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ABSTRACT

Recent advances in deep learning highlight the need for personalized models that
can learn from small or moderate samples, handle high-dimensional features, and
remain interpretable. To address this challenge, we propose the Sparse Deep Ad-
ditive Model with Interactions (SDAMI), a framework that combines sparsity-
driven feature selection with deep subnetworks for flexible function approxima-
tion. Unlike conventional deep learning models, which often function as black
boxes, SDAMI explicitly disentangles main effects and interaction effects to en-
hance interpretability. At the same time, its deep additive structure achieves
higher predictive accuracy than classical additive models. Central to SDAMI is
the concept of an Effect Footprint, which assumes that higher-order interactions
project marginally onto main effects. Leveraging this principle, SDAMI employs a
three-stage strategy to circumvent the search complexity inherent in direct interac-
tion screening: first, identify strong main effects that implicitly carry information
about important interactions; second, exploit this information—through structured
regularization such as group lasso—to distinguish genuine main effects from in-
teraction effects; third, build subnetwork for identified main effect and interac-
tion. For each selected main effect, SDAMI constructs a dedicated subnetwork,
enabling nonlinear function approximation while preserving interpretability and
providing a structured foundation for modeling interactions. Extensive simula-
tions and applications with comparisons confirm SDAMT’s in reliability analysis,
neuroscience, and medical diagnostics further demonstrate SDAMI’s versatility
in recovering effect structures across diverse scenarios and addressing real-world
high-dimensional modeling challenges.

1 INTRODUCTION

Deep learning regression now underpins applications across science, engineering, and biomedicine
(Cesario et al.,[2024; Collins et al.L[2024). Yet most architectures are tuned to data-rich regimes with
large sample sizes (He et al.l [2020). In many emerging settings—especially personalized Al—the
reality is the opposite: modest numbers of samples paired with extremely high feature counts. Such
small-n, large-k problems are increasingly common as measurement technologies extract thousands
of variables from limited observations (Jain, 2002; |Stefanicka-Wojtas & Kurpas| [2023; [Zhou et al.}
2015). Our motivating example comes from neuroscience, where we analyze single-cell activity
with roughly n = 500 observations and over £ = 11,000 candidate features. This regime creates
a basic tension. Classical deep models risk overfitting because the effective sample size per pa-
rameter is tiny, while aggressive dimensionality reduction can discard meaningful biological signal.
Addressing this trade-off requires models that scale to high dimensions, remain effective in small
samples, and preserve interpretability for scientific discovery.

When data are abundant, conventional deep models can achieve high predictive accuracy but typi-
cally operate as “black boxes,” obscuring how individual variables and their interactions drive pre-
dictions (Wang & Lin, [2021)). That can suffice for tasks like image classification or speech recogni-
tion, but scientific studies need insight into which effects matter and why (Molnar,2020). In small-n,
large-k settings, this need becomes even more urgent: limited samples amplify variance and spu-
rious correlations, making it difficult to identify the truly important variables and to characterize



Under review as a conference paper at ICLR 2026

their effects without an interpretable structure (Hastie et al., |2009). These considerations motivate
structured architectures that explicitly encode regression effects. By modeling main effects and
interactions, one can deliver the estimated component function of the important effects that aid in-
ference, support diagnostics, and tie predictions back to hypotheses, even when data are limited. For
example, a concrete illustration comes from modeling visual cortex responses. We illustrate these
challenges later on a V1 fMRI dataset, where thousands of Gabor-like features are measured from
only a few hundred images, creating a prototypical small-n, large-k scenario. Classical sparse addi-
tive models treat simple and complex cell terms as independent main effects, offering flexibility but
ignoring biologically plausible higher-order associations (Kay et al., | 2008; [Vu et al.l [2008). These
limitations motivate us to propose the Sparse Deep Additive Model with Interactions (SDAMI), a
structured deep additive framework that preserves interpretability and enhances predictability while
enabling the discovery of nonlinear effects and interactions.

The Sparse Deep Additive Model with Interactions is motivated by a new principle introduced in this
work: the Effect Footprint. The Effect Footprint posits that higher—order interactions typically leave
marginal traces in their constituent variables, meaning that even when an interaction cannot be di-
rectly estimated—especially in small-n, large-k settings—its presence can still be detected through
systematic deviations in the corresponding main-effect regressions. This yields statistically efficient
pathways for screening and discovering interactions by examining their lower-dimensional compo-
nent functions. This principle differs fundamentally from strong (or weak) effect heredity (Bien
et al., 2013; |[Lim & Hastiel 20155 |Chot et al.l |2010), which requires an interaction to be linear and
included only when all (or some) associated main effects are already active. This means heredity
imposes structural inclusion rules—preventing models that contain pure interactions without main
effects—the Effect Footprint provides a diagnostic criterion, formalizing how interactions manifest
through marginal projections and enabling their detection even when the main effects themselves
are weak or negligible. This distinction is particularly important in applications such as our biolog-
ical imaging study (Section 6), where interaction-driven signals may exist in the absence of strong
univariate effects.

SDAMI operationalizes the Effect Footprint within a deep additive architecture by converting
marginal signatures into a scalable mechanism for interaction discovery. It implements this idea
through a three-stage procedure. In the first stage, the method identifies strong main effects whose
marginal signals may implicitly reflect underlying interactions. In the second stage, it employs struc-
tured regularization—including group penalties and hierarchical sparsity (Simon et al., 2013} [Yuan
et al} |2009; Zhao et al.l 2009)—to disentangle genuine main effects from interaction contributions
and to introduce nonlinear interaction subnetworks only when supported by the data. Lastly, the
network is built according to the subnetwork for identified main effect and interaction. For each
selected main effect, SDAMI constructs a dedicated subnetwork, allowing flexible nonlinear func-
tion approximation while preserving effect-level interpretability. This design achieves a principled
balance between flexibility and transparency: the model captures complex nonlinearities using deep
subnetworks while maintaining an additive structure that clarifies the roles of individual variables.
Extensive simulations demonstrate that SDAMI reliably recovers effect structure across diverse sce-
narios and avoids both underfitting of main effects and overfitting of interactions.

Related Work and Differences. SDAMI addresses a gap not filled by existing models seeking to
combine flexibility with effect-level interpretability. Conventional deep neural networks can repre-
sent rich interactions implicitly (He et al.l[2020), but their entangled architectures obscure variable
contributions and rely on post-hoc attribution tools that often assume local linearity, miss nonlin-
ear structure, and become unstable in low-signal or small-n settings (Molnar, [2020). Additive and
partially additive neural models improve interpretability through main-effect decompositions, yet
typically depend on effect-heredity assumptions—requiring interactions to appear only when associ-
ated main effects are present—which restricts their ability to detect pure or higher-order interactions
(Agarwal et al) 2021} [Vaughan et al.l 2018; |Yang et al., 2021)). Classical sparse additive methods
similarly struggle to capture nonlinear interactions (Fan et al., 201 1aj |Ravikumar et al.l [2009; Fan
et al.,[2011b). Structured sparsity techniques (Yuan & Lin, [2006} [Scardapane et al.,[2017)) and their
deep-learning extensions (Wen et al.,|[2016; Xu et al.|[2023;|Chang et al.|, 2021} [Enouen & Liu, 2022
Kim et al.| |2022) offer principled group or hierarchical selection, but still inherit heredity-type con-
straints and do not provide a mechanism for disentangling main effects from interactions or allocat-
ing model capacity in a way aligned with effect structure. SDAMI offers a unified alternative: it im-
poses effect footprint with associated effect detection techniques via a extra pipeline from responses
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to the input layer so each selected variable receives its own subnetwork, introduces interaction sub-
networks only when data exhibit non-negligible effect footprints, and embeds interaction discovery
directly into optimization—allowing models composed purely of interactions when supported by ev-
idence—through structured hierarchical penalties (Patel et al., [2020; [Shahl [2016). SDAMI thereby
integrates and extends three distinct methodological strands: (i) Sparse additive modeling (SpAM),
which yields interpretability by enforcing main-effect sparsity but cannot capture nonlinear inter-
actions; (ii) Neural additive frameworks, which increase flexibility by replacing basis expansions
with subnetworks but lack a principled mechanism for detecting pure or higher-order interactions;
and (iii) Structured sparsity in deep learning, which enables group or hierarchical selection but still
treats main effects and interactions jointly and does not disentangle effect-specific representation
capacity. SDAMI uniquely combines additive interpretability with deep-network flexibility by using
effect footprints to identify influential variables, disentangling main effects from interactions, and
introducing interaction subnetworks.

Our Contribution. SDAMI introduces a principled framework for discovering nonlinear inter-
actions in deep regression modeling under small-n, large-k regimes by combining two key ideas:
leveraging the Effect Footprint to identify variables likely involved in the nonlinear interactions with
nonparametric modeling, and structuring deep subnetworks according to the hierarchy of regression
effects. The Effect Footprint enables screening of interaction-relevant variables before exploring the
full interaction space, yielding an efficient search in high dimensions. SDAMI then applies struc-
tured sparsity to separate main effects from interactions and to introduce interaction subnetworks
only when supported by data. Detailed contributions are summarized below:

* Introduce an additive-plus-interaction framework for small-n, large-% settings that identi-
fies key main effect components and a single high-dimensional interaction component for
constructing the input layer of a deep regression. This recovered interaction component
enables reconstruction of pairwise or higher-order interaction components.

