footprints vanish (Hoeffding–Sobol first-order
projections), (ii) effect-level selection consistency, and (iii) prediction convergence in prob-
ability.

• Present extensive p≫n simulations and applications showing improved predictability and
interpretability over baselines, with high true positive rate (TPR)/low false positive rate
(FPR) and informative component-function visualizations.

2 PROBLEM SETUP AND RESPONSE-GUIDED STRUCTURED DEEP
FRAMEWORK

We observe regression data {(Xi, Yi)}ni=1, where Xi = (Xi1, . . . , Xik)
⊤ ∈ Rk denotes the pre-

dictors and Yi ∈ R is the response. The true regression function is assumed to follow a sparse
additive-plus-interaction structure of the form

Yi =
∑
j∈M

fj(Xij) + f(Xi,I) + ϵi, (1)

where M ⊆ {1, . . . , k} is the index set of important main effects, I ⊆ {1, . . . , k} is the index
set of variables entering the interaction component, and ϵi is a random error with E[ϵi] = 0 and
Var(ϵi) = σ2. We assume |M| = p ≪ k, so that only a small fraction of predictors directly
contribute as main effects. In addition, we define |I \M| = q, capturing variables that contribute
exclusively through interactions but not as main effects. These footprint variables are essential for
identifying higher-order dependencies that cannot be explained by additive contributions alone.

To estimate model (1), each main-effect function fj and the interaction function f(·) are represented
by dedicated neural subnetworks. Let θj and θI denote their respective parameters. Denote by
W

(1)
M,j the weight vector in the first hidden layer connecting input Xj to its main-effect subnetwork,

and by W
(1)
I,j the weight vector connecting Xj to the interaction subnetwork. The estimation problem
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is then formulated as

min
θ

1

n

n∑
i=1

(
Yi −

∑
j∈M

NN(j)(Xij ; θj)−NN(I)(Xi,I ; θI)

)2

, (2)

subject to ∥W (1)
M,j∥∞ ≤ κM∥fj∥, j = 1, . . . , k, ∥W (1)

I,j∥∞ ≤ κI∥fI∥, j ∈ I. (3)

Here, NN(j)(Xij ; θj) denotes a neural network (NN) submodule dedicated to the j-th main effect,
parameterized by weights θj , while NN(I)(Xi,I ; θI) denotes a subnetwork for the interaction set
I, parameterized by θI . Each NN is a standard feedforward network with hidden layers and non-
linear activations, serving as a flexible nonlinear approximator. The reference functions fj and fI
represent the true main-effect and interaction-effect components of the regression function f⋆. The
constraints in equation 3 regulate the first-layer weights W (1) relative to ∥fj∥ and ∥fI∥, ensuring
that each subnetwork remains aligned with the magnitude of its corresponding effect and thereby
preserving hierarchical structure and interpretability. If ∥fj∥ = 0, the outgoing weights W (1)

M,j van-
ish, excluding Xj from its subnetwork. Similarly, if ∥fI∥ = 0, connections into the interaction
subnetwork are eliminated, removing the interaction term. Thus sparsity and interpretability are
achieved not through explicit penalties, but through norm-based constraints that prune irrelevant
effects, while the loss in equation 2 enforces predictive accuracy.

The constrained optimization problem (2) and (3) determines which subnetworks remain active for
prediction. However, direct optimization without additional structure becomes infeasible in high
dimensions, since it is difficult to distinguish relevant main effects from irrelevant variables or latent
contributors to interactions. To overcome this challenge, we introduce the principle of an effect foot-
print, which provides a mechanism for linking variable screening directly to the objective function
and guiding the activation of subnetworks in a statistically coherent manner.

3 FITTING SPARSE DEEP ADDITIVE MODELS WITH INTERACTIONS
(SDAMI)

The constrained optimization problem (2) and (3) highlights how sparsity and interpretability can
be enforced by linking input-layer weights to functional norms. However, to determine which sub-
networks should remain active in high-dimensional settings, we require a principled way to identify
variables that may only contribute through latent interactions. This motivates the notion of an effect
footprint.

Formally, an effect footprint is defined as the marginal influence of a variable that arises solely from
its participation in the interaction subnetwork. If Xj /∈ M but j ∈ I, then

mj(x) = E
[
f(XI) | Xj = x

]
may still vary with x, leaving a detectable signal in the marginal regression of Y on Xj . Thus,
although fj is absent in the true model, Xj exhibits a footprint through f(XI). This principle
implies that the regression function can be approximated as

Yi =

p+q∑
j=1

fj(Xij) + ϵi,

where {1, . . . , p} = M correspond to true main effects and {p+ 1, . . . , p+ q} = I \M represent
footprint variables. Let S = {1, . . . , p + q} denote the union of main and footprint variables.
Recovering S is therefore the first step toward solving objective function (2) and (3).

Motivated by model (3), we can apply a sparse additive screening procedure to identify an estimated
active set Ŝ (Ravikumar et al., 2009). This step retains variables with either genuine main effects
or non-negligible footprints, while shrinking all others to zero. Once Ŝ is obtained, we refine the
decomposition by partitioning Ŝ into M̂ (main effects) and Î (interaction effects) using group lasso
with an orthogonal basis expansion (Yuan & Lin, 2006). The sets M̂ and Î are associated with
penalty parameters λ1 and λ2, which are selected via Mallow’s Cp and cross-validation, respectively.
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These subsets then guide the fitting of deep regression model defined in model (1), implemented
in PyTorch. Figure 2 illustrates the SDAMI architecture and how structured constraints impose
sparsity on the network. A detailed description of the algorithm is provided in Appendix A of the
supplementary material.

Figure 2: The SDAMI architecture. Screening identifies both main and footprint variables, which
guide the activation of subnetworks and enforce biologically and statistically meaningful structure.

4 THEORETICAL ANALYSIS: THE ROLE OF EFFECT FOOTPRINT, SELECTION
CONSISTENCY, MODEL CONVERGENCE

We present the theoretical foundation of SDAMI in three parts. First, we formalize the concept of
effect footprint, which justifies feasible high-dimensional screening. Second, we show that SDAMI
attains effect-level selection consistency, recovering both the true main effects and the interaction
structure. Finally, we establish predictive validity by proving that the fitted predictor converges in
probability to the true model (1).

Theorem 4.1 (When effect footprints vanish). Let XI = (Xj ,Z) be the variables in an interaction
f(XI) with E[f(XI)] = 0. Define

mj(x) = E[f(XI) | Xj = x].

