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ABSTRACT

Photoplethysmography (PPG) is a non-intrusive and cost-effective optical tech-
nology that detects changes in blood volume within tissues, providing insights
into the body’s physiological dynamics over time. By analyzing PPG data as a
time series, valuable information about cardiovascular health and other physio-
logical parameters such as Heart Rate Variability (HRV), Peripheral Oxygen Sat-
uration (SpO2), and sleep status can be estimated. With the ever increasing user
adoption of wearable devices like smartwatches, Health Monitoring Applications
(HMA) are gaining popularity due to their ability to track various health metrics,
including sleep patterns, heart rate, and activity tracking, by making use of PPG
sensors to monitor different aspects of an individual’s health and wellness. How-
ever, reliable health indicators require high-quality PPG signals, which are often
contaminated with noise and artifacts caused by movement when using wearables.
Hence, Signal Quality Assessment (SQA) is crucial in determining the trustwor-
thiness of PPG data for HMA applications. We present a new PPG SQA approach,
leveraging recent advancements in differential and integral attention-based strate-
gies coupled with a two-stage procedure for promptly discarding highly anoma-
lous segments, as a means of enhancing the performance of Convolutional Neural
Network (CNN)-based SQA classifiers, balancing storage size and classifier accu-
racy in resulting models of increased robustness across PPG signals from differ-
ent devices. Our methods are capable of achieving F1-scores between 0.9194 and
0.9865 across four expert-annotated datasets from different wearable devices.

1 INTRODUCTION

The growing influence and widespread acceptance of continuous health monitoring on the market of
smart wearable devices, ranging from fitness bands to smartwatches and smart rings, is remarkable.
The global increase in wearable usage is evident, with projections indicating over 1 billion wearables
worldwide by 2022 and annual expenditures exceeding $80 billion (Cisco, 2019; Gartner, 2021).
Such devices allow customization and integration of diverse sensor types, communication units,
and remote computing resources, offering holistic health solutions to users. In this line, mobile
applications embedded in such devices are increasingly utilized to estimate several physiological
factors from users, such as Heart Rate Variability (HRV), Peripheral Oxygen Saturation (SpO2), and
sleep quality.

In this context, Photoplethysmography (PPG) emerges as a convenient technique, playing a sig-
nificant part in wearable health monitoring systems, offering potentially valuable insights into the
cardiovascular system. It continuously provides physiological parameters that can be utilized to es-
timate health information, including heart rate, respiratory rate, and oxygen saturation, contributing
to the comprehensive nature of these health-focused wearables. PPG signal plays a central role in
these estimations due to its non-invasive nature and cost-effective implementation on devices. PPG
works by emitting a light signal onto the user’s skin surface and capturing its reflection/transmission,
which varies proportionally to the blood volume flow in the tissue.
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A major challenge impacting PPG’s on-device and real-world performance is its susceptibility to
noise, including motion artifacts (Chatterjee et al., 2022), which can distort the signal’s morphologi-
cal properties and result in incorrect estimation of the aforementioned physiological variables. Given
the potentially life-threatening consequences associated with inaccurate assessments derived from
these signals, such unreliable performance would be highly inadequate to real-world applications.
The presence of noisy signal sections is the main driving force behind the development of Signal
Quality Assessment (SQA) techniques. This is vital to prevent misinterpretation by distinguishing
between clinically validated trustworthy and untrustworthy segments in PPG. In essence, to enhance
the reliability of such applications, a Signal Quality Classifier (SQC) step is commonly employed,
enabling the differentiation of high-quality signal segments, i.e., suitable for physiological variables’
estimation, from low-quality ones.

1.1 RELATED WORK

Given the significance of classifying signal segments into reliable or unreliable, several researchers
have dedicated valuable efforts to developing classification techniques for signal quality assessment,
as reviewed by Gambarotta et al. (2016). For example, Elgendi (2016) proposed a technique em-
ploying indices to assess quality. Selvaraj et al. (2011) presented a statistical method involving the
calculation of kurtosis and Shannon Entropy to identify motion artifacts and noise in PPG data. Li
& Clifford (2012) introduced an alternate statistical approach, leveraging dynamic time warping to
stretch each heartbeat for alignment with a dynamic template. This method incorporates various
features associated with signal quality. Regarding frequency domain, (?) proposes a classification
method making use of Deep Fourier Magnitude Spectrum. In the classification phase of the ap-
proach described in (Li & Clifford, 2012), a multi-layer perceptron is utilized to comprehend the
correlations among parameters in the context of both high- and low-quality pulses.