* Introduce the effect footprint and formalize the marginal-to-interaction connection via
Hoeffding-Sobol decomposition, providing a principled mechanism to detect interaction-
only variables without assuming heredity constraints—a departure from existing hierarchi-
cal sparsity methods.

* Unlike post-hoc interpretation methods, the structured deep additive model with interac-
tions enforces sparsity and interpretability during training via input-layer norm constraints
(B). achieving effect level interpretability.

* Explore theorem to illustrate the condition for footprints detectability @.1)), effect-level
selection consistency under group sparisty @), and prediction convergence in probability
(#3)-establishing SDAMI's statistical rigor, and the failure of footprints is rare, impractical
edge cases involving perfect independence/symmetry).

* Provide a flexible and interpretable framework that overcomes the pairwise search-space
limitation through effect footprint, where overcome the k? searching complexity for
second-order criteria. In simulations and applications, we show improved predictability
and interpretability compared to state-of-the-art interpretable models with high true posi-
tive rate (TPR)/low false positive rate (FPR) and informative component-function visual-
izations.

2 PROBLEM SETUP AND RESPONSE-GUIDED STRUCTURED DEEP
FRAMEWORK

We observe regression data {(X;, Y;)},, where X; = (X,1,... , Xix) T € R* denotes the pre-
dictors and Y; € R is the response. The true regression function is assumed to follow a sparse
additive-plus-interaction structure of the form

Y=Y fi(X) + f(Xiz) + e, (1)

JEM
where M C {1,...,k} is the index set of important main effects, Z C {1,...,k} is the index
set of variables entering the interaction component, and ¢; is a random error with E[¢;] = 0 and

Var(e;) = o2. We assume |[M| = p < k, so that only a small fraction of predictors directly
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contribute as main effects. We define |Z \ M| = ¢, capturing variables that contribute exclusively
through interactions but not as main effects. The sets M and Z are not necessarily nested. In general,
7 may contain variables that contribute only through interactions but not as main effects, i.e., ¢ # 0,
including a scenario corresponds to interaction-only effects.

To estimate the model (1)), each main-effect function f; and the interaction function fz(-) are repre-
sented by dedicated neural subnetworks. Let 6; and 07 denote their respective parameters. Denote
by W/(\}l) ; the weight vector in the first hidden layer connecting input X; to its main-effect subnet-

work, and by Wz(lj) the weight vector connecting X; to the interaction subnetwork. The estimation
problem is then formulated as

2
1 & ,
min > (Yi = > NNU(Xy5:65) - NN(I)(X171;01)> , 2)
i=1 JEM
subjectto  [W ) oo < wpmllfill, G=1,--k, W < wzllfzll, GE€T. B3
) »J

Here, NNU )(Xij; 6;) denotes a neural network (NN) submodule dedicated to the j-th main effect,

parameterized by weights 6;, while NND (X;,z;01) denotes a subnetwork for the interaction set
7, parameterized by 7. Each NN is a standard feedforward network with hidden layers and non-
linear activations, serving as a flexible nonlinear approximator. The reference functions f; and fr
represent the true main-effect and interaction-effect components of the regression function f*. The
constraints in equation [3| regulate the first-layer weights W (1) relative to || ;|| and || fz||, ensuring
that each subnetwork remains aligned with the magnitude of its corresponding effect and thereby

preserving hierarchical structure and interpretability. If || f;|| = 0, the outgoing weights W/(\}I) ;
vanish, excluding X; from its subnetwork. Similarly, if || fz|| = 0, connections into the interac-

tion subnetwork are eliminated. Thus sparsity and interpretability are achieved not through explicit
penalties, but through norm-based constraints that prune irrelevant effects, while the loss in equa-
tion 2] enforces predictive accuracy.

Direct the optimization of the constrained problem (2) without additional structure becomes infea-
sible in high dimensions, since it is difficult to distinguish relevant main effects from irrelevant
variables or latent contributors to interactions. Another challenge in discovering the interaction
component is that even if one restricts attention to pairwise interactions, the number of candidate
interaction pairs grows quadratically with the feature count—namely, (g) possible pairs. To over-
come these challenge, we introduce the principle of an effect footprint, which provides a mechanism
for linking variable screening directly to the objective function and guiding the activation of subnet-
works in a statistically coherent manner.

3  FITTING SPARSE DEEP ADDITIVE MODELS WITH INTERACTIONS
(SDAMI)

The constrained optimization problem (2) and (3) present a fundamental challenge in high dimen-
sions: directly solving for all parameters becomes computationally infeasible and statistically unre-
liable when the number of potential effects far exceeds the sample size. To address this, we propose
a principled three-stage procedure (Algorithm [A) that leverages the effect footprint principle to sys-
tematically identify and estimate both main effects and interaction effects: and interaction-candidate

indices Z using Group LASSO.

(i.) Screening via Effect Footprints Recall the true model [T from Section 2, the core innovation
is recognizing that even if X; ¢ M (no standalone main effect), its participation in the interaction
f(Xz) can induce a detectable marginal signal.

Definition 3.1 (Effect Footprint). If X; € Z, the effect footprint is defined as:
mj(z) =E[f(Xz) | X; = z];

Although the true model contains no independent term f;(.X;), the conditional expectation m;(z)
may vary with x, thereby creating marginal dependence. This marginal dependence is precisely
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what make X; detectable via univariate screening, despite lacking an independent main effect. By
recognizing and leveraging these footprints, we can identify interaction-only variables without ex-

haustively searching the ( ) space of candidate pairs.

To operationalize this principle, we introduce an augmented additive model that captures both true
main effects and footprints:

p+q
Yi:ij(Xij)‘i‘% 4)

Jj=1

where {1,...,p} = M correspond to true main effects and {p + 1,...,p + ¢} = Z \ M represent
footprint variables. Let S = {1,..., p+¢} denote the union of main and footprint variables. Recov-
ering S is the first step toward solving the constrained optimization problem (Z). Motivated by this
augmented model (@), we can apply a sparse additive screening procedure (e.g., sure independence
screening for additive models) to identify an estimated active set S (]Rav1kumar et al. I, |2009|) This
step retains variables with either genuine main effects or non-negligible footprints, while shrinking
all others to zero.

(ii.) Decomposing into Main vs. Interaction Effects After screening, the selected features S
are assigned to both main effect M and interaction sets Z, allowing for overlap when a feature has
both strong individual predictive signal and meaningful interaction effects. This decomposition is
achieved group LASSO with orthogonal basis expansion (]Yuan & Linl, |2006|). The sets M and 7 are
associated with penalty parameters A\; and Ao, which are selected via Mallow’s C),
and cross-validation, respectively.

In this stage, we employ a group LASSO penalty to identify the set of features involved in non-
additive interactions. This enables recovery of the regression function as a sum of interaction com-
ponents corresponding to the supports selected by the group LASSO. Under the effect footprint
principle [3.1] and depending on the network architecture, this approach extends beyond pairwise
terms to capture higher-order interactions, thereby generalizes heredity-constrained modeling with
greater modeling flexibility.

Use the decomposition to construct dedicated subnetworks with norm constraints and solve the
constrained optimization problem. The decomposition is justified by the effect footprint principle:
variables participating exclusively in interactions leave marginal signals detectable via univariate
screening, even without standalone main effects.

(iii.) Solving @) and (EI) via Deep Learning with Norm Constraints After M and 7 are deter-
mined, these subsets guide the fitting of deep regression model defined in model (I)), implemented in
PyTorch. Figure [3]illustrates the SDAMI architecture and how structured constraints impose spar-
sity on the network. The norm-based constraints in the original constrained optimization problem
ensure that only the identified main-effect and interaction subnetworks remain active for prediction.

If all variables in Z are fed into a shared interaction subnetwork NNZ) (X,z; 07), which learns the

joint interaction structure is denoted as SDAMI. Otherwise, if each pairwise interaction (z;, z;) € T
is fed to a separate subnetwork that learns individual interaction structures, we denote it as
SDAMI—p. While SDAMI—p focuses on pairwise interactions for computational tractability (re-
ducing the search from (’;) to only relevant pairs), our higher-order variant (SDAMI) captures
arbitrary-order feature interactions. Unlike previous approaches (Enouen & Liu} [2022; [Kim et al.}
[2022), SDAMI leverages effect-footprint-based screening to systematically reduce the feature set
prior to modeling any-order interactions, avoiding the combinatorial explosion of the unapproach-
able (’2“) space. Although the two variants employ different architectures, the training algorithm
remains identical. A detailed algorithmic description is provided in Appendix [A]of the supplemen-
tary material. Neural network architectures (depth, width) are selected via 5-fold cross-validation
on a held-out validation set. Detailed configurations for each dataset are provided in Appendix [E}
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Figure 1: The SDAMI architecture. Screening identifies both main and footprint variables, which
guide the activation of subnetworks and enforce biologically and statistically meaningful structure.