Then mj(x) is constant (no footprint) iff the first–order projection of f onto functions of Xj vanishes
in the Hoeffding–Sobol decomposition (Sobol’, 1990; Sobol, 2001). In this case, f contains only
higher–order components involving Xj .

This characterization isolates the exceptional cases in which footprints fail: a variable leaves no
detectable footprint precisely when its influence appears solely through higher–order interactions
that vanish after averaging over the remaining inputs. Such a variable may still be essential via
interactions, but univariate screening cannot detect it. Two canonical settings illustrate this: (i)
independence with centering (e.g., bilinear forms of independent, mean-centered inputs), and (ii)
perfect symmetry with antisymmetric interactions (e.g., the XOR rule for binary data or odd func-
tions under symmetric continuous inputs). These conditions are stringent; in practice predictors are
correlated, distributions seldom perfectly symmetric, and noise disrupts exact cancellations. Conse-
quently, footprints typically exist, providing a robust signal for screening. A detailed proof is given
in Appendix B of the supplementary material.

Theorem 4.2 (Effect-level selection consistency of SDAMI). Under assumptions (A1)–(A7),

P
({

j : f̂j ̸= 0
}
= M and (f̂I ̸= 0 ⇔ fI ̸= 0)

)
−→ 1 as n → ∞.
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Case Functional Form Conceptual Description
1 y = f1(x1) + f2(x2) + f3(x3) + f4(x4) Only strong main effects, no interactions
2 y = f1(x1) + f2(x2) + f3(x3) + 0.01f4(x4) Main effects with weak signals
3 y = f1(x1) + f2(x2) + f3(x3) + f5(x4, x5) Main effects plus one interaction block with no overlap
4 y = f1(x1) + f2(x2) + f3(x3) + f5(x3, x4) Main effects + 1 interaction block with some overlapping variables
5 y = f1(x1) + f2(x2) + f3(x3) + f5(x2, x3) Main effects plus one interaction block with all variables overlapping
6 y = f5(x1, x2) + f5(x3, x4) Only interaction effects, no main effects

Table 1: The summary table for numerical simulation models.

Thus SDAMI does not merely exploit footprints heuristically; it achieves a rigorous form of oracle
recovery. As n grows, SDAMI selects exactly the true set of main effects and correctly detects
the interaction with probability tending to one, ensuring that the discovered structure reflects the
underlying generative mechanism. The proof (Appendix C of the supplementary material) employs
a block-wise primal–dual witness argument for the group-lasso formulation, leveraging footprint-
induced group signals and oracle inequalities for group sparsity (Lounici et al., 2011; Negahban
et al., 2009).

Theorem 4.3 (Prediction convergence in probability for SDAMI). Let Ân be the SDAMI-selected
index set and let f̂n be the SDAMI estimator. Suppose (B1)–(B6) hold. Then, for every fixed ε > 0,

P
(
|f̂n(X)− f⋆(X)| ≥ ε

)
−→ 0 as n → ∞,

The key idea is to combine sieve approximation with uniform generalization. Selection consistency
concentrates learning on the correct coordinates; empirical risk minimization up to a vanishing tol-
erance, together with a uniform law of large numbers for squared loss (via Rademacher and cover-
ing bounds for norm–constrained networks), transfers empirical to population L2–risk (Bartlett &
Mendelson, 2002; Mohri et al., 2018; van de Geer, 2000). In parallel, ReLU approximation theory
ensures the sieve approximates the oracle regression under a suitable growth schedule (Barron, 1993;
Yarotsky, 2017; Schmidt-Hieber, 2020; Suzuki, 2019). A uniform L2 envelope (implied by norm
constraints and square-integrability) guarantees uniform integrability, so vanishing population risk
implies vanishing misfit probability via a Markov-type bound. Full details appear in Appendix D of
the supplementary material.

5 NUMERICAL EXPERIMENTS

We conduct comprehensive numerical simulations to evaluate SDAMI’s ability to recover effect
structures and achieve predictive accuracy across diverse scenarios. Data are generated under six
distinct settings summarized in Table 1, each defined by different functional forms involving only
main effects or combinations of main and interaction effects, with varying overlaps among interac-
tion variables.

For each setting:

• Sample sizes n vary across 150, 300, and 450.
• The feature dimension is fixed at p = 150 in a high-dimensional regime, with only a few

features having substantive main or interaction effects.
• Responses are generated as Yi =

∑
j∈M fj(Xij) + f(Xi,I) + ϵi, where Xi ∼

Uniform(−2.5, 2.5) independently and ϵi ∼ N(0, σ2).
• True functions are drawn from representative nonlinear forms: f1(x) = −2 sin(2x),
f2(x) = x2

2 + 1, f3(x) = x − 1
2 , f4(x) = e−x + e−1 − 1, and f5(x1, x2) =

esin(x1)+cos(x2)−1. Detailed formulations for the six experimental cases are provided in
Table 1.

We benchmark SDAMI against three alternatives: deep neural networks (DNN, modeling full inter-
actions), fast sparse additive models (fSpAM, a high-dimensional main effect model), and LASSO
(a high-dimensional linear model). The architecture of SDAMI is determined by cross-validation
and the detail can be found in Appendix E.1 of the supplementary material. Across all simula-
tion settings and sample sizes, SDAMI consistently achieves the lowest mean squared error (MSE)
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Method SDAMI DNN fSpAM LASSO

MSE↓ STD↑ MSE↓ STD↑ MSE↓ STD↑ MSE↓ STD↑
Case 1 0.68 0.59 14.37 1.03 5.48 0.52 4.77 0.94
Case 2 0.77 0.41 5.39 0.42 3.22 0.25 3.02 0.37
Case 3 0.70 0.58 5.78 0.43 3.55 0.25 3.61 0.39
Case 4 0.84 0.27 7.11 0.51 3.53 0.27 3.34 0.40
Case 5 0.85 0.53 5.90 0.43 3.65 0.27 3.59 0.41
Case 6 0.27 0.25 1.05 0.11 0.63 0.05 0.61 0.10

Table 2: Performance comparison on SDAMI, DNN, fSpAM, and LASSO by case type when n =
150; ↓ means the lowest the better while ↑ means the highest the better.

