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ABSTRACT

Block Floating Point (BFP) quantization offers a hardware-efficient numerical
range trade-off. Previous studies have quantized weights and activations to an
extremely low precision using the BFP arithmetic. However, as the precision
of weights and activations diminishes, we identify that accumulation becomes
a hardware bottleneck in the BFP MAC. Nevertheless, existing attempts to de-
crease the precision of accumulation in matrix multiplication generally preserve
model performance through training with a pre-selected, fixed accumulation pre-
cision. Nonetheless, selecting an unduly low precision leads to notable perfor-
mance degradation, and these studies lack an effective approach to establish the
lower precision limit, potentially incurring considerable training costs. Hence,
we propose a statistical method to analyze the impact of reduced accumulation
precision on the inference of deep learning applications. Due to the presence of
fixed-point accumulation and floating-point accumulation in BFP matrix multi-
plication, we formulate a set of equations to relate the data range of fixed-point
multiply-accumulate operations and the effects of floating-point swamping to the
parameters of BFP quantization, the length of accumulation, model weights, and
the minimum number of bits required for accumulation, thereby determining the
appropriate accumulation precision. Applied to MMLU Llama2-7B, SQuAD-v1.1
BERT-Large and BERT-Base and CIFAR-10 ResNet-50, our precision settings
yield performance close to the FP32 baseline. Meanwhile, further precision re-
duction degrades performance, indicating our approach’s proximity to precision
limits. Guided by our equations, the hardware exhibits a 13.7%-28.7% enhance-
ment in area and power efficiency over high-precision accumulation under identi-
cal quantization configuration, and it demonstrated a 10.3x area reduction and an
11.0x power reduction compared to traditional BFP implementations.

1 INTRODUCTION

Deep learning technology has achieved significant success in a wide range of applications through
the training of large-scale deep models with extensive datasets. Concurrently, this approach has im-
posed substantial storage and computational burdens. Quantization emerges as a promising method
to reduce the cost of deep learning by diminishing the bit-width of data flow within models, thereby
reducing storage and computational overhead (Deng et al.| 2020). As an effective numerical sys-
tem for deep learning, Block Floating Point (BFP) strikes a favorable balance between dynamic
range and hardware cost (Drumond et al., [2018). Specifically, previous studies have demonstrated
that low-precision BFP formats can achieve accuracy comparable to FP32 under various deep learn-
ing workloads (Darvish Rouhani et al., 2020; |Drumond et al., 2018;[Soloveychik et al., 2022} Koster,
et al.L|2017;Zhang et al.,|2022). However, it is observed that as the quantization precision decreases,
accumulation becomes a hardware bottleneck in BFP MAC. As illustrated in Figure EKb), the area
occupied by the accumulation component accounts for 17.8%, 33.7%, and 64.4% for BFP16, BFPS,
and BFP4, respectively. Therefore, reducing accumulation precision can further enhance hardware
efficiency on top of lowering quantization precision.

In BFP MAC, both fixed-point and floating-point accumulations are present. For fixed-point accu-
mulation, a decrease in precision is accompanied by an increased likelihood of overflow. Previous
works have focused on avoiding overflow occurrences or mitigating their impact (Colbert et al.,
2023 N1 et al.L[2020; | Xie et al., 2020 |Li et al., [2022)). Nevertheless, methods to mitigate the impact
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of overflow are not guaranteed to maintain accuracy when overflows occur frequently. Hence, we
employ the 30 principle to predict data ranges and select accumulation precision to prevent over-
flow permanently. For floating-point accumulation, the phenomenon of swamping (Higham, |1993)
becomes more pronounced as precision decreases. Previous work has attempted to correlate the nu-
merical precision loss and model performance degradation due to swamping through variance (Wang
et al., [2018} |Sakr et al., 2019). Alternatively, our research centers on the inference phase, where we
leverage the Frobenius norm(Suh et al., 2022} |Yuan et al) |2020) to gauge matrix similarity before
and after precision reduction in accumulation. Grounded in the Frobenius norm, we propose the
metric Frobenius norm retention rate (FnRR) to quantify the degree of swamping resulting from
reduced floating-point mantissa precision. Furthermore, we derive a formula f(n) from FnRR to
assess the impact of data precision loss on model performance, establishing a connection between
floating-point accumulation accuracy and model performance.

Utilizing the derived formula for F'nRR, our analysis identifies accumulation length as the pivotal
factor influencing floating-point accumulation precision. Leveraging this insight, we introduce a
segmented accumulation approach to mitigate precision loss. Experimental validation affirms the
method’s efficacy across diverse model and quantization paradigms. Furthermore, integrating the
theoretically deduced precision into hardware yields a 13.7-28.7% reduction in area and power
relative to high-precision accumulation under identical quantization conditions, and nearly a 10X
enhancement in area and power efficiency compared to FP32 accumulation in BF16 MAC opera-
tions.

Our research contributes both theoretical and practical insights. Firstly, we present a theoretical
framework for determining the minimum fixed-point accumulation bit-width, emphasizing overflow
avoidance based on variance and mean. Secondly, we introduce the FnRR and f(n) metrics to link
floating-point accumulation precision with model performance. Our analysis shows that accumu-
lation length is a key determinant in precision selection. To further reduce precision, we employ a
segmented accumulation technique. We then validate the accumulation precision boundary through
experiments. Finally, we design BFP multiply-accumulators within the established boundaries and
assess the improvements in area and power efficiency.
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(d) BFP format and BFP matrix multipication
Figure 1: (a)A schematic diagram of the BFP MAC unit, (b)Area Analysis of Baseline BFP-MAC.
(c)The distinctions among three swamping phenomena When mg.. = 5 and m,, = 4. (d) illustrates
a simple demonstration of the data flow in BFP matrix multiplication with a block size of 2.