4 THEORETICAL ANALYSIS: THE ROLE OF EFFECT FOOTPRINT, SELECTION
CONSISTENCY, MODEL CONVERGENCE

Under the model space definition mentioned in Appendix [B] we present the theoretical foundation
of SDAMI in three parts. First, we formalize the concept of effect footprint, which justifies feasible
high-dimensional screening. Second, we show that SDAMI attains effect-level selection consistency,
recovering both the true main effects and the interaction structure. Finally, we establish predictive
validity by proving that the fitted predictor converges in probability to the true model ().

Theorem 4.1 (When effect footprints vanish). Let X7 = (X, Z) be the variables in an interaction
f(Xz) withE[f(Xz)] = 0. Define

mj(z) = E[f(Xz) | X; = z].

Then m(x) is constant (no footprint) iff the first—order projection of f onto functions of X ; vanishes
in the Hoeffding—Sobol decomposition (Sobol’| |1990; |Sobol, 2001). In this case, f contains only
higher—order components involving X ;.

This characterization isolates the exceptional cases in which footprints fail: a variable leaves no
detectable footprint precisely when its influence appears solely through higher—order interactions
that vanish after averaging over the remaining inputs. Such a variable may still be essential via
interactions, but univariate screening cannot detect it. Two canonical settings illustrate this: (i)
independence with centering (e.g., bilinear forms of independent, mean-centered inputs), and (ii)
perfect symmetry with antisymmetric interactions (e.g., the XOR rule for binary data or odd func-
tions under symmetric continuous inputs). These conditions are stringent; in practice predictors are
correlated, distributions seldom perfectly symmetric, and noise disrupts exact cancellations. Conse-
quently, footprints typically exist, providing a robust signal for screening. A detailed proof is given
in Appendix [B]of the supplementary material.

Theorem 4.2 (Effect-level selection consistency of SDAMI). Under assumptions (Al)—(A7),
P({j: E#O}:M and (]?IyéO@fI#())) — 1 asn — oo.

Thus SDAMI does not merely exploit footprints heuristically; it achieves a rigorous form of oracle
recovery. As n grows, SDAMI selects exactly the true set of main effects and correctly detects
the interaction with probability tending to one, ensuring that the discovered structure reflects the
underlying generative mechanism. The proof (Appendix [C|of the supplementary material) employs
a block-wise primal—dual witness argument for the group-lasso formulation, leveraging footprint-
induced group signals and oracle inequalities for group sparsity (Lounici et al., [2011; Negahban
et al., [2009).
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Case Functional Form Conceptual Description
1 y = fi(z1) + fo(z2) + fa(x3) + fa(wa) Only strong main effects, no interactions
2y = fi(z1) + fa(w2) + f3(ws) +0.01f4(zs) Main effects with weak signals
3 y = f1(x1) + fa(x2) + f3(xs) + fo(xa, x5) Main effects plus one interaction block with no overlap
4 y = fi(z1) + fa(2a) + fa(wz) + fo (3, 24) Main effects + 1 interaction block with some overlapping variables
5 y= fi(z1) + f2(22) + f3(x3) + f5(v2,73) Main effects plus one interaction block with all variables overlapping
6 y = fs(x1,22) + f5(ws, x4) Only interaction effects, no main effects

Table 1: The summary table for numerical simulation models.

Theorem 4.3 (Prediction convergence in probability for SDAMI). Let En be the SDAMI-selected
index set and let f,, be the SDAMI estimator. Suppose (B1)—(B6) hold. Then, for every fixed € > 0,

]P’(|fn(X)—f*(X)\ > g) 40 asn— oo,

Remark 4.4. Our convergence result Theorem [4.3] relies on Assumption (B4), which requires that
the trained network achieves near-optimal empirical risk. This is a standard assumption in deep
learning theory and is empirically validated by our experiments. Recent advanced in optimization
theory for over-parameterized networks provide conditions under which gradient descent provably
converges to global minima, leading support to this assumption

The key idea is to combine sieve approximation with uniform generalization. Selection consistency
concentrates learning on the correct coordinates; empirical risk minimization up to a vanishing tol-
erance, together with a uniform law of large numbers for squared loss (via Rademacher and cover-
ing bounds for norm—constrained networks), transfers empirical to population Lo-risk (Bartlett &
Mendelson), [2002; [Mohri et al., 2018; jvan de Geer, 2000). In parallel, ReLU approximation theory
ensures the sieve approximates the oracle regression under a suitable growth schedule (Barron, 1993
Yarotsky, 2017} |Schmidt-Hieber, [2020; [Suzuki, 2019). A uniform L, envelope (implied by norm
constraints and square-integrability) guarantees uniform integrability, so vanishing population risk
implies vanishing misfit probability via a Markov-type bound. Full details appear in Appendix [D|of
the supplementary material.

5 NUMERICAL EXPERIMENTS

We conduct comprehensive numerical simulations to evaluate SDAMI’s ability to recover effect
structures and achieve predictive accuracy across diverse scenarios. Data are generated under six
distinct settings (Table|[T), each defined by different functional forms involving main effects, inter-
actions, or both, with varying degrees of variable overlap.

For each setting, (1) Sample sizes n vary across 150, 300, and 450; (2) Feature dimension is fixed

at k£ = 150 in a high-dimensional regime, with only a few features having substantive effects; (3)

Responses are generated as Y; = . ¢ fj(Xy5) + f(Xi 1) + €;, where X; ~ Uniform(—2.5,2.5)

independently and ¢; ~ N (0, 02); (4) True functions are drawn from representative nonlinear forms:
. aj2 —x —

fi(z) = =2sin(2z), fo(z) = T+ 1, f3(z) =z — %, fau(x) = e+ e ! — 1, and f5(x1,22) =

esin(@1)+eos(@2) =1 Detajled formulations for the six experimental cases are provided in Table

We benchmark SDAMI and SDAMI—p against state-of-the-art interpretable models including neural
additive model (NAM) which treats interaction ad hoc via heredity (Agarwal et al.,[2021), GAMI-
Net which uses soft hierarchical constraints limiting pure interactions (Yang et al., 2021), NODE-
GAM, and NODE-GA2M (Chang et al.,|2021) which applies heredity through structured penalties,
as well as deep neural networks (DNN), fast sparse additive models (fSpAM), and LASSO. Archi-
tecture selection for SDAMI a d SDAMI—p is determined by cross-validation. The hyperparameters,
optimal network architectures, and computing times are summarized in Appendix [E] Appendix [F
and Appendix [H] respectively.

Across all simulation settings and sample sizes, SDAMI consistently achieves the lowest mean
squared error (MSE) (Tables [2), confirming its capacity to flexibly capture nonlinear main and
interaction effects while maintaining interpretability. In Case 1, which involves only strong main
effects, SDAMI attains the best accuracy without introducing spurious interactions, demonstrating
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SDAMI DNN fSpAM LASSO NAM GAMI-NET NODE-GA’M NODE-GAM
Casel  0.681059 14374103 5841052 4771094 14361135  5.8343.09 1314153 2424950
Case2 0571075 5.39i042 3224025 3.023037 5191042 2.2641.05 0.7210.81 1.5841.64
Case 3 O.SSig_gg 5.78ig_43 3‘55i0.25 3.61ig_39 5‘68ig_49 2.56i1_02 1.00i1_1g 1.83i1_95
Case 4 0~52i0.91 7.11 4+0.51 3'53i0.27 3~34i0.40 6~95i0.56 3~05i1.29 0.96i1_07 1 .82i1_93
Case 5 0~44i0.79 5~90i0.43 3.65i0_27 3.59i0_41 5~77i0.48 2~33i1.18 0.85i0_99 1 -75i1.83
Case 6 0.46i0.24 1.05i0.11 0.63i0_05 0.61i0_10 0~97i0.09 5.85i3_09 0.48i0_29 0-52i0.33
Table 2: The performance for 6 different case type when n = 150. We show the average root mean

squared error (RMSE) over 100 simulations = the standard deviation.

Method SDAMI LASSONET SODA
TPR 1 FPR | TPR 1 FPR | TPR 1 FPR |

Case | 1.0000 (—)  1.1x 1075 (=) 0.4900(0.0490) 0.0037 (0.0028) 0.0175 (0.0641) 6 x 10=% (2 x 10~%)
Case 2 1.0000 (—)  1.1x1075 (=) 0.2550(0.0350) 0.0099 (0.0138) 0.0475(0.1048) 1 x 10~3 (2 x 10~%)
Case 3 0.7500 (—) 1074 (107%)  0.1400 (0.3007) 0.1724 (0.2810)  0.025 (0.0754) 6 x 10~4 (3 x 10~%)
Case 4 0.7600 (—) 1074 (107%)  0.1300(0.3051) 0.1621 (0.2701)  0.040 (0.1049) 7 x 10~ (3 x 10~%)
Case5  0.7550 (0.0249)  10=4(105)  0.1250 (0.2947) 0.1629 (0.2814)  0.055(0.1100) 9 x 10~4 (2 x 10~%)
Case 6 0.6000 (—) 1074 (1075  0.1100 (0.2700) 0.1432 (0.2334) -() 6x 1074 (2 x 1074)

Table 3: Mean and standard deviation of TPR (Higher is better) and FPR (Lower is better) over 100
simulations from SDAMI, LASSONET, SODA when n = 150 where (—) indicates value < 1le~®.

parsimony (Tables [2). In Case 2 (weak signals), SDAMI continues to outperform benchmarks, re-
flecting robustness to small effect sizes. In Cases 3—5, which include both main and interaction
effects with varying degrees of overlap, fSpAM, LASSO, NAM, and GAMI-NET show limited
capacity to recover the true structures, while SDAMI consistently models both overlapping and non-
overlapping interactions, achieving markedly lower errors across all sample sizes. In Case 6, where
effects arise solely from interactions, SDAMI retains strong predictive performance, while others
deteriorate substantially and DNN suffers from instability. Taken together, the results across Ta-
bles [2] demonstrate that SDAMI provides a balanced combination of flexibility, interpretability, and
accuracy. By leveraging effect footprints, it adapts to diverse data-generating mechanisms and con-
sistently outperforms existing approaches, validating its utility as a powerful framework for sparse
high-dimensional regression in the presence of complex effect structures. The additional numerical
experiments with respect to different sample size is displayed in Appendix |G of the supplementary
material.