Method SDAMI LASSONET SODA

TPR ↑ FPR ↓ TPR ↑ FPR ↓ TPR ↑ FPR ↓
Case 1 1.0000 (-) 1.1× 10−5 (-) 0.4900 (0.0490) 0.0037 (0.0028) 0.0175 (0.0641) 6× 10−4 (2× 10−4)
Case 2 1.0000 (-) 1.1× 10−5 (-) 0.2550 (0.0350) 0.0099 (0.0138) 0.0475 (0.1048) 1× 10−3 (2× 10−4)
Case 3 0.7500 (-) 10−4 (10−5) 0.1400 (0.3007) 0.1724 (0.2810) 0.025 (0.0754) 6× 10−4 (3× 10−4)
Case 4 0.7600 (-) 10−4 (10−5) 0.1300 (0.3051) 0.1621 (0.2701) 0.040 (0.1049) 7× 10−4 (3× 10−4)
Case 5 0.7550 (0.0249) 10−4 (10−5) 0.1250 (0.2947) 0.1629 (0.2814) 0.055 (0.1100) 9× 10−4 (2× 10−4)
Case 6 0.6000 (-) 10−4 (10−5) 0.1100 (0.2700) 0.1432 (0.2334) - (-) 6× 10−4 (2× 10−4)

Table 3: Mean (standard deviation) of TPR and FPR over 100 simulations from SDAMI, LAS-
SONET, SODA when n = 150 where (−) indicates value < 1e−5.

(Tables 2), confirming its capacity to flexibly capture nonlinear main and interaction effects while
maintaining interpretability. Increasing sample size improves all methods’ performance; however,
SDAMI preserves a clear margin of advantage, underscoring its robustness and scalability. Case-
specific comparisons further illustrate these findings. In Case 1, which involves only strong main
effects, SDAMI attains the best accuracy without introducing spurious interactions, demonstrating
parsimony (Tables 2). In Case 2, where true signals are weak, SDAMI continues to outperform
benchmarks, reflecting robustness to small effect sizes. In Cases 3–5, which include both main and
interaction effects with varying degrees of overlap, fSpAM and LASSO show limited capacity to re-
cover the true structures, while SDAMI consistently models both overlapping and non-overlapping
interactions, achieving markedly lower errors across all sample sizes. In Case 6, where effects arise
solely from interactions, SDAMI retains strong predictive performance, while fSpAM and LASSO
deteriorate substantially and DNN suffers from instability. Taken together, the results across Ta-
bles 2 demonstrate that SDAMI provides a balanced combination of flexibility, interpretability, and
accuracy. By leveraging effect footprints, it adapts to diverse data-generating mechanisms and con-
sistently outperforms existing approaches, validating its utility as a powerful framework for sparse
high-dimensional regression in the presence of complex effect structures. The additional numerical
experiments with respect to different sample size is displayed in Appendix E.2 of the supplementary
material.

We further evaluate the feature selection performance of SDAMI, focusing on its ability to recover
true main and interaction effects while minimizing false discoveries. Table 3 summarizes the TPR
and FPR when n = 150, averaged over 100 simulations and compared with LASSONET(Lemhadri
et al., 2021), and sodavis (SODA)(Li, 2015). TPR measures the proportion of correctly identified
active variables, while FPR reflects the rate of spurious selections. SDAMI achieves near-perfect
TPRs of 1.0 in Cases 1 and 2, dominated by main effects, showing it reliably identifies relevant
signals without omission. In more complex settings with overlapping and non-overlapping inter-
actions (Cases 3–6), SDAMI maintains substantially higher TPRs than LASSONET and SODA,
which experience steep sensitivity drops. Concurrently, SDAMI obtains extremely low FPRs, often
on the order of 10−4, whereas competitors select irrelevant features at much higher rates. This re-
sult indicates that SDAMI strikes a favorable balance between sensitivity and specificity, crucial for
high-dimensional regression where false discoveries can obscure interpretation. Stability across 100
replications affirms robustness , while improvements from n = 150 to n = 300 confirm scalability.
Overall, SDAMI demonstrates reliable, precise feature recovery in sparse, high-dimensional prob-
lems with complex effect structures. The additional experiment of feature selection for n = 300 is
shown in Appendix E.2 of the supplementary material.
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Figure 3: (Case 3) The three figures on the left: Estimated (red dashed lines) versus true additive
component functions (solid black lines) for three main effects; the two figures on the far right: the
first shows the true response surface for interaction, and the second shows its estimated response
surface.

In our simulation studies, a key advantage of SDAMI over other machine learning models is its
interpretability through visualization. Unlike black-box methods, SDAMI enables visualization of
individual component functions, allowing researchers to inspect each selected main or interaction
effect’s contribution to predictions. This layered interpretability enhances transparency and offers
scientific insight into the modeled relationships. Figure 3 illustrates Case 3 results, where the black
solid line shows the true function and the red dashed line shows SDAMI estimates, demonstrating
accurate recovery of complex nonlinear patterns. Additionally, visualizations for all simulation
cases are provided in Appendix E.3 of the supplementary material, underscoring SDAMI’s value for
interpretable modeling in high-dimensional regression.

6 REVISIT REAL DATASETS FOR BETTER UNDERSTANDING PRACTICAL USE
OF SDAMI

The V1 fMRI dataset (Kay et al., 2008) records voxel responses from human primary visual cortex
at 2 mm×2 mm×2.5 mm resolution on a 4 T scanner while subjects viewed grayscale natural im-
ages through a circular aperture. Stimuli are flashed three times per second with interleaved blanks,
and signals are preprocessed to reduce noise and nonstationarity. Prior work shows interaction ef-
fects among complex cells (Kay et al., 2008; Vu et al., 2008), but how to model such interactions
while preserving biological meaning remains underexplored. To foreground the neuroimaging chal-
lenge—small n, high p—experiments use 300 unique natural images, each summarized by 1,800
Gabor-filter features derived from complex-cell processing; each voxel reflects pooled, rectified ac-
tivity organized by a receptive-field hierarchy over space, frequency, and phase. Figure 1 sketches
the pipeline producing simple-cell and complex-cell predictors (and Figure 4 shows the SDAMI
linkage to voxel responses).

Applying SDAMI to the V1 dataset yields strong predictive gains relative to baselines (Table 4).
Modeling only main effects (SDAMI (ME)) already improves MSE over several competitors, and
adding explicit interactions (SDAMI (IN)) further boosts performance, underscoring the importance
of capturing higher-order structure among complex-cell features. Across datasets in Table 4, SDAMI
(IN) attains the best or near-best scores (e.g., lowest MSE on Chip, best root mean squared error
(RMSE) and R-squared (R2) on Diabetes, and lowest MSE / highest R2 on V1), demonstrating that
interaction modules materially enhance accuracy beyond additive structure alone.