2 RELATED WORK AND BACKGROUND

2.1 RELATED WORK

Our work endeavors to establish a theoretical framework for determining the boundary of accumu-
lator bit-width for the BFP format. Although this topic has not been previously discussed, there
has been extensive exploration of fixed-point accumulator bit-width and floating-point accumulator
bit-width.
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Fixed-point accumulator bit-width WrapNet (Ni et al.l 2020) leverages the cyclic nature of in-
teger computer arithmetic by inserting a differentiable cyclic activation function, rendering neural
networks robust to integer overflow. This allows for the selection of ultra-low-precision fixed-point
accumulator bit-width. However, they also note that high overflow rates can lead to training insta-
bility. A2Q (Colbert et al., |2023) adheres to the principle of avoiding overflow and approach the
determination of fixed-point accumulator bit-width boundaries from both the data type and weight
perspectives. Xie et al. introduce a quantization range mapping factor o to maximize data repre-
sentation capabilities while avoiding overflow under a specified accumulator bit-width (Xie et al.,
2020). While their training method can ensure model accuracy at an appropriate accumulator bit-
width, they do not provide an efficient approach to determine the boundary of the accumulator
bit-width.

Floating-point accumulation bit-width Wang et al. illustrate that the phenomenon of swamping
significantly limits the potential for reducing accumulation precision (Wang et al.,2018)). To address
this issue, they propose two novel techniques: chunk-based accumulation and floating-point stochas-
tic rounding. These methods allow for the training of Deep Neural Networks (DNNs) even when
the accumulation bit-width is decreased to FP16, thereby circumventing the constraints imposed by
swamping. Additionally, Sakr et al. establish a connection between the decrease in accumulation
precision and the training efficiency of DNNs by examining how the exacerbation of swamping
phenomena, due to reducing accumulation precision, affects the variance of matrix multiplication
outcomes (Sakr et al., 2019). Based on this analysis, they select an appropriate accumulation bit-
width.

2.2 BFP FORMAT, BFP QUANTIZATION AND BFP MAC

BFP format is a numerical representation method wherein a group of data shares one exponent.
Quantization methods that adhere to this data format can be classified as fixed-point uniform quan-
tization (Jacob et al., 2018)). Fixed-point uniform quantization can be categorized into multiple
levels of methods based on the granularity of quantization. Quantization granularity varies, with
per-tensor being the coarsest, using a single scaling factor for the entire matrix. Finer granularity
is achieved through per-channel or per-token scaling. Block-wise quantization further refines this
by dividing channels or tokens into blocks with a step size, yielding BFP quantization as a distinct
variant with scaling factors as powers of two. Therefore, BFP quantization (Rouhani et al., 2023;
Darvish Rouhani et al., [2023) can be expressed as:
x X X|

q:fgj,s:max(LlogQ H—-N+1 (1)
where [- | is the rounding function, X is the object to be quantized, X, is the corresponding quantized
result, s is the scaling factor obtained through quantization, and N is the number of bits used for the
low-precision representation.

The BFP multiplier-accumulator architecture is bifurcated into two primary modules: the INT-MAC
(Integer Multiply and Accumulate) and the FP-ACC (Floating Point Accumulate). The INT-MAC
comprises a set of signed fixed-point multipliers, an addition tree, and an exponent summing adder,
corresponding to the fixed-point multiplication and accumulation within the BFP inner product. This
phase is termed intra-block computation. Conversely, the FP-ACC module includes normalization,
an exponent alignment unit, an adder, and a fixed-to-floating-point conversion block, handling the
floating-point accumulation of the BFP inner product. This stage is identified as inter-block com-
putation. In Figure[I[d), we elucidate the implications of BFP format, intra-block and inter-block
operations using a straightforward example. SE denotes the shared exponent, A and B represent
the two matrices involved in the matrix multiplication computation, respectively, C denotes the re-
sulting matrix, INT signifies the fixed-point result after intra-block fixed-point accumulation, and F
indicates the number that has been normalized and is ready for floating-point accumulation.

3 MOTIVATION

3.1 HARDWARE BOTTLENECK ANALYSIS

The BFP MAC can be broadly categorized into fixed-point multiplication, fixed-point addition, and
floating-point addition, corresponding to INT-MUL, INT-ACC, and FP-ACC as depicted in Figure
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[[d). When weights and activations are quantized at a higher precision, INT-MUL constitutes the
predominant area due to the inclusion of K (where K represents the block size) high-precision fixed-
point multipliers. However, when weights and activations are quantized at an ultra-low precision,
INT-MUL requires only ultra-low precision fixed-point multipliers, whereas the high-precision INT-
ACC and FP-ACC become the primary area overhead. As illustrated in the Figure[Ib), in the BFP4
MAC with K=16, the area allocated to accumulation reaches 64.4%, indicating that reducing the
precision of accumulation could yield significant hardware efficiency gains in this scenario.

3.2 MEAN, VARIANCE AND THE FROBENIUS NORM

Accumulation overflow is a critical issue to be addressed in the context of fixed-point quantization,
which can have a significant impact on model performance. As shown in the Table |1} we observe
that minor overflow rates cause slight performance decline, but increased rates lead to significant
degradation in model performance. In the design of the MAC unit, it is common practice to calculate
the theoretical maximum data range that the partial sums can reach based on the input data format
to prevent overflow. Equation[2]is a formula for calculating the maximum bit width required for the
partial sums based on the input data format. Here, both A and W are signed numbers.

K(Qmm(x‘lwidth—1-,Wwidth—1) _ 2Aw'idth+Wwidth_2) < Partial Sum < K 9Awidth+Wuwidin—2 )

In deep learning models, partial sums rarely reach the theoretical extreme values because it is nearly
impossible for all input tensors to be quantized to the extreme values. Consequently, the range
derived from Equation [2|typically exceeds the actual data distribution. By the 3o principle, the vast
majority of data falls within (1 — 30, i + 30). Thus, bounding the partial sums by their mean and
variance can mitigate data range wastage.

In the inference phase of deep learning models, the FP32 precision matrix multiplication is regarded
as the benchmark for state-of-the-art performance. The inference quality is inferred to be supe-
rior when the outcomes of matrix multiplications using alternative precisions are closer to the FP32
results. Consequently, the challenge of correlating data precision with model accuracy can be re-
framed as one of determining the proximity between the reduced-precision result matrix and the
FP32 precision result matrix. For this purpose, we focus on numerical approximation and employ
the Frobenius norm (Suh et al., [2022} [Yuan et al., 2020) as the metric for comparison.