We further evaluate the feature selection performance of SDAMI, focusing on its ability to recover
true main and interaction effects while minimizing false discoveries. TPR measures the propor-
tion of truly relevant features (main effects and interactions) that are correctly identified and FPR

measures the proportion of irrelevant features incorrectly identified as relevant. The total searching

space is (’;) because of the combinations of number of feature up to second order. This provides

a common benchmark for the combinatorial difficulty of interaction discovery; however, different
algorithm may or may not explicitly form all such terms. SDAMI uses effect-footprint screening to
reduce the set of candidate variables, thereby substantially shrinking the effective searching space
compared to a naive (’;) expansion. Table [3| summarizes the TPR and FPR when n = 150, av-
eraged over 100 simulations and compared with LASSONET(Lembhadri et al.| 2021)), and sodavis
(SODA)(L41, 2015). TPR measures the proportion of correctly identified active variables, while FPR
reflects the rate of spurious selections. SDAMI achieves near-perfect TPRs of 1.0 in Cases 1 and 2,
dominated by main effects, showing it reliably identifies relevant signals without omission. In more
complex settings with overlapping and non-overlapping interactions (Cases 3—6), SDAMI maintains
substantially higher TPRs than LASSONET and SODA, which experience steep sensitivity drops.
Concurrently, SDAMI obtains extremely low FPRs, often on the order of 10~—%, whereas competitors
select irrelevant features at much higher rates. This result indicates that SDAMI strikes a favorable
balance between sensitivity and specificity, crucial for high-dimensional regression where false dis-
coveries can obscure interpretation. Stability across 100 replications affirms robustness , while im-
provements from n = 150 to n = 300 confirm scalability. Overall, SDAMI demonstrates reliable,
precise feature recovery in sparse, high-dimensional problems with complex effect structures. The
additional experiment of feature selection for n = 300 is shown in Appendix[G|of the supplementary
material.
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Figure 2: (Case 3) The three figures on the left: Estimated (red dashed lines) versus true additive
component functions (solid black lines) for three main effects; the two figures on the far right: the
first shows the true response surface for interaction, and the second shows its estimated response
surface.

In our simulation studies, a key advantage of SDAMI over other machine learning models is its inter-
pretability through visualization. Figure[2]illustrates Case 3 results, where the black solid line shows
the true function and the red dashed line shows SDAMI estimates, demonstrating accurate recovery
of complex nonlinear patterns. Additionally, visualizations for all simulation cases are provided in
Appendix [G.2]of the supplementary material, underscoring SDAMTI’s value for interpretable model-
ing in high-dimensional regression.

6 REVISIT REAL DATASETS FOR BETTER UNDERSTANDING PRACTICAL USE
OF SDAMI

The V1 fMRI dataset (Kay et all 2008) records
voxel responses from human primary visual cortex
at 2mmx2mmx2.5mm resolution on a 4T scan-
ner while subjects viewed grayscale natural images
through a circular aperture. Stimuli are flashed three
times per second with interleaved blanks, and sig-
nals are preprocessed to reduce noise and nonstation-
arity. Prior work shows interaction effects among
complex cells (Kay et al., 2008} [Vu et all 2008), but
how to model such interactions while preserving bi-
ological meaning remains underexplored. To fore-
ground the neuroimaging challenge—small n, high
k—experiments use 300 unique natural images, each
summarized by 1,800 Gabor-filter features derived
from complex-cell processing; each voxel reflects
pooled, rectified activity organized by a receptive-
field hierarchy over space, frequency, and phase. The
pipeline of generating V1-cell response is summarized Figure 3: (V1 Cell Dataset) Upper panel:
in Appendix [[.3] Figure [IT]sketches the pipeline pro- the predicted Marginal main effects; lower
ducing simple-cell and complex-cell predictors (and panel: the estimated response surface for
Figure shows the SDAMI linkage to voxel re- interactions.

sponses). i

Across the seven real-world datasets in Table [

SDAMI achieves the best or near-best performance in 5 out of 7 cases, with particularly strong gains
on Chip, V1 Cell, and BikeShare. While NODE-GA?M shows marginal advantages on California
Housing and competitive performance on Wine, SDAMI’s systematic superiority across diverse ap-
plication domains—demonstrates its robustness. Importantly, SDAMI achieves these improvements
while maintaining effect-level interpretability through component visualization, providing both pre-
dictive accuracy and scientific transparency.

The interaction subnetworks prove particularly valuable in domains with known higher-order de-
pendencies, such as neuroscience where complex-cell receptive fields arise from nonlinear pooling
of simple-cell quadrature pairs. Figure [3|displays estimated main effects from selected Gabor-filter
features (highlighting positions, orientations, and scales linked to activity) and interaction surfaces
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SDAMI DNN fSpAM LASSO LASSONET NAM GAMI-NET NODE-GAM NODE—GAZM‘ Scale

Chip 0.244 0927 0.753 0.276 0.904 0.967 0.495 0.455 0.546 x1
Diabetes 0.524 0584 0.588 0.595 0.566 0.556 0.542 0.622 0.674 x0.01
V1 Cell 0.622 0.702  0.793 0.789 0.792 — 0.734 0.772 0.739 x1
Wine 0.672  0.702 0.771 0.745 0.703 0.712 0.701 0.721 0.698 x1
BikeShare 0.440 0459 1.484 1.434 0.468 1.001 0.592 1.001 0.554 x0.01
CA Housing 0529  0.531 0.821 0.731 0.536 0.579 0.528 0.571 0.503 x1

Table 4: The performance for 7 medium-sized datasets. All of them are regression datasets and
shown the Root Mean Squared Error (RMSE). (—) indicates model is infeasible for the dataset.

for key feature pairs, revealing synergistic patterns consistent with cortical pooling. The primary vi-
sual cortex (V1) processes visual information through a hierarchical organization where simple cells
respond to oriented edges at specific spatial positions and frequencies, characterized by Gabor filter
parameters including orientation angle 6, spatial wavelength ), and phase ¢. The upper left and right
panel shows complete different trend. The right panel shows the decrease from initial response to
near-zero, suggesting this complex cell is driven by orthogonal orientations that suppress its baseline
activity. As for the lower two panels visualize pairwise complex cell interactions, where both axes
represent the response magnitudes of two distinct complex cell. Both demonstrate the synergistic
excitation that the strongest V1 responses occur when both complex cells are simultaneously active,
indicating the neuron functions as a feature-conjunction detector responsive to specific spatial con-
figuration such as the corners or interesting edges. The biologic meaning behind the scene is that the
simple-cell inputs are integrated nonlinearly that classical additive models cannot capture. SDAMI’s
ability to automatically discover and visualize such high-order interactions in the high-dimensional
Gabor-filter feature space, rather than ad hoc combinations, validates its utility for neuroscientific
inference and demonstrate superior predictive accuracy.

Together, these results show that SDAMI delivers competitive or superior prediction and biologi-
cally grounded interpretability in small-n, large-k regimes, establishing a principled framework for
response modeling in neuroscience and other high-dimensional domains. Due to the page limitation,
the details of other dataset analyses are given in Appendix|[l]

7 CONCLUSION

This paper introduced the Sparse Deep Additive Model with Interactions, a structured deep learning
framework tailored for small-n, large-k regression problems. By leveraging the principle of effect
footprints, SDAMI offers a systematic approach to detecting and modeling higher-order interac-
tions while retaining effect-level interpretability. The method enforces sparsity through norm-based
constraints that prune irrelevant variables and subnetworks, ensuring both statistical stability and in-
terpretability. Theoretical analysis established effect-level selection consistency and prediction con-
vergence in probability, providing rigorous guarantees beyond heuristic interpretability. Simulation
studies demonstrated that SDAMI reliably recovers both main and interaction effects, outperforming
classical additive models and black-box neural networks. Applications to neuroscience and relia-
bility analysis further illustrated the model’s versatility and its ability to bridge deep learning with
domain-specific interpretability requirements.

Limitations and Future Directions.