Sun et al. (2012) introduced an approach that exploits the morphological features of the signal for
evaluating its quality. Li et al. (2011) identified four waveform characteristics to evaluate signal
quality through the application of a decision tree. Similarly, Sukor et al. (2011) utilized a basic
decision-tree classifier to determine, with pulse-by-pulse precision, whether a particular pulse is
suitable for use or not. Naeini et al. (2019) introduced one of the earliest ML-based methods to
categorize the signal into ‘reliable’ or ‘unreliable’ categories. Recently, Freitas et al. (2023a) and
Freitas et al. (2023b) introduced a SQA technique that transforms PPG signals into two-dimensional
representations and subsequently employs a vision transformer to evaluate their quality. (?) proposes
an ensemble of local magnitude comparison-based feature descriptors for subsequently feeding into
a linear classifier.

Additionally, the work in (Silva et al., 2024) explored the usage of attention-based approaches
of (Bahdanau et al., 2015; Luong et al., 2015; Vaswani et al., 2017) in conjunction with a
Convolutional-based strategy to find an efficient Signal Quality Classifier (SQC) under strict trade-
offs among memory and classification performance, as well as considerations regarding overall
power consumption. In the present work, we enhance the performance and efficiency of CNN-based
approach to PPG SQA by jointly leveraging differential and integral attention layers (Ye et al., 2024)
prior to the final dense layer, as a way to develop an effective SQC capable of being deployed in
real-time HMA of resource-constrained embedded devices.

2 PROPOSED METHOD

2.1 OVERVIEW

In the present work, we concern ourselves with the binary quality classification of online unidimen-
sional PPG signal segments, which is the predominant case for wearable-based PPG sensing. Our
aim is to enhance the capabilities of a compact CNN using a differential attention mechanism (Ye
et al., 2024) for quality classification of PPG sensor data, a functionality widely used in wearable
apps for heart rate and sleep assessment.

Initially, CNNs were proposed for computer vision tasks, automatically extracting local and global
features from images or frames for classification. However, they have expanded to other domains,
including time series classification, such as biomedical ones (Lucafo et al., 2022). Meanwhile, atten-
tion mechanisms originated in natural language processing to overcome the issue of vanishing gra-
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Figure 1: Overview of the proposed PPG classification method.

dients in long-term dependency learning of sequential models (Bahdanau et al., 2015), like RNNs.
They have achieved state-of-the-art performance across various domains, including LLMs (Brown
et al., 2020) and vision-related tasks (Freitas et al., 2023b;a).

We utilize Neural Architecture Search (NAS) techniques and attention mechanisms to identify neural
network solutions that are lightweight yet deliver competitive performance within strict memory and
computational constraints, as shown in Figure 1. Our baseline CNN, also detailed in Figure 1, was
discovered through a NAS process similar to (Lima et al., 2023), specifically tailored for PPG signal
quality assessment rather than systolic peak classification. The additional attention mechanisms we
exploit — Differential Attention and Differential-Integral Attention Layers — will be discussed in
Sections 2.4 and 2.5.

2.2 PREPROCESSING

Regarding the preprocessing used in this work, we start from the Discrete 1-D PPG vector

Y = {yk}
Nsamples−1
0 ∈ RNsamples , (1)

collected with sampling frequency fs = 25Hz.

The considered vector is subject to a windowing operation, resulting in segments of 9 seconds with 3
seconds overlap on each edge, after which we apply an order-2 zero-phase Butterworth bandpass fil-
ter with cutoff frequencies of 0.8 and 4.5Hz. The lower cutoff frequency aims to remove the baseline
wandering while the higher frequency removes environmental noise of high frequency nature.