Beyond accuracy, SDAMI provides effect-level interpretability via component visualizations. Fig-
ure 5 displays estimated main effects from selected Gabor-filter features (highlighting positions,
orientations, and scales linked to activity) and interaction surfaces for key feature pairs, revealing
synergistic patterns consistent with cortical pooling. SDAMI can also be configured to select co-
herent pools of complex cells—e.g., grouping features that share spatial location and frequency
while varying orientation or phase—thereby aligning selected ensembles with neurophysiological
hypotheses rather than ad hoc combinations.

Finally, SDAMI generalizes beyond V1. On the Chip and Diabetes datasets (Table 4), SDAMI
(IN) achieves the lowest error and highest R2 among fSpAM, LASSO, DNN, and LASSONET,
while maintaining clear effect decompositions. Together, these results show that SDAMI delivers
competitive or superior prediction and biologically grounded interpretability in small-n, large-p
regimes, establishing a principled framework for response modeling in neuroscience and other high-
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Dataset Chip Diabete V1 Cell

MSE↓ R2 ↑ RMSE↓ R2 ↑ MSE↓ R2 ↑
DNN 0.927 0.071 58.375 0.403 0.493 0.074
fSpAM 0.753 0.237 58.797 0.395 0.629 0.258
LASSO 0.276 0.716 59.514 0.380 0.624 0.268
LASSONET 0.904 0.056 56.612 0.439 0.627 0.262
SDAMI (ME) 0.736 0.244 62.052 0.326 0.388 0.272
SDAMI (IN) 0.236 0.758 52.774 0.512 0.372 0.302

Table 4: MSE and R2 for three real datasets.

dimensional domains. Due to the page limitation, the details of other two dataset analyses are given
in Appendix F.1 and Appendix F.2 of the supplementary material.

Figure 4: The formation of response
arises from complex cells and group
complex cells selected by group lasso
applied to the input.

Figure 5: (V1 Cell Dataset) Upper panel: the pre-
dicted Marginal main effects (solid black dots);
lower panel: the estimated response surface for
interactions.

7 CONCLUSION

This paper introduced the Sparse Deep Additive Model with Interactions (SDAMI), a structured
deep learning framework tailored for small-n, large-p regression problems. By leveraging the prin-
ciple of effect footprints, SDAMI offers a systematic approach to detecting and modeling higher-
order interactions while retaining effect-level interpretability. The method enforces sparsity through
norm-based constraints that prune irrelevant variables and subnetworks, ensuring both statistical
stability and interpretability. Theoretical analysis established effect-level selection consistency and
prediction convergence in probability, providing rigorous guarantees beyond heuristic interpretabil-
ity. Simulation studies demonstrated that SDAMI reliably recovers both main and interaction ef-
fects, outperforming classical additive models and black-box neural networks. Applications to neu-
roscience and reliability analysis further illustrated the model’s versatility and its ability to bridge
deep learning with domain-specific interpretability requirements.

Limitations and Future Directions. While SDAMI achieves both interpretability alongside statis-
tical guarantees, several limitations remain. First, the current two-stage fitting procedure relies on
estimating function norms via a sparse additive model (SpAM) step, which can be computationally
demanding. This step could be accelerated by employing screening method such as Sure Indepen-
dence Screening (SIS Fan & Lv (2008); Fan et al. (2011a)) to directly identify important predictors,
prioritizing variable selection over full function estimation. This alternative motivates new theoret-
ical development of SDAMI under SIS-style screening, potentially enhancing scalability. Second,
the current theoretical results focus on effect-level consistency but do not provide convergence rates.
Incorporating recent advances in high-dimensional regression and nonparametric learning provide
sharper tools for establishing minimax rates and finite-sample guarantees. Extending SDAMI’s the-
ory to include convergence rates would deepen understanding of its performance in finite-sample
regimes. Together, these directions offer promising avenues for improving both the computational
efficiency and theoretical rigor of SDAMI for large-scale scientific applications.

9
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Supplementary Material for Sparse Deep Additive Model with
Interactions: Enhancing Interpretability and Predictability

A SDAMI ALGORITHM

This section describes the detail of the SDAMI algorithm and how the model fitting works.

Algorithm 1 SDAMI Fitting
Require: Data {(Xi, Yi)}ni=1, tuning parameters λ1, λ2

1: Step 1: Effect Footprint Screening (SpAM).
• Fit the sparse additive model

Yi =

p+q∑
j=1

fj(Xij) + ϵi

using SpAM with penalty λ1.
• Obtain estimated active set Ŝ ⊆ {1, . . . , p + q} containing both true main effects and

footprint variables.
2: Step 2: Partition Active Set (Group Lasso).

• Apply group lasso with orthogonal basis expansion on Ŝ.
• Partition into M̂ (main effects) and Î (interaction effects).
• Select penalty λ2 via cross-validation (with λ1 selected by Mallow’s Cp).

3: Step 3: SDAMI Model Fitting.
• Fit the constrained deep regression model using M̂ and Î.
• Implement subnetworks in PyTorch, with sparsity imposed via norm-based constraints.

Ensure: Estimated main-effect subnetworks {NN(j)}
j∈M̂ and interaction subnetworks

{NN(I)}I∈Î .

Regularization Parameter Selection. The regularization parameters λ1, λ2 are selected by min-
imizing the estimated risk and by cross-validation, respectively. The effective degree of freedom is
defined as df(λ) =

∑
j

νjI(∥f̂j∥ ≠ 0), where νi = trace(Sj) and Sj denotes the smoothing matrix

for the j-th dimension. The estimate is given by

Cp =
1

n

n∑
i=1

(
Yi −

p∑
j=1

f̂j(Xj)

)2

+
2σ̂2

n
df(λ).

B PROOF OF THEOREM 4.1

This section provides the detailed proof of Theorem 4.1, which establishes the equivalence be-
tween vanishing effect footprints and the disappearance of the first–order projection in the Hoeffd-
ing–Sobol decomposition. The result clarifies when a variable contributes only through higher–order
interactions and thus leaves no detectable marginal footprint.

