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ABSTRACT

Designing high-performing robot morphologies is a grand challenge for devel-
oping specialized autonomous agents. However, the vast, combinatorial, and
non-differentiable nature of the morphological design space has been a primary
obstacle. Existing methods tackle this problem indirectly, relying on either
semantically-blind genetic operators or reinforcement learning with predefined
modification actions, both of which constrain exploration. In this work, we intro-
duce MorphoGen, a novel framework that reframes morphological design as a
code generation problem. MorphoGen leverages large language models (LLMs)
to directly iterate the XML files as codes that define an agent’s morphology, solv-
ing the original open problem without being limited by any prior constraints or
fixed action spaces. Gradient-like textual guidance is provided to steer the evo-
lution of robot morphologies through prompted mutations and crossovers. Our
approach allows the LLMs to apply its understanding of structure and syntax to
generate complex and semantically coherent design variations, enabling an uncon-
strained and efficient exploration of the design space. On a suite of challenging
locomotion benchmarks, MorphoGen discovers novel and high-performing mor-
phologies, significantly outperforming strong baselines by over 52.9% in down-
stream motoring evaluation. Our work unlocks a new paradigm for automated
robotic design, demonstrating the effectiveness of LLMs in navigating complex,
structured engineering search spaces. Codes for our work are released anony-
mously at https://anonymous.4open.science/r/MorphoGen-ACC/.

1 INTRODUCTION

Modeling Reconstruction
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Figure 1: Comparison between paradigms of robot mor-
phology design. (a) The proposed MorphoGen framework,
in which LLMs directly operate on the raw XML represen-
tation to generate complete robot morphologies in a single
step. (b) The conventional approach, which relies on simpli-
fied intermediate models and requires multiple handcrafted
modification steps.

The functionality of a robotic agent
is fundamentally determined by its
physical form, or morphology (Yuan
et al., 2022; Matthews et al., 2023).
This morphology is often defined by
a structured file, such as the XML
format used by MuJoCo (Todorov
et al., 2012), which serves as
the robot’s genotype specifying the
precise configuration of skeletons,
joints, and their corresponding at-
tributes. Automating the search for
an optimal genotype is a highly valu-
able endeavor, as manually design-
ing and adapting robot morpholo-
gies for different tasks is a labori-
ous, intuition-driven process. How-
ever, this automation is a non-trivial
challenge. The primary difficulty lies
in the immense, combinatorial design
space; with a nearly infinite number
of possible XML definitions, it is im-
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possible to exhaustively iterate through all potential skeletal structures and attributes. This challenge
is compounded by the high computational cost of evaluation, as each candidate morphology neces-
sitates a costly “inner loop” of control policy optimization to assess its fitness.

To manage this complexity, existing methods avoid operating directly on raw XML definitions, in-
stead introducing an intermediate graph-based abstraction as a mediator. In this common paradigm,
a robot’s morphology is represented as a directed graph where topological elements (nodes and
edges) denote body parts, joints, and connections with physical attributes (Sims, 2023). Traditional
evolutionary algorithms have long navigated this space by applying simplistic, hand-crafted genetic
operators, such as adding or deleting nodes and edges (Wang et al., 2019; Sims, 2023; Cheney
et al., 2014). However, these operations are semantically blind; they modify the graph’s structure
without any inherent understanding of the physical consequences, leading to inefficient exploration.
More recent learning-based approaches also build upon this graph abstraction, using graph neural
networks (GNN) and reinforcement learning (RL) to learn a policy over a set of predefined graph
modification actions (Yuan et al., 2022; Dong et al., 2023). While this learns a more intelligent
strategy for applying edits, the edits themselves are still constrained to the same limited set of graph
operations. Attempts utilizing LLMs for robot design often fall into similar traps. Some rely on
predefined grammar rules that restrict the search to specific families (Qiu et al., 2024), while others
focus primarily on parameter tuning within fixed skeletal graphs rather than open-ended topological
generation (Fang et al., 2025). In essence, current paradigms sidestep the original, more challenging
problem of direct XML generation. By operating within a constrained action space, they simplify
the problem at the cost of sacrificing the vast expressiveness and higher degrees of freedom inherent
to the true design space of XML definitions, thereby limiting their creative potential.

Recent advancements in large language models (LLMs) have demonstrated their remarkable creative
capabilities of generating raw forms of structured language (Achiam et al., 2023; Guo et al., 2025),
such as computer codes (Chen et al., 2021). In particular, powerful LLMs combined with automated
evaluators have proven effective at evolving and optimizing complex algorithms, as highlighted by
the groundbreaking AlphaEvolve project (Novikov et al., 2025; Sharma, 2025). This success un-
locks a new possibility for robotic design: directly operating on XML definitions in their original,
open form. Inspired by this paradigm, we introduce MorphoGen, a novel framework that treats
a robot’s XML genotype as a form of specialized code and reframes morphology design as a code
generation problem. Our core idea is to replace the predefined, hand-crafted genetic operators of tra-
ditional evolutional algorithms with an LLM that is prompted to perform semantically rich mutation
and crossover operations (Figure 1). To guide this process, we develop a critic LLM that provides
gradient-like textual guidance to the primary coding LLM, steering the evolution of robot morpholo-
gies. Our approach allows the LLMs to apply their understanding of structure and syntax to directly
iterate on raw XML files, enabling an unconstrained and efficient exploration of the design space
that lies outside the valid solution spaces of grammar-based methods. To improve the efficiency
of evolution, we further propose structure pretraining to serve as high-performing “parent” robots
and a two-stage fast controller optimization to accelerate the evaluation of each design. MorphoGen
thereby integrates the generative power of LLMs with evolutionary search to design robots in their
raw format, unconstrained by the abstractions or limited action spaces of previous methods.

