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ABSTRACT

Block Floating Point (BFP) quantization offers a hardware-efficient numerical
range trade-off. Previous studies have quantized weights and activations to an
extremely low precision using the BFP arithmetic. However, as the precision
of weights and activations diminishes, we identify that accumulation becomes
a hardware bottleneck in the BFP MAC. Nevertheless, existing attempts to de-
crease the precision of accumulation in matrix multiplication generally preserve
model performance through training with a pre-selected, fixed accumulation pre-
cision. Nonetheless, selecting an unduly low precision leads to notable perfor-
mance degradation, and these studies lack an effective approach to establish the
lower precision limit, potentially incurring considerable training costs. Hence,
we propose a statistical method to analyze the impact of reduced accumulation
precision on the inference of deep learning applications. Due to the presence of
fixed-point accumulation and floating-point accumulation in BFP matrix multi-
plication, we formulate a set of equations to relate the data range of fixed-point
multiply-accumulate operations and the effects of floating-point swamping to the
parameters of BFP quantization, the length of accumulation, model weights, and
the minimum number of bits required for accumulation, thereby determining the
appropriate accumulation precision. Applied to MMLU Llama2-7B, SQuAD-v1.1
BERT-Large and BERT-Base and CIFAR-10 ResNet-50, our precision settings
yield performance close to the FP32 baseline. Meanwhile, further precision re-
duction degrades performance, indicating our approach’s proximity to precision
limits. Guided by our equations, the hardware exhibits a 13.7%-28.7% enhance-
ment in area and power efficiency over high-precision accumulation under identi-
cal quantization configuration, and it demonstrated a 10.3× area reduction and an
11.0× power reduction compared to traditional BFP implementations.

1 INTRODUCTION

Deep learning technology has achieved significant success in a wide range of applications through
the training of large-scale deep models with extensive datasets. Concurrently, this approach has im-
posed substantial storage and computational burdens. Quantization emerges as a promising method
to reduce the cost of deep learning by diminishing the bit-width of data flow within models, thereby
reducing storage and computational overhead (Deng et al., 2020). As an effective numerical sys-
tem for deep learning, Block Floating Point (BFP) strikes a favorable balance between dynamic
range and hardware cost (Drumond et al., 2018). Specifically, previous studies have demonstrated
that low-precision BFP formats can achieve accuracy comparable to FP32 under various deep learn-
ing workloads (Darvish Rouhani et al., 2020; Drumond et al., 2018; Soloveychik et al., 2022; Köster
et al., 2017; Zhang et al., 2022). However, it is observed that as the quantization precision decreases,
accumulation becomes a hardware bottleneck in BFP MAC. As illustrated in Figure 1(b), the area
occupied by the accumulation component accounts for 17.8%, 33.7%, and 64.4% for BFP16, BFP8,
and BFP4, respectively. Therefore, reducing accumulation precision can further enhance hardware
efficiency on top of lowering quantization precision.

In BFP MAC, both fixed-point and floating-point accumulations are present. For fixed-point accu-
mulation, a decrease in precision is accompanied by an increased likelihood of overflow. Previous
works have focused on avoiding overflow occurrences or mitigating their impact (Colbert et al.,
2023; Ni et al., 2020; Xie et al., 2020; Li et al., 2022). Nevertheless, methods to mitigate the impact
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of overflow are not guaranteed to maintain accuracy when overflows occur frequently. Hence, we
employ the 3σ principle to predict data ranges and select accumulation precision to prevent over-
flow permanently. For floating-point accumulation, the phenomenon of swamping (Higham, 1993)
becomes more pronounced as precision decreases. Previous work has attempted to correlate the nu-
merical precision loss and model performance degradation due to swamping through variance (Wang
et al., 2018; Sakr et al., 2019). Alternatively, our research centers on the inference phase, where we
leverage the Frobenius norm(Suh et al., 2022; Yuan et al., 2020) to gauge matrix similarity before
and after precision reduction in accumulation. Grounded in the Frobenius norm, we propose the
metric Frobenius norm retention rate (FnRR) to quantify the degree of swamping resulting from
reduced floating-point mantissa precision. Furthermore, we derive a formula f(n) from FnRR to
assess the impact of data precision loss on model performance, establishing a connection between
floating-point accumulation accuracy and model performance.

Utilizing the derived formula for FnRR, our analysis identifies accumulation length as the pivotal
factor influencing floating-point accumulation precision. Leveraging this insight, we introduce a
segmented accumulation approach to mitigate precision loss. Experimental validation affirms the
method’s efficacy across diverse model and quantization paradigms. Furthermore, integrating the
theoretically deduced precision into hardware yields a 13.7–28.7% reduction in area and power
relative to high-precision accumulation under identical quantization conditions, and nearly a 10×
enhancement in area and power efficiency compared to FP32 accumulation in BF16 MAC opera-
tions.

Our research contributes both theoretical and practical insights. Firstly, we present a theoretical
framework for determining the minimum fixed-point accumulation bit-width, emphasizing overflow
avoidance based on variance and mean. Secondly, we introduce the FnRR and f(n) metrics to link
floating-point accumulation precision with model performance. Our analysis shows that accumu-
lation length is a key determinant in precision selection. To further reduce precision, we employ a
segmented accumulation technique. We then validate the accumulation precision boundary through
experiments. Finally, we design BFP multiply-accumulators within the established boundaries and
assess the improvements in area and power efficiency.
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Figure 1: (a)A schematic diagram of the BFP MAC unit, (b)Area Analysis of Baseline BFP-MAC.
(c)The distinctions among three swamping phenomena When macc = 5 and mp = 4. (d) illustrates
a simple demonstration of the data flow in BFP matrix multiplication with a block size of 2.

