
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ULTRA-LOW ACCUMULATION PRECISION INFERENCE
WITH BLOCK FLOATING POINT ARITHMETIC

Anonymous authors
Paper under double-blind review

ABSTRACT

Block Floating Point (BFP) quantization offers a hardware-efficient numerical
range trade-off. Previous studies have quantized weights and activations to an
extremely low precision using the BFP arithmetic. However, as the precision
of weights and activations diminishes, we identify that accumulation becomes
a hardware bottleneck in the BFP MAC. Nevertheless, existing attempts to de-
crease the precision of accumulation in matrix multiplication generally preserve
model performance through training with a pre-selected, fixed accumulation pre-
cision. Nonetheless, selecting an unduly low precision leads to notable perfor-
mance degradation, and these studies lack an effective approach to establish the
lower precision limit, potentially incurring considerable training costs. Hence,
we propose a statistical method to analyze the impact of reduced accumulation
precision on the inference of deep learning applications. Due to the presence of
fixed-point accumulation and floating-point accumulation in BFP matrix multi-
plication, we formulate a set of equations to relate the data range of fixed-point
multiply-accumulate operations and the effects of floating-point swamping to the
parameters of BFP quantization, the length of accumulation, model weights, and
the minimum number of bits required for accumulation, thereby determining the
appropriate accumulation precision. Applied to MMLU Llama2-7B, SQuAD-v1.1
BERT-Large and BERT-Base and CIFAR-10 ResNet-50, our precision settings
yield performance close to the FP32 baseline. Meanwhile, further precision re-
duction degrades performance, indicating our approach’s proximity to precision
limits. Guided by our equations, the hardware exhibits a 13.7%-28.7% enhance-
ment in area and power efficiency over high-precision accumulation under identi-
cal quantization configuration, and it demonstrated a 10.3× area reduction and an
11.0× power reduction compared to traditional BFP implementations.

1 INTRODUCTION

Deep learning technology has achieved significant success in a wide range of applications through
the training of large-scale deep models with extensive datasets. Concurrently, this approach has im-
posed substantial storage and computational burdens. Quantization emerges as a promising method
to reduce the cost of deep learning by diminishing the bit-width of data flow within models, thereby
reducing storage and computational overhead (Deng et al., 2020). As an effective numerical sys-
tem for deep learning, Block Floating Point (BFP) strikes a favorable balance between dynamic
range and hardware cost (Drumond et al., 2018). Specifically, previous studies have demonstrated
that low-precision BFP formats can achieve accuracy comparable to FP32 under various deep learn-
ing workloads (Darvish Rouhani et al., 2020; Drumond et al., 2018; Soloveychik et al., 2022; Köster
et al., 2017; Zhang et al., 2022). However, it is observed that as the quantization precision decreases,
accumulation becomes a hardware bottleneck in BFP MAC. As illustrated in Figure 1(b), the area
occupied by the accumulation component accounts for 17.8%, 33.7%, and 64.4% for BFP16, BFP8,
and BFP4, respectively. Therefore, reducing accumulation precision can further enhance hardware
efficiency on top of lowering quantization precision.

In BFP MAC, both fixed-point and floating-point accumulations are present. For fixed-point accu-
mulation, a decrease in precision is accompanied by an increased likelihood of overflow. Previous
works have focused on avoiding overflow occurrences or mitigating their impact (Colbert et al.,
2023; Ni et al., 2020; Xie et al., 2020; Li et al., 2022). Nevertheless, methods to mitigate the impact

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

of overflow are not guaranteed to maintain accuracy when overflows occur frequently. Hence, we
employ the 3σ principle to predict data ranges and select accumulation precision to prevent over-
flow permanently. For floating-point accumulation, the phenomenon of swamping (Higham, 1993)
becomes more pronounced as precision decreases. Previous work has attempted to correlate the nu-
merical precision loss and model performance degradation due to swamping through variance (Wang
et al., 2018; Sakr et al., 2019). Alternatively, our research centers on the inference phase, where we
leverage the Frobenius norm(Suh et al., 2022; Yuan et al., 2020) to gauge matrix similarity before
and after precision reduction in accumulation. Grounded in the Frobenius norm, we propose the
metric Frobenius norm retention rate (FnRR) to quantify the degree of swamping resulting from
reduced floating-point mantissa precision. Furthermore, we derive a formula f(n) from FnRR to
assess the impact of data precision loss on model performance, establishing a connection between
floating-point accumulation accuracy and model performance.

Utilizing the derived formula for FnRR, our analysis identifies accumulation length as the pivotal
factor influencing floating-point accumulation precision. Leveraging this insight, we introduce a
segmented accumulation approach to mitigate precision loss. Experimental validation affirms the
method’s efficacy across diverse model and quantization paradigms. Furthermore, integrating the
theoretically deduced precision into hardware yields a 13.7–28.7% reduction in area and power
relative to high-precision accumulation under identical quantization conditions, and nearly a 10×
enhancement in area and power efficiency compared to FP32 accumulation in BF16 MAC opera-
tions.

Our research contributes both theoretical and practical insights. Firstly, we present a theoretical
framework for determining the minimum fixed-point accumulation bit-width, emphasizing overflow
avoidance based on variance and mean. Secondly, we introduce the FnRR and f(n) metrics to link
floating-point accumulation precision with model performance. Our analysis shows that accumu-
lation length is a key determinant in precision selection. To further reduce precision, we employ a
segmented accumulation technique. We then validate the accumulation precision boundary through
experiments. Finally, we design BFP multiply-accumulators within the established boundaries and
assess the improvements in area and power efficiency.

… xK

\ \ \ \ \ \ \ \
Normalization

Align

Add

FX2FP

FP-Register

e-bit

m-bit

\\

Shared power

 element

 element

 element

…

K scalar elements

1 x x x x x

1 x x x x

1 x x x x

1 x x x x

1 x x x x

1 x x x x

1 x x x x

1 x x x x

Pi+1=

Si =

No swamping

Stage 2: 2 bits swamping

Stage 3: 3 bits swamping

Stage 4: 4 bits swamping

Stage 1: 1 bit swamping

Full swamping

Truncation

A0 A1 A2 A3 A4 A5 A6 A7

B0 B1 B2 B3 B4 B5 B6 B7

C0 C1 C2 C3 C4 C5 C6 C7

 element

A0 A1 A2 A3

ASE0 ASE1

B0 B1 B2 B3

BSE0 BSE1

A1

A2

A3

ASE0 BSE0 CSE0

ASE1 BSE1 CSE1

INT0

INT1

Intra Block Operation

CSE0

CSE1

Inter Block OperationBFP Format

A0

B1

B2

B3

B0

C1

C2

C3

C0
INT0

INT1

Normalization

Normalization

F0

F1

Result

INT-ACC FP-ACCINT-MUL

BFP MAC Input Register

Shared Exponent and Elements

\I (8+K*Quantization_precision) bits \W (8+K*Quantization_precision) bits

INT ADDER

\W/I Shared Exponent 8bits

INT MAC

\W/I Elements (K,Quantization_precision)

Normalization

\ 8bits \ INT Accumulation bitwidth

Align

\ FP32

\ FP32 \ FP32
FP ADDER

\ FP Accumulation bitwidth
FX2FP

\ FP32
Register

BFP MAC Input Register

Shared Exponent and Elements

\I (8+K*Quantization_precision) bits \W (8+K*Quantization_precision) bits

INT ADDER

\W/I Shared Exponent 8bits

INT MAC

\W/I Elements (K,Quantization_precision)