We begin with the Hoeffding–Sobol decomposition. Let f(XI) be a centered function, i.e.,
E[f(XI)] = 0. Then f admits the unique expansion

f(XI) = f{j}(Xj) +
∑

S⊆I, j∈S, |S|≥2

fS(XS) +
∑

S⊆I, j /∈S, |S|≥1

fS(XS),

where the components fS are mutually orthogonal in L2, each has mean zero, and f{j}(Xj)
represents the unique first–order contribution of Xj . The remaining terms correspond either to
higher–order interactions involving Xj or to effects of variables not involving Xj .
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Conditional expectation with respect to Xj is the orthogonal projection of f onto the subspace of
L2 functions of Xj , as ensured by the Doob–Dynkin lemma and the Hilbert projection theorem.
Hence the footprint mj(Xj) = E[f(XI) | Xj ] coincides with this projection. By uniqueness of the
Hoeffding–Sobol components, this projection is exactly f{j}(Xj). The two directions now follow.
If f{j} vanishes identically, then conditioning the decomposition on Xj eliminates all other terms:
for S not containing j, centeredness of fS implies E[fS(XS) | Xj ] = 0, while for S containing j
with |S| ≥ 2, orthogonality ensures E[fS(XS) | Xj ] = 0. Thus mj(Xj) = 0, which is constant,
so Xj leaves no footprint. Conversely, if mj(Xj) is constant almost surely, then E[f(XI) | Xj ] is
identically zero because f is centered. Since this conditional expectation is the projection of f onto
the space of functions of Xj , it follows that f{j}(Xj) ≡ 0.

Therefore, the footprint mj(x) is constant if and only if the first–order projection f{j}(Xj) vanishes.
In this case, the variable Xj contributes only through higher–order interactions, and its marginal
influence disappears in expectation, thereby proving Theorem 4.1.

C CONDITIONS AND PROOF OF THEOREM 4.2

This section establishes the effect-level selection consistency of SDAMI. We begin by introducing
the technical assumptions that govern the noise, design structure, signal strength, and basis ex-
pansion. These conditions provide the foundation for analyzing the group-lasso estimator used in
SDAMI and for verifying the primal–dual witness construction that guarantees selection consistency.
Assumption C.1 (Conditions for effect-level selection).

(A1) (Noise) The errors ϵi in the true function (1) of the main paper are sub-Gaussian with mean
zero and variance proxy σ2.

(A2) (Within-group orthonormality) For each main effect j,
1

n
Φ⊤

j Φj = I,

and for the interaction block ΦI ,
1

n
Φ⊤

I ΦI = I,
1

n
Φ⊤

I Φj = 0 (j ∈ I).

(A3) (Block coherence) For g ̸= g′, ∥∥∥ 1
nX

⊤
g Xg′

∥∥∥
op

≤ µ < 1,

where Xg denotes the block of design columns for group g.

(A4) (Restricted eigenvalue) The Gram matrix on the active set

ΣA⋆A⋆ = 1
nX

⊤
A⋆XA⋆ , A⋆ = M∪ {I},

satisfies λmin(ΣA⋆A⋆) ≥ κmin > 0 and the method for constructing the Gram matrix is
defined in assumption (A7).

(A5) (Irrepresentability) There exists η > 0 such that

∥ΣA⋆cA⋆Σ−1
A⋆A⋆∥2,∞ ≤ 1− η.

(A6) (Signal strength) With group weights wg ∈ [1, Cw] and tuning parameter λn ≍ σ
√

logG
n

(where G is the number of candidate groups),

min
j∈M

∥fj∥ ≥ c0λn, ∥fI∥ ≥ c0λn if the interaction is present,

for some c0 > 2/η.

(A7) (Finite orthonormal basis representation) Each function fj and the interaction fI is rep-
resented in an orthonormal basis expansion of finite dimension (at most quadratic order),
with corresponding design blocks Φj and ΦI .
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Having specified the assumptions, we now turn to the proof. The role of (A7) is to provide a finite
orthonormal basis representation of all effects, which allows us to formulate the regression problem
as a finite-dimensional block group-lasso. Assumptions (A1)–(A6) then control the noise, depen-
dence, eigenstructure, and signal strength needed to verify that the primal–dual witness construction
recovers the correct support with probability tending to one.

By (A7), each main effect fj and the interaction fI admits a finite-dimensional orthonormal basis
representation, say

fj(xj) = Φj(xj)
⊤βj , fI(XI) = ΦI(XI)

⊤γ,

where Φj ∈ Rn×mj and ΦI ∈ Rn×mI collect the basis evaluations across n samples. Stacking
these blocks gives the design matrix

X = [X1, . . . , Xk, XI ], Xj := Φj , XI := ΦI ,

with block coefficient vector θ = (β1, . . . , βk, γ). The true active set is A⋆ = M∪ {I : fI ̸= 0}
and the inactive set is I⋆ = G \A⋆, where G denotes all candidate groups.

The SDAMI estimator solves the block group-lasso problem

θ̂ ∈ argmin
θ

1

2n
∥y −Xθ∥22 + λn

∑
g∈G

wg∥θg∥2,

with tuning parameter λn ≍ σ
√

logG
n and group weights wg ∈ [1, Cw]. The associated KKT

conditions are

1

n
X⊤

g (y −Xθ̂) = λnwg ẑg, ∥ẑg∥2 ≤ 1, ẑg =
θ̂g

∥θ̂g∥2
if θ̂g ̸= 0.

Assumption (A1) ensures that the error vector ε is sub-Gaussian. By a union bound over all blocks
and coordinates, with probability 1− o(1) the event

max
g∈G

1

n
∥X⊤

g ε∥2 ≤ 1
2λnwg

holds, providing high-probability control of noise terms in the KKT system. Assumptions (A2)
and (A3) impose within-block orthonormality and block coherence, ensuring that Σ = X⊤X/n
has bounded eigenvalues and limited inter-block correlations. Assumption (A4) states a restricted
eigenvalue condition, which guarantees that for any deviation vector ∆A⋆ supported on the active
set,

1

n
∥XA⋆∆A⋆∥22 ≥ κmin∥∆A⋆∥22.

Assumption (A5) provides the irrepresentability condition, ensuring that inactive blocks cannot
mimic active ones in the dual constraints. Finally, assumption (A6) requires minimal signal strength
∥fg∥ ≥ c0λn on all active blocks, so that true coefficients dominate the estimation error.

Under these conditions, the restricted problem on A⋆ yields an estimator θ̂A⋆ with error bound

∥θ̂A⋆ − θ⋆A⋆∥2 ≤ 3λn

κmin

( ∑
g∈A⋆

w2
g

)1/2
.

Because c0 > 2/η, this error is asymptotically smaller than the true signal size, ensuring θ̂g ̸= 0
for all g ∈ A⋆. Thus, no active block is missed. For inactive groups, the dual feasibility condition
requires 1

n∥X
⊤
g (y −XA⋆ θ̂A⋆)∥2 < λnwg . The residual expands as r̂ = ε−XA⋆(θ̂A⋆ − θ⋆A⋆). The

first term is controlled by (A1), while the second is bounded by (A3) and (A5) together with the
error rate above. Consequently, inactive groups satisfy strict dual feasibility, forcing θ̂g = 0 for all
g ∈ I⋆. This establishes absence of false positives.