While SDAMI offers interpretability with statistical guarantees, several limitations remain. First, the
three-stage fitting procedure relies on estimating function norms via SpAM, which can be compu-
tationally demanding; SIS-based screening (Fan & Lvl 2008; [Fan et al.,|2011a) could improve scal-
ability. Second, establishing finite-sample convergence rates for both main effects and interaction
terms; recent theory in sparse high-dimensional additive models (Gregory et al., 2021) establishes
finite-sample bound showing oracle equivalence under sparsity conditions, which may be adapted
to prove minimax rates for SDAMI’s multi-stage estimators. Third, extending SDAMI with safe
screening (Nakagawa et al., 2016) could further reduce computational cost by retaining only neces-
sary interaction candidates. Recent Deep P-Spline work (Hung et al.| [2025) shows penalized spline
activations provide both statistical efficiency and speed; incorporating such activations into SDAMI
alongside convergence theory would deepen understanding of finite-sample behavior and broaden
applicability. These directions promise stronger computational efficiency and theoretical rigor.

10
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REPRODUCIBILITY STATEMENT

We release the source code and configuration files for the main experiments, along with detailed
instructions for data generation and model training. All theoretical results are presented in the
appendix, accompanied by explanations and underlying assumptions. The implementation has been
carefully validated, and empirical results further confirm the correctness of the proposed Sparse
Deep Additive Model with Interaction (SDAMI).
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SUPPLEMENTARY MATERIAL FOR SPARSE DEEP ADDITIVE
MODEL WITH INTERACTIONS: ENHANCING INTERPRETABIL-
ITY AND PREDICTABILITY

A SDAMI ALGORITHM

This section describes the detail of the SDAMI algorithm and how the model fitting works.

Algorithm 1 SDAMI Fitting

Require: Data {(X;,Y;)}! ,, tuning parameters A1, A2
1: Step 1: Effect Footprint Screening (SpAM).
* Fit the sparse additive model

p+q
Y, = ij(Xij) +&
j=1
using SpAM with penalty A;.
« Obtain estimated active set S C {1,...,p+ ¢} containing both true main effects and
footprint variables.

2. Step 2: Decomposition of Active Set (Group Lasso).
* Apply group lasso with orthogonal basis expansion on S.

* Decomposition of into M and 7.
* Select penalty Ay via cross-validation (with A; selected by Mallow’s C},).

3: Step 3: SDAMI Model Fitting.

« Fit the constrained deep regression model using M and 7.
* Implement subnetworks in PyTorch, with sparsity imposed via norm-based constraints.

Ensure: Estimated main-effect subnetworks {NN(j )}j cir and interaction subnetworks
{NN(I)} IeT:

Regularization Parameter Selection. The regularization parameters A1, Ao are selected by min-
imizing the estimated risk and by cross-validation, respectively. The effective degree of freedom is

defined as df(\) = Zl/j[(”fj || # 0), where v; = trace(S;) and S; denotes the smoothing matrix
J

for the j-th dimension. The estimate is given by

n

Cp=7 3 (- éfxxj))Q + 2700,

=1

B PROOF OF THEOREM 4.1

Model space. Let M C {1,...,p} be the index set for additive (univariate) components, and
let Z C {1,...,q} be the index set for the multivariate interaction component. For j € M, let

NN©) (x;0;) denote the univariate neural network, and let NN@ (x7;07) denote the multivariate
neural network on coordinates 7.

We define the hypothesis classes induced by the first-layer constraints
1 . ‘
W56l < mmllfill, G €M,
W00l < wzllfzll

15



Under review as a conference paper at ICLR 2026

The admissible univariate and multivariate function classes are

Hy = {5() = NNOC30,) 1 (WL 000 S maaIF1l} s G EM,

Gz = {g() = NND(07) : [ Wi (00)l|oe < iz g1}

Definition B.1 (Model space of the structured neural network). The functional model space associ-
ated with the neural network estimator in equation [2}-equation [3]is

FNN(M,I) =< f(z) = Z fi(x;) + glxz) = fi €Hj, g€ Gz
JEM

If sparsity over the sets M and Z is desired, the overall sparse model space is

Fnn(S1,52) = U Fan(M,T).
MC{L,...p}, [M|<s:
Ig{l,...,q}, ‘I|§52
This section provides the detailed proof of Theorem 4.1, which establishes the equivalence be-
tween vanishing effect footprints and the disappearance of the first—order projection in the Hoeffd-
ing—Sobol decomposition. The result clarifies when a variable contributes only through higher—order
interactions and thus leaves no detectable marginal footprint.

We begin with the Hoeffding—Sobol decomposition. Let f(Xz) be a centered function, i.e.,
E[f(Xz)] = 0. Then f admits the unique expansion

fXz) = fij(X5) + > fs(Xs) + > fs(Xs),

SCT,jes,[5]=2 SCZ,j¢S,|5|>1

where the components fg are mutually orthogonal in L2, each has mean zero, and Ty (X5)
represents the unique first—order contribution of X;. The remaining terms correspond either to
higher—order interactions involving X ; or to effects of variables not involving X ;.

Conditional expectation with respect to X; is the orthogonal projection of f onto the subspace of
L? functions of X, as ensured by the Doob-Dynkin lemma and the Hilbert projection theorem.
Hence the footprint m;(X;) = E[f(Xz) | X;] coincides with this projection. By uniqueness of the
Hoeffding—Sobol components, this projection is exactly f{;}(X;). The two directions now follow.
If fi;; vanishes identically, then conditioning the decomposition on X; eliminates all other terms:
for S not containing j, centeredness of fs implies E[fs(Xgs) | X;] = 0, while for S containing j
with |S| > 2, orthogonality ensures E[fs(Xg) | X;] = 0. Thus m;(X,;) = 0, which is constant,
so X leaves no footprint. Conversely, if m;(X) is constant almost surely, then E[f(Xz) | X;] is
identically zero because f is centered. Since this conditional expectation is the projection of f onto
the space of functions of X, it follows that f;;1(X;) = 0.

Therefore, the footprint m () is constant if and only if the first-order projection f;1(X;) vanishes.
In this case, the variable X; contributes only through higher—order interactions, and its marginal
influence disappears in expectation, thereby proving Theorem 4.1.

C CONDITIONS AND PROOF OF THEOREM 4.2

This section establishes the effect-level selection consistency of SDAMI. We begin by introducing
the technical assumptions that govern the noise, design structure, signal strength, and basis ex-
pansion. These conditions provide the foundation for analyzing the group-lasso estimator used in
SDAMI and for verifying the primal—dual witness construction that guarantees selection consistency.

Assumption C.1 (Conditions for effect-level selection).

(A1) (Noise) The errors ¢; in the true function (1) of the main paper are sub-Gaussian with mean

zero and variance proxy o2.
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(A2) (Within-group orthonormality) For each main effect j,
I T
ﬁ@j o, =1,
and for the interaction block ®7,

1 1
f}@z =1, ﬁfbgfbj =0 (j€1).

(A3) (Block coherence) For g # ¢/,

1vT
EX.(J Xy

<p<l,
op
where X, denotes the block of design columns for group g.
(A4) (Restricted eigenvalue) The Gram matrix on the active set
Yaoar = 21X 1 Xae,  A*=MU{T},

satisfies Amin(X A+ A+) > Kmin > 0 and the method for constructing the Gram matrix is
defined in assumption (A7).

(AS) (Irrepresentability) There exists n > 0 such that

[Eareas D4t gell2,00 < 1 —1.

log G
n

(A6) (Signal strength) With group weights w, € [1,C,,] and tuning parameter \,, < o
(where G is the number of candidate groups),

r_ni/\r/ll 1 £ill > corn, |l fzll > coAn if the interaction is present,
Jje

for some ¢y > 2/7.

(A7) (Finite orthonormal basis representation) Each function f; and the interaction f7 is rep-
resented in an orthonormal basis expansion of finite dimension (at most quadratic order),
with corresponding design blocks ®; and ®7.

Having specified the assumptions, we now turn to the proof. The role of (A7) is to provide a finite
orthonormal basis representation of all effects, which allows us to formulate the regression problem
as a finite-dimensional block group-lasso. Assumptions (A1)—(A6) then control the noise, depen-
dence, eigenstructure, and signal strength needed to verify that the primal-dual witness construction
recovers the correct support with probability tending to one.

By (A7), each main effect f; and the interaction fz admits a finite-dimensional orthonormal basis
representation, say

filwj) = @i(x;) B, fr(Xg) = 2z(X7) ",
where ¢; € R**™ and &7 € R"*™Z collect the basis evaluations across n samples. Stacking
these blocks gives the design matrix

X:[Xlﬁ"'vXk’aXI]a X] = (1)37 XI = (DI7

with block coefficient vector § = (81, ..., Bk,7). The true active setis A* = M U{Z : fr # 0}
and the inactive set is I* = G \ A*, where G denotes all candidate groups.

The SDAMI estimator solves the block group-lasso problem

~ 1 2
0 c arg min %Hy — X053 + M\ zg;ngagH%
g

with tuning parameter A\, = J\/$ and group weights w, € [1,C,]. The associated KKT
conditions are

1 ~ N R N 0
EX;(:U — X0) = Awyzy, 1Zgll2 < 1, 2y = ="
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Assumption (A1) ensures that the error vector ¢ is sub-Gaussian. By a union bound over all blocks
and coordinates, with probability 1 — o(1) the event
LT 1
max [ Xy £ll2 < gAnwg

holds, providing high-probability control of noise terms in the KKT system. Assumptions (A2)
and (A3) impose within-block orthonormality and block coherence, ensuring that ¥ = X ' X/n
has bounded eigenvalues and limited inter-block correlations. Assumption (A4) states a restricted
eigenvalue condition, which guarantees that for any deviation vector A 4« supported on the active
set,

1
~ X A5 > fominl| A |3

Assumption (AS) provides the irrepresentability condition, ensuring that inactive blocks cannot
mimic active ones in the dual constraints. Finally, assumption (A6) requires minimal signal strength
[l f4ll > coArn on all active blocks, so that true coefficients dominate the estimation error.