Normalization

\ 8bits \ INT Accumulation bitwidth

Align

\ FP32

\ FP32 \ FP32
FP ADDER

\ FP Accumulation bitwidth
FX2FP

\ FP32
Register

(a) BFP MAC

17.8% 33.7% 64.4%

82.2%

66.3%

35.6%

0

500

1000

1500

2000

2500

BFP16 BFP8 BFP4

Other

ACC

17.8% 33.7% 64.4%

82.2%

66.3%

35.6%

0

500

1000

1500

2000

2500

BFP16 BFP8 BFP4

Other

ACC

17.8% 33.7% 64.4%

82.2%

66.3%

35.6%

0

500

1000

1500

2000

2500

BFP16 BFP8 BFP4

Other

ACC

(b) Area Analysis

… xK

\ \ \ \ \ \ \ \

Normalization

Align

Add

FX2FP

FP-Register

e-bit

m-bit

\\

Shared power

 element

 element

 element

…

K scalar elements

1 x x x x x

1 x x x x

1 x x x x

1 x x x x

1 x x x x

1 x x x x

1 x x x x

1 x x x x

Pi+1=

Si =

No swamping

Stage 2: 2 bits swamping

Stage 3: 3 bits swamping

Stage 4: 4 bits swamping

Stage 1: 1 bit swamping

Full swamping

Truncation

A0 A1 A2 A3 A4 A5 A6 A7

B0 B1 B2 B3 B4 B5 B6 B7

C0 C1 C2 C3 C4 C5 C6 C7

 element

A0 A1 A2 A3

ASE0 ASE1

B0 B1 B2 B3

BSE0 BSE1

A1

A2

A3

ASE0 BSE0 CSE0

ASE1 BSE1 CSE1

INT0

INT1

Intra Block Operation

CSE0

CSE1

Inter Block OperationBFP Format

A0

B1

B2

B3

B0

C1

C2

C3

C0
INT0

INT1

Normalization

Normalization

F0

F1

Result

INT-ACC FP-ACCINT-MUL

BFP MAC Input Register

Shared Exponent and Elements

\I (8+K*Quantization_precision) bits \W (8+K*Quantization_precision) bits

INT ADDER

\W/I Shared Exponent 8bits

INT MAC

\W/I Elements (K,Quantization_precision)

Normalization

\ 8bits \ INT Accumulation bitwidth

Align

\ FP32

\ FP32 \ FP32
FP ADDER

\ FP Accumulation bitwidth
FX2FP

\ FP32
Register

BFP MAC Input Register

Shared Exponent and Elements

\I (8+K*Quantization_precision) bits \W (8+K*Quantization_precision) bits

INT ADDER

\W/I Shared Exponent 8bits

INT MAC

\W/I Elements (K,Quantization_precision)

Normalization

\ 8bits \ INT Accumulation bitwidth

Align

\ FP32

\ FP32 \ FP32
FP ADDER

\ FP Accumulation bitwidth
FX2FP

\ FP32
Register

(c) Three Varieties of Swamping

… xK

\ \ \ \ \ \ \ \

Normalization

Align

Add

FX2FP

FP-Register

e-bit

m-bit

\\

Shared power

 element

 element

 element

…

K scalar elements

1 x x x x x

1 x x x x

1 x x x x

1 x x x x

1 x x x x

1 x x x x

1 x x x x

1 x x x x

Pi+1=

Si =

No swamping

Stage 2: 2 bits swamping

Stage 2: 2 bits swamping

Stage 2: 2 bits swamping

Stage 1: 1 bit swamping

Full swamping

Truncation

A0 A1 A2 A3 A4 A5 A6 A7

B0 B1 B2 B3 B4 B5 B6 B7

C0 C1 C2 C3 C4 C5 C6 C7

 element

A0 A1 A2 A3

ASE0 ASE1

B0 B1 B2 B3

BSE0 BSE1

A1

A2

A3

ASE0 BSE0 CSE0

ASE1 BSE1 CSE1

INT0

INT1

Intra Block Operation

CSE0

CSE1

Inter Block Operation

BFP Format

BFP Format

A0

B1

B2

B3

B0

C1

C2

C3

C0
INT0

INT1

Normalization

Normalization

F0

F1

Result

INT-ACC FP-ACCINT-MUL

(d) BFP format and BFP matrix multipication
Figure 1: (a)A schematic diagram of the BFP MAC unit, (b)Area Analysis of Baseline BFP-MAC.
(c)The distinctions among three swamping phenomena When macc = 5 and mp = 4. (d) illustrates
a simple demonstration of the data flow in BFP matrix multiplication with a block size of 2.

2 RELATED WORK AND BACKGROUND

2.1 RELATED WORK

Our work endeavors to establish a theoretical framework for determining the boundary of accumu-
lator bit-width for the BFP format. Although this topic has not been previously discussed, there
has been extensive exploration of fixed-point accumulator bit-width and floating-point accumulator
bit-width.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Fixed-point accumulator bit-width WrapNet (Ni et al., 2020) leverages the cyclic nature of in-
teger computer arithmetic by inserting a differentiable cyclic activation function, rendering neural
networks robust to integer overflow. This allows for the selection of ultra-low-precision fixed-point
accumulator bit-width. However, they also note that high overflow rates can lead to training insta-
bility. A2Q (Colbert et al., 2023) adheres to the principle of avoiding overflow and approach the
determination of fixed-point accumulator bit-width boundaries from both the data type and weight
perspectives. Xie et al. introduce a quantization range mapping factor α to maximize data repre-
sentation capabilities while avoiding overflow under a specified accumulator bit-width (Xie et al.,
2020). While their training method can ensure model accuracy at an appropriate accumulator bit-
width, they do not provide an efficient approach to determine the boundary of the accumulator
bit-width.

Floating-point accumulation bit-width Wang et al. illustrate that the phenomenon of swamping
significantly limits the potential for reducing accumulation precision (Wang et al., 2018). To address
this issue, they propose two novel techniques: chunk-based accumulation and floating-point stochas-
tic rounding. These methods allow for the training of Deep Neural Networks (DNNs) even when
the accumulation bit-width is decreased to FP16, thereby circumventing the constraints imposed by
swamping. Additionally, Sakr et al. establish a connection between the decrease in accumulation
precision and the training efficiency of DNNs by examining how the exacerbation of swamping
phenomena, due to reducing accumulation precision, affects the variance of matrix multiplication
outcomes (Sakr et al., 2019). Based on this analysis, they select an appropriate accumulation bit-
width.

2.2 BFP FORMAT, BFP QUANTIZATION AND BFP MAC

BFP format is a numerical representation method wherein a group of data shares one exponent.
Quantization methods that adhere to this data format can be classified as fixed-point uniform quan-
tization (Jacob et al., 2018). Fixed-point uniform quantization can be categorized into multiple
levels of methods based on the granularity of quantization. Quantization granularity varies, with
per-tensor being the coarsest, using a single scaling factor for the entire matrix. Finer granularity
is achieved through per-channel or per-token scaling. Block-wise quantization further refines this
by dividing channels or tokens into blocks with a step size, yielding BFP quantization as a distinct
variant with scaling factors as powers of two. Therefore, BFP quantization (Rouhani et al., 2023;
Darvish Rouhani et al., 2023) can be expressed as:

Xq = ⌈ X
2s

⌋, s = max(⌊log|X|2 ⌋)−N + 1 (1)

where ⌈·⌋ is the rounding function, X is the object to be quantized, Xq is the corresponding quantized
result, s is the scaling factor obtained through quantization, and N is the number of bits used for the
low-precision representation.

The BFP multiplier-accumulator architecture is bifurcated into two primary modules: the INT-MAC
(Integer Multiply and Accumulate) and the FP-ACC (Floating Point Accumulate). The INT-MAC
comprises a set of signed fixed-point multipliers, an addition tree, and an exponent summing adder,
corresponding to the fixed-point multiplication and accumulation within the BFP inner product. This
phase is termed intra-block computation. Conversely, the FP-ACC module includes normalization,
an exponent alignment unit, an adder, and a fixed-to-floating-point conversion block, handling the
floating-point accumulation of the BFP inner product. This stage is identified as inter-block com-
putation. In Figure 1(d), we elucidate the implications of BFP format, intra-block and inter-block
operations using a straightforward example. SE denotes the shared exponent, A and B represent
the two matrices involved in the matrix multiplication computation, respectively, C denotes the re-
sulting matrix, INT signifies the fixed-point result after intra-block fixed-point accumulation, and F
indicates the number that has been normalized and is ready for floating-point accumulation.

3 MOTIVATION

3.1 HARDWARE BOTTLENECK ANALYSIS

The BFP MAC can be broadly categorized into fixed-point multiplication, fixed-point addition, and
floating-point addition, corresponding to INT-MUL, INT-ACC, and FP-ACC as depicted in Figure

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

1(d). When weights and activations are quantized at a higher precision, INT-MUL constitutes the
predominant area due to the inclusion of K (where K represents the block size) high-precision fixed-
point multipliers. However, when weights and activations are quantized at an ultra-low precision,
INT-MUL requires only ultra-low precision fixed-point multipliers, whereas the high-precision INT-
ACC and FP-ACC become the primary area overhead. As illustrated in the Figure 1(b), in the BFP4
MAC with K=16, the area allocated to accumulation reaches 64.4%, indicating that reducing the
precision of accumulation could yield significant hardware efficiency gains in this scenario.