2 RELATED WORK AND BACKGROUND

2.1 RELATED WORK

Our work endeavors to establish a theoretical framework for determining the boundary of accumu-
lator bit-width for the BFP format. Although this topic has not been previously discussed, there
has been extensive exploration of fixed-point accumulator bit-width and floating-point accumulator
bit-width.
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Fixed-point accumulator bit-width WrapNet (Ni et al., 2020) leverages the cyclic nature of in-
teger computer arithmetic by inserting a differentiable cyclic activation function, rendering neural
networks robust to integer overflow. This allows for the selection of ultra-low-precision fixed-point
accumulator bit-width. However, they also note that high overflow rates can lead to training insta-
bility. A2Q (Colbert et al., 2023) adheres to the principle of avoiding overflow and approach the
determination of fixed-point accumulator bit-width boundaries from both the data type and weight
perspectives. Xie et al. introduce a quantization range mapping factor α to maximize data repre-
sentation capabilities while avoiding overflow under a specified accumulator bit-width (Xie et al.,
2020). While their training method can ensure model accuracy at an appropriate accumulator bit-
width, they do not provide an efficient approach to determine the boundary of the accumulator
bit-width.

Floating-point accumulation bit-width Wang et al. illustrate that the phenomenon of swamping
significantly limits the potential for reducing accumulation precision (Wang et al., 2018). To address
this issue, they propose two novel techniques: chunk-based accumulation and floating-point stochas-
tic rounding. These methods allow for the training of Deep Neural Networks (DNNs) even when
the accumulation bit-width is decreased to FP16, thereby circumventing the constraints imposed by
swamping. Additionally, Sakr et al. establish a connection between the decrease in accumulation
precision and the training efficiency of DNNs by examining how the exacerbation of swamping
phenomena, due to reducing accumulation precision, affects the variance of matrix multiplication
outcomes (Sakr et al., 2019). Based on this analysis, they select an appropriate accumulation bit-
width.

2.2 BFP FORMAT, BFP QUANTIZATION AND BFP MAC

BFP format is a numerical representation method wherein a group of data shares one exponent.
Quantization methods that adhere to this data format can be classified as fixed-point uniform quan-
tization (Jacob et al., 2018). Fixed-point uniform quantization can be categorized into multiple
levels of methods based on the granularity of quantization. Quantization granularity varies, with
per-tensor being the coarsest, using a single scaling factor for the entire matrix. Finer granularity
is achieved through per-channel or per-token scaling. Block-wise quantization further refines this
by dividing channels or tokens into blocks with a step size, yielding BFP quantization as a distinct
variant with scaling factors as powers of two. Therefore, BFP quantization (Rouhani et al., 2023;
Darvish Rouhani et al., 2023) can be expressed as:

Xq = ⌈ X
2s

⌋, s = max(⌊log|X|2 ⌋)−N + 1 (1)

where ⌈·⌋ is the rounding function, X is the object to be quantized, Xq is the corresponding quantized
result, s is the scaling factor obtained through quantization, and N is the number of bits used for the
low-precision representation.

The BFP multiplier-accumulator architecture is bifurcated into two primary modules: the INT-MAC
(Integer Multiply and Accumulate) and the FP-ACC (Floating Point Accumulate). The INT-MAC
comprises a set of signed fixed-point multipliers, an addition tree, and an exponent summing adder,
corresponding to the fixed-point multiplication and accumulation within the BFP inner product. This
phase is termed intra-block computation. Conversely, the FP-ACC module includes normalization,
an exponent alignment unit, an adder, and a fixed-to-floating-point conversion block, handling the
floating-point accumulation of the BFP inner product. This stage is identified as inter-block com-
putation. In Figure 1(d), we elucidate the implications of BFP format, intra-block and inter-block
operations using a straightforward example. SE denotes the shared exponent, A and B represent
the two matrices involved in the matrix multiplication computation, respectively, C denotes the re-
sulting matrix, INT signifies the fixed-point result after intra-block fixed-point accumulation, and F
indicates the number that has been normalized and is ready for floating-point accumulation.

3 MOTIVATION

3.1 HARDWARE BOTTLENECK ANALYSIS

The BFP MAC can be broadly categorized into fixed-point multiplication, fixed-point addition, and
floating-point addition, corresponding to INT-MUL, INT-ACC, and FP-ACC as depicted in Figure

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

1(d). When weights and activations are quantized at a higher precision, INT-MUL constitutes the
predominant area due to the inclusion of K (where K represents the block size) high-precision fixed-
point multipliers. However, when weights and activations are quantized at an ultra-low precision,
INT-MUL requires only ultra-low precision fixed-point multipliers, whereas the high-precision INT-
ACC and FP-ACC become the primary area overhead. As illustrated in the Figure 1(b), in the BFP4
MAC with K=16, the area allocated to accumulation reaches 64.4%, indicating that reducing the
precision of accumulation could yield significant hardware efficiency gains in this scenario.

3.2 MEAN, VARIANCE AND THE FROBENIUS NORM

Accumulation overflow is a critical issue to be addressed in the context of fixed-point quantization,
which can have a significant impact on model performance. As shown in the Table 1, we observe
that minor overflow rates cause slight performance decline, but increased rates lead to significant
degradation in model performance. In the design of the MAC unit, it is common practice to calculate
the theoretical maximum data range that the partial sums can reach based on the input data format
to prevent overflow. Equation 2 is a formula for calculating the maximum bit width required for the
partial sums based on the input data format. Here, both A and W are signed numbers.

K(2min(Awidth−1,Wwidth−1) − 2Awidth+Wwidth−2) ≤ Partial Sum ≤ K2Awidth+Wwidth−2 (2)

In deep learning models, partial sums rarely reach the theoretical extreme values because it is nearly
impossible for all input tensors to be quantized to the extreme values. Consequently, the range
derived from Equation 2 typically exceeds the actual data distribution. By the 3σ principle, the vast
majority of data falls within (µ − 3σ, µ + 3σ). Thus, bounding the partial sums by their mean and
variance can mitigate data range wastage.

In the inference phase of deep learning models, the FP32 precision matrix multiplication is regarded
as the benchmark for state-of-the-art performance. The inference quality is inferred to be supe-
rior when the outcomes of matrix multiplications using alternative precisions are closer to the FP32
results. Consequently, the challenge of correlating data precision with model accuracy can be re-
framed as one of determining the proximity between the reduced-precision result matrix and the
FP32 precision result matrix. For this purpose, we focus on numerical approximation and employ
the Frobenius norm (Suh et al., 2022; Yuan et al., 2020) as the metric for comparison.