Under these conditions, the restricted problem on A* yields an estimator 0) 4+ with error bound

n n /
0~ 0l < 2 (30 )

min geA

Because ¢y > 2/7, this error is asymptotically smaller than the true signal size, ensuring 59 #0
for all g € A*. Thus, no active block is missed. For inactive groups, the dual feasibility condition
requires || X (y — Xa+04+)|l2 < Anwg. The residual expands as 7 = & — X 4+ (04« — 6%.). The

first term is controlled by (A1), while the second is bounded by (A3) and (A5) together with the

error rate above. Consequently, inactive groups satisfy strict dual feasibility, forcing 6, = 0 for all
g € I". This establishes absence of false positives.

For the interaction, if fr = 0, then Z € I* and the dual condition implies fI = 0. If fr # 0,

then Z € A* and the signal strength bound ensures fz = 0. Combining all pieces, with probability
tending to one we have

{j:fi #0} =M, fr#0 & fz#0,
which proves the effect-level selection consistency of SDAMI as stated in Theorem

D CONDITIONS AND PROOF OF THEOREM 4.3
To ground the proof, we first specify the SDAMI function class and estimator used throughout.

Model class of SDAMI. Let A C {1,...,p} index a subset of active main effects and interactions.
For each main effect j € Apain and interaction Z € Ay, let NV ,w, B denote the class of feedforward
ReLU subnetworks of depth L and maximal width W whose parameters satisfy a norm constraint
(e.g., path norm, spectral norm, or /5 decay) bounded by B. For a growth schedule (L,,, W,,, By,),
define the SDAMI sieve over A by

FRPAML(4) = { fl@)y= 3" gi(x)) + hz(ez) : 95 € Noyw,.m,, hz € Np,w, B, }
J€Amain

Thus SDAMI is an additive model with interactions, where each component is realized by a subnet-

work from Ny, w, B, restricted to its own argument(s).

Assumptions.

(B1) Sampling, noise, and approximation. The data (X;,Y;)" ; are i.i.d. from model (1) in the
main content with ¢; satisfying Ele;] = 0 and Var(e;) = 0® < oo. The covariates X
have either bounded support or sub-Gaussian tails, and the true regression function f* €
Lo (Px) lies in the Lo (Px )-closure of the sieve

G ]_—'SDAMI(A)

n=1
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so that for any £ > 0 there exists n and f € FSPAMI(A) with || f — f*||1,(px) < &

(B2) Effect-level selection consistency (SDAMI). Let A* be the true set of active main effects
and interactions. Then P(4,, = A*) —

(B3) Approximation (DNN sieve over true inputs ) For the restricted DNN class FPNN(A*) with
schedule (L,,, W, By,), the sieve approximation error vanishes:

n = i f P - ** 2 — 0
oan =l P - S

(B4) Empirical risk minimization up to tolerance. The trained f,, € FPNN(A,) satisfies

Pf(fn=Y)?] < inf  PJJ(f-Y)*] + 6n,  8nl0.

FEFPNN(An)

(BS) Capacity control and uniform generalization. The norm constraint B,, (and/or width W,,)
ensures a vanishing complexity for squared loss:

Ru(Ln) = o(1),  Ln:={(f-9)*: f€F"N(A), g€ FMN(A), AC{L,....p}},

so that
sup |(P — Py)h| = op(1).
heL,

(B6) (Measurability and uniform Lo envelope) Bach f € FSPAMI(A) is measurable, and there
exists a constant M < oo (independent of n, A, and f) such that

sup sup Pf? < M.
AC[p] feFSPAMI(A)

In particular, for the data—dependent active set A,,, the trained f,, € FSPAMI( 4 ) is mea-
surable and satisfies P f < M almost surely. Hence { P¢( fn)}n is uniformly integrable.

With the SDAMI sieve FSPAMI (A ) specified and assumptions (B1)—(B6) in place, we now prove
Theorem by analyzing the empirical minimizer within this class and translating vanishing risk
into prediction convergence.

Let P denote expectation with respect to Px and P, the empirical average over the training inputs.
Write the squared excess prediction loss as £(f) := (f — f*)2. By the selection consistency of

SDAMI (B2), P(A,, = A*) — 1, so it suffices to analyze f, € FSPAMI(A*) and the conclusions
will then hold unconditionally. Using the empirical-to-population decomposition,

PUfa) = Pul(fu) + (P = P)U(f).
To control P, ¢ (]?n), expand the empirical squared loss around Y = f* + e:
Pn [(.ﬁ’b - Y)z] = Pnz(f/iﬂ) + Pn[62] + 2Pn[(f* - ﬁl)e]
By the empirical optimality up to tolerance (B4), for any f € FoPAMI(A*),
Pob(fa) < Pul(f) + 2|Pf(f* = fu)e] P.[(f* = 1)e]

The noise is centered with bounded conditional variance (B1) and the SDAMI sieve is capac-
ity—controlled (B5), hence the stochastic inner products above are o,(1) uniformly over f €

FSDAMI(A*) by standard symmetrization/contraction bounds for squared loss. Taking the infimum
over f € FSDAMI(Ax) yields

Png(fn) < fe}'gg%gﬂ(A*)Png(f) + O;D(l) + On.

Adding and subtracting population risks and invoking the uniform generalization bound for squared
loss from (D5),

PUT) < inf Py 1) + 6n.
(fn) < rersitliian (f) + op(1) +
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Numerical Studies Chip Diabetes V1 Cell
A1 [0.01,5) [0.01, 1.5) [1,10) [0.001, 0.03)
Ao logspace[-3, 1) logspace[-3, 1) logspace[-3, 1) logspace[-3, 1)

Wine Bikeshare CA Housing
A1 [0.1, 10) [0.01,2.5) [0.001, 4.5)
Ao logspace[-1,1) logspace[0.6, 1) logspacel[-1, 1)

Table 5: Continuous Bandwidths for different task in the three-stage procedure.

By the approximation property of the SDAMI sieve on the true inputs (B3), the approximation error
= inf p pspani 40y PL(f) satisfies o, — 0; therefore

PU(f,) 0. (5)

To convert result (3)) into prediction convergence, note the inequality

1{|fn(X)—f*(X)| 25} < m, e>0.

2
€
Taking expectation over X and then over the training sample gives

P(|fa(X) = F*(X)| 2 ¢) < EWW

The sieve’s norm constraints together with (B6) imply a square—integrable envelope on
FIPAML(A*)  hence {P/(f,)}n is uniformly integrable; combined with result () this yields
E[P{(f)] — 0. Consequently,

]P<|fn(X) — [H(X)| 25) — 0 forevery fixed e > 0,

ie., fn(X) 2y f*(X) at the design distribution Px. O

E SUPPLEMENTARY MATERIAL FOR HYPERPARAMETERS SELECTION

In order to tune the hyperparameters, we performed a random stratified split of full training data into
train set (80%), validation set (10%), and testing set (10%) for all datasets. For datasets we compile
of small-sized with sparsity (Chips, Diabetes, V1-cell), and medium-sized (Wine Quality, Bikeshare,
and California Housing), we do a 5-fold cross validation for 5 different test splits. Besides, we
summarize the detail of cross validation on architecture selection, additional experiment results, and
the visualization of either main effects or interactions effects from the numerical studies.

E.1 SDAMIS AND DNNs

Before building the neural network, the SDAMI’s three-stage procedure requires careful tuning of
regularization parameters. For the SpAM Screening, the A, penalty is selected via Mallows C),
where we set the basis dimension to 8. Subsequently, the A\, penalty is selected via 5-fold cross-
validation with convergence tolerance is 0.0001. However, we have to design appropriate vector for
A1 and use C), value as selection criteria to determine the optimal A;. We tune the penalty term in
the three-stage procedure for each task in the continuous bandwidths and summarize in Table 5]

To determine the optimal neural network architecture for SDAMI and DNN baselines for numerical
studies and small-sized dataset, we perform 5-fold cross-validation over three candidate configura-
tions for each. Each configuration specifies the number and width of hidden layers in the subnet-
works. We summarize the result of cross validation on configuration selection for SDAMI and DNN
in Table [f] and the hyperparameter specification in Table
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Method  SDAMI(1) SDAMT*(2) SDAMI(3) DNN(1) DNN*(2) DNN(3)
MSE| STD/ MSE|, STD, MSE| STD, MSE| STD, MSE, STD, MSE| STD|

Case 1 2.64 3.23 0.43 0.65 0.48 0.71 14.11  0.71 1410 073 1395 0.68
Case 2 0.94 1.04 0.38 0.62 0.29 0.56 5.31 0.40 5.26 0.31 5.23 0.30
Case 3 1.20 1.21 0.46 0.63 0.29 0.45 5.76 0.39 5.70 0.32 5.62 0.26
Case 4 0.94 1.03 0.34 0.55 0.32 0.58 7.07 0.48 6.98 0.38 6.95 0.36
Case 5 0.72 0.90 0.35 0.58 0.37 0.65 5.80 0.38 5.78 0.35 5.74 0.36
Case 6 0.33 0.23 0.25 0.21 0.25 0.21 1.03 0.17 0.99 0.20 0.37 0.19

Table 6: (RMSE) Performance of SDAMs and DNNs with respect to different configuration when
n = 300.

numerical studies/

Hyperparameter small-sized dataset medium-sized dataset
Architecture [8, 6, 3], [15, 12, 10], [32,16,8] | [128, 64, 32, 16], [128, 64, 32], [64, 32, 16]
Batchsize 16, 32, 64 1024, 2048
Learning rate Se-2, le-2, 1e-3, 5e-3, Se-2, le-2, 1e-3, 5e-3,
Activation ReLu ReLu
Dropout 0.0, 0.1 0.0, 0.1

Table 7: Model Specification for SDAMIs and DNNs

E.2 FSPAM

We use fSpAM package (Ravikumar et al.l [2009) and set the basis dimension as 8 with coordinate
descent solver, and and best A penalty among {0.01,0.05,0.1,0.5} for 5 times and return the best
model.