The main contributions of this paper are as follows: (1) We propose an LLM-driven code evolution
paradigm for robot design that directly iterates on raw XML definitions of robot morphology. This
removes the need for intermediate mediators, thereby addressing the design problem in its original,
unconstrained form. (2) Our MorphoGen framework enables efficient morphology optimization
through the use of a critic LLM offering gradient-like textual prompts to guide the coding LLM and
an accelerated evaluation process for candidate designs. (3) We conduct extensive experiments on
challenging locomotion benchmarks, which validate that our approach generates high-performing
morphologies that significantly outperform strong baselines by over 52.9% in downstream motoring
performance and discovers a diverse range of novel designs.

2 RELATED WORKS

2.1 ROBOT MORPHOLOGICAL DESIGN

Robot morphological design is a complex bilevel optimization problem (Kim et al., 2021; Hu et al.,
2023; He & Ciocarlie, 2024; Jiang et al., 2021; Lu et al., 2025; Cheney et al., 2016; Lu et al., 2025;

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Pathak et al., 2019), with the outer level optimizing the structure and the inner level refining the
control policy for motion. Traditional approaches such as genetic algorithms (Datta et al., 2015;
Brodbeck et al., 2015; Liu et al., 2022) and evolutionary strategies (Xu et al., 2021; Cheney et al.,
2018; Zhao et al., 2020), rely on heuristic or search-based methods, which are constrained by prede-
fined search spaces and require explicit design rules. Recent RL-based methods (Yuan et al., 2022;
Dong et al., 2023; Singh et al., 2022) have advanced control policy optimization for various skeletons
but handle structures indirectly through parameterized representations, often imposing constraints
for feasibility. In contrast, our approach directly evolves the robot’s skeleton by modifying its un-
derlying XML file, enabling exploration of a broader, unconstrained design space and facilitating
the discovery of novel, efficient configurations.

2.2 LLM-BASED EVOLUTIONARY FRAMEWORKS

Recent studies (Tian et al., 2025; Liu et al., 2025; Yang et al., 2023) investigate using LLMs as in-
telligent search operators in evolutionary optimization, leveraging their capacity for code generation
and in-context reasoning. For example, RoboMorph (Qiu et al., 2024) represents robot designs as
grammar strings and uses a best-shot prompting approach to iteratively propose new rules. Robo-
MoRe (Fang et al., 2025) focuses on the co-design of morphology and reward functions and utilizes
masked templates for parameter optimization. LASeR (Song et al., 2025), incorporate reflection
mechanisms to encourage structural diversity. However, these methods fundamentally constrain the
search space to a narrow subspace by relying on predefined data structures, and they lack dedicated
efficiency optimizations for text-based evolution process. This results in generated morphologies
that often exhibit high homogeneity and struggle to surpass the performance of traditional RL-based
baselines. To overcomes these challenges, our approach reframes morphology design as uncon-
strained XML code generation, with a novel critic LLM to provide directional guidance and hierar-
chical proxy fitness to enhance search efficiency in the complex design space.

3 PRELIMINARIES

3.1 ROBOT MORPHOLOGY

A robot morphology M is formally defined as a Kinematic Tree (Gupta et al., 2022; Liu et al., 2024)
T = (V, E , r), where V = {b0, b1, . . . , bn} denotes a set of rigid bodies. Each body bi is associated
with a set of physical attributes Φi. The element r ∈ V is the root body, representing the base of the
kinematic hierarchy. E denotes a set of directed edges where eij = (bi, bj) represents a kinematic
connection from the parent body bi to the child body bj . Each edge eij is associated with a set of
parameters Θij = (Jij , Aij), where Jij defines the joint properties and Aij defines the actuation
properties that control the joint movement. This Kinematic Tree T can be translated to text-based
XML definition X using a single-valued serialization function F , such that X = F(T ).

3.2 EVOLUTIONARY OPTIMIZATION

Begein with an initial morphology X0, the framework proposes candidate modifications to produce
successive XML structures Xt for t = 1, 2, . . . , T , where T is the maximum number of iterations.
To evaluate the quality of a robot structure X , a motion controller πX is derived specifically for its
morphology. The fitness of X with πX is assessed in a physics-based simulator, yielding a scalar
score L(X , πX ), which quantifies the locomotion efficiency. The robot morphology optimization
problem is thus formulated as:

Input: An initial XML structure X0, and an initial motion controller π0.

Output: An optimized XML structure X ∗, along with its associated controller πX∗ .

Objective: Find the morphology X ∗ = argmaxX∈ΩX L(X , πX ) that maximize the fitness.