The segments are, then, further converted to a dataset Y ∈ RN×L composed of N non-overlapping
segments of 3-seconds with signal length of L samples, in the form

Y = {Yk}N−1
k=0 ,with Yk = {yN ·k+j}L−1

j=0 (2)

with L = 3 · fs = 75 samples, and N =

⌊
Nsamples

L

⌋
, for Nsamples the total number of samples.

Each segment is associated with a corresponding binary label, with 0 meaning low-quality (unreli-
able) PPG data and 1 meaning high-quality (reliable) PPG data. A cardiologist provided a sample-
by-sample ground truth of 0s and 1s for the entire dataset. The label of the entire 3-seconds segment
(= 75 samples) could be computed by evaluating the prevalence of samples labelled as 1. If it is
equal or higher than 50%, then the entire segment is considered as having a label 1. Otherwise, the
segment label is assigned to 0.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2.3 TWO-STAGE SIGNAL CLASSIFICATION

A proposed Two-Stage Signal Quality Classification (SQC) pipeline, inspired by (Lucafo et al.,
2022), was considered as a starting point. It has a hierarchical structure composed of an initial
decision stage with the purpose of discarding PPG windows that are most likely to be of low quality
based on the empirical observation of a given valid signal interval. The second stage of the SQC
consists of the classification of the PPG window by a designed Attentive-CNN.

The idea behind the discriminator in the first stage is to analyze each PPG window provided as input
and decide, based on its difference between maximum and minimum values δ, if the whole window
will be considered to be of low quality or possibly a high quality one, as previously presented in the
Materials and Methods section. This decision is assisted by the threshold τ chosen from the earlier
mentioned methods. The results regarding the most empirically reliable thresholds will be further
discussed in the Results section.

The principle of the Attentive-CNN of the second stage is to process the data considered to be of
possibly high quality based on the discrimination stage described above. The stage acts on a more
limited interval, when a more refine analysis is requested to detect subtle waveform differences of
the signal, in order to classify it. Such analysis was found to be more suitable for learning-based
methods.

In this work, we also investigate the impact of this two-stage classification on three state-of-the-art
attention-based PPG classification methods: Additive Attention Layer (AAL), Dot Product Atten-
tion Layer (DPAL) and Non-Scaled Dot Product Attention Layer (NSDPAL), described on (Silva
et al., 2024), besides the composite classifiers Differential Attention and Differential-Integral Atten-
tion Layers to be defined in Sections 2.4 and 2.5, respectively.

2.4 DIFFERENTIAL ATTENTION

The Differential (DIFF) attention mechanism (Ye et al., 2024) works through mapping query, key,
and value vectors to the final outputs, using query and key vectors to compute intermediate attention
scores, which are then used to compute a final weighted sum of value vectors. The most crucial
step of the proposed design is using paired softmax functions for noise canceling in the intermediate
attention scores. The last tanh layer of the CNN from first stage produces vectors X ∈ RN×dmodel ,
with dmodel the hidden dimension of the model, which are considered inputs to the differential
attention mechanism. Such inputs are initially projected to corresponding query vectors Q1, Q2 ∈
RN×d, key vectors K1, K2 ∈ RN×d, and value vectors V ∈ RN×2d. The dimension factor d is
given by d = dmodel/2h, with h the number of attention heads, here set to h = 1. Afterwards, the
differential attention operator DiffAttn(·) calculates the respective outputs as:

[Q1;Q2] = XWQ, [K1;K2] = XWK , V = XWV (3)

DiffAttn(X) =

(
σ

(
Q1K

T
1√

d

)
− λσ

(
Q2K

T
2√

d

))
V, (4)

where σ(·) is the softmax function

σ(zi) =
ezi∑K
j=1 e

zj
, for i = 1, 2, . . . ,K (5)

with WQ, WK , WV ∈ Rdmodel×2d being trainable parameters, while λ is a learnable scalar value.
With the purpose of synchronizing the learning dynamics, the scalar λ is reparameterized as:

λ = e(λq1
·λk1

) − e(λq2
·λk2

) + λinit (6)
where {λq1 , λk1

, λq2 , λk2
} ⊂ Rd are learnable vectors, and λinit ∈ [0, 1] is a constant used for

the initialization of λ. The best value of λinit was empirically searched along the range of [0, 1],
reporting each tested value in the metric tables. The experimental results show that the performance
varies slightly along different values of initialization.