E.3 LASSO AND LASSONET

We use LASSO package (Tibshirani, [1996) with default setting and best A penalty among
{0.001,0.01,0.1, 1.0} via 5-fold cross validation. As for LASSONET (Lemhadri et al.| [2021), we
consider the same architecture in Table [7| and best A penalty among {0.001,0.01,0.1} for model
comparison.

E.4 NAM

We utilize NAM package (Agarwal et al.| 2021)) with number of embedded =32, number of hidden
neuron =32, number of layers=3, and the learning rate=0.0005.

E.5 GAMI-NET

We utilize the GAMI-NET PyTorch code (Yang et all 2021). We set the interact number
=10, subnetwork size of main effect= (20,), subnetwork size of interaction=(20, 20), learning
rates=(0.001, 0.001, 0.0001), and loss threshold=0.01 and set early stop 100 rounds to ensure con-
vergence.

E.6 NODE-GAM AND NODE-GA2M

We utilize the . We utilize the default hyperparameters from NODE-GAM PyTorch code (Chang
et al} [2021), and set the number of trees to a large number 500, arch = GAM, learning rate = 0.01,
warm-up = 100, and max epoch = 20000 to ensure it converges.

F OPTIMAL HYPERPARAMETERS FOUND IN EACH DATASET

Here we report the best hyperparameters we find for 3 small-sized datasets and 4 medium-sized
datasets in Table[§]
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Hyperparameter | numerical studies Chip Diabetes V1 Cell Wine BikeShare | CA Housing
Architecture [15, 12, 10] [8,6,3] | [32,16,8] | [15,12,10] | [128, 64, 32, 16] | [128, 64, 32] | [128, 64, 32]
Batchsize 32 64 64 32 2048 2048 2048
Learning rate Se-2 le-3 Se-2 Se-2 Se-2 le-2 le-3
Activation ReLu ReLu ReLu ReLu ReLu ReLu ReLu
Dropout 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Table 8: The best model specification for SDAMI architecture
SDAMI DNN fSpAM LASSO NAM GAMI-NET NODE-GA’M NODE-GAM
Case | 0561104 14114071 5574031 3.321024 10104092 2.6240.63 2.664.0.29 2745050
Case2 030:057 5.3li0a0 3041016 2541017 5231043 2264105 1.5240.70 1.9710.36
Case3 0271037 5.3li0a0 3.04:016 2541017  4.0li0a3 1.27 10,52 0.7140.25 2264045
Cased 024:041 7.071051 3324017 2.801016 4651059 1.5510.73 0.7240.35 2.2910.59
Case5 041076 5801038 345:1016 2981020 3.841053 1.05.40.61 0.5710.19 2141044
Case6 0354021 1.031017  0.6040.03 0431003 0.7010.06 0.2910.13 0.42.49.03 0.4510.04

Table 9: (RMSE) The performance for 6 different case type when n = 300; | means the lowest the
better while 1 means the highest the better.

G SUPPLEMENTARY MATERIAL FOR ADDITIONAL EXPERIMENT RESULTS

G.1 COMPLETE COMPARISON FOR NUMERICAL STUDIES

The performance comparison among different machine learning model is demonstrated in Ta-
ble 0] and the results of SDAMI—p for both the numerical studies and real data analysis in
Table|[LI][T2} Also, Table[I3]results for additional numerical experiments with different sample size
and corresponding TPR/ FPR are demonstrated in the following block.

G.2 VISUALIZATION FOR NUMERICAL STUDIES

In the section, we demonstrate the visualization of either main effects or interaction among each
cases where the visualization result for Case 3 can be found in Figure@ In Case 1 - 5, the SDAMI
can capture both linearity and nonlinearity underlying the true model. In the interaction-existed
cases, we can observes the SDAMI can still depict the response surface to approximate the underly-
ing higher-order effects.

In this section, we demonstrate visualizations of the component functions representing either main
effects or interactions across different cases. For Cases 1 through 5, SDAMI successfully captures
both the linear and nonlinear structures underlying the true models. In cases involving interactions,
we observe that SDAMI effectively depicts the response surfaces, accurately approximating the
underlying higher-order effects. These visualizations provide valuable insights into the model’s
interpretability and can be found in detail in the Figure 4] 5]

H COMPUTATIONAL COMPLEXITY ANALYSIS

The proposed three-stage procedure achieves computational efficiency by progressively reducing the
search space. The SpAM Screening fit k£ univariate smooth functions via coordinate descent, with
complexity O(p-nlog(n)), where log(n) reflects smoothing spline computations. Subsequently, the
group Lasso decomposition expands each screened variable into an orthogonal basis of dimension b
and applies group Lasso with e iterations, yielding complexity O(epbn). Lastly, the neural network
fitting with each subnetworks with depth L and width W for approximate E epochs. The total
complexity is O(p - nlog(n) + epnb + EnLW?).
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Figure 4: The estimated (red dashed lines) versus true additive component functions (solid black
lines) for four main effects for (Upper panel) Case (1) and (Lower panel) Case (2).
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Figure 5: (Upper panel: Case (4); middle panel: Case (5)) The three figures on the left: Estimated
(red dashed lines) versus true additive component functions (solid black lines) for three main effects;
the two figures on the far right: the first shows the true response surface for interaction, and the
second shows its estimated response surface. (Lower panel: Case (6)) The first and third shows

the true response surface for interactions, and the second and fourth shows corresponding estimated
response surface.
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SDAMI DNN fSpAM LASSO NAM GAMI-NET NODE-GA’M NODE-GAM

Case 1 021012 13.89:1082 5431028 3.041017 5.60.1098 1491074 0.3510.10 1.6210.48
Case2 0.14:004 5331035 2.98:014 2401011 1711030  0.7310.36 0.2510.07 1.20+0.34
Case 3 0171013 5781032 3333016 2721014 2.0210.39 0.8110.35 0.40+0.08 1.57+0.35
Case4 0251053 7141050 3241015 2.6li013 2541041 0931035 0.3910.06 1.49.40 35
Case 5 0.26:018 5821039 341li015 2761013 2.091048  0.591035 0.3810.08 1.4510.35
Case 6 0.16:0.02  1.06:0.43  0.59:0.03 0391002 0521004  0.1640.05 0.3710.03 0.37+0.03

Table 10: (RMSE) The performance for 6 different case type when n = 450; | means the lowest the
better while 1 means the highest the better.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
n=150 0.68 1959 0.77 4041 0.70 1958 0.84 1027 0.85 1953 0.27 19,25
SDAMI—-p n=300 048 1971 0.29 1956 0291045 0321058 037 1065 0.25 1021
n=450 0.23 1963 0214046 0281037 0171021 0224919 0.14 1018

Table 11: (RMSE) The performance for 6 different case type for SDAMI—p; | means the lowest the
better while T means the highest the better.

In high-dimensional settings where the full pairwise interaction space is (g) , SDAMTI’s three-stage
decomposition yields substantial computational savings: by focusing only on variable screened. The
computational cost is summarized in Table

I REAL DATA ANALYSIS

This section illustrates the additional experiment on two real datasets with redundant features in-
cluding the parameter settings and corresponding explanation on the visualization. Besides, we also
use data without redundant features such as wine quality, bike share, and California housing. The
description is summarized in Table [I3]

I.1 SURROGATE MODELING OF PRODUCT LIFETIME MODELING

This subsection showcases the application of SDAMI in evaluating prediction performance, posi-
tioning it as an effective surrogate technique— a key approach in the field of computer experiments
(Santner et al., [2019; Wu & Hamadal 2011). Surrogate modeling serve as statistical approxima-
tions of computationally intensive simulations, facilitating the efficient study of complex system
dynamics.

We illustrate this with the analysis of electronic device lifetimes, which can fail due to mechanisms
such as front-end fate oxide breakdown (FEOL TDDB) (Yang et al., [2017). This failure occurs
when traps accumulate in the gate oxide layer from electrical and thermal stress during operation,
eventually creating conductive paths leading to device malfunction. The lifetime distribution for
these components is captured by the following function, as characterized in prior work (Hsu et al.,
2020):

B
t
(AFEOL<WL>éeéva+bT exp (L£4) 8_1> ’

where the inputs include process-dependent constants ApgoL, a, b, ¢, d, voltage V' and temperature
T, width W and length L of the device, the probability of stress s, and shape parameter 3 describing
failure progression over time.