4 METHOD

We propose MorphoGen, an LLM-based evolutionary framework that directly iterates on the robot’s
raw XML genotype to generate high-performing skeletal structures. As illustrated in Figure 2, Mor-
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Figure 2: Overview of the MorphoGen evolutionary pipeline.

phoGen employs a guided evolutionary search strategy. Begin with initial robot morphologies, a
critic LLM is employed to generating textual feedback that critiques their structural strengths and
weaknesses. This feedback serves as a rich, gradient-like textual prompt guiding the coding LLM
to perform semantically-aware mutation and crossover operations directly on the parent XML geno-
types to produce a new generation of optimized offspring morphologies. Subsequently, each newly
generated XML genotype is evaluated with an efficient control policy fine-tuning process to deter-
mine its fitness. This closed-loop process, driven by textual critique and semantic code generation,
transforms the design search from blind and limited modifications into an intelligent, targeted explo-
ration. Consequently, MorphoGen navigates the vast XML definition space in its original, open form
with remarkable efficiency, discovering novel, high-performing robot morphologies that surpass the
capabilities of traditional methods. Appendix C provides the prompts utilized within MorphoGen.

4.1 LLM DRIVEN EVOLUTIONARY FRAMEWORK

Drawing inspiration from AlphaEvolve (Novikov et al., 2025), the core components of evolution are
tailored towards robotic design with redefined XML context as follows:

• Individua M is a complete XML definition, which serves as the robot’s genotype by explicitly
defining its entire skeletal structure and joints, and physical properties. This genotype is the direct
optimization target of our framework.

• Genes {G1, G2, . . . Gk} ∈ M are conceptualized as specific and semantically meaningful blocks
within the XML definition, which are the core elements manipulated during evolution.

• Island I = {M1,M2, . . . ,Mn} is a collection of n such individuals.
• Population P = {I1, I2, . . . , Im} is a collection of m islands, which contains all the individuals.

Designing robot morphology differs drastically from code generation of AlphaEvolve (Novikov
et al., 2025) in every stage of the pipeline, and we propose parent selection, crossover and mutation,
as well as fitness calculation, that prioritize morphology understanding, XML genotype modifi-
cation, and locomotion optimization. In specific, one generation Pg of robot morphology XML
definitions are evolved to the next Pg+1 as follows:

Comprehensive Sampling. To form the parent pool for the subsequent generation from the current
population Pg , we employ a hybrid selection strategy designed to balance the exploitation and ex-
ploration through a combination of three criteria: (1) Elitism (Qiu et al., 2024): The top individuals

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Critic LLM…
Symmetry

Short Limbs

Pre-trained Structures The references have long 
legs with multiple joints

Critic LLM

Coding LLM

Keep symmetry
Extend each limbs
Add moveable joints

𝜋0
Base

Controller

𝜋𝑖
Fine-tuned
Controller

Proxy
Fitness

Figure 3: Illustration of the efficient evolutionary optimization process in MorphoGen.

with the highest fitness scores of each island are selected to preserve and propagate high-performing
genotypes. (2) Diversity (Schulman et al., 2017; Mouret & Clune, 2015): To avoid premature con-
vergence to local optima and promote exploration of diverse regions in the design space, individu-
als structurally dissimilar to others that maximize Tree Edit Distance TED(Mi,Mj) on the XML
structure are chosen. (3) Randomness (Fang et al., 2025): A small subset of individuals is chosen
uniformly at random to maintain a reservoir of potentially valuable XML blocks not present in high-
fitness or diverse candidates. This multi-pronged selection strategy ensures that the evolutionary
search is simultaneously greedy, exploratory, and robust.

LLM-Powered Crossover and Mutation. Unlike traditional evolutionary algorithms that rely on
simplistic, random operators, MorphoGen leverages a coding LLM to perform semantically coherent
XML modifications. In the crossover operation, an offspring Mchild is generated by intelligently
combining structural features from several parent individuals, {Mp1 ,Mp2 , . . . ,Mpi}. The LLM
is prompted to merge high-quality XML blocks from all parents, producing a structurally sound
offspring that inherits meaningful traits. In the mutation operation, novel variations are introduced
into a single parent Mp, modifying its XML genotype to reach better motion performance.

Fitness Calculation. After generating a new XML genotype M , we fix its structure and employ
RL algorithm (Yuan et al., 2022) to develop an adaptive controller πC for locomotion. The RL
training process optimizes πC over a fixed number of steps in a simulated environment, after which
the control policy is deployed to evaluate the robot’s performance. The fitness F of the skeletal
structure M is quantified by measuring the Euclidean distance traveled from the starting point within
a fixed time horizon in the simulation. This evaluation provides a robust indicator of the structure’s
effectiveness, leading to guided population update for the next generation. Details of robot controller
optimization is provided in Appendix B.

4.2 EFFICIENT EVOLUTIONARY OPTIMIZATION

Evolutionary algorithms are notoriously sample-inefficient, which is even worse in robot design
due to the costly inner-loop optimization required to evaluate each skeletal structures. MorphoGen
addresses this bottleneck with three key innovations: structure pretraining to initialize the popu-
lation with high-quality genotypes, text-based gradient guidance to enable targeted optimization,
and hierarchical proxy fitness to accelerate evaluation. Together, these components transform the
evolutionary search into a more efficient and directed process.