3.2 MEAN, VARIANCE AND THE FROBENIUS NORM

Accumulation overflow is a critical issue to be addressed in the context of fixed-point quantization,
which can have a significant impact on model performance. As shown in the Table 1, we observe
that minor overflow rates cause slight performance decline, but increased rates lead to significant
degradation in model performance. In the design of the MAC unit, it is common practice to calculate
the theoretical maximum data range that the partial sums can reach based on the input data format
to prevent overflow. Equation 2 is a formula for calculating the maximum bit width required for the
partial sums based on the input data format. Here, both A and W are signed numbers.

K(2min(Awidth−1,Wwidth−1) − 2Awidth+Wwidth−2) ≤ Partial Sum ≤ K2Awidth+Wwidth−2 (2)

In deep learning models, partial sums rarely reach the theoretical extreme values because it is nearly
impossible for all input tensors to be quantized to the extreme values. Consequently, the range
derived from Equation 2 typically exceeds the actual data distribution. By the 3σ principle, the vast
majority of data falls within (µ − 3σ, µ + 3σ). Thus, bounding the partial sums by their mean and
variance can mitigate data range wastage.

In the inference phase of deep learning models, the FP32 precision matrix multiplication is regarded
as the benchmark for state-of-the-art performance. The inference quality is inferred to be supe-
rior when the outcomes of matrix multiplications using alternative precisions are closer to the FP32
results. Consequently, the challenge of correlating data precision with model accuracy can be re-
framed as one of determining the proximity between the reduced-precision result matrix and the
FP32 precision result matrix. For this purpose, we focus on numerical approximation and employ
the Frobenius norm (Suh et al., 2022; Yuan et al., 2020) as the metric for comparison.

Table 1: Average overflow rate for BERTbase in different accumulation widths and corresponding
EM and F1-score on the SQuAD-v1.1 question-answering task

Bit(A/W) Accumulation Width Average Overflow Rate EM F1
6/6 10 6.710% 2.4976 10.939
6/6 12 0.017% 75.639 83.938
6/6 24 0 78.978 86.667
8/8 14 7.894% 2.6584 11.302
8/8 16 0.025% 78.912 86.653
8/8 24 0 78.836 86.664

4 ACCUMULATION PRECISION ANALYSIS

In BFP format inner product computations, the process is divided into intra-block and inter-block
stages. We ensure ample allocation for both the intra-block shared exponent width and the inter-
block floating-point exponent width(We chose to allocate 8 bits like Microscaling(Rouhani et al.,
2023)). Our research focuses on estimating the mean and variance of block-wise partial sums to de-
termine the bit width for fixed-point multiplication and accumulation, and on relating the Frobenius
norm to the mantissa precision of inter-block accumulations.

4.1 INTRA-BLOCK PARTIAL SUM MEAN AND VARIANCE ANALYSIS

Intra-block multiplication and accumulation refers to the process of performing multiplication and
accumulation operations on weight elements(We) and input elements(Ie) that have been quantized
using the BFP format. We note (with observations detailed in Appendix E) that the weights and

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

inputs participating in matrix multiplication are approximately distributed according to a Laplace
distribution. To facilitate analysis, we hypothesize that the inputs conform to a Laplace distribution
with a location parameter of 0 and a scale parameter of 1(The W and I below represent the original
weights and inputs, respectively). Hence, we have E[I] = 0. Furthermore, since BFP quantization
is an unbiased estimator, it follows that E[Ie] = E[I] = 0. Additionally, We and Ie are independent
of each other, and thus E[Ie ·We] = E[Ie] ·E[We] = 0. Consequently, we can estimate the mean of
the partial sums within the block to be 0. The variance calculation formula for the dot product terms
within the block is as follows:

Var[Ie ·We] = E[I2e] · E[W 2
e]− E[Ie]2 · E[We]

2 (3)

From the aforementioned analysis, we know that E[Ie] = 0, thus we can express the variance as

Var[Ie ·We] = Var[Ie] · E[W 2
e] (4)

According to the assumptions made in the preceding text, we can determine Var[I], E[W 2] and the
mean of the shared exponent(How to calculate E[exp] is provided in the appendix A).

Var[Ie] =
Var[I]

22(E[Iexp]−bit+1)
, E[W 2

e] =
E[W 2]

22(E[Wexp]−bit+1)
(5)

With the mean and variance of the partial sums within the block, according to the 3σ principle,
we consider each inner product term obtained from the intra-block inner product to fall within the
range of (−3σ, 3σ). Consequently, the range of the partial sums is (−3Kσ, 3Kσ), where K is the
number of terms in the sum. At this point, we can estimate the bit width required for fixed-point
multiplication and accumulation. We have visualized the estimated bit width in the Figure 2.

0 200 400 600 800 1000
Accumulation Length n in Int-Acc

8

10

12

14

16

18

20

22

24

26

B
it

W
id

th

Prediction Bit Width(Int8)
Maximum Bit Width(Int8)
Prediction Bit Width(Int4)
Maximum Bit Width(Int4)

Figure 2: Intra-block Fixed-Point Accu-
mulation Precisions for Llama2-7B

101 102 103

Accumulation Length n in FP-Acc

0.95

0.96

0.97

0.98

0.99

1.00

Fn
R

R

macc=3
macc=4
macc=5
macc=6
macc=7
macc=8

Figure 3: Intra-block Fixed-Point Accu-
mulation Precisions for Llama2-7B

4.2 INTER-BLOCK ACCUMULATION MANTISSA PRECISION ANALYSIS

Let pi represent the i-th term for inter-block accumulation, si denote the partial sum obtained from
the i-th inter-block accumulation, mp and macc correspond to the mantissa bit widths for pi and si,
respectively, and n denotes the length of the accumulation.Our key contribution lies in the proposal
of a formula,

FnRR =

√
E[S2

nswamping]

E[S2
nideal]

(6)

which correlates mantissa precision with model performance, where FnRR is a function of n, mp,
macc, E[W], Var[W] and K, all precomputable parameters. In order to maintain performance
under reduced precision, we aim for FnRR → 1. As illustrated in the Figure 3, it can be observed
intuitively that once mp,E[W],Var[W], and K are determined, the FnRR at a fixed mantissa
precision is a waterfall-like curve with respect to the accumulation length n. The accumulation
length for FnRR is limited due to potential mantissa truncation caused by floating-point alignment
during addition. This overflow leads to loss of significant digits, necessitating the introduction of

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

“swamping” to analyze its impact on FnRR performance. As illustrated in the Figure 1(c), a single
floating-point addition can be categorized into three scenarios: 1) ”no swamping”, which occurs
when |si| ≤ 2macc−mp |pi+1|. 2) “full swamping,” which occurs when |si| > 2macc |pi+1|. 3)
“partial swamping,” which occurs when 2macc−mp |pi+1| < |si| ≤ 2macc |pi+1|. Subsequently, we
will establish a connection between the Frobenius norm and the mantissa precision of inter-block
summation from the perspective of swamping.

Theorem 1. The FnRR, Using n, mp, and macc to denote the accumulation length, the mantissa
precision of accumulation terms, and the mantissa precision of the partial sum, respectively, σ =√

KVar[I ·W] where K and Var[W] are the block size for BFP quantization and the average
variance of the weights selected from large models participating in quantization, is given as follows:

FnRR =

√∑n
i=1 P (Ai)E[S2

i swamping] + P (B)E[S2
nswamping]

nσ2

P (Ai) =


2Q(

2macc+1

√
2π

), i = 1

2Q(
2macc+1

√
2iπ

)

i−1∏
j=1

(1− 2Q(
2macc+1

√
2jπ

)), i = 2, 3, . . . , n− 1

,

P (B) =

n∏
j=1

(1− 2Q(
2macc+1

√
2jπ

)), E[S2
nswamping] = nσ2 −

n∑
i=1

E[f2
i],

E[f2
i] =

mp∑
j=1

P (Cij)E[f2
ij], P (Cij) = 2(Q(

2macc−j+mp+1

√
2iπ

)−Q(
2macc−j+mp+2

√
2iπ

)),

E[f2
ij] =

2−2mp−1

3
(2j − 1)(2j+1 − 1)E[2exp]2.