Table 1: Average overflow rate for BERTbase in different accumulation widths and corresponding
EM and F1-score on the SQuAD-v1.1 question-answering task

Bit(A/W)  Accumulation Width ~ Average Overflow Rate EM F1

6/6 10 6.710% 24976 10.939
6/6 12 0.017% 75.639  83.938
6/6 24 0 78.978  86.667
8/8 14 7.894% 2.6584 11.302
8/8 16 0.025% 78.912  86.653
8/8 24 0 78.836  86.664

4 ACCUMULATION PRECISION ANALYSIS

In BFP format inner product computations, the process is divided into intra-block and inter-block
stages. We ensure ample allocation for both the intra-block shared exponent width and the inter-
block floating-point exponent width(We chose to allocate 8 bits like Microscaling(Rouhani et al.|
2023))). Our research focuses on estimating the mean and variance of block-wise partial sums to de-
termine the bit width for fixed-point multiplication and accumulation, and on relating the Frobenius
norm to the mantissa precision of inter-block accumulations.

4.1 INTRA-BLOCK PARTIAL SUM MEAN AND VARIANCE ANALYSIS

Intra-block multiplication and accumulation refers to the process of performing multiplication and
accumulation operations on weight elements(I¥,) and input elements(/.) that have been quantized
using the BFP format. We note (with observations detailed in Appendix E) that the weights and
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inputs participating in matrix multiplication are approximately distributed according to a Laplace
distribution. To facilitate analysis, we hypothesize that the inputs conform to a Laplace distribution
with a location parameter of O and a scale parameter of 1(The W and I below represent the original
weights and inputs, respectively). Hence, we have E[I] = 0. Furthermore, since BFP quantization
is an unbiased estimator, it follows that E[I.] = E[I] = 0. Additionally, W, and I, are independent
of each other, and thus E[I, - W,] = E[I.] - E[W,] = 0. Consequently, we can estimate the mean of
the partial sums within the block to be 0. The variance calculation formula for the dot product terms
within the block is as follows:

Var[l, - W,] = E[I?] - E]W?] — E[I.])? - E[W,]? (3)
From the aforementioned analysis, we know that E[I.] = 0, thus we can express the variance as

Var[I, - W,] = Var[I,] - E[W?] “)

€

According to the assumptions made in the preceding text, we can determine Var([I], E[W?] and the
mean of the shared exponent(How to calculate E[exp] is provided in the appendix A).

E[W?]

Var[I]
92(E[Weap]—bit+1) &)

Varlle] = Somm S

E[WZ] =
With the mean and variance of the partial sums within the block, according to the 3o principle,
we consider each inner product term obtained from the intra-block inner product to fall within the
range of (—30,30). Consequently, the range of the partial sums is (—3Ko,3K0), where K is the
number of terms in the sum. At this point, we can estimate the bit width required for fixed-point
multiplication and accumulation. We have visualized the estimated bit width in the Figure 2]
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4.2 INTER-BLOCK ACCUMULATION MANTISSA PRECISION ANALYSIS

Let p; represent the i-th term for inter-block accumulation, s; denote the partial sum obtained from
the i-th inter-block accumulation, m,, and m,.. correspond to the mantissa bit widths for p; and s;,
respectively, and n denotes the length of the accumulation.Our key contribution lies in the proposal
of a formula,

E[S2, ]
F nswamping
nhilt E[S2 ©

nideal]

which correlates mantissa precision with model performance, where F'n RR is a function of n, m,,
Mace, B[W], Var[W] and K, all precomputable parameters. In order to maintain performance
under reduced precision, we aim for FnRR — 1. As illustrated in the Figure[3] it can be observed
intuitively that once m,, E[W], Var[WW], and K are determined, the FnRR at a fixed mantissa
precision is a waterfall-like curve with respect to the accumulation length n. The accumulation
length for FnRR is limited due to potential mantissa truncation caused by floating-point alignment
during addition. This overflow leads to loss of significant digits, necessitating the introduction of
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“swamping” to analyze its impact on FnRR performance. As illustrated in the Figure[T[c), a single
floating-point addition can be categorized into three scenarios: 1) “no swamping”, which occurs
when |s;| < 2Mace=™M2|p, | 2) “full swamping,” which occurs when |s;| > 2™acc|p;q]. 3)
“partial swamping,” which occurs when 2™ace =2 |p; 1| < |s;] < 2™ace|p, ;1| Subsequently, we
will establish a connection between the Frobenius norm and the mantissa precision of inter-block
summation from the perspective of swamping.

Theorem 1. The F'nRR, Using n, myp, and mq.. to denote the accumulation length, the mantissa
precision of accumulation terms, and the mantissa precision of the partial sum, respectively, o =

KVar[I - W] where K and Var[W] are the block size for BFP quantization and the average
variance of the weights selected from large models participating in quantization, is given as follows:

" . 2
FnRR = \/Zi—l P(Al)E[SL s’wa’rnping] + P(B)E[S%Swamping]

no?
2macc+1 )
» 20(= 5= )i =1
P(A;) = i1
¢ 9Macet1 9Macet+1 )
2 1-— =2 1
Q( N )jl;[l( Q( NI )),i=2,3,....n .
B n 9Mace+1 ) B ) n )
P(B) - ]:1_[1(1 - QQ( \/2]771_ ))? E[Snswamping] =no - ;E[fz ]7
9 mp 9 9Mace—J+mp+1 OMace—j+mp+2
E[ff]= ) P(CyE[f;], P(Cij) =2(Q( 5; ) —Q( . )
= i 2
272mp71 ) )
Elf3] = = — (2 - )@+ - DER7).