For the interaction, if fI = 0, then I ∈ I⋆ and the dual condition implies f̂I = 0. If fI ̸= 0,
then I ∈ A⋆ and the signal strength bound ensures f̂I ̸= 0. Combining all pieces, with probability
tending to one we have

{j : f̂j ̸= 0} = M, f̂I ̸= 0 ⇔ fI ̸= 0,

which proves the effect-level selection consistency of SDAMI as stated in Theorem 4.2.
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D CONDITIONS AND PROOF OF THEOREM 4.3

To ground the proof, we first specify the SDAMI function class and estimator used throughout.

Model class of SDAMI. Let A ⊆ {1, . . . , p} index a subset of active main effects and interactions.
For each main effect j ∈ Amain and interaction I ∈ Aint, let NL,W,B denote the class of feedforward
ReLU subnetworks of depth L and maximal width W whose parameters satisfy a norm constraint
(e.g., path norm, spectral norm, or ℓ2 decay) bounded by B. For a growth schedule (Ln,Wn, Bn),
define the SDAMI sieve over A by

FSDAMI
n (A) =

{
f(x) =

∑
j∈Amain

gj(xj) + hI(xI) : gj ∈ NLn,Wn,Bn
, hI ∈ NLn,Wn,Bn

}
.

Thus SDAMI is an additive model with interactions, where each component is realized by a subnet-
work from NLn,Wn,Bn

restricted to its own argument(s).

Assumptions.

(B1) Sampling, noise, and approximation. The data (Xi, Yi)
n
i=1 are i.i.d. from model (1) in the

main content with ϵi satisfying E[ϵi] = 0 and Var(ϵi) = σ2 < ∞. The covariates X
have either bounded support or sub-Gaussian tails, and the true regression function f⋆ ∈
L2(PX) lies in the L2(PX)-closure of the sieve

∞⋃
n=1

FSDAMI
n (A),

so that for any ε > 0 there exists n and f ∈ FSDAMI
n (A) with ∥f − f⋆∥L2(PX) ≤ ε.

(B2) Effect-level selection consistency (SDAMI). Let A⋆ be the true set of active main effects
and interactions. Then P(Ân = A⋆) → 1.

(B3) Approximation (DNN sieve over true inputs). For the restricted DNN class FDNN
n (A⋆) with

schedule (Ln,Wn, Bn), the sieve approximation error vanishes:

αn := inf
f∈FDNN

n (A⋆)
P
[
(f − f⋆

A⋆)2
]
−→ 0.

(B4) Empirical risk minimization up to tolerance. The trained f̂n ∈ FDNN
n (Ân) satisfies

Pn

[
(f̂n − Y )2

]
≤ inf

f∈FDNN
n (Ân)

Pn

[
(f − Y )2

]
+ δn, δn ↓ 0.

(B5) Capacity control and uniform generalization. The norm constraint Bn (and/or width Wn)
ensures a vanishing complexity for squared loss:

Rn(Ln) = o(1), Ln := {(f−g)2 : f ∈ FDNN
n (A), g ∈ FDNN

n (A), A ⊆ {1, . . . , p}},

so that
sup
h∈Ln

∣∣(P − Pn)h
∣∣ = op(1).

(B6) (Measurability and uniform L2 envelope) Each f ∈ FSDAMI
n (A) is measurable, and there

exists a constant M < ∞ (independent of n, A, and f ) such that

sup
A⊆[p]

sup
f∈FSDAMI

n (A)

Pf2 ≤ M.

In particular, for the data–dependent active set Ân, the trained f̂n ∈ FSDAMI
n (Ân) is mea-

surable and satisfies P f̂2
n ≤ M almost surely. Hence {Pℓ(f̂n)}n is uniformly integrable.

With the SDAMI sieve FSDAMI
n (Ân) specified and assumptions (B1)–(B6) in place, we now prove

Theorem 4.3 by analyzing the empirical minimizer within this class and translating vanishing risk
into prediction convergence.
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Let P denote expectation with respect to PX and Pn the empirical average over the training inputs.
Write the squared excess prediction loss as ℓ(f) := (f − f⋆)2. By the selection consistency of
SDAMI (B2), P(Ân = A⋆) → 1, so it suffices to analyze f̂n ∈ FSDAMI

n (A⋆) and the conclusions
will then hold unconditionally. Using the empirical-to-population decomposition,

Pℓ(f̂n) = Pnℓ(f̂n) + (P − Pn)ℓ(f̂n).

To control Pnℓ(f̂n), expand the empirical squared loss around Y = f⋆ + ϵ:

Pn

[
(f̂n − Y )2

]
= Pnℓ(f̂n) + Pn[ϵ

2] + 2Pn

[
(f⋆ − f̂n)ϵ

]
.

By the empirical optimality up to tolerance (B4), for any f ∈ FSDAMI
n (A⋆),

Pnℓ(f̂n) ≤ Pnℓ(f) + 2
∣∣∣Pn

[
(f⋆ − f̂n)ϵ

]∣∣∣ + 2
∣∣∣Pn

[
(f⋆ − f)ϵ

]∣∣∣ + δn.

The noise is centered with bounded conditional variance (B1) and the SDAMI sieve is capac-
ity–controlled (B5), hence the stochastic inner products above are op(1) uniformly over f ∈
FSDAMI

n (A⋆) by standard symmetrization/contraction bounds for squared loss. Taking the infimum
over f ∈ FSDAMI

n (A⋆) yields

Pnℓ(f̂n) ≤ inf
f∈FSDAMI

n (A⋆)
Pnℓ(f) + op(1) + δn.

Adding and subtracting population risks and invoking the uniform generalization bound for squared
loss from (D5),

Pℓ(f̂n) ≤ inf
f∈FSDAMI

n (A⋆)
Pℓ(f) + op(1) + δn.

By the approximation property of the SDAMI sieve on the true inputs (B3), the approximation error
αn := inff∈FSDAMI

n (A⋆) Pℓ(f) satisfies αn → 0; therefore

Pℓ(f̂n)
p−→ 0. (4)

To convert result (4) into prediction convergence, note the inequality

1
{∣∣f̂n(X)− f⋆(X)

∣∣ ≥ ε
}

≤ ℓ(f̂n)(X)

ε2
, ε > 0.

Taking expectation over X and then over the training sample gives

P
(∣∣f̂n(X)− f⋆(X)

∣∣ ≥ ε
)

≤
E
[
Pℓ(f̂n)

]
ε2

.