Thus, the Differential attention mechanism computes the difference between two softmax attention
functions, as a way of eliminating attention noise. The proposed idea can be shown to be analogous
to that of differential amplifiers (Laplante, 2018), more commonly studied in the electrical engineer-
ing domain, in which the difference between two signals being taken as output, as a way to do away
with the so-called common-mode noise of the input.

4
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2.5 DIFFERENTIAL INTEGRAL ATTENTION

Differential Integral (DINT) attention (Cang et al., 2025) is an extension of the differential (DIFF)
attention which introduces an additional integral mechanism, that enhances the model’s capability
of extracting globally relevant information while retaining numerical stability through the normal-
ization of rows in the corresponding final attention matrix. The attention matrix A1 of the signal is
calculated using Q1 and K1:

A1 = σ

(
Q1K

T
1√

d

)
(7)

The integral mechanism computes the global attention importance scores through averaging the
signal attention weights across each column:

G =
1

N

N∑
m=1

A1 [m,n] , (8)

with G ∈ R1×N then being expanded for matching the dimensions of the differential mechanism:

Gexpanded = repeat(G,N), (9)

with Gexpanded ∈ RN×N being constructed by repeating G along N rows. Thus, the full
Differential-Integral attention mechanism, represented by the DINT operator, calculates the output
as:

DINT (X) = (Adiff + γGexpanded)V, (10)
with γ being a scalar, Adiff being the differential attention mechanism, and Gexpanded being the
expanded matrix of global importance scores. Usually, λ and γ are set to equal values for ensuring
that the resulting attention matrix Afinal has rows summing up to 1. This normalization of rows
assures numerical stability and consistency along the model, what increases data stability across
layers. This unified configuration follows the method of parameterization used in the original DIFF
Transformer, as a means of further increasing stability during training.

In the present work, we proposed to enhance one-stage and two-stage CNN-based PPG classifica-
tion (Lucafo et al., 2022) by adopting both Differential and Differential-Integral attention mecha-
nisms replacing the GlobalAveragePooling1D layer of the NAS-optimized CNN. We hereby refer to
the two composite classifiers as Differential Dot-Product Attention Layer (DFPAL) and Differential-
Integral Dot-Product Attention Layer (DINTAL), respectively.

3 EXPERIMENTAL SETUP

To assess the performance of the proposed architectures outlined in Figure 3, we compare the iden-
tified neural network classifiers against the state-of-the-art SQC method using the same evaluation
process on four distinct datasets:

• GW5: Comprising 149 sessions lasting approximately 35 minutes each, with 119 utilized
for training and 30 for testing. PPG samples were obtained with Samsung Galaxy Watch 5.

• GW6: Consisting of 94 sessions lasting around 35 minutes each, with 75 dedicated to train-
ing and 19 assigned to testing. PPG readings were collected utilizing a Samsung Galaxy
Watch 6.

• GW7: Including 37 sessions lasting approximately 35 minutes each, with 30 allocated for
training and 7 designated for testing. PPG readings were acquired using a Samsung Galaxy
Watch 7.

• RING: Comprised of 73 sessions lasting roughly 35 minutes each, with 59 reserved for
training and 14 set aside for testing. PPG readings were obtained using a Samsung Galaxy
Ring.

For each Galaxy Watch subject, the PPG sensor was carefully positioned on the wrist over the radial
artery to optimize signal acquisition. For Galaxy Ring subjects, the device was inserted in the
finger which provided the best adherence to the skin. Data was gathered under resting conditions,
with participants instructed to sit or lie down in a quiet environment. The quality of the signals

5
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in the datasets was manually labeled by a cardiologist expert, taking into account the waveform
characteristics and the dataset’s purpose of measuring Interbeat Intervals (IBIs).