The proof of this theorem is provided in the appendix B. Using Theorem 1, we endeavor to analyze
the relationship between the precision of accumulation and the length of the cumulative process.
When we set a very large mg.., P(4;) will be close to 0, while P(B) will be close to 1 and
E[Sﬁswampm 4 will be close to no, which causes FnRR — 1 as expected when the mantissa
is maintained at high precision. When we set a very small mg.., P(B) will be close to 0, and
E[S2 ] will be approximately equal to the sum of P[A;|E[S? ]. When i is large,

nswamping i swamping

P[A;] will be close to 0. Consequently, in this case, E[S? | will be approximately equal

nswamping
to the sum of the first few terms of P[A,-]E[stwampm ,) when i is small. In other words, as n
increases, E[S?2

nswampmg} will remain largely unchanged after an initial increase, leading FnRR to
rapidly approach O as n increases. This indicates that with limited precision, there is little hope of
maintaining computational accuracy when the length of accumulation is large. Similarly, because
FnRR exhibits a clear trend from 1 to 0 as n increases at a fixed accumulation precision, FnRR
can provide a definitive decision boundary for the accuracy of accumulation.

4.3 PARAMETER SIGNIFICANCE ANALYSIS

Within Theorem 1, the computation of FnRR is influenced by four parameters: n, m,, mMqc., and
o, each exerting a distinct level of influence on the resulting calculation. Firstly, analyzing the
parameter sigma reveals that E[2¢“P)2 is approximately equal to o2, leading to E[Sgswampm J=
f(n,mp, mace)o?. Consequently, o has negligible impact on the computation of FnRR. Subse-

quently, we observe that the parameter m,, is only employed in the calculation of E[f?], and through
scaling, we find that E[f?] < %z(the proof of this conclusion is provided in the appendix C). There-

fore, the parameter m,, can, at most, decrease E[S7. ., mping) ©© ¢E[S7 0] » Which in turn reduces
FnRR to around 0.913 at its lowest. The impact of m,, on the computation of F'nRR is simi-
larly insignificant. In summary, given a fixed mantissa precision, mgcc, 7 is the predominant factor

influencing the calculation of FnRR.
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4.4 MANTISSA PRECISION ANALYSIS IN SEGMENTED INTER-BLOCK ACCUMULATION

As established in Section4.3] the accumulation length n is the most critical factor affecting the preci-
sion of inter-block accumulation. To achieve a lower inter-block accumulation precision while mini-
mizing additional hardware overhead, a segmented approach to accumulation is adopted. Assuming
n = nl x n2, the floating-point accumulation of length n is segmented into n2 accumulations of
length n1, which are then summed to yield the final computational result. Both segments of floating-
point accumulation utilize the same mantissa precision to allow for the reuse of the floating-point
addition unit. The proof of the formula is provided in the appendix D.

Theorem 2. Using a segmented accumulation method with n = nl x n2, where nl is the segment
length and n2 is the number of segments, the F'nRRR, with m, and m.. as the mantissa precision
for the accumulation terms and partial sums, respectively, is provided in the subsequent sections:

FnRRsecqment = FNRR(n1l, My, Mace, Ony ) X FNRR(N2, Mace, Mace, Ony) (8)

4.5 USAGE OF THEOREM

We can ascertain the suitability of a certain inter-block accumulation precision by calculating its
FnRR and evaluating its degree of convergence to 1, thereby predicting the most appropriate ac-
cumulation precision. The results indicate that when measured as a function of the accumulation
length n with a fixed precision, there exists a breakdown region for FnRR. This breakdown region
is clearly observable when considering the normalized exponential loss:

f(n) — en(lanRR) 9)
In the Figure 4}, we plot the f(n) values at different inter-block accumulation precisions with ac-
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Figure 4: (a) and (b) utilizes weight information from the Llama2-7B, with a block size of K equal
to 32. The dashed line indicates the location of the breakdown point. It is readily apparent that
below the dashed line, f(n) rapidly approaches 1, whereas above it, f(n) increases swiftly.

cumulation using segments of length 32 and no segmented accumulation. Here, we set m,, to 9 (in
practical applications, we can determine the corresponding m,, value using the method described
in section , and we use the weight data from Llama2-7B (Touvron et al.||[2023) to calculate the
FnRR. We can observe that f(n) increases rapidly when it exceeds 1000, and it quickly approaches
1 when it is below 1000. Consequently, we select 1000 as the point of breakdown, such that accu-
mulation precisions resulting in f(n) values less than 1000 are considered suitable precisions.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Through the aforementioned analysis, we predict the intra-block multiplication and accumulation
bit widths, the inter-block accumulation mantissa bit widths, and the inter-block segmented accu-
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mulation mantissa bit widths required for inference under different quantization configurations and
segment lengths for the models (Llama2-7B, BERT-Large-Cased, BERT-Base-Cased, ResNet-50).
We select these models due to their long accumulation lengths and because they belong to different
applications, thereby enabling them to effectively validate our work. We aim to: 1) assess overflow
occurrence in intra-block multiplication and accumulation at predicted precision, 2) evaluate and
compare model performance with inter-block accumulation at predicted precision to FP32 baseline,
and 3) evaluate and compare model performance with inter-block segmented accumulation at pre-
dicted precision to FP32 baseline. We employ MMLU (Hendrycks et al., |2020) testing to evaluate
the performance of Llama2-7B, for BERT-Large-Cased and BERT-Base-Cased (Devlin et al.,|2018)),
we use the SQuAD-v1.1 dataset (Rajpurkar et al.,[2016) to finetuning and evaluate and for ResNet-
50 (He et al., 2016), we use the CIFAR-10 (Krizhevsky et al.l |2009) dataset to train and evaluate.
Specifically, we utilize the Microsoft open-source MX Pytorch Emulation Library for quantization
and choose 8-bit as the BFP quantization and accumulation exponent bit width.

To discuss the overflow situation of block-wise multiplication and accumulation and to implement
the rounding of the partial sum during the inter-block accumulation process, we implement the BFP-
format GEMM using PyTorch and CUDA, and we have inserted a rounding function at the location
of partial sum accumulation to simulate the reduction in bit width.