Structure Pretraining. Traditional robot morphology design heavily relies on expert knowledge,
and initializing an LLM to explore the expansive structure space from scratch is computationally
prohibitive. To overcome this, MorphoGen leverages domain expertise by initializing the population
P0 with a diverse set of high-quality XML genotypes derived from expert-designed morphologies
or existing advanced methods. These pre-trained skeletal structures encode rich domain knowledge
about effective robot postures and dynamics. Benefiting from this informed gene pool, the coding
LLM focuses its exploration on high-potential regions of the design space, significantly enhancing
the quality of generated skeletal structures and the efficiency of the evolutionary search.

Text-based Gradient Guidance. Unlike traditional evolutionary algorithms, where random muta-
tions often lead to degraded performance, MorphoGen employs a critic LLM to provide targeted
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optimization guidance. For each XML definition, the critic LLM analyzes the skeletal structure and
generates textual feedback that identifies the likely structural causes for the motion performance,
highlighting both structural strengths and weaknesses. This guidance is then integrated into the
prompt for the coding LLM, guiding it to perform semantically-aware mutations that preserve ad-
vantageous features while addressing identified deficiencies. This guided approach ensures that
each evolutionary step is more likely to be a meaningful improvement, dramatically increasing the
directional efficiency of the search.

Proxy Fitness. Learning an optimal control policy for each XML genotype Mi from scratch is
computationally expensive, often requiring millions of simulation interactions. However, recogniz-
ing that an offspring is often a small modification of its parent, we posit that their optimal control
policies are also close in the parameter space, which enables efficient policy reuse. Therefore, in-
stead of full retraining, we can approximate the best control policy of current morphology by briefly
fine-tuning the parent’s optimized policy. Moreover, with potentially thousands of generated skele-
tal structures throughout the whole process, even fine-tuning can be time-consuming. To overcome
the above challenges, MorphoGen first employs a basic controller π0 which is pre-trained for initial
robot morphology, and then utilizes a two-stage hierarchical proxy fitness evaluation. Specifically,
in the first stage, each skeletal structures Mi are directly controlled with π0 and we can simply con-
sider the corresponding locomotion scores as the fitness F 1

i . This evaluation is extremely fast and
does not require any additional training costs. We take F 1

i as an initial screening criterion to ignore
those structures that have obvious functional issues. For the skeletal structures with F 1

i greater than
a certain threshold, which indicates a promising candidate, the second stage is triggered. In the sec-
ond stage, π0 will be fine-tuned against structure Mi for several steps to get an adaptive controller
πi which is applied to calculate the locomotion score as fitness F 2

i . The final proxy fitness Fi is
thus the result of this conditional, two-stage process. This hierarchical approach drastically reduces
the average evaluation time per individual, allowing MorphoGen to assess a much larger volume of
candidates and conduct a more thorough and effective exploration of the design space.

In summary, through an integrated framework of LLM-driven evolution, gradient-like textual guid-
ance, and accelerated fitness evaluation, we achieve direct optimization in the raw XML definition
space with improved efficiency. We now validate the effectiveness of this approach experimentally.

5 EXPERIMENTS

5.1 EXPERIMENT SETTINGS

Baselines We compare MorphoGen with the following baselines: Neural Graph Evolution
(NGE) (Wang et al., 2019), Evolutionary Structure Search (ESS) (Cheney et al., 2018), Random
Graph Search (RGS) (Wang et al., 2019), Transform2Act (T2A) (Yuan et al., 2022), Symmetry-
Aware Robot Design (SARD) (Dong et al., 2023), RoboMorph (Qiu et al., 2024) and Robo-
MoRe (Fang et al., 2025). For the LLM-based methods, we adopt Qwen3 (Yang et al., 2025) as
the backbone model. More details are provided in Appendix A.

Evaluation Evaluations are conducted in the MuJoCo simulator across four environments: 2D Lo-
comotion (Hopper), 3D Locomotion (Ant), Swimmer, and Gap Crosser (Gap) (Todorov et al., 2012).
Each robot is controlled by a controller learned via an RL method (Yuan et al., 2022), and perfor-
mance is measured by the distance traveled within a fixed time. Specifically, NGE, ESS, RGS, and
our method learn control policies for fixed skeletal structures with PPO (Schulman et al., 2017).
In contrast, RL-based methods like T2A and SARD optimize the skeletal structure and control pol-
icy simultaneously. To ensure a fair comparison with these baselines, MorphoGen uses reference
results from only the first half of T2A’s optimization steps, rather than its fully optimized solutions.
In addition to evaluating motion efficiency with an optimal controller, we also wonder how quickly
a functional controller can be obtained with limited time and computational resources. To this end,
we evaluate each structure using two distinct controllers: a fine-tuned controller (FC), trained for
only 0.3M steps, and a fully trained controller (FTC), which is trained until convergence.