The PPG signals were partitioned into non-overlapping 3-second windows, each containing 75 sam-
ples. To prepare for the learning phase, each segment was labeled depending on whether the propor-
tion of high-quality samples exceeded a given threshold: segments with more than or equal to 50%
high-quality signal were classified as ‘reliable’, while others were deemed ‘unreliable’.

For the experiments, we separated the data into training and test sets. Validation subsets were ran-
domly selected from the training set. During training, we utilized data and corresponding labels
from 64% of the subjects in each assessment group. For validation, we chose data from 16% of
the subjects in each group. The remaining 20% of subjects in each group were reserved for testing
the proposed methods and the entire pipeline. It is crucial to note that the signal segments used in
the experiments were organized according to the subject they belonged to. This ensured that there
was no overlap between training and testing sets, preventing potential training biases from influenc-
ing testing results. For our proposed method, we concurrently performed an ablation of the λinit

parameters across the range of values in {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99}.

For implementing the DL models, we used Keras 2.9.0 and Python 3.8.17. For the remaining classi-
fiers, we used scikit-learn 1.3.0. All models underwent 5 trials of 100 training epochs each, with the
resulting test set performance metrics being averaged across all trials. To gauge the performance of
both the proposed and state-of-the-art methods, we compared the predicted quality indices with the
pre-labeled indices provided in the benchmark dataset using Accuracy, Precision, Recall, F1-Score,
AUC, Coverage, Matthews Correlation Coefficient (MCC), and Cohen’s Kappa metrics. For more
information on these metrics, refer to (Dalianis & Dalianis, 2018).

4 EXPERIMENTAL RESULTS

We have implemented 10 models adopting additive attention (AAL), dot-product attention (DPAL),
non-scaled dot-product attention (NSDPAL), differential dot-product attention (DFPAL) and
differential-integral dot-product attention (DINTAL) mechanisms in Attentive-CNN or Two-Stage
architectures. Then, their performance was compared against 6 benchmarks based on convolutional
neural networks (Lucafo1 and Lucafo 2), descriptor features (CASLBP SGD, CASLTP SGD and
LBP SGD) and sets of rules (Hao & Bo), considering the cardiologist label as the ground-truth.

The average performance metrics for our proposed method with DFPAL, as well as baseline out-
of-the-box classifiers and state-of-the-art attention-based PPG classification methods, are shown in
Table 1. It can be observed that architectures adopting DINTAL and DFPAL mechanisms generally
outperform other methods in terms of accuracy, F1-score, AUC, MCC and Cohen’s Kappa.

Regarding model size, Figure 2 shows that the required increase in the model total size of the pro-
posed composite DFPAL and DINTAL methods is not proportionally substantial when compared to
the attention-based state-of-the-art comparison methods. The increase in model size is significative
when compared with lower-performing methods, such as LBP, CASLBP and CASLTP. When mem-
ory and computational burden restrictions are too strict, such memory-performance trade-offs may
have to be taken into consideration.

Analysing the impact of λinit parameter on the test set metrics of the model, Figures 3, 4, 5, and
6 show how the performance metrics vary with such free parameter in each dataset. The values of
accuracy, precision, recall and F1-score are generally stable, while AUC, MCC and Cohen’s Kappa
may vary substantially. Two-Stage architectures adopting DFPAL and DINTAL mechanisms are
considerably more sensitive to λinit selection than Attention-CNN architectures. Hence, fine-tuning
step can be critical for the desirable high performance in such cases.

5 CONCLUSIONS

Wearable health monitoring apps benefit greatly from PPG technology, especially when worn on
the wrist. Its configuration is simple, convenient, low-complexity, and cost-effective. Despite these
advantages, PPG signals are vulnerable to significant degradation due to various factors, primarily
motion artifacts, which can distort the waveform morphology, impacting subsequent signal analysis.