The sieve’s norm constraints together with (B6) imply a square–integrable envelope on
FSDAMI

n (A⋆), hence {Pℓ(f̂n)}n is uniformly integrable; combined with result (4) this yields
E[Pℓ(f̂n)] → 0. Consequently,

P
(∣∣f̂n(X)− f⋆(X)

∣∣ ≥ ε
)

−→ 0 for every fixed ε > 0,

i.e., f̂n(X)
p−→ f⋆(X) at the design distribution PX.

E SUPPLEMENTARY MATERIAL FOR NEURAL ADDITIVE MODELS

In this section, we summarize the detail of cross validation on architecture selection, additional
experiment results, and the visualization of either main effects or interactions effects from the nu-
merical studies.

E.1 SDAMIS ON NUMERICAL STUDIES

We summarize the cross validation on configuration selection for SDAMI and DNN in Table 5 where
(1) = [8, 6, 3], (2) = [12, 10, 6], and (3) = [15, 12, 10] represent the hidden layers. The optimal
architecture for the Simulation studies is (3) achieving lowest MSE.
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Method SDAMI(1) SDAMI∗(2) SDAMI(3) DNN(1) DNN∗(2) DNN(3)

MSE↓ STD↓ MSE↓ STD↓ MSE↓ STD↓ MSE↓ STD↓ MSE↓ STD↓ MSE↓ STD↓
Case 1 2.64 3.23 0.43 0.65 0.48 0.71 14.11 0.71 14.10 0.73 13.95 0.68
Case 2 0.94 1.04 0.38 0.62 0.29 0.56 5.31 0.40 5.26 0.31 5.23 0.30
Case 3 1.20 1.21 0.46 0.63 0.29 0.45 5.76 0.39 5.70 0.32 5.62 0.26
Case 4 0.94 1.03 0.34 0.55 0.32 0.58 7.07 0.48 6.98 0.38 6.95 0.36
Case 5 0.72 0.90 0.35 0.58 0.37 0.65 5.80 0.38 5.78 0.35 5.74 0.36
Case 6 0.33 0.23 0.25 0.21 0.25 0.21 1.03 0.17 0.99 0.20 0.37 0.19

Table 5: Performance of SDAMs and DNNs with respect to different configuration when n = 300.

Method SDAMI DNN fSpAM LASSO

MSE↓ STD↓ MSE↓ STD↓ MSE↓ STD↓ MSE↓ STD↓
Case 1 0.48 0.71 14.11 0.71 5.57 0.31 3.32 0.24
Case 2 0.29 0.56 5.31 0.40 3.04 0.16 2.54 0.17
Case 3 0.29 0.45 5.76 0.39 3.37 0.15 2.97 0.20
Case 4 0.32 0.58 7.07 0.48 3.32 0.17 2.80 0.16
Case 5 0.37 0.65 5.80 0.38 3.45 0.16 2.98 0.20
Case 6 0.25 0.21 1.03 0.17 0.60 0.03 0.43 0.032

Table 6: Performance comparison on SDAMI, DNN, fSpAM, and LASSO by case type when n =
300.

E.2 ADDITIONAL EXPERIMENT RESULTS

The performance comparison among different machine learning model is demonstrated in Table 6 7.
Also, Table 8 results for additional numerical experiments with different sample size and corre-
sponding TPR/ FPR are demonstrated in the following block.

E.3 VISUALIZATION FOR EACH CASE

In the section, we demonstrate the visualization of either main effects or interaction among each
cases where the visualization result for Case 3 can be found in Figure 3. In Case 1 - 5, the SDAMI
can capture both linearity and nonlinearity underlying the true model. In the interaction-existed
cases, we can observes the SDAMI can still depict the response surface to approximate the underly-
ing higher-order effects.

In this section, we demonstrate visualizations of the component functions representing either main
effects or interactions across different cases. For Cases 1 through 5, SDAMI successfully captures
both the linear and nonlinear structures underlying the true models. In cases involving interactions,
we observe that SDAMI effectively depicts the response surfaces, accurately approximating the
underlying higher-order effects. These visualizations provide valuable insights into the model’s
interpretability and can be found in detail in the Figure 6, 7.

F REAL DATA ANALYSIS

This section illustrates the additional experiment on two other real datasets including the parameter
settings and corresponding explanation on the visualization.

F.1 SURROGATE MODELING OF PRODUCT LIFETIME MODELING

This subsection showcases the application of SDAMI in evaluating prediction performance, posi-
tioning it as an effective surrogate technique— a key approach in the field of computer experiments
(Santner et al., 2019; Wu & Hamada, 2011). Surrogate modeling serve as statistical approxima-
tions of computationally intensive simulations, facilitating the efficient study of complex system
dynamics.
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Figure 6: The estimated (red dashed lines) versus true additive component functions (solid black
lines) for four main effects for (Upper panel) Case (1) and (Lower panel) Case (2).

Figure 7: (Upper panel: Case (4); middle panel: Case (5)) The three figures on the left: Estimated
(red dashed lines) versus true additive component functions (solid black lines) for three main effects;
the two figures on the far right: the first shows the true response surface for interaction, and the
second shows its estimated response surface. (Lower panel: Case (6)) The first and third shows
the true response surface for interactions, and the second and fourth shows corresponding estimated
response surface.
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Method SDAMI DNN fSpAM LASSO

MSE↓ STD↓ MSE↓ STD↓ MSE↓ STD↓ MSE↓ STD↓
Case 1 0.23 0.63 13.89 0.82 5.43 0.28 3.04 0.17
Case 2 0.21 0.46 5.33 0.35 2.98 0.14 2.40 0.11
Case 3 0.28 0.37 5.78 0.32 3.33 0.16 2.72 0.14
Case 4 0.17 0.21 7.14 0.50 3.24 0.15 2.61 0.13
Case 5 0.22 0.19 5.82 0.39 3.41 0.15 2.76 0.13
Case 6 0.14 0.18 1.06 0.13 0.59 0.03 0.39 0.02

Table 7: Performance comparison on SDAMI, DNN, fSpAM, and LASSO by case type when n =
450.