5.2 OVERALL PERFORMANCE

To completely demonstrate the quality and diversity of the generated skeleton structures of our
methods, we report the top three results, and with name MorphoGeni denotes the top i-th result. We
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Method
Fine-tuned Controller (FC) Fully Trained Controller (FTC)

Hopper Ant Swimmer Gap Hopper Ant Swimmer Gap

ESS 163.4±14.1 108.9±10.1 93.1±11.5 99.6±13.0 658.7±52.7 1387.5±113.3 349.0±28.9 218.6±19.7

RGS 483.5±54.4 508.3±31.0 107.8±13.8 240.7±26.3 849.5±69.0 1394.2±79.0 301.4±31.5 670.8±39.8

NGE 1725.9±115.3 896.2±41.8 119.0±7.0 601.4±40.6 2647.1±224.0 2015.3±205.4 513.9±42.2 822.3±58.0

T2A 2143.2±192.2 1140.2±136.2 703.4±24.6 651.0±76.3 8130.4±1093.8 4268.7±351.4 877.4±65.9 2147.5±322.6

SARD 1841.4±210.4 1174.8±79.6 970.7±17.3 896.3±67.2 7109.0±839.3 4347.1±391.7 892.8±66.6 2532.7±366.2

RoboMorph / 853.3±60.8 / / / 2842.3±353.4 / /

RoboMoRe 1612.0±193.2 1022.4±87.8 808.1±17.2 718.8±68.8 6697.1±492.4 3514.1±278.9 693.9±34.5 2833.8±286.5

MorphoGen1 2474.1±163.6 1560.4±110.3 1056.3±15.5 969.1±62.4 7409.0±654.2 4740.6±282.6 1058.0±37.4 5652.7±280.5

MorphoGen2 2265.2±135.8 1425.5±71.3 1024.4±15.1 946.7±66.0 7127.9±741.5 4357.9±267.2 1029.4±45.2 5258.3±193.8

MorphoGen3 2215.0±123.5 1181.3±74.3 1008.6±19.5 860.8±57.7 6384.4±307.2 3994.2±233.4 960.1±17.2 3877.7±141.0

Table 1: Comparison of locomotion score of the generated skeleton structures across different
methods, environments and controller. The bold values indicate the best-performing solutions, the
underlined values denote the second-best solutions, and the italicized values represent the third-best
solutions (determined separately per column). Each robotic skeleton structure is evaluated using
control policies trained across six seeds.

Figure 4: Training curves of locomotion metric, comparing MorphoGen with baseline methods.

summarize the motion performance of the generated robot skeleton structure in Table 1, from which
we can have the following observations,

• Traditional search or evolutionary algorithms fail to provide quality skeleton structures.
The solution space of robot skeletons is extremely large and highly non-convex. Without a clear
exploration direction or strong priors, methods such as NGE, ESS, and RGS tend to converge
slowly and often produce degenerate structures with poor locomotion ability. These approaches
consistently yield the lowest performance, with an average degradation of 76.2% compared to
RL-based methods, highlighting the necessity of providing optimizing directions.

• Constraints on the design space severely limit the quality of generated solutions. Leading ap-
proaches such as T2A, RoboMorph, and RoboMoRe fundamentally restrict the search process by
relying on predefined grammar rules, fixed graph topologies, or limited parameter tuning within
static skeletons. While these abstractions simplify the optimization problem, they confine the
evolutionary search to a narrow, pre-specified subspace, preventing the exploration of the full
morphological manifold. As a result, these methods struggle to escape local optima, yielding
morphologies with limited locomotion capabilities. Empirically, the average performance of mor-
phologies generated by these constrained baselines is only 63.5% of that achieved by MorphoGen.
In contrast, our method operates directly on the raw XML genotype without prior structural as-
sumptions or fixed action spaces. This unconstrained flexibility allows MorphoGen to navigate
the immense combinatorial space effectively, unlocking novel, high-performing designs that are
inaccessible to methods bound by rigid design priors.

• Our approach has significant advantages over other methods. Our method consistently gen-
erates skeleton structures that achieve superior locomotion performance across diverse environ-
ments. Evaluated by the FTC, our approach attains the best results in the majority of skeletons
and ranks within the top two in all cases, yielding an average improvement of 57.5% over state-
of-the-art RL baselines. Notably, our method still outperforms all baselines by at least 29.5%,
and dominates the top three results in every environment with the FC. These findings indicate that
our approach not only enables diverse and high-quality skeleton generation, but also demonstrates
strong potential for real-world applications where training resources are constrained.
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Figure 5: Visualization of representative robot morphologies generated by different methods.
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Figure 6: Top-performing morphologies generated by MorphoGen in the Ant environment.

To further showcase the efficacy of our approach, we visualize the motion performance of skeleton
structures generated by different methods throughout the training process. As shown in Figure
4, our method significantly outperforms baseline approaches with the FTC, achieving an average
performance improvement of 40.5% across all environments. Moreover, our approach generates
skeleton structures that facilitate rapid learning of effective control policies. Specifically, while
baseline methods often require hundreds of optimization iterations to achieve acceptable locomotion
performance, our method consistently produces skeletons that achieve to effective motion strategies
in fewer than 100 iterations.

5.3 STRUCTURAL ANALYSIS

We provide visual images of skeletal structures generated by different methods, as shown in Fig-
ure 5. In contrast to the intricate and often incomprehensible structures generated by RL-based
methods, the skeletons produced by our approach are clear, intuitive, and have greater potential for
real-world implementation. These designs achieve superior motion performance with fewer mov-
able joints, indicating a higher level of locomotion efficiency. Our method also naturally evolves
various bio-inspired structures that resemble real-world organisms. For example, the generated ant
skeleton resembles a spider, the hopper skeleton looks like a horse, and the swimmer skeleton mim-
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w/o Critic LLM

Locomotion Score: 2715.5 

w/o Structure Pretrain

Locomotion Score: 1344.8 

(a) (b)

Figure 7: Ablation study on key components of MorphoGen. (a) The performance comparison
between MorphoGen and its variants. (b) The corresponding generated robot morphologies.