(7)

The proof of this theorem is provided in the appendix B. Using Theorem 1, we endeavor to analyze
the relationship between the precision of accumulation and the length of the cumulative process.
When we set a very large macc, P (Ai) will be close to 0, while P (B) will be close to 1 and
E[S2

nswamping] will be close to nσ, which causes FnRR → 1 as expected when the mantissa
is maintained at high precision. When we set a very small macc, P (B) will be close to 0, and
E[S2

nswamping] will be approximately equal to the sum of P [Ai]E[S2
i swamping]. When i is large,

P [Ai] will be close to 0. Consequently, in this case, E[S2
nswamping] will be approximately equal

to the sum of the first few terms of P [Ai]E[S2
i swamping] when i is small. In other words, as n

increases, E[S2
nswamping] will remain largely unchanged after an initial increase, leading FnRR to

rapidly approach 0 as n increases. This indicates that with limited precision, there is little hope of
maintaining computational accuracy when the length of accumulation is large. Similarly, because
FnRR exhibits a clear trend from 1 to 0 as n increases at a fixed accumulation precision, FnRR
can provide a definitive decision boundary for the accuracy of accumulation.

4.3 PARAMETER SIGNIFICANCE ANALYSIS

Within Theorem 1, the computation of FnRR is influenced by four parameters: n,mp,macc, and
σ, each exerting a distinct level of influence on the resulting calculation. Firstly, analyzing the
parameter sigma reveals that E[2exp]2 is approximately equal to σ2, leading to E[S2

nswamping] =

f(n,mp,macc)σ
2. Consequently, σ has negligible impact on the computation of FnRR. Subse-

quently, we observe that the parameter mp is only employed in the calculation of E[f2
i], and through

scaling, we find that E[f2
i] <

σ2

6 (the proof of this conclusion is provided in the appendix C). There-
fore, the parameter mp can, at most, decrease E[S2

nswamping] to 5
6E[S

2
nideal] , which in turn reduces

FnRR to around 0.913 at its lowest. The impact of mp on the computation of FnRR is simi-
larly insignificant. In summary, given a fixed mantissa precision, macc, n is the predominant factor
influencing the calculation of FnRR.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4.4 MANTISSA PRECISION ANALYSIS IN SEGMENTED INTER-BLOCK ACCUMULATION

As established in Section 4.3, the accumulation length n is the most critical factor affecting the preci-
sion of inter-block accumulation. To achieve a lower inter-block accumulation precision while mini-
mizing additional hardware overhead, a segmented approach to accumulation is adopted. Assuming
n = n1 × n2, the floating-point accumulation of length n is segmented into n2 accumulations of
length n1, which are then summed to yield the final computational result. Both segments of floating-
point accumulation utilize the same mantissa precision to allow for the reuse of the floating-point
addition unit. The proof of the formula is provided in the appendix D.

Theorem 2. Using a segmented accumulation method with n = n1 × n2, where n1 is the segment
length and n2 is the number of segments, the FnRR, with mp and macc as the mantissa precision
for the accumulation terms and partial sums, respectively, is provided in the subsequent sections:

FnRRsegment = FnRR(n1,mp,macc, σn1
)× FnRR(n2,macc,macc, σn2

) (8)

4.5 USAGE OF THEOREM

We can ascertain the suitability of a certain inter-block accumulation precision by calculating its
FnRR and evaluating its degree of convergence to 1, thereby predicting the most appropriate ac-
cumulation precision. The results indicate that when measured as a function of the accumulation
length n with a fixed precision, there exists a breakdown region for FnRR. This breakdown region
is clearly observable when considering the normalized exponential loss:

f(n) = en(1−FnRR) (9)
In the Figure 4, we plot the f(n) values at different inter-block accumulation precisions with ac-

100 101 102 103 104

Accumulation Length n in FP-Acc

10000

4000

8000

12000

16000

20000

24000

28000

32000

36000

40000

f(n
)

macc=1
macc=2
macc=3
macc=4
macc=5
macc=6
macc=7
macc=8
macc=9
macc=10

(a) No Segmented Accumulation

102 104 106 108

Accumulation Length n in FP-Acc

10000

4000

8000

12000

16000

20000

24000

28000

32000

36000

40000

f(n
)

macc=1
macc=2
macc=3
macc=4
macc=5
macc=6
macc=7
macc=8
macc=9
macc=10

(b) Segmented Accumulation

Figure 4: (a) and (b) utilizes weight information from the Llama2-7B, with a block size of K equal
to 32. The dashed line indicates the location of the breakdown point. It is readily apparent that
below the dashed line, f(n) rapidly approaches 1, whereas above it, f(n) increases swiftly.

cumulation using segments of length 32 and no segmented accumulation. Here, we set mp to 9 (in
practical applications, we can determine the corresponding mp value using the method described
in section 4.1), and we use the weight data from Llama2-7B (Touvron et al., 2023) to calculate the
FnRR. We can observe that f(n) increases rapidly when it exceeds 1000, and it quickly approaches
1 when it is below 1000. Consequently, we select 1000 as the point of breakdown, such that accu-
mulation precisions resulting in f(n) values less than 1000 are considered suitable precisions.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Through the aforementioned analysis, we predict the intra-block multiplication and accumulation
bit widths, the inter-block accumulation mantissa bit widths, and the inter-block segmented accu-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

mulation mantissa bit widths required for inference under different quantization configurations and
segment lengths for the models (Llama2-7B, BERT-Large-Cased, BERT-Base-Cased, ResNet-50).
We select these models due to their long accumulation lengths and because they belong to different
applications, thereby enabling them to effectively validate our work. We aim to: 1) assess overflow
occurrence in intra-block multiplication and accumulation at predicted precision, 2) evaluate and
compare model performance with inter-block accumulation at predicted precision to FP32 baseline,
and 3) evaluate and compare model performance with inter-block segmented accumulation at pre-
dicted precision to FP32 baseline. We employ MMLU (Hendrycks et al., 2020) testing to evaluate
the performance of Llama2-7B, for BERT-Large-Cased and BERT-Base-Cased (Devlin et al., 2018),
we use the SQuAD-v1.1 dataset (Rajpurkar et al., 2016) to finetuning and evaluate and for ResNet-
50 (He et al., 2016), we use the CIFAR-10 (Krizhevsky et al., 2009) dataset to train and evaluate.
Specifically, we utilize the Microsoft open-source MX Pytorch Emulation Library for quantization
and choose 8-bit as the BFP quantization and accumulation exponent bit width.

To discuss the overflow situation of block-wise multiplication and accumulation and to implement
the rounding of the partial sum during the inter-block accumulation process, we implement the BFP-
format GEMM using PyTorch and CUDA, and we have inserted a rounding function at the location
of partial sum accumulation to simulate the reduction in bit width.

5.2 OVERFLOW RATE IN INTRA-BLOCK OPERATIONS

We utilize the SQuAD-v1.1 to assess the model performance of BERT-Large and BERT-Base and
the CIFAR-10 to assess the model performance of ResNet-50 following precision reduction. During
inference, the matrix multiplication operations are then processed in BFP format, and the frequency
of overflow events during computation is recorded to calculate the overflow rate. The results are
presented in Table 2. BERT-Large and BERT-Base are evaluated using SQuAD-v1.1 across 48
topics, and the overflow rate is 0 in all cases. ResNet-50 is evaluated using CIFAR-10 and the
overflow rate is also 0 in all cases. The experimental results confirm that no overflow occurs at the
predicted fixed-point accumulation precision.

Table 2: The OR in this table represents the overflow rate. The data in the tuple is the result of
BERT-Large and BERT-Base in SQuAD-v1.1 and ResNet-50 in CIFAR-10, respectively

Precision Block Size Baseline Bit Width Prediction Bit Width Average OR

BFP8
128 23 20 (0,0,0)
64 22 20 (0,0,0)
32 21 19 (0,0,0)

BFP4
64 14 12 (0,0,0)
32 13 11 (0,0,0)
16 12 11 (0,0,0)

5.3 MODEL PERFORMANCE UNDER REDUCED INTER-BLOCK ACCUMULATION PRECISION

Table 3: The predicted inter-block accumulation bit width for our considered networks. Each table
entry is an ordered tuple representing the bit widths for Llama2-7B, BERT-Large and ResNet-50,
respectively. ’-’ signifies that we do not conduct tests on this quantitative configuration.