Table 1: Average overflow rate for BERTbase in different accumulation widths and corresponding
EM and F1-score on the SQuAD-v1.1 question-answering task

Bit(A/W) Accumulation Width Average Overflow Rate EM F1
6/6 10 6.710% 2.4976 10.939
6/6 12 0.017% 75.639 83.938
6/6 24 0 78.978 86.667
8/8 14 7.894% 2.6584 11.302
8/8 16 0.025% 78.912 86.653
8/8 24 0 78.836 86.664

4 ACCUMULATION PRECISION ANALYSIS

In BFP format inner product computations, the process is divided into intra-block and inter-block
stages. We ensure ample allocation for both the intra-block shared exponent width and the inter-
block floating-point exponent width(We chose to allocate 8 bits like Microscaling(Rouhani et al.,
2023)). Our research focuses on estimating the mean and variance of block-wise partial sums to de-
termine the bit width for fixed-point multiplication and accumulation, and on relating the Frobenius
norm to the mantissa precision of inter-block accumulations.

4.1 INTRA-BLOCK PARTIAL SUM MEAN AND VARIANCE ANALYSIS

Intra-block multiplication and accumulation refers to the process of performing multiplication and
accumulation operations on weight elements(We) and input elements(Ie) that have been quantized
using the BFP format. We note (with observations detailed in Appendix E) that the weights and
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inputs participating in matrix multiplication are approximately distributed according to a Laplace
distribution. To facilitate analysis, we hypothesize that the inputs conform to a Laplace distribution
with a location parameter of 0 and a scale parameter of 1(The W and I below represent the original
weights and inputs, respectively). Hence, we have E[I] = 0. Furthermore, since BFP quantization
is an unbiased estimator, it follows that E[Ie] = E[I] = 0. Additionally, We and Ie are independent
of each other, and thus E[Ie ·We] = E[Ie] ·E[We] = 0. Consequently, we can estimate the mean of
the partial sums within the block to be 0. The variance calculation formula for the dot product terms
within the block is as follows:

Var[Ie ·We] = E[I2e ] · E[W 2
e ]− E[Ie]2 · E[We]

2 (3)

From the aforementioned analysis, we know that E[Ie] = 0, thus we can express the variance as

Var[Ie ·We] = Var[Ie] · E[W 2
e ] (4)

According to the assumptions made in the preceding text, we can determine Var[I], E[W 2] and the
mean of the shared exponent(How to calculate E[exp] is provided in the appendix A).

Var[Ie] =
Var[I]

22(E[Iexp]−bit+1)
, E[W 2

e ] =
E[W 2]

22(E[Wexp]−bit+1)
(5)

With the mean and variance of the partial sums within the block, according to the 3σ principle,
we consider each inner product term obtained from the intra-block inner product to fall within the
range of (−3σ, 3σ). Consequently, the range of the partial sums is (−3Kσ, 3Kσ), where K is the
number of terms in the sum. At this point, we can estimate the bit width required for fixed-point
multiplication and accumulation. We have visualized the estimated bit width in the Figure 2.
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4.2 INTER-BLOCK ACCUMULATION MANTISSA PRECISION ANALYSIS

Let pi represent the i-th term for inter-block accumulation, si denote the partial sum obtained from
the i-th inter-block accumulation, mp and macc correspond to the mantissa bit widths for pi and si,
respectively, and n denotes the length of the accumulation.Our key contribution lies in the proposal
of a formula,

FnRR =

√
E[S2

nswamping]

E[S2
nideal]

(6)

which correlates mantissa precision with model performance, where FnRR is a function of n, mp,
macc, E[W ], Var[W ] and K, all precomputable parameters. In order to maintain performance
under reduced precision, we aim for FnRR → 1. As illustrated in the Figure 3, it can be observed
intuitively that once mp,E[W ],Var[W ], and K are determined, the FnRR at a fixed mantissa
precision is a waterfall-like curve with respect to the accumulation length n. The accumulation
length for FnRR is limited due to potential mantissa truncation caused by floating-point alignment
during addition. This overflow leads to loss of significant digits, necessitating the introduction of
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“swamping” to analyze its impact on FnRR performance. As illustrated in the Figure 1(c), a single
floating-point addition can be categorized into three scenarios: 1) ”no swamping”, which occurs
when |si| ≤ 2macc−mp |pi+1|. 2) “full swamping,” which occurs when |si| > 2macc |pi+1|. 3)
“partial swamping,” which occurs when 2macc−mp |pi+1| < |si| ≤ 2macc |pi+1|. Subsequently, we
will establish a connection between the Frobenius norm and the mantissa precision of inter-block
summation from the perspective of swamping.

Theorem 1. The FnRR, Using n, mp, and macc to denote the accumulation length, the mantissa
precision of accumulation terms, and the mantissa precision of the partial sum, respectively, σ =√

KVar[I ·W ] where K and Var[W ] are the block size for BFP quantization and the average
variance of the weights selected from large models participating in quantization, is given as follows:

FnRR =

√∑n
i=1 P (Ai)E[S2

i swamping] + P (B)E[S2
nswamping]

nσ2

P (Ai) =


2Q(

2macc+1

√
2π

), i = 1

2Q(
2macc+1

√
2iπ

)

i−1∏
j=1

(1− 2Q(
2macc+1

√
2jπ

)), i = 2, 3, . . . , n− 1

,

P (B) =

n∏
j=1

(1− 2Q(
2macc+1

√
2jπ

)), E[S2
nswamping] = nσ2 −

n∑
i=1

E[f2
i ],

E[f2
i ] =

mp∑
j=1

P (Cij)E[f2
ij ], P (Cij) = 2(Q(

2macc−j+mp+1

√
2iπ

)−Q(
2macc−j+mp+2

√
2iπ

)),

E[f2
ij ] =

2−2mp−1

3
(2j − 1)(2j+1 − 1)E[2exp]2.