(a) (b)

Figure 8: Backbone model selection analysis. (a) The performance of Qwen3 with varying param-
eter quantities as the backbone model. (b) Performance comparison of models with and without a
reasoning component.

ics an octopus. This demonstrates our method’s ability to discover effective and elegant designs by
leveraging principles found in nature, which are possibly sourced from the strong priors in LLMs.
Furthermore, our approach is capable of generating a diverse range of high-performance skeletons.
Figure 6 illustrates the top-performing ant skeletons generated by MorphoGen which achieve high
scores while possessing distinct structures and locomotion gaits (see Appendix E for more details).
This highlights our method’s capacity to explore a wide variety of effective design solutions rather
than converging on a single, narrow set of configurations.

5.4 ABLATION STUDY

To investigate the effectiveness of the employed critic agent and the initial elite solutions, we sep-
arately remove these two key components from our framework and report the results of variants
in Figure 7. The findings indicate that removing either component significantly degrades the per-
formance of the generated robot skeletons, with the average motion score of the generated struc-
tures decreasing by 50.5% and 65.7% respectively. Specifically, the absence of feedback from the
critic agent deprives the LLM of a targeted optimization direction during the evolutionary process,
severely hindering its exploration efficiency. This is particularly evident in the design of the gap
crosser, where the motion score plummets from 5652.7 to 866.4, a significant drop of 84.7%. Mean-
while, without the initial elite solutions, the LLM lacks a crucial set of high-quality examples to
learn from. This forces it to waste valuable computational resources on low-quality, sub-optimal de-
signs, as it fails to acquire essential domain knowledge. A prime example is the ant structure, where
the motion efficiency of the generated skeletons is only 28.2% of what our full framework achieves.
These results underscore the critical role of both the critic agent and the initial elite solutions in
enabling our LLM-based framework to generate high-performing skeletal structures.

5.5 BACKBONE MODEL SELECTION

To investigate whether different backbone models influence skeleton design, we conducted exper-
iments focusing on the impact of model size and whether a model is specifically optimized for
reasoning. As presented in Figure 8, the size of the backbone model has a significant effect on the
performance of the generated skeleton structures. As the model’s parameter scale decreases, the
locomotion scores of the produced skeletons drop sharply, from 7409.0 to 424.3(-94.3%), aligning

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

with established scaling laws in LLMs. Furthermore, models specifically designed for reasoning
significantly boost the framework’s ability to generate higher-quality motion skeletons. With their
enhanced logical and causal reasoning capabilities, are better equipped to understand the intricate
relationships between a skeleton’s structure and its physical dynamics. It allows the LLM to more
effectively deduce which structural modifications are likely to lead to performance improvements,
resulting in more intelligent and efficient evolutionary steps.

6 DISCUSSION

In this work, we introduced MorphoGen, an evolutionary framework that reframes the automated
design of robot morphologies as a code generation problem. By leveraging LLMs to directly evolve
the raw XML genotypes of robots, our approach circumvents the need for intermediate graph-
based abstractions and predefined modification actions that seriously constrain the exploration space.
Through a combination of a critic LLM providing gradient-like textual guidance , an efficient hier-
archical fitness evaluation , and an initial population of high-quality structures , MorphoGen demon-
strates a remarkable ability to navigate the vast and complex design space. Our experiments show
that MorphoGen not only discovers diverse and high-performing morphologies, but also signifi-
cantly outperforms existing baselines across a suite of challenging locomotion tasks.

Looking ahead, a promising direction is to enhance the framework’s creative potential by fostering
collaboration among multiple, specialized LLMs. Moreover, achieving a co-evolution of morphol-
ogy and control policy is also critical. By leveraging the LLM’s understanding of the link between
form and function, it could suggest control parameters tailored to the specific morphology. This
would create a tighter integration between the evolution of the ”body” and the ”brain,” potentially
accelerating the evaluation bottleneck and leading to more holistic and efficient robotic systems.
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This work focuses on the automated design of robot morphologies using LLMs in simulated envi-
ronments. All evaluations are conducted in physics simulators, ensuring no direct risks to safety,
privacy, or the environment. No conflicts of interest or external sponsorships apply, and all methods
comply with research integrity standards. We confirm adherence to the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

We release the complete source code for the MorphoGen framework anonymously, including all
scripts required to replicate our experiments. The release will include the set of expert-designed
XML files used for structure pretraining, the specific prompts for the coding and critic LLMs, and
all hyper-parameters for both the evolutionary search and the control policy optimization.
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A BASELINE DETAILS

We provide additional implementation details for all baselines below.

• Neural Graph Evolution (NGE) (Wang et al., 2019) formulates robot design as a graph
search problem and employs graph neural networks as controllers to share policies across
different morphologies. This significantly reduces evaluation cost during search and en-
ables efficient discovery of kinematically meaningful designs.

• Evolutionary Structure Search (ESS) (Cheney et al., 2018) jointly evolves morphology
and control in soft robots. It introduces morphological innovation protection, which tem-
porarily relaxes selection pressure on recently mutated morphologies, allowing controllers
to readapt and thus preventing premature convergence.

• Random Graph Search (Wang et al., 2019) performs naive random sampling of graph-
structured morphologies without guided exploration. Although simple, it serves as a strong
baseline to highlight the advantage of structured evolutionary search.