Block Size 8 16 32 64 128
BFP4 (-,7,-) (7,6,6) (7,5,6) (6,5,5) (-,-,-)
BFP4(Seg) (-,4,-) (5,4,4) (4,3,3) (4,3,3) (-,-,-)
BFP8 (-,-,-) (-,-,-) (7,5,6) (6,5,5) (5,4,4)
BFP8(Seg) (-,-,-) (-,-,-) (4,3,3) (4,3,3) (3,2,2)

The predicted bit width for each network and quantization precision are listed in Table 3 for the case
of BFP and BFP segmented accumulation with the segment length calculated by

√
n. To elucidate

that the inter-block accumulation precision identified by our method is precisely at the critical point,
or as close as possible to the critical point while ensuring model performance (the critical point refers
to the threshold at which a significant degradation in model performance is imminent), we evaluate
the model performance under multiple sets of different accumulation precisions for each selected

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

model under various quantization configurations. Figure 7 reveals that as the accumulation precision
decreases, there is a pronounced decline in model performance at the critical point. However, it
is worth noting that when the accumulation precision is higher than the precision at the critical
point, the change in model performance is not monotonic; it oscillates within a narrow range. This
implies that there is no linear correlation between model performance and accumulation precision,
as performance fluctuates around a certain level within a specific range of accumulation precision.
When the accumulation precision is reduced below the critical point, there is a marked deterioration
in model performance, which is consistent with the properties of FnRR.

4 5 6 7 8 9
bit width

33

34

35

36

ac
cu

ra
cy

BFP8

K128MMLU
K128MMLUweighted

K64MMLU
K64MMLUweighted

5 6 7 8 9
bit width

26

28

30

32
BFP4

K32MMLU
K32MMLUweighted

K16MMLU
K16MMLUweighted

(a) No Segmented Accumulation results for Llama2-7B

2 3 4 5 6
bit width

28

30

32

34

36

ac
cu

ra
cy

BFP8

K128MMLU
K128MMLUweighted

K64MMLU
K64MMLUweighted

3 4 5 6 7
bit width

26

28

30

32

BFP4

K32MMLU
K32MMLUweighted

K16MMLU
K16MMLUweighted

(b) Segmented Accumulation results for Llama2-7B

2 3 4 5 6 7
bit width

73

77

81

85

89

sc
or

e

BFP8

K128EM
K128F1
K64EM
K64F1
K32EM
K32F1

3 4 5 6 7 8 9
bit width

76

79

82

85

88

BFP4

K16EM
K16F1
K8EM
K8F1

(c) No Segmented Accumulation results for BERTlarge

1 2 3 4 5
bit width

70

75

80

85

90

sc
or

e
BFP8

K128EM
K128F1
K64EM
K64F1
K32EM
K32F1

2 3 4 5 6
bit width

76

79

82

85

88

BFP4

K16EM
K16F1

(d) Segmented Accumulation results for BERTLarge

2 3 4 5 6 7
bit width

0.70

0.75

0.80

0.85

0.90

ac
cu

ra
cy

BFP8

K128Top1acc

K64Top1acc

2 3 4 5 6 7
bit width

0.2

0.4

0.6

0.8

BFP4

K32Top1acc

K16Top1acc

(e) No Segmented Accumulation results for ResNet-50

1 2 3 4 5
bit width

0.2

0.4

0.6

0.8

ac
cu

ra
cy

BFP8

K128Top1acc

K64Top1acc

2 3 4 5
bit width

0.2

0.4

0.6

0.8

BFP4

K32Top1acc

K16Top1acc

(f) Segmented Accumulation results for ResNet-50

Figure 5: The horizontal axis represents the inter-block accumulation precision, while the verti-
cal axis indicates the score for the corresponding task. The dashed lines in the graphs denote the
Baseline performance under the respective quantization configurations

5.4 MODEL PERFORMANCE UNDER REDUCED INTER-BLOCK SEGMENTED ACCUMULATION
PRECISION

We select ⌊
√
n⌋ as the segment length and evaluated the model performance under multiple sets

of different accumulation precisions for each chosen model under every quantization configuration.
Figure 7 demonstrates that as the accumulation precision decreases, there is a marked decline in
model performance at the critical point. Furthermore, we can also find that employing segmented
accumulation allows for at least a 1-bit reduction in precision while maintaining equivalent model
performance compared to the no segmented accumulation method. In particular, the segmented

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

accumulation precision of 5 bits for BFP4 quantization of Llama2-7B with a block size of 16 out-
performs the non-segmented method with a precision of 9 bits, achieving at least a 4-bit reduction.
Both segmented and non-segmented methods at the predicted precision maintain performance close
to the baseline, demonstrating the efficacy of our method in identifying minimal accumulation pre-
cision without substantial performance degradation.

5.5 HARDWARE IMPLEMENTATION

We utilize the formula derived in the preceding section to predict the accumulation precision for the
Llama2-7B model with a block size of 16, for both BFP4 and BFP8 quantization precisions. The
hardware design is completed based on the obtained accumulation precision, and we evaluate the
area and power consumption using synthesis tools. As indicated in the evaluation, in terms of area,
the BFP4 and BFP8 quantization precisions result in reductions of 28.7% and 13.8%, respectively.
Notably, the reduction in area for the FP-ACC and Other components is significant. However, the
area optimization for the INT-MAC is not pronounced due to the multitude of multiplier units, which
do not decrease in area with the reduction in accumulation precision. Regarding power consumption,
the BFP4 and BFP8 quantization precisions lead to decreases of 25.2% and 13.7%, respectively.
Additionally, compared to the BFP16 Baseline, our optimized implementation of the BFP MAC at
lower precision achieves significant improvements in area and power consumption, reaching up to
10.3× and 11.0× respectively.

Table 4: Analysis of area and power with varying quantization precisions, with the bolded segment
reflecting area and power data derived from hardware design utilizing formula-predicted accumula-
tion precision, contrasted with the non-bolded segment which is based on conventional accumulation
precision for hardware design.

(a) Area Analysis

Quantization Type INT-MAC (µm2) FP-ACC (µm2) Other (µm2) Total (µm2)

BFP4 142.54 133.34 38.90 314.78
126.20 (↓11.5 %) 74.80 (↓44.0%) 23.56 (↓39.4%) 224.56 (↓28.7%)

BFP8 619.07 147.84 49.09 816.00
584.47 (↓11.4%) 90.11 (↓39.0%) 28.93 (↓41.1%) 703.51 (↓13.8%)

(b) Power Analysis

Quantization Type Power (mW)

BFP4 0.2208
0.1652 (↓25.2%)

BFP8 0.5933
0.5122 (↓13.7%)

(c) Comparison with the BFP16 baseline

Quantization Type Area (µm2) Power (mW)
BFP4 224.56 0.1652
BFP16 2311.6 (10.3×) 1.8204 (11.0×)
BFP8 703.51 0.5122
BFP16 2311.6 (3.29×) 1.8204 (3.55×)

6 CONCLUSION

We present an analytical approach to predict the optimal accumulation precision for BFP GEMM
operations in deep learning inference, balancing performance with precision. Our experiments con-
firm that this precision is near the limit while maintaining comparable performance to the base-
line. Additionally, we demonstrate the effectiveness of segmented accumulation in further reducing
floating-point precision. An interesting phenomenon is observed, where the decline in model per-
formance with decreasing accumulation precision varies under different quantization configurations.
Notably, highly quantized models exhibit a lower robustness and are more susceptible to reaching
the precision boundary. Therefore, incorporating the impact of quantization on model robustness
into our theoretical analysis could further improve our theoretical framework. We believe that our
work provides theoretical support for the design of MAC units in deep learning inference.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Ian Colbert, Alessandro Pappalardo, and Jakoba Petri-Koenig. A2q: Accumulator-aware quantiza-
tion with guaranteed overflow avoidance. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pp. 16989–16998, 2023.