(7)

The proof of this theorem is provided in the appendix B. Using Theorem 1, we endeavor to analyze
the relationship between the precision of accumulation and the length of the cumulative process.
When we set a very large macc, P (Ai) will be close to 0, while P (B) will be close to 1 and
E[S2

nswamping] will be close to nσ, which causes FnRR → 1 as expected when the mantissa
is maintained at high precision. When we set a very small macc, P (B) will be close to 0, and
E[S2

nswamping] will be approximately equal to the sum of P [Ai]E[S2
i swamping]. When i is large,

P [Ai] will be close to 0. Consequently, in this case, E[S2
nswamping] will be approximately equal

to the sum of the first few terms of P [Ai]E[S2
i swamping] when i is small. In other words, as n

increases, E[S2
nswamping] will remain largely unchanged after an initial increase, leading FnRR to

rapidly approach 0 as n increases. This indicates that with limited precision, there is little hope of
maintaining computational accuracy when the length of accumulation is large. Similarly, because
FnRR exhibits a clear trend from 1 to 0 as n increases at a fixed accumulation precision, FnRR
can provide a definitive decision boundary for the accuracy of accumulation.

4.3 PARAMETER SIGNIFICANCE ANALYSIS

Within Theorem 1, the computation of FnRR is influenced by four parameters: n,mp,macc, and
σ, each exerting a distinct level of influence on the resulting calculation. Firstly, analyzing the
parameter sigma reveals that E[2exp]2 is approximately equal to σ2, leading to E[S2

nswamping] =

f(n,mp,macc)σ
2. Consequently, σ has negligible impact on the computation of FnRR. Subse-

quently, we observe that the parameter mp is only employed in the calculation of E[f2
i ], and through

scaling, we find that E[f2
i ] <

σ2

6 (the proof of this conclusion is provided in the appendix C). There-
fore, the parameter mp can, at most, decrease E[S2

nswamping] to 5
6E[S

2
nideal] , which in turn reduces

FnRR to around 0.913 at its lowest. The impact of mp on the computation of FnRR is simi-
larly insignificant. In summary, given a fixed mantissa precision, macc, n is the predominant factor
influencing the calculation of FnRR.
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4.4 MANTISSA PRECISION ANALYSIS IN SEGMENTED INTER-BLOCK ACCUMULATION

As established in Section 4.3, the accumulation length n is the most critical factor affecting the preci-
sion of inter-block accumulation. To achieve a lower inter-block accumulation precision while mini-
mizing additional hardware overhead, a segmented approach to accumulation is adopted. Assuming
n = n1 × n2, the floating-point accumulation of length n is segmented into n2 accumulations of
length n1, which are then summed to yield the final computational result. Both segments of floating-
point accumulation utilize the same mantissa precision to allow for the reuse of the floating-point
addition unit. The proof of the formula is provided in the appendix D.

Theorem 2. Using a segmented accumulation method with n = n1 × n2, where n1 is the segment
length and n2 is the number of segments, the FnRR, with mp and macc as the mantissa precision
for the accumulation terms and partial sums, respectively, is provided in the subsequent sections:

FnRRsegment = FnRR(n1,mp,macc, σn1
)× FnRR(n2,macc,macc, σn2

) (8)

4.5 USAGE OF THEOREM

We can ascertain the suitability of a certain inter-block accumulation precision by calculating its
FnRR and evaluating its degree of convergence to 1, thereby predicting the most appropriate ac-
cumulation precision. The results indicate that when measured as a function of the accumulation
length n with a fixed precision, there exists a breakdown region for FnRR. This breakdown region
is clearly observable when considering the normalized exponential loss:

f(n) = en(1−FnRR) (9)
In the Figure 4, we plot the f(n) values at different inter-block accumulation precisions with ac-
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(b) Segmented Accumulation

Figure 4: (a) and (b) utilizes weight information from the Llama2-7B, with a block size of K equal
to 32. The dashed line indicates the location of the breakdown point. It is readily apparent that
below the dashed line, f(n) rapidly approaches 1, whereas above it, f(n) increases swiftly.

cumulation using segments of length 32 and no segmented accumulation. Here, we set mp to 9 (in
practical applications, we can determine the corresponding mp value using the method described
in section 4.1), and we use the weight data from Llama2-7B (Touvron et al., 2023) to calculate the
FnRR. We can observe that f(n) increases rapidly when it exceeds 1000, and it quickly approaches
1 when it is below 1000. Consequently, we select 1000 as the point of breakdown, such that accu-
mulation precisions resulting in f(n) values less than 1000 are considered suitable precisions.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Through the aforementioned analysis, we predict the intra-block multiplication and accumulation
bit widths, the inter-block accumulation mantissa bit widths, and the inter-block segmented accu-

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

mulation mantissa bit widths required for inference under different quantization configurations and
segment lengths for the models (Llama2-7B, BERT-Large-Cased, BERT-Base-Cased, ResNet-50).
We select these models due to their long accumulation lengths and because they belong to different
applications, thereby enabling them to effectively validate our work. We aim to: 1) assess overflow
occurrence in intra-block multiplication and accumulation at predicted precision, 2) evaluate and
compare model performance with inter-block accumulation at predicted precision to FP32 baseline,
and 3) evaluate and compare model performance with inter-block segmented accumulation at pre-
dicted precision to FP32 baseline. We employ MMLU (Hendrycks et al., 2020) testing to evaluate
the performance of Llama2-7B, for BERT-Large-Cased and BERT-Base-Cased (Devlin et al., 2018),
we use the SQuAD-v1.1 dataset (Rajpurkar et al., 2016) to finetuning and evaluate and for ResNet-
50 (He et al., 2016), we use the CIFAR-10 (Krizhevsky et al., 2009) dataset to train and evaluate.
Specifically, we utilize the Microsoft open-source MX Pytorch Emulation Library for quantization
and choose 8-bit as the BFP quantization and accumulation exponent bit width.

To discuss the overflow situation of block-wise multiplication and accumulation and to implement
the rounding of the partial sum during the inter-block accumulation process, we implement the BFP-
format GEMM using PyTorch and CUDA, and we have inserted a rounding function at the location
of partial sum accumulation to simulate the reduction in bit width.

5.2 OVERFLOW RATE IN INTRA-BLOCK OPERATIONS

We utilize the SQuAD-v1.1 to assess the model performance of BERT-Large and BERT-Base and
the CIFAR-10 to assess the model performance of ResNet-50 following precision reduction. During
inference, the matrix multiplication operations are then processed in BFP format, and the frequency
of overflow events during computation is recorded to calculate the overflow rate. The results are
presented in Table 2. BERT-Large and BERT-Base are evaluated using SQuAD-v1.1 across 48
topics, and the overflow rate is 0 in all cases. ResNet-50 is evaluated using CIFAR-10 and the
overflow rate is also 0 in all cases. The experimental results confirm that no overflow occurs at the
predicted fixed-point accumulation precision.