• Transform2Act (Yuan et al., 2022) treats robot design as a conditional decision-making
process and learns policies that jointly determine both the morphology and control. By
leveraging reinforcement learning with modular architectures, it achieves improved sample
efficiency over pure evolutionary approaches.

• Symmetry-Aware Robot Design (SARD) (Dong et al., 2023) incorporates group-theoretic
symmetry constraints into the robot design process. By searching for and enforcing optimal
symmetry subgroups, it reduces the design space, improves control stability, and produces
more efficient morphologies across diverse tasks.

• RoboMorph (Qiu et al., 2024) employs a structured grammar library to describe the se-
quence of morphology designs. An evolutionary loop retains the highest-fitness individuals
as parents for the next generation.

• RoboMoRe (Fang et al., 2025) fixes the graph structure of morphology and searches for
the best parameters of limbs. It follows a coarse-to-fine paradigm and jointly optimizes
morphology and the reward function.

B CONTROLLER OPTIMIZATION

The controller optimization for each generated robot structure is performed using RL to develop an
adaptive control policy πC for locomotion tasks. The problem is formulated as an infinite-horizon
discounted Markov Decision Process (MDP), defined by the tuple M = (S,A, P, r, ρ0, γ), where
S is the state space, A is the action space, P : S × A → S is the transition probability function,
r : S × A → R is the reward function, ρ0 : S → [0, 1] is the initial state distribution, and
γ ∈ [0, 1) is the discount factor. For a fixed robot morphology, the objective is to learn a control
policy πC : S → A) that maximizes the expected cumulative discounted reward:

J(πC) = Es0∼ρ0,at∼πC(·|st),st+1∼P (·|st,at)

[ ∞∑
t=0

γtr(st, at)

]
,

where st ∈ S and at ∈ A are the state and action at time t.

We employ Proximal Policy Optimization (PPO) (Schulman et al., 2017) to optimize the policy,
following the approach in Yuan et al. (2022) for locomotion control.
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C PROMPTS

Coding LLM

System Message:
You are an expert in robotics, MuJoCo simulation, and robot morphology design. Your
task is to optimize a robot design defined in MuJoCo XML format to maximize locomotion
performance while adhering to best practices.

Key Design Principles:
1. Structural Stability: Ensure a robust base and secure joint connections for balance.
2. Locomotion Efficiency: Design limbs and joints to maximize forward movement effi-
ciency.
3. Actuator Coverage: Assign motor actuators to all movable joints.
4. Physical Realism: Use realistic sizes, masses, and joint ranges for simulation accuracy.
5. Complexity Balance: Optimize capability without overly complex structures that hinder
control.

XML Structure Requirements:
- Position the root body at an appropriate height for stability.
- Ensure all hinge joints have corresponding motor actuators in the ¡actuator¿ section.
- Match joint names exactly between ¡joint¿ and ¡motor¿ elements.
- Define realistic joint ranges for natural movement.
- Specify capsule geometries with accurate fromto coordinates.
- Maintain valid MuJoCo XML syntax and structure.

Please modify one aspect of the robot design per iteration to isolate improvements: limbs,
joints, or bodies.
- Adjust limb lengths and orientations to enhance locomotion efficiency.
- Strategically add or remove body segments to balance capability and simplicity.
- Optimize body positions and orientations for improved stability and movement. - Ensure
design complexity remains controllable.

Output:
- Do not include explanations, comments, or additional text outside the XML.
- Return only the complete, valid MuJoCo XML.”

User Message:
Current Morphology Information:
- Morphology: {current xml}
- Locomotion Score: {current fitness}
- Structure Tree: {current structure tree}
- Focus areas: {current critic ouput}

Sampled Morphology Information:
- Morphology: {sampled xml}
- Locomotion Score: {sampled fitness}
- Structure Tree: {sampled structure tree}
- Focus areas: {sampled critic ouput}

Program Evolution History: {evolution history}

Task: Rewrite the program to improve its Locomotion Score. Provide the complete new
xml code.

# Your modified xml here
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Critic LLM

[t] System Message:
You are a robotics expert acting as a critic for an evolutionary algorithm designing a Mu-
JoCo robot. Your task is to provide a specific, actionable suggestion for how to improve
the robot’s design. Do not give general or too specific advice. Your suggestion should be
a concrete change to the XML structure related to an aspect.

User Message:
The robot’s current XML structure is: xml {current program} Provide a concise suggestion
for improvement focusing specifically on one aspect from {aspects}. Example for limb
lengths and orientations: Try increasing the length of the front leg segments. Example for
body segments: Consider adding a new body segment or deleting an existing body segment
to the torso for more flexibility. Example for body positions and orientations: Adjust the
initial orientation of the main torso to be more parallel to the ground. Also, please briefly
point out the weakness and strengths in the current structure.

Your suggestion:

D SENSITIVITY ANALYSIS

Utilizing strong initial genotypes is a widely adopted practice (Qiu et al., 2024; Fang et al., 2025;
Yuan et al., 2022) to ensure the search starts within a functionally meaningful region, thereby max-
imizing optimization efficiency. However, the initial population may cause profound impact to the
evolution process and lead to totally different solutions. To investigate to what degree the initial
genotypes will influence the final morphology, we conduct an ablation study that use different initial
genotypes. Specifically, We employ the morphologies generated by T2A (Yuan et al., 2022) (which
is asymmetry with multi-joint and long limbs) and NGE (Wang et al., 2019) (which is symmetric
with single-joint and short limbs) and try each possible combinations. Moreover, we also add a 10%
random perturbation (rp) to the structure parameters. to showcase the robustness. We summarize
both the characteristics and the locomotion scores of the generated morphologies in Table 2.