Bita Darvish Rouhani, Daniel Lo, Ritchie Zhao, Ming Liu, Jeremy Fowers, Kalin Ovtcharov, Anna
Vinogradsky, Sarah Massengill, Lita Yang, Ray Bittner, et al. Pushing the limits of narrow pre-
cision inferencing at cloud scale with microsoft floating point. Advances in neural information
processing systems, 33:10271–10281, 2020.

Bita Darvish Rouhani, Ritchie Zhao, Venmugil Elango, Rasoul Shafipour, Mathew Hall, Maral Mes-
makhosroshahi, Ankit More, Levi Melnick, Maximilian Golub, Girish Varatkar, et al. With shared
microexponents, a little shifting goes a long way. In Proceedings of the 50th Annual International
Symposium on Computer Architecture, pp. 1–13, 2023.

Lei Deng, Guoqi Li, Song Han, Luping Shi, and Yuan Xie. Model compression and hardware
acceleration for neural networks: A comprehensive survey. Proceedings of the IEEE, 108(4):
485–532, 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Mario Drumond, Tao LIN, Martin Jaggi, and Babak Falsafi. Training dnns with hybrid block
floating point. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/
paper/2018/file/6a9aeddfc689c1d0e3b9ccc3ab651bc5-Paper.pdf.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Nicholas J Higham. The accuracy of floating point summation. SIAM Journal on Scientific Com-
puting, 14(4):783–799, 1993.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for
efficient integer-arithmetic-only inference. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2704–2713, 2018.

Urs Köster, Tristan Webb, Xin Wang, Marcel Nassar, Arjun K Bansal, William Constable, Oguz
Elibol, Scott Gray, Stewart Hall, Luke Hornof, et al. Flexpoint: An adaptive numerical format for
efficient training of deep neural networks. Advances in neural information processing systems,
30, 2017.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Haokun Li, Jing Liu, Liancheng Jia, Yun Liang, Yaowei Wang, and Mingkui Tan. Downscaling and
overflow-aware model compression for efficient vision processors. In 2022 IEEE 42nd Interna-
tional Conference on Distributed Computing Systems Workshops (ICDCSW), pp. 145–150. IEEE,
2022.

Renkun Ni, Hong-min Chu, Oscar Castañeda, Ping-yeh Chiang, Christoph Studer, and Tom Gold-
stein. Wrapnet: Neural net inference with ultra-low-resolution arithmetic. arXiv preprint
arXiv:2007.13242, 2020.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

11

https://proceedings.neurips.cc/paper_files/paper/2018/file/6a9aeddfc689c1d0e3b9ccc3ab651bc5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/6a9aeddfc689c1d0e3b9ccc3ab651bc5-Paper.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Bita Darvish Rouhani, Ritchie Zhao, Ankit More, Mathew Hall, Alireza Khodamoradi, Summer
Deng, Dhruv Choudhary, Marius Cornea, Eric Dellinger, Kristof Denolf, et al. Microscaling data
formats for deep learning. arXiv preprint arXiv:2310.10537, 2023.

Charbel Sakr, Naigang Wang, Chia-Yu Chen, Jungwook Choi, Ankur Agrawal, Naresh Shanbhag,
and Kailash Gopalakrishnan. Accumulation bit-width scaling for ultra-low precision training of
deep networks. arXiv preprint arXiv:1901.06588, 2019.

Ilya Soloveychik, Ilya Lyubomirsky, Xin Wang, and Sudeep Bhoja. Block format error bounds and
optimal block size selection. arXiv preprint arXiv:2210.05470, 2022.

Duckhyun Suh, Dong Kyu Lee, Jung Min Pak, and Choon Ki Ahn. Distributed frobenius-norm
finite memory interacting multiple model estimation for mobile robot localization. IEEE Access,
10:124193–124205, 2022.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Naigang Wang, Jungwook Choi, Daniel Brand, Chia-Yu Chen, and Kailash Gopalakrishnan. Train-
ing deep neural networks with 8-bit floating point numbers. Advances in neural information
processing systems, 31, 2018.

Hongwei Xie, Shuo Zhang, Huanghao Ding, Yafei Song, Baitao Shao, Conggang Hu, Ling Cai,
and Mingyang Li. Accelerating neural network inference by overflow aware quantization. arXiv
preprint arXiv:2005.13297, 2020.

Shi-Fang Yuan, Yi-Bin Yu, Ming-Zhao Li, and Hua Jiang. A direct method to frobenius norm-based
matrix regression. International Journal of Computer Mathematics, 97(9):1767–1780, 2020.

Sai Qian Zhang, Bradley McDanel, and HT Kung. Fast: Dnn training under variable precision
block floating point with stochastic rounding. In 2022 IEEE International Symposium on High-
Performance Computer Architecture (HPCA), pp. 846–860. IEEE, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A THE CALCULATION METHOD FOR E[exp]

Let K,µ, σ denote the block size, quantization precision, mean, and variance, respectively, of the
matrix selected for BFP quantization. In the main text, we assume that the means of the matrices
participating in quantization follow a laplace distribution. The event Aei is defined as having i out
of K numbers within a block whose exponent is e, while the exponents of the remaining numbers
are all less than e.

L(x, µ, γ) =

{
0.5e

x−µ
γ , x < µ

1− 0.5e−
x−µ
γ , x ≥ µ

(10)

P (Aei) = Ci
K [L(

−2e−1 − µ

σ
)− L(

2e−1 − µ

σ
)]K−i

× [L(
2e−1 − µ

σ
)− L(

2e − µ

σ
) + L(

−2e − µ

σ
)− L(

−2e−1 − µ

σ
)]i

(11)

E[exp] =
+∞∑

e=−∞
[2e

K∑
i=1

P (Aei)] (12)

From Equation 12, E[exp] can be calculated. Our experiments have shown that when e ∈
(−∞,−50)

⋃
(50,+∞), P (Aei) → 0. Therefore, Equation (9) can be simplified to

E[exp] =
50∑

e=−50

[2e−bit+1
K∑
i=1

P (Aei)] (13)

B PROOF OF THEOREM 1

First, we present the assumptions that will be utilized in the subsequent derivations.

Assumption 1: BFP quantization does not alter the mean and variance of the matrix and the inner
product terms obtained within the block are assumed to be independently and identically distributed.

This assumption is made for the convenience of determining the variance and mean of the floating-
point numbers involved in the inter-block accumulation.

Assumption 2: We assume that the accumulation process stops when the first full swamping event
occurs.

When full swamping occurs, the partial sum becomes sufficiently large relative to the accumulation
terms. Although it is possible to recover from the full swamping event, the impact on the result is
negligible.

Assumption 3: We consider that each bit of the mantissa of pi and si is equally likely to be either 0
or 1.

This assumption is made for the convenience of determining the impact of discarding partial man-
tissa precision on Frobenius norm.

In order to calculate FnRR, we first need to compute the Frobenius norm when swamping oc-
curs.To discuss the impact of swamping events on the Frobenius norm, we define the event Ai as
the first occurrence of full swamping during the accumulation process at the i-th accumulation. This
definition also implies that full swamping do not happen in the accumulations for i = 1, 2, . . . , i−1.
The event Ai happens if

|Si| > 2macc |pi+1| & |Si′ | ≤ 2macc |pi′+1|, i′ = 1, 2, . . . , i− 1 (14)

To calculate the probability of event Ai occurring, we first need to determine the distribution of Si

and pi. pi represents the i-th term in inter-block accumulation, which is essentially the result of a
single block-wise multiplication and accumulation. According to Assumption 1, we calculate that
pi ∼ N (0,KVar[I · W]) based on the central limit theorem. Similarly, si is the sum of pi, thus
si ∼ N (0, iKVar[I ·W]. In the subsequent proof, we denote KVar[I ·W] as σ2.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Next, we aim to calculate the mean of |pi| to facilitate the computation of the probability of event
Ai occurring.

E[|pi|] =
∫ +∞

−∞
|x| 1√

2πσ
e−

x2

2σ2 dx (15)

From Equation 15, we can compute that E[|pi|] = 2σ√
2π

. Therefore, we can derive the formula for
calculating the probability of event Ai occurring.