5.2 OVERFLOW RATE IN INTRA-BLOCK OPERATIONS

We utilize the SQuAD-v1.1 to assess the model performance of BERT-Large and BERT-Base and
the CIFAR-10 to assess the model performance of ResNet-50 following precision reduction. During
inference, the matrix multiplication operations are then processed in BFP format, and the frequency
of overflow events during computation is recorded to calculate the overflow rate. The results are
presented in Table 2] BERT-Large and BERT-Base are evaluated using SQuAD-v1.1 across 48
topics, and the overflow rate is O in all cases. ResNet-50 is evaluated using CIFAR-10 and the
overflow rate is also 0 in all cases. The experimental results confirm that no overflow occurs at the
predicted fixed-point accumulation precision.

Table 2: The OR in this table represents the overflow rate. The data in the tuple is the result of
BERT-Large and BERT-Base in SQuAD-v1.1 and ResNet-50 in CIFAR-10, respectively

Precision Block Size Baseline Bit Width ~ Prediction Bit Width ~ Average OR

28 23 20 (0,0,0)
BFPS 64 22 20 (0,0,0)
32 21 19 (0,0,0)
64 4 2 0,0,0)
BFP4 32 13 11 (0,0,0)
16 12 11 (0,0,0)

5.3 MODEL PERFORMANCE UNDER REDUCED INTER-BLOCK ACCUMULATION PRECISION

Table 3: The predicted inter-block accumulation bit width for our considered networks. Each table
entry is an ordered tuple representing the bit widths for Llama2-7B, BERT-Large and ResNet-50,
respectively. *-” signifies that we do not conduct tests on this quantitative configuration.

Block Size 8 16 32 64 128

BFP4 -7, (1,6,6) (756) (655 (---)
BFP4(Seg) (-4,-) (544) 433 433  (-.--)
BFPS§ ) () (7.56) (655 (544)
BFP8(Seg) (---) (---) (433) 433 (322

The predicted bit width for each network and quantization precision are listed in Table 3|for the case
of BFP and BFP segmented accumulation with the segment length calculated by 1/n. To elucidate
that the inter-block accumulation precision identified by our method is precisely at the critical point,
or as close as possible to the critical point while ensuring model performance (the critical point refers
to the threshold at which a significant degradation in model performance is imminent), we evaluate
the model performance under multiple sets of different accumulation precisions for each selected
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model under various quantization configurations. Figure[7|reveals that as the accumulation precision
decreases, there is a pronounced decline in model performance at the critical point. However, it
is worth noting that when the accumulation precision is higher than the precision at the critical
point, the change in model performance is not monotonic; it oscillates within a narrow range. This
implies that there is no linear correlation between model performance and accumulation precision,
as performance fluctuates around a certain level within a specific range of accumulation precision.
When the accumulation precision is reduced below the critical point, there is a marked deterioration
in model performance, which is consistent with the properties of FnRR.

BFPS§ BFP4 BFPS§ BFP4
36 32 36
””””””” = 32 st
i =& Sl
A 304 S 34 4
. e . >/
) N ) 30
z N £ 3
3 28 3
< 34 4 —— KipsMMLU i KpMMLU < —— KisMMLU s KpMMLU
—+— KisMMLUveighea o KnMMLU,wcighea 30 A —— KisMMLUycigea | 28 —o— KnMMLU,wcighea
KesMMLU 26 - | —— KieMMLU KesMMLU —— KigMMLU
KasMMLU seigitea —— KigMMLU,veigiiea KatMMLU seigitea —o— KiMMLUscighica
33 - T T T T T T T T T T 28 - T T T ™ 26T T T T T
4 5 6 7 8 9 5 6 7 8 9 2 3 4 5 6 3 4 5 6 7
bit width bit width bit width bit width

(a) No Segmented Accumulation results for Llama2-7B (b) Segmented Accumulation results for Llama2-7B
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(c) No Segmented Accumulation results for BERTlarge (d) Segmented Accumulation results for BERTLarge
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(e) No Segmented Accumulation results for ResNet-50 (f) Segmented Accumulation results for ResNet-50

Figure 5: The horizontal axis represents the inter-block accumulation precision, while the verti-
cal axis indicates the score for the corresponding task. The dashed lines in the graphs denote the
Baseline performance under the respective quantization configurations

5.4 MODEL PERFORMANCE UNDER REDUCED INTER-BLOCK SEGMENTED ACCUMULATION
PRECISION

We select |/ as the segment length and evaluated the model performance under multiple sets
of different accumulation precisions for each chosen model under every quantization configuration.
Figure |/| demonstrates that as the accumulation precision decreases, there is a marked decline in
model performance at the critical point. Furthermore, we can also find that employing segmented
accumulation allows for at least a 1-bit reduction in precision while maintaining equivalent model
performance compared to the no segmented accumulation method. In particular, the segmented
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accumulation precision of 5 bits for BFP4 quantization of Llama2-7B with a block size of 16 out-
performs the non-segmented method with a precision of 9 bits, achieving at least a 4-bit reduction.
Both segmented and non-segmented methods at the predicted precision maintain performance close
to the baseline, demonstrating the efficacy of our method in identifying minimal accumulation pre-
cision without substantial performance degradation.

5.5 HARDWARE IMPLEMENTATION

We utilize the formula derived in the preceding section to predict the accumulation precision for the
Llama2-7B model with a block size of 16, for both BFP4 and BFP8 quantization precisions. The
hardware design is completed based on the obtained accumulation precision, and we evaluate the
area and power consumption using synthesis tools. As indicated in the evaluation, in terms of area,
the BFP4 and BFPS quantization precisions result in reductions of 28.7% and 13.8%, respectively.
Notably, the reduction in area for the FP-ACC and Other components is significant. However, the
area optimization for the INT-MAC is not pronounced due to the multitude of multiplier units, which
do not decrease in area with the reduction in accumulation precision. Regarding power consumption,
the BFP4 and BFP8 quantization precisions lead to decreases of 25.2% and 13.7%, respectively.
Additionally, compared to the BFP16 Baseline, our optimized implementation of the BFP MAC at
lower precision achieves significant improvements in area and power consumption, reaching up to
10.3x and 11.0x respectively.

Table 4: Analysis of area and power with varying quantization precisions, with the bolded segment
reflecting area and power data derived from hardware design utilizing formula-predicted accumula-
tion precision, contrasted with the non-bolded segment which is based on conventional accumulation
precision for hardware design.