Variant T2A T2A(rp) NGE NGE(rp) T2A+NGE T2A(rp)+NGE(rp)

AS AS S S S S
Characteristics MJ MJ SJ SJ MJ MJ

LL LL SL SL LL LL

Locomotion Score 3858.7 3764.2 2478.5 2608.9 4740.6 4415.2

Table 2: Ablation study on different initial genotypes, where ”rp” denotes random perturbation,
”AS” denotes to asymmetry, ”S” denotes to symmetric, ”MJ” denotes to multi-joint, ”SJ” denotes
to single-joint, ”LL” denotes to long limbs and ”MJ” denotes to short limbs.

While the structural characteristics influence the final evolutionary direction, experiments with ran-
dom perturbation show minimal performance drops. This confirms that the search process is robust
and effective as long as the initial population contains a diverse set of potentially beneficial loco-
motion structures. Moreover, the similar characteristics between the genotypes and final solutions
confirm that the final evolved designs are not replicas of the initial expert structures. The initial
seeds serve only as high-level guidance.

To quantitatively analyze this deviation, we compute the Tree Edit Distance (TED) (Pawlik & Aug-
sten, 2016)-based similarity between the best-evolved solutions and their initial expert genotypes,
as domenstrated in Table 3.

The low similarity scores indicate that the generated morphologies are substantially different. They
retain only beneficial high-level patterns while evolving highly optimized structural details, validat-
ing that MorphoGen performs effective search in the unconstrained XML space.
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Environment Hopper Ant Swimmer Gap

Similarity 54.1% 22.6% 43.7% 35.1%

Table 3: TED-based structural similarity between the best MorphoGen-evolved solutions and the
initial genotypes. Lower values indicate more substantial topological innovation.

E DIVERSITY

To rigorously assess the exploration capability of MorphoGen compared to baselines, we employ
two distinct metrics: TED (Tree Edit Distance) (Pawlik & Augsten, 2016) and JSD (Jensen-Shannon
Divergence) (Lin, 2002) of length distribution. We measure the pairwise diversity among the top-
5 performing morphologies generated by each method in the Ant environment. Specifically, for
TED which measures differences in the graph topology, we calculate the pairwise TED between the
Kinematic Trees of the morphologies and then normalize and compute the average. For JDS which
indicates greater diversity in the parameter space, we first bin the limb lengths of each morphology
then calculate the pairwise JSD values of the resulting length distributions and take the average.

Metric T2A RoboMoRe MorphoGen

TED (Structural Diversity) 0.183 0 0.396
JSD (Parameter Diversity) 0.129 0.165 0.248

Table 4: Morphological and Parameter Diversity. Higher values indicate greater diversity.

The results in Table 4 demonstrate that MorphoGen significantly outperforms existing baseline
methods. By operating directly on unconstrained XML and utilizing our explicit selection crite-
ria , MorphoGen achieves superior diversity in both morphological graph structure and structural
parameter distributions.

F PROXY FITNESS

The primary bottleneck in evolutionary morphology optimization is the extremely high computa-
tional cost of training an optimal controller for every candidate design. Our hierarchical proxy
fitness strategy is designed to address this challenge by significantly reducing the evaluation time
per morphology, thus enabling greater exploration. The time difference between evaluation methods
is substantial: a typical proxy fitness calculation spends approximately 2 minutes, whereas training
an optimal controller from scratch costs about 3 hours (a 100× increase). Using the full controller
for fitness calculation is computationally impractical for extensive evolutionary search.

To study the impact of the proxy fitness on overall optimization performance, we compare three
variants on a fixed computational budget, reducing the evolutionary iterations for the full-controller
variant to make the study feasible.

Variant Iterations Total Time Hopper Ant Swimmer

w/o Proxy Fitness (Optimal Controller) 40 ∼ 108h 5796.0 3862.8 789.7
w/ Proxy Fitness (Limited Iterations) 40 ∼ 1.2h 5018.3 3194.6 754.8
w/ Proxy Fitness (Full Search Budget) 100 ∼ 4h 7409.0 4740.6 1058.0

Table 5: Performance Comparison of Proxy Fitness Variants.

While using an optimal controller yields slightly higher quality designs when the number of iter-
ations is artificially fixed at 40, its massive computational overhead makes extensive exploration
impossible. In contrast, the proxy fitness allows the algorithm to evaluate orders of magnitude more
morphologies within the same time frame. By utilizing the proxy fitness and facilitating a larger
number of evolutionary steps, MorphoGen achieves 28.2% better overall performance, while con-
suming 96% fewer compute resources per iteration. This confirms that the efficiency provided by
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the hierarchical proxy fitness is essential for effective evolutionary search in the unconstrained XML
design space.

G USE OF LLMS

In addition to their essential role in generating robot morphologies within MorphoGen, LLMs are
used only for polishing some paragraphs. The research ideas and designs are entirely conceived by
the authors.
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