Table 2: The OR in this table represents the overflow rate. The data in the tuple is the result of
BERT-Large and BERT-Base in SQuAD-v1.1 and ResNet-50 in CIFAR-10, respectively

Precision Block Size Baseline Bit Width Prediction Bit Width Average OR

BFP8
128 23 20 (0,0,0)
64 22 20 (0,0,0)
32 21 19 (0,0,0)

BFP4
64 14 12 (0,0,0)
32 13 11 (0,0,0)
16 12 11 (0,0,0)

5.3 MODEL PERFORMANCE UNDER REDUCED INTER-BLOCK ACCUMULATION PRECISION

Table 3: The predicted inter-block accumulation bit width for our considered networks. Each table
entry is an ordered tuple representing the bit widths for Llama2-7B, BERT-Large and ResNet-50,
respectively. ’-’ signifies that we do not conduct tests on this quantitative configuration.

Block Size 8 16 32 64 128
BFP4 (-,7,-) (7,6,6) (7,5,6) (6,5,5) (-,-,-)
BFP4(Seg) (-,4,-) (5,4,4) (4,3,3) (4,3,3) (-,-,-)
BFP8 (-,-,-) (-,-,-) (7,5,6) (6,5,5) (5,4,4)
BFP8(Seg) (-,-,-) (-,-,-) (4,3,3) (4,3,3) (3,2,2)

The predicted bit width for each network and quantization precision are listed in Table 3 for the case
of BFP and BFP segmented accumulation with the segment length calculated by

√
n. To elucidate

that the inter-block accumulation precision identified by our method is precisely at the critical point,
or as close as possible to the critical point while ensuring model performance (the critical point refers
to the threshold at which a significant degradation in model performance is imminent), we evaluate
the model performance under multiple sets of different accumulation precisions for each selected

8
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model under various quantization configurations. Figure 7 reveals that as the accumulation precision
decreases, there is a pronounced decline in model performance at the critical point. However, it
is worth noting that when the accumulation precision is higher than the precision at the critical
point, the change in model performance is not monotonic; it oscillates within a narrow range. This
implies that there is no linear correlation between model performance and accumulation precision,
as performance fluctuates around a certain level within a specific range of accumulation precision.
When the accumulation precision is reduced below the critical point, there is a marked deterioration
in model performance, which is consistent with the properties of FnRR.
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Figure 5: The horizontal axis represents the inter-block accumulation precision, while the verti-
cal axis indicates the score for the corresponding task. The dashed lines in the graphs denote the
Baseline performance under the respective quantization configurations

5.4 MODEL PERFORMANCE UNDER REDUCED INTER-BLOCK SEGMENTED ACCUMULATION
PRECISION

We select ⌊
√
n⌋ as the segment length and evaluated the model performance under multiple sets

of different accumulation precisions for each chosen model under every quantization configuration.
Figure 7 demonstrates that as the accumulation precision decreases, there is a marked decline in
model performance at the critical point. Furthermore, we can also find that employing segmented
accumulation allows for at least a 1-bit reduction in precision while maintaining equivalent model
performance compared to the no segmented accumulation method. In particular, the segmented
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accumulation precision of 5 bits for BFP4 quantization of Llama2-7B with a block size of 16 out-
performs the non-segmented method with a precision of 9 bits, achieving at least a 4-bit reduction.
Both segmented and non-segmented methods at the predicted precision maintain performance close
to the baseline, demonstrating the efficacy of our method in identifying minimal accumulation pre-
cision without substantial performance degradation.

5.5 HARDWARE IMPLEMENTATION

We utilize the formula derived in the preceding section to predict the accumulation precision for the
Llama2-7B model with a block size of 16, for both BFP4 and BFP8 quantization precisions. The
hardware design is completed based on the obtained accumulation precision, and we evaluate the
area and power consumption using synthesis tools. As indicated in the evaluation, in terms of area,
the BFP4 and BFP8 quantization precisions result in reductions of 28.7% and 13.8%, respectively.
Notably, the reduction in area for the FP-ACC and Other components is significant. However, the
area optimization for the INT-MAC is not pronounced due to the multitude of multiplier units, which
do not decrease in area with the reduction in accumulation precision. Regarding power consumption,
the BFP4 and BFP8 quantization precisions lead to decreases of 25.2% and 13.7%, respectively.
Additionally, compared to the BFP16 Baseline, our optimized implementation of the BFP MAC at
lower precision achieves significant improvements in area and power consumption, reaching up to
10.3× and 11.0× respectively.

Table 4: Analysis of area and power with varying quantization precisions, with the bolded segment
reflecting area and power data derived from hardware design utilizing formula-predicted accumula-
tion precision, contrasted with the non-bolded segment which is based on conventional accumulation
precision for hardware design.

(a) Area Analysis

Quantization Type INT-MAC (µm2) FP-ACC (µm2) Other (µm2) Total (µm2)

BFP4 142.54 133.34 38.90 314.78
126.20 (↓11.5 %) 74.80 (↓44.0%) 23.56 (↓39.4%) 224.56 (↓28.7%)

BFP8 619.07 147.84 49.09 816.00
584.47 (↓11.4%) 90.11 (↓39.0%) 28.93 (↓41.1%) 703.51 (↓13.8%)

(b) Power Analysis

Quantization Type Power (mW)

BFP4 0.2208
0.1652 (↓25.2%)

BFP8 0.5933
0.5122 (↓13.7%)

(c) Comparison with the BFP16 baseline

Quantization Type Area (µm2) Power (mW)
BFP4 224.56 0.1652
BFP16 2311.6 (10.3×) 1.8204 (11.0×)
BFP8 703.51 0.5122
BFP16 2311.6 (3.29×) 1.8204 (3.55×)

6 CONCLUSION

We present an analytical approach to predict the optimal accumulation precision for BFP GEMM
operations in deep learning inference, balancing performance with precision. Our experiments con-
firm that this precision is near the limit while maintaining comparable performance to the base-
line. Additionally, we demonstrate the effectiveness of segmented accumulation in further reducing
floating-point precision. An interesting phenomenon is observed, where the decline in model per-
formance with decreasing accumulation precision varies under different quantization configurations.
Notably, highly quantized models exhibit a lower robustness and are more susceptible to reaching
the precision boundary. Therefore, incorporating the impact of quantization on model robustness
into our theoretical analysis could further improve our theoretical framework. We believe that our
work provides theoretical support for the design of MAC units in deep learning inference.
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A THE CALCULATION METHOD FOR E[exp]

Let K,µ, σ denote the block size, quantization precision, mean, and variance, respectively, of the
matrix selected for BFP quantization. In the main text, we assume that the means of the matrices
participating in quantization follow a laplace distribution. The event Aei is defined as having i out
of K numbers within a block whose exponent is e, while the exponents of the remaining numbers
are all less than e.