(a) Area Analysis
Quantization Type INT-MAC (um?) FP-ACC (um?) Other (um?) Total (um?)
BFP4 142.54 133.34 38.90 314.78
126.20 (J11.5 %) 74.80 (144.0%) 23.56 (139.4%) 224.56 (128.7%)
BFPS 619.07 147.84 49.09 816.00
584.47 (111.4%) 90.11 ({39.0%) 28.93 (141.1%) 703.51 ({13.8%)
(b) Power Analysis (c) Comparison with the BFP16 baseline
Quantization Type Power (mW) Quantization Type  Area (um?) Power (mW)
BFP4 0.2208 BFP4 224.56 0.1652
0.1652 ({25.2%) BFP16 2311.6 (10.3x) 1.8204 (11.0x)
BFPS 0.5933 BFPS8 703.51 0.5122
0.5122 ({13.7%) BFP16 2311.6 (3.29%x) 1.8204 (3.55x%)

6 CONCLUSION

We present an analytical approach to predict the optimal accumulation precision for BFP GEMM
operations in deep learning inference, balancing performance with precision. Our experiments con-
firm that this precision is near the limit while maintaining comparable performance to the base-
line. Additionally, we demonstrate the effectiveness of segmented accumulation in further reducing
floating-point precision. An interesting phenomenon is observed, where the decline in model per-
formance with decreasing accumulation precision varies under different quantization configurations.
Notably, highly quantized models exhibit a lower robustness and are more susceptible to reaching
the precision boundary. Therefore, incorporating the impact of quantization on model robustness
into our theoretical analysis could further improve our theoretical framework. We believe that our
work provides theoretical support for the design of MAC units in deep learning inference.

10
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A THE CALCULATION METHOD FOR E[ezp]

Let K, i, o denote the block size, quantization precision, mean, and variance, respectively, of the
matrix selected for BFP quantization. In the main text, we assume that the means of the matrices
participating in quantization follow a laplace distribution. The event A,; is defined as having i out
of K numbers within a block whose exponent is e, while the exponents of the remaining numbers
are all less than e.

0.5¢ 7 , T < [

L(z,pu,y) = o (10)
1-05e 7 ,2>p

P(A) = ClL(— by - Z s o
ey iy 2y
“+oo K
Elexp] = > [2° ZP(Aei)] (12)

From Equation Elexp] can be calculated. Our experiments have shown that when e €
(=00, =50) J(50, +00), P(Ac;) — 0. Therefore, Equation (9) can be simplified to

50

Elexp] = Y [2¢70F! Z P(Ag)] (13)

e=—50

B PROOF OF THEOREM 1

First, we present the assumptions that will be utilized in the subsequent derivations.

Assumption 1: BFP quantization does not alter the mean and variance of the matrix and the inner
product terms obtained within the block are assumed to be independently and identically distributed.

This assumption is made for the convenience of determining the variance and mean of the floating-
point numbers involved in the inter-block accumulation.

Assumption 2: We assume that the accumulation process stops when the first full swamping event
occurs.

When full swamping occurs, the partial sum becomes sufficiently large relative to the accumulation
terms. Although it is possible to recover from the full swamping event, the impact on the result is
negligible.

Assumption 3: We consider that each bit of the mantissa of p; and s; is equally likely to be either 0
or 1.

This assumption is made for the convenience of determining the impact of discarding partial man-
tissa precision on Frobenius norm.

In order to calculate FnRR, we first need to compute the Frobenius norm when swamping oc-
curs.To discuss the impact of swamping events on the Frobenius norm, we define the event A; as
the first occurrence of full swamping during the accumulation process at the i-th accumulation. This
definition also implies that full swamping do not happen in the accumulations for: = 1,2,...,7—1.
The event A; happens if

‘Sz‘ > 2macc |pi+1| & |Si’| S 277’1(16(3

pi’+1|7i/:1527"'7i_1 (14)

To calculate the probability of event A; occurring, we first need to determine the distribution of S;
and p;. p; represents the i-th term in inter-block accumulation, which is essentially the result of a
single block-wise multiplication and accumulation. According to Assumption 1, we calculate that
p; ~ N(0, KVar[I - W]) based on the central limit theorem. Similarly, s; is the sum of p;, thus
s; ~ N(0,iKVar[I - W]. In the subsequent proof, we denote K Var[I - W] as o2

13
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Next, we aim to calculate the mean of |p;| to facilitate the computation of the probability of event

A; occurring.
+oo 22
Blpl= [ Ie r e 5 da (1s)

From Equation |15} we can compute that E[|p;|] = f Therefore, we can derive the formula for
calculating the probability of event A; occurring.

i—1
P(A;) = P(|S;| > 27 E[pil)) - [ P(1S;] < 2™ Ellp; 1)) (16)
j=1
9Macet1 ] ’
( ) QQ( \/ﬁ )a =1
P(A;) = i—1 (17)
QMacet1 9Macet1
2Q( ) [T 20 ),i=23,...,n—1

Vim i V2jm

Next, we calculate E[Sﬁswammn g] First, we observe that partial swamping is possible in every
accumulation, and we define the event C;; as the occurrence of stage j partial swamping during the

i-th accumulation. Thus, event C;; happens if
2macc—j+'mp |pz+1 ‘ < ‘SZ| S 2maccfj+7np+1 |p’L+1| (18)

Similar to the method for calculating the probability of event A; occurring, we derive the formula
for calculating P(C;;) as follows:
9Mace—J+mp+1 9Mace—J+mp+2

P(Cy) = 2Q(— 2) = Qo)) (19)
Subsequently, we discuss the loss in Frobenius norm caused by stage j partial swamping. According
to Assumption 3, the probability of a truncated bit being either 0 or 1 is equal. Consequently, we
can calculate the truncation loss E| ffj] occurring at the i-th accumulation.