6
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Dataset Model Accuracy Precision Recall F1-Score AUC Coverage MCC Kappa
GW5 Att-CNN+DFPAL 0.9736 0.9797 0.9964 0.9864 0.7330 0.9830 0.5714 0.5562

Att-CNN+DINTAL 0.9737 0.9796 0.9961 0.9865 0.7318 0.9825 0.5740 0.5584
Two-Stage+DFPAL 0.9709 0.9887 0.9914 0.9849 0.8406 0.9761 0.5829 0.5778
Two-Stage+DINTAL 0.9695 0.9873 0.9871 0.9842 0.8265 0.9697 0.6020 0.5979
Att-CNN+AAL 0.9722 0.9765 0.9951 0.9857 0.6904 0.9808 0.5285 0.4937
Att-CNN+DPAL 0.9732 0.9783 0.9942 0.9862 0.7148 0.9781 0.5582 0.5352
Att-CNN+NSDPAL 0.9734 0.9791 0.9936 0.9863 0.7249 0.9767 0.5676 0.5500
Two-Stage+AAL 0.9707 0.9803 0.9895 0.9848 0.7396 0.9715 0.5462 0.5325
Two-Stage+DPAL 0.9632 0.9816 0.9803 0.9808 0.7523 0.9614 0.5124 0.4911
Two-Stage+NSDPAL 0.9708 0.9801 0.9897 0.9849 0.7376 0.9719 0.5466 0.5333
Lucafo1 (Lucafo et al., 2022) 0.9720 0.9794 0.9918 0.9855 0.7284 0.9746 0.5526 0.5398
Lucafo2 (Lucafo et al., 2022) 0.9677 0.9778 0.9890 0.9833 0.7056 0.9736 0.4866 0.4622
CASLBP SGD (Garcia Freitas et al., 2025) 0.9647 0.9710 0.9930 0.9819 0.6174 0.9841 0.3584 0.3238
CASLTP SGD (Garcia Freitas et al., 2025) 0.9631 0.9643 0.9986 0.9812 0.5260 0.9967 0.0774 0.0711
LBP SGD (Garcia Freitas et al., 2025) 0.9638 0.9700 0.9932 0.9814 0.6033 0.9854 0.2944 0.2740
Hao & Bo (Hao & Bo, 2021) 0.5808 0.9702 0.5823 0.7278 0.5619 0.5776 0.0477 0.0209

GW6 Att-CNN+DFPAL 0.7212 0.7351 0.9985 0.8147 0.6378 0.9806 0.3342 0.2841
Att-CNN+DINTAL 0.7194 0.7571 0.9982 0.8104 0.6484 0.9825 0.3367 0.2922
Two-Stage+DFPAL 0.8967 0.9301 0.9234 0.9192 0.8925 0.6468 0.7786 0.7776
Two-Stage+DINTAL 0.8952 0.9274 0.9227 0.9183 0.8897 0.6475 0.7733 0.7733
Att-CNN+AAL 0.6915 0.7033 0.9511 0.7996 0.5909 0.8857 0.2703 0.1910
Att-CNN+DPAL 0.6598 0.6563 0.9832 0.7871 0.5345 0.9583 0.1713 0.0853
Att-CNN+NSDPAL 0.6891 0.6911 0.9691 0.8017 0.5806 0.9110 0.2528 0.1737
Two-Stage+AAL 0.8967 0.9183 0.9210 0.9194 0.8872 0.6419 0.7765 0.7755
Two-Stage+DPAL 0.8931 0.9158 0.9174 0.9165 0.8837 0.6409 0.7684 0.7679
Two-Stage+NSDPAL 0.8962 0.9172 0.9210 0.9190 0.8866 0.6423 0.7748 0.7745
Lucafo1 (Lucafo et al., 2022) 0.7006 0.7069 0.9427 0.8035 0.6068 0.8657 0.2847 0.2318
Lucafo2 (Lucafo et al., 2022) 0.8960 0.9266 0.9099 0.9179 0.8906 0.6284 0.7767 0.7758
CASLBP SGD (Garcia Freitas et al., 2025) 0.8487 0.8709 0.8965 0.8835 0.8302 0.6586 0.6688 0.6681
CASLTP SGD (Garcia Freitas et al., 2025) 0.6396 0.6396 1.0000 0.7802 0.5000 1.0000 0.0000 0.0000
LBP SGD (Garcia Freitas et al., 2025) 0.8545 0.8794 0.8954 0.8873 0.8386 0.6514 0.6824 0.6821
Hao & Bo (Hao & Bo, 2021) 0.4109 0.9395 0.0844 0.1549 0.5374 0.0575 0.1542 0.0552