L(x, µ, γ) =

{
0.5e

x−µ
γ , x < µ

1− 0.5e−
x−µ
γ , x ≥ µ

(10)

P (Aei) = Ci
K [L(

−2e−1 − µ

σ
)− L(

2e−1 − µ

σ
)]K−i

× [L(
2e−1 − µ

σ
)− L(

2e − µ

σ
) + L(

−2e − µ

σ
)− L(

−2e−1 − µ

σ
)]i

(11)

E[exp] =
+∞∑

e=−∞
[2e

K∑
i=1

P (Aei)] (12)

From Equation 12, E[exp] can be calculated. Our experiments have shown that when e ∈
(−∞,−50)

⋃
(50,+∞), P (Aei) → 0. Therefore, Equation (9) can be simplified to

E[exp] =
50∑

e=−50

[2e−bit+1
K∑
i=1

P (Aei)] (13)

B PROOF OF THEOREM 1

First, we present the assumptions that will be utilized in the subsequent derivations.

Assumption 1: BFP quantization does not alter the mean and variance of the matrix and the inner
product terms obtained within the block are assumed to be independently and identically distributed.

This assumption is made for the convenience of determining the variance and mean of the floating-
point numbers involved in the inter-block accumulation.

Assumption 2: We assume that the accumulation process stops when the first full swamping event
occurs.

When full swamping occurs, the partial sum becomes sufficiently large relative to the accumulation
terms. Although it is possible to recover from the full swamping event, the impact on the result is
negligible.

Assumption 3: We consider that each bit of the mantissa of pi and si is equally likely to be either 0
or 1.

This assumption is made for the convenience of determining the impact of discarding partial man-
tissa precision on Frobenius norm.

In order to calculate FnRR, we first need to compute the Frobenius norm when swamping oc-
curs.To discuss the impact of swamping events on the Frobenius norm, we define the event Ai as
the first occurrence of full swamping during the accumulation process at the i-th accumulation. This
definition also implies that full swamping do not happen in the accumulations for i = 1, 2, . . . , i−1.
The event Ai happens if

|Si| > 2macc |pi+1| & |Si′ | ≤ 2macc |pi′+1|, i′ = 1, 2, . . . , i− 1 (14)

To calculate the probability of event Ai occurring, we first need to determine the distribution of Si

and pi. pi represents the i-th term in inter-block accumulation, which is essentially the result of a
single block-wise multiplication and accumulation. According to Assumption 1, we calculate that
pi ∼ N (0,KVar[I · W ]) based on the central limit theorem. Similarly, si is the sum of pi, thus
si ∼ N (0, iKVar[I ·W ]. In the subsequent proof, we denote KVar[I ·W ] as σ2.

13
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Next, we aim to calculate the mean of |pi| to facilitate the computation of the probability of event
Ai occurring.

E[|pi|] =
∫ +∞

−∞
|x| 1√

2πσ
e−

x2

2σ2 dx (15)

From Equation 15, we can compute that E[|pi|] = 2σ√
2π

. Therefore, we can derive the formula for
calculating the probability of event Ai occurring.

P (Ai) = P (|Si| > 2maccE[|pi|]) ·
i−1∏
j=1

P (|Sj | ≤ 2maccE[|pj |]) (16)

P (Ai) =


2Q(

2macc+1

√
2π

), i = 1

2Q(
2macc+1

√
2iπ

)

i−1∏
j=1

(1− 2Q(
2macc+1

√
2jπ

)), i = 2, 3, . . . , n− 1

(17)

Next, we calculate E[S2
nswamping]. First, we observe that partial swamping is possible in every

accumulation, and we define the event Cij as the occurrence of stage j partial swamping during the
i-th accumulation. Thus, event Cij happens if

2macc−j+mp |pi+1| < |Si| ≤ 2macc−j+mp+1 |pi+1| (18)
Similar to the method for calculating the probability of event Ai occurring, we derive the formula
for calculating P (Cij) as follows:

P (Cij) = 2(Q(
2macc−j+mp+1

√
2iπ

)−Q(
2macc−j+mp+2

√
2iπ

)) (19)

Subsequently, we discuss the loss in Frobenius norm caused by stage j partial swamping. According
to Assumption 3, the probability of a truncated bit being either 0 or 1 is equal. Consequently, we
can calculate the truncation loss E[f2

ij ] occurring at the i-th accumulation.

E[f2
ij ] = 2−2mp+2E[exp′]

2j−1∑
r=1

r2

2j
(20)

Here, E[exp′] represents the mean of the exponent of pi, and its calculation method is similar to that
of E[exp′] and will not be elaborated further. Equation 20 can be simplified to:

E[f2
ij ] = 2−2mp+2E[exp′]−1 (2

j − 1)(2j+1 − 1)

3
(21)

After the aforementioned analysis, we can compute the loss E[f2
i ] in the Frobenius norm caused by

partial swamping at the i-th iteration and E[S2
i swamping].