Method SDAMI LASSONET SODA

TPR↑ FPR↓ TPR↑ FPR↓ TPR↑ FPR↓
Case 1 1.0000 (-) 1.1× 10−5 (-) 0.6100 (0.1241) 0.0129 (0.0091) 0.03 (0.0964) 5× 10−4 (2× 10−4)
Case 2 1.0000 (-) 1.1× 10−5 (-) 0.4550 (0.1083) 0.0168 (0.0083) 0.02 (0.0685) 4× 10−4 (2× 10−4)
Case 3 0.7500 (-) 10−4 (10−5) 0.0200 (0.0980) 0.0451 (0.0418) 0.015 (0.06) 6× 10−4 (4× 10−4

Case 4 0.7600 (0.0490) 10−4 (10−5) 0.0100 (0.0700) 0.0367 (0.0176) 0.025 (0.0758) 5× 10−4 (2× 10−4)
Case 5 0.7525 (0.0249) 10−4 (10−5) 0.0100 (0.0700) 0.0390 (0.0183) 0.03 (0.0821) 5× 10−4 (2× 10−4)
Case 6 0.6100 (0.0436) 10−4 (10−5) 0.0200 (0.0980) 0.0519 (0.0658) - (-) 5× 10−4 (2× 10−4)

Table 8: Mean (standard deviation) of TPR and FPR over 100 simulations from SDAMI, LAS-
SONET, SODA when n = 300 where (−) indicates value < 1e−5.

We illustrate this with the analysis of electronic device lifetimes, which can fail due to mechanisms
such as front-end fate oxide breakdown (FEOL TDDB) (Yang et al., 2017). This failure occurs
when traps accumulate in the gate oxide layer from electrical and thermal stress during operation,
eventually creating conductive paths leading to device malfunction. The lifetime distribution for
these components is captured by the following function, as characterized in prior work (Hsu et al.,
2020):

S(t) = exp

−

(
t

AFEOL(WL)−
1
β e−

1
β V a+bT exp

(
cT+d
T 2

)
s−1

)β
 , (5)

where the inputs include process-dependent constants AFEOL, a, b, c, d, voltage V and temperature
T , width W and length L of the device, the probability of stress s, and shape parameter β describing
failure progression over time.

Although simulating such experiments is straightforward, accurately extracting main and higher-
order effects under data sparsity requires sophisticated and interpretable modeling. To that end,
we employ the MaxPro design (Joseph et al., 2015) to generate space-filling experiments spanning
all input factors, with details in Table 9. The dataset includes 100 observations with 9 covariates,
augmented by 21 irrelevant noise features randomly sampled uniformly within [0, 1) to test model
sparsistency and interaction detection. The log-transformation of the true model is given by

log(η) = log(AFEOL)−
1

β
log(WL)− 1

β
+ (a+ bT ) log(V ) + (

cT + d

T 2
)− log(s), (6)

where s is constant and η corresponds to a 63% failure quantile from the generalized Wei-bull
model (5). This representation admits an additive decomposition involving univariate and bi-variate
functions 6,

y = α+
∑
i

fi(xi) +
∑
i ̸=j

fij(xi, xj) + · · ·+ ϵ.

allowing comprehensive identification of relevant main and interaction effects. Table 4 presents the
comparative performance of various techniques, including SDAMI with and without interactions,
DNN, LASSO, LASSONET, and fSpAM, demonstrating SDAMI’s prominence in recovering com-
plex dependency structures in sparse, high-dimensional settings.
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Figure 8: (Upper) Main effects and (Lower) Interaction for Chip Data (Chip Dataset) The six figures
on the top panel: Predicted marginal response of target with respect to main effect features (solid
black dots) versus estimated additive component functions (red dashed lines) for six main effects;
the three figures on the lower panel: Estimated response surface for interactions.

Given the visualization of effects from Figure 8, we can observe that the contribution of main effect
is relatively weak. Besides, the interaction have obvious effect on response. To be more specific,
when c, T and d, T goes up, the response will increase. when c goes down and V goes up, the
response will increase. These phenomenon is predictable because in Equation 6, the higher-order
effects are dominant over main effects but the main effects still exist due to its marginal effect on
the response.

Parameter Lower Upper
a −81.9 −74.1
b 7.69× 10−2 8.51× 10−2

c 8.37× 103 9.25× 103

d −8.14× 105 −7.33× 105

β 1.476 1.804
V 1.2 1.3
T 120 180

WL 4× 10−4 6× 10−4

AFEOL 4.75× 10−7 5.25× 10−7

s 1 1

Table 9: Parameter table for generating space-filling experiment on MOSFET device

F.2 DIABETES RESPONSE PREDICTION

For this analysis, we utilize the well-known diabetes dataset from the scikit-learn library, which
contains 442 observations and ten baseline covariates. These features capture key demographic and
physiological measurements, such age (in years), sex (0: female, 1: male), body mass index (BMI),
mean arterial blood pressure, and six standardized blood serum variables known to be relevant for
diabetes progression. The target variable is a quantitative measure of disease progression observed
one year after baseline, making the dataset suitable for regression modeling and biomarker analysis.

To thoroughly evaluate sparse additive modeling methods under high-dimensional constraints, we
purposefully restrict the sample size to n = 200 and augment the original dataset with 40 synthetic
covariates, each drawn independently from a uniform distribution on the interval [0, 1) distribution.
These additional features are explicitly designed to act as non-informative noise, challenging each
model’s ability to discern relevant predictors. Thus, the expanded dataset includes 50 covariates in
total, with the genuine signal confined to the original ten baseline measurements. Standard prepro-
cessing, including normalization and scaling of all features, is performed to ensure comparability
and numerical robustness in downstream modeling. This controlled, high-dimensional experimental
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Figure 9: (Diabetes Dataset) The two figures on the left: Predicted marginal response of target with
respect to main effect features (solid black dots) versus estimated additive component functions (red
dashed lines) for two main effects; the three figures on the far right: Estimated response surface for
interactions.

setup provides a rigorous testbed for assessing the sensitivity and variable selection performance of
SpAM, and other advanced machine learning algorithms in biomedical contexts.

Visualization of the estimated effects in Figure 9 reveals several interpretable patterns. Both blood
pressure and age exhibit a positive association with the disease progression target. Notably, the
interaction between total serum cholesterol and the logarithm of serum triglycerides levels further
enhances the predictive signal. Across fixed levels of high-density lipoproteins, a higher serum
triglycerides value also contributes to increased disease progression. Additionally, the impact of
BMI on the response is consistent across both genders, manifesting as a monotonic relationship.
The observed relationships align well with clinical expectations and domain knowledge.

Table 4 summarizes model performance for diabetes response prediction. SDAMI with interaction
modeling consistently outperform alternative machine learning methods, offering superior predic-
tive accuracy alongside enhanced interpretability thanks to its explicit feature selection and effect
visualization capabilities.
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