291
r2

E[ 127] — 9~ 2m,+2E[exp’] 27 (20)
=1

Here, E[exp’] represents the mean of the exponent of pi, and its calculation method is similar to that
of Elexp’] and will not be elaborated further. Equation [20|can be simplified to:
L@ =Dt -1)

3

After the aforementioned analysis, we can compute the loss E[f?] in the Frobenius norm caused by

partial swamping at the i-th iteration and E[stwampm g

= ZP(C”)]E[ 2l (22)

E[ 12]] _ 2—2mp+2E[ewp’]

2n

[Slgswam,pzng =io? — Z E[fl2] (23)

We proceed to discuss the impact of full swamping on the Frobenius norm. As per Assumption 2,
when full swamping occurs, the accumulation process is halted. This implies that if full swamping
occurs during the i-th accumulation, then ]E[Sflswampm glAil = E[S?amping- Furthermore, we
must also consider the scenario where full swamping does not occur throughout the entire accumu-
lation process. The event B is defined as the absence of full swamping in n accumulations. Event B

happens if

|1S;] < 27"‘“ lpi+1l,i=1,2,. (24)
P(B 1-2 2mm+1 25
(B) = }_[1( —2Q( Wi ) (25)
In summary,
[Sgbswamping] = Z ( ) [stwampzng} + P( ) [Sglswamping] (26)
i=1
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C THE CALCULATION OF THE UPPER BOUND OF E|[f?]

As indicated by Equation R2|E[f?] = Zmp P(Ci;)E[fZ]. Firstly, we analyze E[f7], where we

observe that 28¢77'] and o2 are approximately equal, thus leading to the conclusion that E[f; ] will
1—2—Mmp— 1 —2— an+2 2mp— 1

reach its max1mum value 3 2 at j = m,. Therefore, we can infer that
E[f?] < 2 Zmp P(C;;). Furthermore, from Equation' we can deduce that Y7, P(Cj;) =

3
Q(2mm+1) — Q(QMMHW+1 ). Due to 272 > 0, then Q( ) < &.Therefore,

277Lac¢+1

) 02 mv o2
E[f?] < =Y P(C;;) < — 27
{fzi<3; (Cij) < 5 27)

D PROOF OF THEOREM 2

As readily apparent from Appendix B, the Frobenius norm for an accumulation segment of length

ny is E[S? ]. Let the variance of the data for an accumulation of length n; be denoted
N1 swamping

as o’n1 Then, the variance o, of the data participating in the accumulation of length ny is
nyo2 [FnRR(ny, my, Mace, 0y, )], Furthermore, since E[S?2, ] can be approximated as

N2 swamping
f(TLQ, My, Mace) 1212-
Therefore, when employing segmented processing, the calculated result FnRR is:
E[S2 ]

n2 swamping

FnRRsegment = )
ni1 TlgO'nl

o \/f(n27mp7macc)n10' [FnRR(n17mp7ma('ma'nl)]2 (28)

nino2

= FnRR(nl, my, Mace, 0ny ) X FRRR(N2, Mace, Maces On,y)

E APPLYING THEOREM TO TRAINING TASKS

We endeavor to apply our theoretical framework to training tasks. As illustrated in the Figure [6]
we trained ResNet-18 on the CIFAR-10 image classification task with a block size of 128 under
BFP8 quantization configuration for 90 epochs with a learning rate of 0.1. Given that the maxi-
mum accumulation lengths for ResNet-18 in forward, backward, and gradient computation matrix
multiplications are 4608, 4608, and 131072, respectively, our theoretical analysis (Theorem 1) de-
duces that the corresponding floating-point accumulation mantissa widths for these three types of
matrix multiplications are 4, 4, and 8 bits. We used the training results with FP32 accumulation as a
baseline and conducted ablation studies on the forward floating-point accumulation mantissa width,
backward floating-point accumulation mantissa width, and gradient computation floating-point ac-
cumulation precision mantissa width by controlling variables. The experimental results are depicted
in the figure. Based on these results, we observed that reducing accumulation precision within an
appropriate range does not affect the convergence of model training. Specifically, the accumulation
precision for backward and gradient computation has a minimal impact on model convergence, while
the forward accumulation precision has a relatively greater influence. The forward results serve as
the foundation for gradient computation and backward propagation, demanding higher precision.
Therefore, when intolerable loss occurs due to an overly small accumulation bit width, the model
struggles to converge to a satisfactory local optimum. In summary, our experiment reveals that the
data precision requirement for the forward process is higher than that for backward and gradient
computation, thus validating the applicability of our theory in selecting accumulation precision for
training tasks.

F THE EXPERIMENTAL RESULTS USING STOCHASTIC ROUNDING

In the image classification task on CIFAR-10, ResNet-18 exhibits an identical maximum accumu-
lation length to that of ResNet-50. Consequently, the bit-width of the accumulation tail number for
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Figure 6: In the legend, fXbYgZ denotes the forward accumulation bit-width as X, backward as Y,
and gradient as Z. For an instance, 'f4b4g8’ signifies the training result curve obtained with a 4-
bit forward accumulation bit-width, a 4-bit backward accumulation bit-width, and an 8-bit gradient
computation accumulation bit-width.

ResNet-50, as presented in the Table 3] can be employed to deduce the corresponding accumulation
precision for ResNet-18. The experimental outcomes are depicted in the Figure[7a] revealing a con-
sistent trend between the quantization experiments utilizing stochastic rounding and those employ-
ing nearest rounding. Namely, as the accumulation precision diminishes, the model performance
experiences a pronounced decline at a critical threshold.
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(a) No Segmented Accumulation results for ResNet-18 Using Stochastic Rounding

Figure 7: The horizontal axis represents the inter-block accumulation precision, while the verti-
cal axis indicates the score for the corresponding task. The dashed lines in the graphs denote the

Baseline performance under the respective quantization configurations
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Figure 8: Each subplot visually represents the distribution of inputs and weights involved in matrix
multiplication, randomly sampled from BERT-Large and ResNet-50, respectively.
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H EXPERIMENTAL DATA DETAILS

The following section provides detailed experimental results for the Llama2-7B model and the

BERT-Large model.