E[f2
i ] =

mp∑
j=1

P (Cij)E[f2
ij ] (22)

E[S2
i swamping] = iσ2 −

i∑
l=1

E[f2
l ] (23)

We proceed to discuss the impact of full swamping on the Frobenius norm. As per Assumption 2,
when full swamping occurs, the accumulation process is halted. This implies that if full swamping
occurs during the i-th accumulation, then E[S2

nswamping|Ai] = E[S2
i swamping]. Furthermore, we

must also consider the scenario where full swamping does not occur throughout the entire accumu-
lation process. The event B is defined as the absence of full swamping in n accumulations. Event B
happens if

|Si| ≤ 2macc |pi+1|, i = 1, 2, . . . , n (24)

P (B) =

n∏
i=1

(1− 2Q(
2macc+1

√
2iπ

)) (25)

In summary,

E[S2
nswamping] =

n∑
i=1

P (Ai)E[S2
i swamping] + P (B)E[S2

nswamping] (26)

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

C THE CALCULATION OF THE UPPER BOUND OF E[f 2
i ]

As indicated by Equation 22,E[f2
i ] =

∑mp

j=1 P (Cij)E[f2
ij ]. Firstly, we analyze E[f2

ij ], where we
observe that 2E[exp

′] and σ2 are approximately equal, thus leading to the conclusion that E[f2
ij ] will

reach its maximum value 1−2−mp−1−2−mp+2−2mp−1

3 σ2 at j = mp. Therefore, we can infer that
E[f2

i ] <
σ2

3

∑mp

j=1 P (Cij). Furthermore, from Equation 19, we can deduce that
∑mp

j=1 P (Cij) =

Q( 2
macc+1
√
2iπ

)−Q( 2
macc++mp+1

√
2iπ

). Due to 2macc+1
√
2iπ

> 0, then Q( 2
macc+1
√
2iπ

) < 1
2 .Therefore,

E[f2
i ] <

σ2

3

mp∑
j=1

P (Cij) <
σ2

6
(27)

D PROOF OF THEOREM 2

As readily apparent from Appendix B, the Frobenius norm for an accumulation segment of length
n1 is E[S2

n1swamping
]. Let the variance of the data for an accumulation of length n1 be denoted

as σn1
. Then, the variance σn2

of the data participating in the accumulation of length n2 is
n1σ

2
n1
[FnRR(n1,mp,macc, σn1

)]2. Furthermore, since E[S2
n2swamping

] can be approximated as
f(n2,mp,macc)σ

2
n2

.

Therefore, when employing segmented processing, the calculated result FnRR is:

FnRRsegment =

√
E[S2

n2swamping
]

n1n2σ2
n1

=

√
f(n2,mp,macc)n1σ2

n1
[FnRR(n1,mp,macc, σn1

)]2

n1n2σ2
n1

= FnRR(n1,mp,macc, σn1)× FnRR(n2,macc,macc, σn2)

(28)

E APPLYING THEOREM TO TRAINING TASKS

We endeavor to apply our theoretical framework to training tasks. As illustrated in the Figure 6,
we trained ResNet-18 on the CIFAR-10 image classification task with a block size of 128 under
BFP8 quantization configuration for 90 epochs with a learning rate of 0.1. Given that the maxi-
mum accumulation lengths for ResNet-18 in forward, backward, and gradient computation matrix
multiplications are 4608, 4608, and 131072, respectively, our theoretical analysis (Theorem 1) de-
duces that the corresponding floating-point accumulation mantissa widths for these three types of
matrix multiplications are 4, 4, and 8 bits. We used the training results with FP32 accumulation as a
baseline and conducted ablation studies on the forward floating-point accumulation mantissa width,
backward floating-point accumulation mantissa width, and gradient computation floating-point ac-
cumulation precision mantissa width by controlling variables. The experimental results are depicted
in the figure. Based on these results, we observed that reducing accumulation precision within an
appropriate range does not affect the convergence of model training. Specifically, the accumulation
precision for backward and gradient computation has a minimal impact on model convergence, while
the forward accumulation precision has a relatively greater influence. The forward results serve as
the foundation for gradient computation and backward propagation, demanding higher precision.
Therefore, when intolerable loss occurs due to an overly small accumulation bit width, the model
struggles to converge to a satisfactory local optimum. In summary, our experiment reveals that the
data precision requirement for the forward process is higher than that for backward and gradient
computation, thus validating the applicability of our theory in selecting accumulation precision for
training tasks.

F THE EXPERIMENTAL RESULTS USING STOCHASTIC ROUNDING

In the image classification task on CIFAR-10, ResNet-18 exhibits an identical maximum accumu-
lation length to that of ResNet-50. Consequently, the bit-width of the accumulation tail number for

15
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(a) The impact of forward bit width
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(b) The impact of backward bit width
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(c) The impact of gradient bit width

Figure 6: In the legend, fXbYgZ denotes the forward accumulation bit-width as X, backward as Y,
and gradient as Z. For an instance, ’f4b4g8’ signifies the training result curve obtained with a 4-
bit forward accumulation bit-width, a 4-bit backward accumulation bit-width, and an 8-bit gradient
computation accumulation bit-width.

ResNet-50, as presented in the Table 3, can be employed to deduce the corresponding accumulation
precision for ResNet-18. The experimental outcomes are depicted in the Figure 7a, revealing a con-
sistent trend between the quantization experiments utilizing stochastic rounding and those employ-
ing nearest rounding. Namely, as the accumulation precision diminishes, the model performance
experiences a pronounced decline at a critical threshold.
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(a) No Segmented Accumulation results for ResNet-18 Using Stochastic Rounding

Figure 7: The horizontal axis represents the inter-block accumulation precision, while the verti-
cal axis indicates the score for the corresponding task. The dashed lines in the graphs denote the
Baseline performance under the respective quantization configurations
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G DISTRIBUTION OF WEIGHTS AND INPUTS ENGAGED IN MATRIX
MULTIPLICATION

(a) ResNet-
50.layer1.1.conv2.weight

(b) ResNet-
50.layer2.0.conv1.weight

(c) ResNet-
50.layer2.2.conv3.weight

(d) ResNet-50.layer1.0.conv3.input (e) ResNet-50.layer3.0.conv1.input (f) ResNet-50.layer4.1.conv2.input

(g)
Bert.0.intermediate.dense.weight

(h) Bert.13.attention.value.weight (i) Bert.18.attention.query.weight

(j) Bert.0.attention.value.weight (k) Bert.10.intermediate.dense.input (l) Bert.13.attention.key.input

Figure 8: Each subplot visually represents the distribution of inputs and weights involved in matrix
multiplication, randomly sampled from BERT-Large and ResNet-50, respectively.
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H EXPERIMENTAL DATA DETAILS

The following section provides detailed experimental results for the Llama2-7B model and the
BERT-Large model.