P (Ai) = P (|Si| > 2maccE[|pi|]) ·
i−1∏
j=1

P (|Sj | ≤ 2maccE[|pj |]) (16)

P (Ai) =


2Q(

2macc+1

√
2π

), i = 1

2Q(
2macc+1

√
2iπ

)

i−1∏
j=1

(1− 2Q(
2macc+1

√
2jπ

)), i = 2, 3, . . . , n− 1

(17)

Next, we calculate E[S2
nswamping]. First, we observe that partial swamping is possible in every

accumulation, and we define the event Cij as the occurrence of stage j partial swamping during the
i-th accumulation. Thus, event Cij happens if

2macc−j+mp |pi+1| < |Si| ≤ 2macc−j+mp+1 |pi+1| (18)
Similar to the method for calculating the probability of event Ai occurring, we derive the formula
for calculating P (Cij) as follows:

P (Cij) = 2(Q(
2macc−j+mp+1

√
2iπ

)−Q(
2macc−j+mp+2

√
2iπ

)) (19)

Subsequently, we discuss the loss in Frobenius norm caused by stage j partial swamping. According
to Assumption 3, the probability of a truncated bit being either 0 or 1 is equal. Consequently, we
can calculate the truncation loss E[f2

ij] occurring at the i-th accumulation.

E[f2
ij] = 2−2mp+2E[exp′]

2j−1∑
r=1

r2

2j
(20)

Here, E[exp′] represents the mean of the exponent of pi, and its calculation method is similar to that
of E[exp′] and will not be elaborated further. Equation 20 can be simplified to:

E[f2
ij] = 2−2mp+2E[exp′]−1 (2

j − 1)(2j+1 − 1)

3
(21)

After the aforementioned analysis, we can compute the loss E[f2
i] in the Frobenius norm caused by

partial swamping at the i-th iteration and E[S2
i swamping].

E[f2
i] =

mp∑
j=1

P (Cij)E[f2
ij] (22)

E[S2
i swamping] = iσ2 −

i∑
l=1

E[f2
l] (23)

We proceed to discuss the impact of full swamping on the Frobenius norm. As per Assumption 2,
when full swamping occurs, the accumulation process is halted. This implies that if full swamping
occurs during the i-th accumulation, then E[S2

nswamping|Ai] = E[S2
i swamping]. Furthermore, we

must also consider the scenario where full swamping does not occur throughout the entire accumu-
lation process. The event B is defined as the absence of full swamping in n accumulations. Event B
happens if

|Si| ≤ 2macc |pi+1|, i = 1, 2, . . . , n (24)

P (B) =

n∏
i=1

(1− 2Q(
2macc+1

√
2iπ

)) (25)

In summary,

E[S2
nswamping] =

n∑
i=1

P (Ai)E[S2
i swamping] + P (B)E[S2

nswamping] (26)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

C THE CALCULATION OF THE UPPER BOUND OF E[f 2
i]

As indicated by Equation 22,E[f2
i] =

∑mp

j=1 P (Cij)E[f2
ij]. Firstly, we analyze E[f2

ij], where we
observe that 2E[exp

′] and σ2 are approximately equal, thus leading to the conclusion that E[f2
ij] will

reach its maximum value 1−2−mp−1−2−mp+2−2mp−1

3 σ2 at j = mp. Therefore, we can infer that
E[f2

i] <
σ2

3

∑mp

j=1 P (Cij). Furthermore, from Equation 19, we can deduce that
∑mp

j=1 P (Cij) =

Q(2
macc+1
√
2iπ

)−Q(2
macc++mp+1

√
2iπ

). Due to 2macc+1
√
2iπ

> 0, then Q(2
macc+1
√
2iπ

) < 1
2 .Therefore,

E[f2
i] <

σ2

3

mp∑
j=1

P (Cij) <
σ2

6
(27)

D PROOF OF THEOREM 2

As readily apparent from Appendix B, the Frobenius norm for an accumulation segment of length
n1 is E[S2

n1swamping
]. Let the variance of the data for an accumulation of length n1 be denoted

as σn1
. Then, the variance σn2

of the data participating in the accumulation of length n2 is
n1σ

2
n1
[FnRR(n1,mp,macc, σn1

)]2. Furthermore, since E[S2
n2swamping

] can be approximated as
f(n2,mp,macc)σ

2
n2

.

Therefore, when employing segmented processing, the calculated result FnRR is:

FnRRsegment =

√
E[S2

n2swamping
]

n1n2σ2
n1

=

√
f(n2,mp,macc)n1σ2

n1
[FnRR(n1,mp,macc, σn1

)]2

n1n2σ2
n1

= FnRR(n1,mp,macc, σn1)× FnRR(n2,macc,macc, σn2)

(28)

E APPLYING THEOREM TO TRAINING TASKS

We endeavor to apply our theoretical framework to training tasks. As illustrated in the Figure 6,
we trained ResNet-18 on the CIFAR-10 image classification task with a block size of 128 under
BFP8 quantization configuration for 90 epochs with a learning rate of 0.1. Given that the maxi-
mum accumulation lengths for ResNet-18 in forward, backward, and gradient computation matrix
multiplications are 4608, 4608, and 131072, respectively, our theoretical analysis (Theorem 1) de-
duces that the corresponding floating-point accumulation mantissa widths for these three types of
matrix multiplications are 4, 4, and 8 bits. We used the training results with FP32 accumulation as a
baseline and conducted ablation studies on the forward floating-point accumulation mantissa width,
backward floating-point accumulation mantissa width, and gradient computation floating-point ac-
cumulation precision mantissa width by controlling variables. The experimental results are depicted
in the figure. Based on these results, we observed that reducing accumulation precision within an
appropriate range does not affect the convergence of model training. Specifically, the accumulation
precision for backward and gradient computation has a minimal impact on model convergence, while
the forward accumulation precision has a relatively greater influence. The forward results serve as
the foundation for gradient computation and backward propagation, demanding higher precision.
Therefore, when intolerable loss occurs due to an overly small accumulation bit width, the model
struggles to converge to a satisfactory local optimum. In summary, our experiment reveals that the
data precision requirement for the forward process is higher than that for backward and gradient
computation, thus validating the applicability of our theory in selecting accumulation precision for
training tasks.

F THE EXPERIMENTAL RESULTS USING STOCHASTIC ROUNDING

In the image classification task on CIFAR-10, ResNet-18 exhibits an identical maximum accumu-
lation length to that of ResNet-50. Consequently, the bit-width of the accumulation tail number for

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

0 20 40 60 80
epoch

10

20

30

40

50

60

70

te
st

 e
rr

or

baseline
f4b4g8
f3b4g8
f2b4g8
f1b4g8

(a) The impact of forward bit width

0 20 40 60 80
epoch

10

20

30

40

50

60

te
st

 e
rr

or

baseline
f4b4g8
f4b3g8
f4b2g8
f4b1g8

(b) The impact of backward bit width

0 20 40 60 80
epoch

10

20

30

40

50

60

te
st

 e
rr

or

baseline
f4b4g8
f4b4g7
f4b4g6
f4b4g5
f4b4g4

(c) The impact of gradient bit width

Figure 6: In the legend, fXbYgZ denotes the forward accumulation bit-width as X, backward as Y,
and gradient as Z. For an instance, ’f4b4g8’ signifies the training result curve obtained with a 4-
bit forward accumulation bit-width, a 4-bit backward accumulation bit-width, and an 8-bit gradient
computation accumulation bit-width.

ResNet-50, as presented in the Table 3, can be employed to deduce the corresponding accumulation
precision for ResNet-18. The experimental outcomes are depicted in the Figure 7a, revealing a con-
sistent trend between the quantization experiments utilizing stochastic rounding and those employ-
ing nearest rounding. Namely, as the accumulation precision diminishes, the model performance
experiences a pronounced decline at a critical threshold.