Table 5: Experimental results of BERT-Large

Accumulation Type  Quantization Precision Block size  MACC EM F1
1 26.7833491  38.87238547
2 82.59224219  89.83467333
128 3 83.0179754  90.17436216
4 82.99905393  90.0823776
5 83.02743614 90.15831688
baseline  83.07473983  90.24806709
2 81.1731315  88.76644966
Int8 3 83.31125828 90.47422802
64 4 83.11258278  90.26468859
5 83.12204352  90.17531153
baseline 83.00851466 90.14101486
2 80.08514664 87.85991477
3 83.00851466  90.17600147
32 4 82.98959319 90.17578653
5 83.07473983  90.21952718
Segmented baseline  82.9422895  90.13687096
2 75.97918638  84.91149044
3 79.65941343  87.93871597
64 4 79.98107852  87.91951769
5 80.01892148  88.02584002
baseline  80.21759697  88.04287399
2 77.5307474  86.00685635
3 81.05014191 88.76773415
Int4 32 4 81.04068117 88.85515301
5 81.18259224  88.74837737
baseline 80.76631977  88.3953108
3 81.38126774 89.07330911
4 81.89214759 89.31319864
16 5 82.09082308  89.35924713
6 81.78807947  89.33690702
baseline  81.9205298  §9.24148335
2 80.66225166  88.54197033
3 82.96121097  90.13992802
128 4 82.85714286 90.10981381
5 83.19772942  90.27249646
6 83.07473983  90.16693299
baseline  83.07473983  90.24806709
2 68.17407758  78.34952856
3 83.20719016  90.2162814
Int8 64 4 83.13150426  90.22209627
No Segmented 5 83.03689688  90.18009902
6 83.05581835  90.15458593
baseline 83.00851466 90.14101486
3 81.40964995  89.00883392
4 83.18826868 90.22166107
5 83.23557237  90.30179041
32 6 83.0179754  90.15239831
7 82.95175024  90.10275076
baseline  82.9422895  90.13687096
Intd 3 3 79.89593188 87.91187527
4 81.13528855 88.73624887
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Table 5: Experimental results of BERT-Large

Accumulation Type  Quantization Precision Block size  MACC EM F1

5 81.39072848  89.14670902
3 6 81.22989593  88.91816976

7 81.25827815  88.8771247

baseline 80.76631977  88.3953108
3 76.06433302 84.96533694

4 81.60832545  89.20004361

16 5 81.49479659  89.06459835

No Segmented Int4 6 81.8448439  89.37870505
7 82.03405866  89.51293669

baseline  81.9205298  89.24148335
6 81.63670766  89.23406472

7 82.33680227 89.75195921
8 8 82.28949858  89.70555447
9 82.28949858  89.70555447

baseline 82.17596973  §9.56697393

Table 6: Experimental results of Llama2-7B

Accumulation Type  Quantization Precision Block size MACC MMLU MMLU-weighted
2 29.64 29.45
3 34.31 33.77
128 4 35.11 34.52
5 35.29 34.82
baseline 35.25 34.89
3 33.21 32.87
4 34.39 33.93
Int8 64 5 35.01 34.49
6 35.24 34.95
baseline 35.46 35.07
3 33.04 32.38
4 34.94 34.72
32 5 34.76 34.38
6 35.27 34.8
Segmented baseline 35.53 35.1
3 28.31 28.2
4 29.49 29.31
64 5 30.28 30.07
6 29.54 29.04
baseline 294 28.99
3 28.31 27.92
4 30.34 29.9
Int4 32 5 29.71 29.96
6 31.5 30.76
baseline 31.13 30.95
4 30.75 30.39
5 31.85 31.63
16 6 32.16 31.63
7 32.11 31.51
baseline 31.96 31.7
4 33.6 33.31
5 35.34 34.89
128 6 34.92 34.49
No Segmented Int8 7 3504 3472
baseline 35.25 34.89
64 5 34.59 34.11
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Table 6: Experimental results of Llama2-7B

Accumulation Type  Quantization Precision Block size MACC MMLU MMLU-weighted

6 35.48 35.21
64 7 35.38 35.02
8 35.37 35.02
baseline 35.46 35.07
Int8 6 35.08 34.57
7 35.39 34.93
3 8 35.52 35.02

9 35.51 35.01

baseline 35.53 35.1

5 28.21 28.01
6 28.7 28.34
64 7 29.44 29.55

No Segmented 8 2963 298
baseline 294 28.99

6 28.29 28.3
7 30.25 30.02
Int4 32 8 30.72 29.92
9 30.72 29.92
baseline 31.13 30.95
6 26.04 25.79

7 29.31 29.3
16 8 31.23 30.52
9 31.3 30.57

baseline 31.96 31.7

Table 7: Experimental results of ResNet-50

Accumulation Type  Quantization Precision Block size MACC  Topl ACC

1 0.138
2 0.8905
128 3 0912
4 0.9135
baseline 0.9132
2 0.8324
3 0.9127
Int8 64 4 0.9126
5 09141
baseline 0.9135
2 0.6762
3 0.9104
32 4 0.9141
Segmented 5 0.9145
baseline 0.9142
2 0.8039
3 0.8722
64 4 0.8693
5 0.8705
baseline 0.875
2 0.6407
Int 3 038847
32 4 0.8832
5 0.8837
baseline 0.8868
16 2 0.2078
3 0.8823
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Table 7: Experimental results of ResNet-50

Accumulation Type  Quantization Precision Block size MACC  Topl ACC
4 0.8898
Segmented Int4 16 5 0.8891
baseline 0.8841
2 0.6714
3 0.9062
128 4 09135
5 0.9135
baseline 0.9132
3 0.869
4 0.9122
64 5 0.9142
Ine8 6 09134
baseline 0.9135
3 0.6962
4 0.9041
5 0.9127
32 6 09139
7 0.9143
baseline 0.9142
2 0.1694
No Segmented 3 0.8465
4 0.8736
64 5 08738
6 0.8748
baseline 0.875
3 0.6905
4 0.8813
5 0.8845
Int4 32 6 0,885
7 0.8878
baseline 0.8868
3 0.2776
4 0.8604
5 0.8851
16 6 08868
7 0.8887
baseline 0.8841
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