Table 5: Experimental results of BERT-Large

Accumulation Type Quantization Precision Block size MACC EM F1

Segmented

Int8

128

1 26.7833491 38.87238547
2 82.59224219 89.83467333
3 83.0179754 90.17436216
4 82.99905393 90.0823776
5 83.02743614 90.15831688

baseline 83.07473983 90.24806709

64

2 81.1731315 88.76644966
3 83.31125828 90.47422802
4 83.11258278 90.26468859
5 83.12204352 90.17531153

baseline 83.00851466 90.14101486

32

2 80.08514664 87.85991477
3 83.00851466 90.17600147
4 82.98959319 90.17578653
5 83.07473983 90.21952718

baseline 82.9422895 90.13687096

Int4

64

2 75.97918638 84.91149044
3 79.65941343 87.93871597
4 79.98107852 87.91951769
5 80.01892148 88.02584002

baseline 80.21759697 88.04287399

32

2 77.5307474 86.00685635
3 81.05014191 88.76773415
4 81.04068117 88.85515301
5 81.18259224 88.74837737

baseline 80.76631977 88.3953108

16

3 81.38126774 89.07330911
4 81.89214759 89.31319864
5 82.09082308 89.35924713
6 81.78807947 89.33690702

baseline 81.9205298 89.24148335

No Segmented
Int8

128

2 80.66225166 88.54197033
3 82.96121097 90.13992802
4 82.85714286 90.10981381
5 83.19772942 90.27249646
6 83.07473983 90.16693299

baseline 83.07473983 90.24806709

64

2 68.17407758 78.34952856
3 83.20719016 90.2162814
4 83.13150426 90.22209627
5 83.03689688 90.18009902
6 83.05581835 90.15458593

baseline 83.00851466 90.14101486
3 81.40964995 89.00883392

32

4 83.18826868 90.22166107
5 83.23557237 90.30179041
6 83.0179754 90.15239831
7 82.95175024 90.10275076

baseline 82.9422895 90.13687096

Int4 32 3 79.89593188 87.91187527
4 81.13528855 88.73624887
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Table 5: Experimental results of BERT-Large

Accumulation Type Quantization Precision Block size MACC EM F1

No Segmented Int4

32

5 81.39072848 89.14670902
6 81.22989593 88.91816976
7 81.25827815 88.8771247

baseline 80.76631977 88.3953108

16

3 76.06433302 84.96533694
4 81.60832545 89.20004361
5 81.49479659 89.06459835
6 81.8448439 89.37870505
7 82.03405866 89.51293669

baseline 81.9205298 89.24148335

8

6 81.63670766 89.23406472
7 82.33680227 89.75195921
8 82.28949858 89.70555447
9 82.28949858 89.70555447

baseline 82.17596973 89.56697393

Table 6: Experimental results of Llama2-7B

Accumulation Type Quantization Precision Block size MACC MMLU MMLU-weighted

Segmented

Int8

128

2 29.64 29.45
3 34.31 33.77
4 35.11 34.52
5 35.29 34.82

baseline 35.25 34.89

64

3 33.21 32.87
4 34.39 33.93
5 35.01 34.49
6 35.24 34.95

baseline 35.46 35.07

32

3 33.04 32.38
4 34.94 34.72
5 34.76 34.38
6 35.27 34.8

baseline 35.53 35.1

Int4

64

3 28.31 28.2
4 29.49 29.31
5 30.28 30.07
6 29.54 29.04

baseline 29.4 28.99

32

3 28.31 27.92
4 30.34 29.9
5 29.71 29.96
6 31.5 30.76

baseline 31.13 30.95

16

4 30.75 30.39
5 31.85 31.63
6 32.16 31.63
7 32.11 31.51

baseline 31.96 31.7

No Segmented Int8 128

4 33.6 33.31
5 35.34 34.89
6 34.92 34.49
7 35.04 34.72

baseline 35.25 34.89
64 5 34.59 34.11
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Table 6: Experimental results of Llama2-7B

Accumulation Type Quantization Precision Block size MACC MMLU MMLU-weighted

No Segmented

Int8

64

6 35.48 35.21
7 35.38 35.02
8 35.37 35.02

baseline 35.46 35.07
6 35.08 34.57

32

7 35.39 34.93
8 35.52 35.02
9 35.51 35.01

baseline 35.53 35.1

Int4

64

5 28.21 28.01
6 28.7 28.34
7 29.44 29.55
8 29.63 29.8

baseline 29.4 28.99

32

6 28.29 28.3
7 30.25 30.02
8 30.72 29.92
9 30.72 29.92

baseline 31.13 30.95

16

6 26.04 25.79
7 29.31 29.3
8 31.23 30.52
9 31.3 30.57

baseline 31.96 31.7

Table 7: Experimental results of ResNet-50

Accumulation Type Quantization Precision Block size MACC Top1 ACC

Segmented

Int8

128

1 0.138
2 0.8905
3 0.912
4 0.9135

baseline 0.9132

64

2 0.8324
3 0.9127
4 0.9126
5 0.9141

baseline 0.9135

32

2 0.6762
3 0.9104
4 0.9141
5 0.9145

baseline 0.9142

Int4

64

2 0.8039
3 0.8722
4 0.8693
5 0.8705

baseline 0.875

32

2 0.6407
3 0.8847
4 0.8832
5 0.8837

baseline 0.8868

16 2 0.2078
3 0.8823

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 7: Experimental results of ResNet-50

Accumulation Type Quantization Precision Block size MACC Top1 ACC

Segmented Int4 16
4 0.8898
5 0.8891

baseline 0.8841

No Segmented

Int8

128

2 0.6714
3 0.9062
4 0.9135
5 0.9135

baseline 0.9132

64

3 0.869
4 0.9122
5 0.9142
6 0.9134

baseline 0.9135

32

3 0.6962
4 0.9041
5 0.9127
6 0.9139
7 0.9143

baseline 0.9142

Int4

64

2 0.1694
3 0.8465
4 0.8736
5 0.8738
6 0.8748

baseline 0.875

32

3 0.6905
4 0.8813
5 0.8845
6 0.885
7 0.8878

baseline 0.8868

16

3 0.2776
4 0.8604
5 0.8851
6 0.8868
7 0.8887

baseline 0.8841
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