S(t) = exp

(6)

Chip Diabetes V1 Cell Wine BikeShare CA Housing
SDAMI-p 0236  52.87 0372 0.692 5591 0.508

Table 12: (RMSE) The performance for 7 different real dataset for SDAMI—p; | means the lowest
the better while 1 means the highest the better.
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Method SDAMI LASSONET SODA
TPRT FPR| TPRT FPR/ TPRT FPR|

Case 1 1.0000 (-) 1.1 x107% (-) 0.6100 (0.1241)  0.0129 (0.0091)  0.03 (0.0964) 5 x 10~ (2 x 10~%)
Case 2 1.0000 (-) 1.1 x 107° ()  0.4550(0.1083) 0.0168 (0.0083)  0.02 (0.0685) 4 x 10~* (2 x 10~%)
Case 3 0.7500 (-) 1074 (107°)  0.0200 (0.0980) 0.0451 (0.0418)  0.015(0.06) 6 x 10~* (4 x 10~*
Case4  0.7600 (0.0490) 10=%(107°)  0.0100 (0.0700) 0.0367 (0.0176) 0.025 (0.0758) 5 x 10~4 (2 x 10~%)
Case 5  0.7525(0.0249) 10=%(107°)  0.0100 (0.0700) 0.0390 (0.0183)  0.03 (0.0821) 5 x 1074 (2 x 10~%)
Case 6 0.6100 (0.0436) 1074 (107°)  0.0200 (0.0980) 0.0519 (0.0658) -() 5x 1074 (2 x 107%)

Table 13: Mean (standard deviation) of TPR and FPR over 100 simulations from SDAMI, LAS-
SONET, SODA when n = 300 where (—) indicates value < le™5.

Table 14: Computational Cost Comparison Across Methods and Datasets. Times reported in sec-
onds, averaged over 10 runs for simulation and real dataset on GPU: Tesla V100-SXM2-32GB.

Method

Runtime (seconds)

Simulation Wine BikeShare CA Housing
(n=150,p =150) (n=4892,p=12) (n=17379,p=12) (n =20640,p =38)

SDAMI 6.04 16.40 77.54 78.62
DNN 0.42 58.84 58.6 7.02
fSpAM 0.001 0.004 0.008 0.005
LASSO 0.01 0.01 0.02 0.01
LASSONET 43.72 168.04 363.88 391.01
NAM 7.04 19.78 65.31 61.24
GAMI-Net 38.22 23.96 55.67 40.62
NODE-GAM 130.55 458.33 1199.69 1871.75
NODE-GA?M 185.75 448.15 1858.62 1864.26

Although simulating such experiments is straightforward, accurately extracting main and higher-
order effects under data sparsity requires sophisticated and interpretable modeling. To that end, we
employ the MaxPro design (Joseph et al.| |2015) to generate space-filling experiments spanning all
input factors, with details in Table [I6] The dataset includes 100 observations with 9 covariates,
augmented by 21 irrelevant noise features randomly sampled uniformly within [0, 1) to test model
sparsistency and interaction detection. The log-transformation of the true model is given by

1 1 cr+d
~ 3 _B+ T2 )—IOg(S), (7

where s is constant and 7 corresponds to a 63% failure quantile from the generalized Wei-bull
model (6). This representation admits an additive decomposition involving univariate and bi-variate
functions|[7]

log(WL)

log(n) = log(ArroL) (a+bT)log(V) + (

D filwiw) +-- + e

i#j

allowing comprehensive identification of relevant main and interaction effects. Table [] presents
the comparative performance of various techniques, including SDAMI, NAM, GAMI-Net, NODE-
GAM, NODE-GA?M, DNN, LASSO, LASSONET, and fSpAM, demonstrating SDAMI’s promi-
nence in recovering complex dependency structures in sparse, high-dimensional settings.

y=a-+ Zfi(fﬂi) +

Given the visualization of effects from Figure[6] we can observe that the contribution of main effect is
relatively weak. Besides, the interaction have obvious effect on response. To be more specific, when

Dataset Source Samples Features Description
Chip (Hsu et al.]2020) 100 9 baseline + 21 noise MOSEFET device lifetime
Diabetes scikit-learn 200 10 baseline + 40 noise Serum measurements
V1 fMRI Kay et al.|(2008) 300 1800 Gabor Primary visual cortex responses
Wine Quality UCI ML Repository 4898 11 Wine quality
BikeShare UCI ML Repository 17379 12 Capital Bikeshare hourly rental counts
California Housing scikit-learn 20640 8 Median house values

Table 15: Table of Real Datasets with Sources
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Figure 6: The shape plots of 3 Interactions of SDAMI trained on Chip Dataset.

(A,T), (d,V) and (,V) goes up, the response will increase. These phenomenon is predictable
because in Equation [/} the higher-order effects are dominant over main effects but the main effects
still exist due to its marginal effect on the response.

Parameter Lower Upper
a —81.9 —741
b 769 x 1072 851 x 10772
c 8.37 x 10° 9.25 x 10°
d —8.14 x 10° —7.33 x 10°
B 1.476 1.804
Y 1.2 1.3
T 120 180
WL 4 %1072 6 x 1072
ArpoL 475 %1077 525 x 107
S 1 1

Table 16: Parameter table for generating space-filling experiment on MOSFET device

1.2 DIABETES RESPONSE PREDICTION

For this analysis, we utilize the well-known diabetes dataset from the scikit-learn library, which
contains 442 observations and ten baseline covariates. These features capture key demographic and
physiological measurements, such age (in years), sex (0: female, 1: male), body mass index (BMI),
mean arterial blood pressure, and six standardized blood serum variables known to be relevant for
diabetes progression. The target variable is a quantitative measure of disease progression observed
one year after baseline, making the dataset suitable for regression modeling and biomarker analysis.

To thoroughly evaluate sparse additive modeling methods under high-dimensional constraints, we
purposefully restrict the sample size to n = 200 and augment the original dataset with 40 synthetic
covariates, each drawn independently from a uniform distribution on the interval [0, 1) distribution.
These additional features are explicitly designed to act as non-informative noise, challenging each
model’s ability to discern relevant predictors. Thus, the expanded dataset includes 50 covariates in
total, with the genuine signal confined to the original ten baseline measurements. Standard prepro-
cessing, including normalization and scaling of all features, is performed to ensure comparability
and numerical robustness in downstream modeling. This controlled, high-dimensional experimental
setup provides a rigorous testbed for assessing the sensitivity and variable selection performance of
SpAM, and other advanced machine learning algorithms in biomedical contexts.

Visualization of the estimated effects in Figure[7reveals several interpretable patterns. There are one
main effect and three interactions term selected by SDAMI. First, the log of Serum Triglycerides
Level (s5) has a positive association with diabetes disease progression. The research shows that
among patients with type 2 diabetes, those with elevated s5 had significantly worse glycemic control
even when treated with insulin (Zheng et al.||2019). Second, higher disease progression when (high
BMI and elevated s5) and (high BMI and elevated blood pressure) are present simultaneously. These
combination defines the beginning stages of Cardiovascular-Kidney-Metabolic syndrome, which
dramatically accelerates diabetes complications. The observed relationships align well with clinical
expectations and domain knowledge.
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Figure 7: (Diabetes Dataset) The first figures on the left: Predicted marginal response of target with
respect to main effect feature; the three figures on the right: the shape plots of 3 Interactions of
SDAMI trained on Diabetes Dataset.
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Figure 8: The shape plots of selected main effects and interaction of SDAMI trained on Wine
Dataset.

Table [4] summarizes model performance for diabetes response prediction. SDAMI with interaction
modeling consistently outperform alternative machine learning methods, offering superior predic-
tive accuracy alongside enhanced interpretability thanks to its explicit feature selection and effect
visualization capabilities.

We select the relative important main effects and interaction term for Wine, Bikeshares, and Cali-
fornia housing where the shape plot demonstrate the relationship between features and the targeted
response. The shape plots are provided in Figure|[8] [9] and[I0]

1.3 HUMAN PRIMARY VISUAL CORTEX DATASET

In Figure [T1] these images are first passed through localized, orientation- and phase-sensitive
Gabor filters to mimic simple-cell receptive fields; outputs then undergo nonlinear transforms
to produce single-cell responses. Complex cells are formed by pooling quadrature-phase pairs
(square—sum-—nonlinearity), yielding phase-invariant responses. Subsequently, in Figure [[2] these
complex cells will be fed into Group Lasso, and be identified as single input (main effect) or com-
posite input (interaction)
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Figure 9: The shape plots of selected main effects and interaction of SDAMI trained on Bikeshares

Dataset.
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Figure 10: The shape plots of selected main effects and interaction of SDAMI trained on California

Housing Dataset.
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Figure 11: The formation of complex cells arises from nonlinear activation of quadratic pairs of
simple cells generated by Gabor-wavelet filters applied to the input.

Response

Figure 12: The formation of response arises from complex cells and group complex cells selected
by group lasso applied to the input.
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