2 3 4 5 6 7
bit width

0.80

0.85

0.90

ac
cu

ra
cy

BFP8

K128Top1acc

K64Top1acc

2 3 4 5 6 7
bit width

0.4

0.5

0.6

0.7

0.8

BFP4

K32Top1acc

K16Top1acc

(a) No Segmented Accumulation results for ResNet-18 Using Stochastic Rounding

Figure 7: The horizontal axis represents the inter-block accumulation precision, while the verti-
cal axis indicates the score for the corresponding task. The dashed lines in the graphs denote the
Baseline performance under the respective quantization configurations

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

G DISTRIBUTION OF WEIGHTS AND INPUTS ENGAGED IN MATRIX
MULTIPLICATION

(a) ResNet-
50.layer1.1.conv2.weight

(b) ResNet-
50.layer2.0.conv1.weight

(c) ResNet-
50.layer2.2.conv3.weight

(d) ResNet-50.layer1.0.conv3.input (e) ResNet-50.layer3.0.conv1.input (f) ResNet-50.layer4.1.conv2.input

(g)
Bert.0.intermediate.dense.weight

(h) Bert.13.attention.value.weight (i) Bert.18.attention.query.weight

(j) Bert.0.attention.value.weight (k) Bert.10.intermediate.dense.input (l) Bert.13.attention.key.input

Figure 8: Each subplot visually represents the distribution of inputs and weights involved in matrix
multiplication, randomly sampled from BERT-Large and ResNet-50, respectively.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

H EXPERIMENTAL DATA DETAILS

The following section provides detailed experimental results for the Llama2-7B model and the
BERT-Large model.

Table 5: Experimental results of BERT-Large

Accumulation Type Quantization Precision Block size MACC EM F1

Segmented

Int8

128

1 26.7833491 38.87238547
2 82.59224219 89.83467333
3 83.0179754 90.17436216
4 82.99905393 90.0823776
5 83.02743614 90.15831688

baseline 83.07473983 90.24806709

64

2 81.1731315 88.76644966
3 83.31125828 90.47422802
4 83.11258278 90.26468859
5 83.12204352 90.17531153

baseline 83.00851466 90.14101486

32

2 80.08514664 87.85991477
3 83.00851466 90.17600147
4 82.98959319 90.17578653
5 83.07473983 90.21952718

baseline 82.9422895 90.13687096

Int4

64

2 75.97918638 84.91149044
3 79.65941343 87.93871597
4 79.98107852 87.91951769
5 80.01892148 88.02584002

baseline 80.21759697 88.04287399

32

2 77.5307474 86.00685635
3 81.05014191 88.76773415
4 81.04068117 88.85515301
5 81.18259224 88.74837737

baseline 80.76631977 88.3953108

16

3 81.38126774 89.07330911
4 81.89214759 89.31319864
5 82.09082308 89.35924713
6 81.78807947 89.33690702

baseline 81.9205298 89.24148335

No Segmented
Int8

128

2 80.66225166 88.54197033
3 82.96121097 90.13992802
4 82.85714286 90.10981381
5 83.19772942 90.27249646
6 83.07473983 90.16693299

baseline 83.07473983 90.24806709

64

2 68.17407758 78.34952856
3 83.20719016 90.2162814
4 83.13150426 90.22209627
5 83.03689688 90.18009902
6 83.05581835 90.15458593

baseline 83.00851466 90.14101486
3 81.40964995 89.00883392

32

4 83.18826868 90.22166107
5 83.23557237 90.30179041
6 83.0179754 90.15239831
7 82.95175024 90.10275076

baseline 82.9422895 90.13687096

Int4 32 3 79.89593188 87.91187527
4 81.13528855 88.73624887

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 5: Experimental results of BERT-Large

Accumulation Type Quantization Precision Block size MACC EM F1

No Segmented Int4

32

5 81.39072848 89.14670902
6 81.22989593 88.91816976
7 81.25827815 88.8771247

baseline 80.76631977 88.3953108

16

3 76.06433302 84.96533694
4 81.60832545 89.20004361
5 81.49479659 89.06459835
6 81.8448439 89.37870505
7 82.03405866 89.51293669

baseline 81.9205298 89.24148335

8

6 81.63670766 89.23406472
7 82.33680227 89.75195921
8 82.28949858 89.70555447
9 82.28949858 89.70555447

baseline 82.17596973 89.56697393

Table 6: Experimental results of Llama2-7B

Accumulation Type Quantization Precision Block size MACC MMLU MMLU-weighted

Segmented

Int8

128

2 29.64 29.45
3 34.31 33.77
4 35.11 34.52
5 35.29 34.82

baseline 35.25 34.89

64

3 33.21 32.87
4 34.39 33.93
5 35.01 34.49
6 35.24 34.95

baseline 35.46 35.07

32

3 33.04 32.38
4 34.94 34.72
5 34.76 34.38
6 35.27 34.8

baseline 35.53 35.1

Int4

64

3 28.31 28.2
4 29.49 29.31
5 30.28 30.07
6 29.54 29.04

baseline 29.4 28.99

32

3 28.31 27.92
4 30.34 29.9
5 29.71 29.96
6 31.5 30.76

baseline 31.13 30.95

16

4 30.75 30.39
5 31.85 31.63
6 32.16 31.63
7 32.11 31.51

baseline 31.96 31.7

No Segmented Int8 128

4 33.6 33.31
5 35.34 34.89
6 34.92 34.49
7 35.04 34.72

baseline 35.25 34.89
64 5 34.59 34.11

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 6: Experimental results of Llama2-7B

Accumulation Type Quantization Precision Block size MACC MMLU MMLU-weighted

No Segmented

Int8

64

6 35.48 35.21
7 35.38 35.02
8 35.37 35.02

baseline 35.46 35.07
6 35.08 34.57

32

7 35.39 34.93
8 35.52 35.02
9 35.51 35.01

baseline 35.53 35.1

Int4

64

5 28.21 28.01
6 28.7 28.34
7 29.44 29.55
8 29.63 29.8

baseline 29.4 28.99

32

6 28.29 28.3
7 30.25 30.02
8 30.72 29.92
9 30.72 29.92

baseline 31.13 30.95

16

6 26.04 25.79
7 29.31 29.3
8 31.23 30.52
9 31.3 30.57

baseline 31.96 31.7

Table 7: Experimental results of ResNet-50

Accumulation Type Quantization Precision Block size MACC Top1 ACC

Segmented

Int8

128

1 0.138
2 0.8905
3 0.912
4 0.9135

baseline 0.9132

64

2 0.8324
3 0.9127
4 0.9126
5 0.9141

baseline 0.9135

32

2 0.6762
3 0.9104
4 0.9141
5 0.9145

baseline 0.9142

Int4

64

2 0.8039
3 0.8722
4 0.8693
5 0.8705

baseline 0.875

32

2 0.6407
3 0.8847
4 0.8832
5 0.8837

baseline 0.8868

16 2 0.2078
3 0.8823

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 7: Experimental results of ResNet-50

Accumulation Type Quantization Precision Block size MACC Top1 ACC

Segmented Int4 16
4 0.8898
5 0.8891

baseline 0.8841

No Segmented

Int8

128

2 0.6714
3 0.9062
4 0.9135
5 0.9135

baseline 0.9132

64

3 0.869
4 0.9122
5 0.9142
6 0.9134

baseline 0.9135

32

3 0.6962
4 0.9041
5 0.9127
6 0.9139
7 0.9143

baseline 0.9142

Int4

64

2 0.1694
3 0.8465
4 0.8736
5 0.8738
6 0.8748

baseline 0.875

32

3 0.6905
4 0.8813
5 0.8845
6 0.885
7 0.8878

baseline 0.8868

16

3 0.2776
4 0.8604
5 0.8851
6 0.8868
7 0.8887

baseline 0.8841

21

	Introduction
	Related Work and Background
	Related Work
	BFP Format, BFP Quantization and BFP MAC

	Motivation
	Hardware Bottleneck Analysis
	Mean, variance and the Frobenius norm

	Accumulation Precision Analysis
	Intra-Block Partial Sum Mean and Variance Analysis
	Inter-Block Accumulation Mantissa Precision Analysis
	Parameter Significance Analysis
	Mantissa Precision Analysis in Segmented Inter-Block Accumulation
	Usage of Theorem

	Experiments
	Experiment Setup
	Overflow rate in intra-block operations
	Model Performance Under Reduced Inter-block Accumulation Precision
	Model Performance Under Reduced Inter-Block Segmented Accumulation Precision
	Hardware Implementation

	Conclusion
	The calculation method for E[exp]
	Proof of Theorem 1
	The Calculation of the Upper Bound of E[fi2]
	Proof of Theorem 2
	Applying Theorem to Training Tasks
	The Experimental Results Using Stochastic Rounding
	Distribution of Weights and Inputs Engaged in Matrix Multiplication
	Experimental Data Details