GW7 Att-CNN+DFPAL 0.9555 0.9551 1.0000 0.9762 0.7473 0.9942 0.6738 0.6325
Att-CNN+DINTAL 0.9533 0.9547 0.9996 0.9750 0.7444 0.9709 0.6569 0.6202
Two-Stage+DFPAL 0.9623 0.9765 0.9895 0.9796 0.8625 0.9333 0.7405 0.7356
Two-Stage+DINTAL 0.9626 0.9752 0.9887 0.9797 0.8551 0.9327 0.7465 0.7416
Att-CNN+AAL 0.9532 0.9526 0.9985 0.9750 0.7325 0.9589 0.6527 0.6044
Att-CNN+DPAL 0.9521 0.9520 0.9980 0.9745 0.7290 0.9590 0.6444 0.5982
Att-CNN+NSDPAL 0.9503 0.9491 0.9993 0.9735 0.7117 0.9633 0.6276 0.5694
Two-Stage+AAL 0.9599 0.9759 0.9805 0.9782 0.8600 0.9191 0.7380 0.7367
Two-Stage+DPAL 0.9608 0.9677 0.9902 0.9788 0.8176 0.9361 0.7255 0.7153
Two-Stage+NSDPAL 0.9607 0.9754 0.9819 0.9786 0.8580 0.9209 0.7416 0.7393
Lucafo1 (Lucafo et al., 2022) 0.9536 0.9616 0.9888 0.9750 0.7822 0.9407 0.6750 0.6574
Lucafo2 (Lucafo et al., 2022) 0.9607 0.9698 0.9879 0.9788 0.8284 0.9320 0.7290 0.7201
CASLBP SGD (Garcia Freitas et al., 2025) 0.9295 0.9297 0.9984 0.9628 0.5938 0.9824 0.3971 0.2901
CASLTP SGD (Garcia Freitas et al., 2025) 0.9231 0.9231 0.9993 0.9596 0.5517 0.9905 0.1896 0.1535
LBP SGD (Garcia Freitas et al., 2025) 0.9296 0.9292 0.9992 0.9629 0.5904 0.9838 0.3580 0.2760
Hao & Bo (Hao & Bo, 2021) 0.6383 0.9302 0.6536 0.7678 0.5634 0.6428 0.0739 0.0518

RING Att-CNN+DFPAL 0.8794 0.8761 0.9940 0.9279 0.7381 0.9017 0.6105 0.5707
Att-CNN+DINTAL 0.8784 0.8760 0.9934 0.9275 0.7372 0.9013 0.6082 0.5666
Two-Stage+DFPAL 0.9030 0.9479 0.9349 0.9380 0.8663 0.7803 0.7154 0.7152
Two-Stage+DINTAL 0.9045 0.9494 0.9374 0.9390 0.8679 0.7824 0.7183 0.7181
Att-CNN+AAL 0.8776 0.8706 0.9918 0.9272 0.7260 0.8947 0.6043 0.5526
Att-CNN+DPAL 0.8764 0.8696 0.9912 0.9264 0.7240 0.8950 0.6004 0.5500
Att-CNN+NSDPAL 0.8794 0.8723 0.9915 0.9281 0.7306 0.8924 0.6115 0.5632
Two-Stage+AAL 0.8936 0.9492 0.9134 0.9308 0.8673 0.7555 0.7033 0.7003
Two-Stage+DPAL 0.8958 0.9412 0.9252 0.9331 0.8568 0.7718 0.6990 0.6980
Two-Stage+NSDPAL 0.8917 0.9471 0.9133 0.9297 0.8631 0.7572 0.6973 0.6941
Lucafo1 (Lucafo et al., 2022) 0.8836 0.8787 0.9883 0.9302 0.7446 0.8831 0.6262 0.5860
Lucafo2 (Lucafo et al., 2022) 0.8994 0.9417 0.9297 0.9355 0.8592 0.7753 0.7081 0.7066
CASLBP SGD (Garcia Freitas et al., 2025) 0.8424 0.8602 0.9545 0.9048 0.6936 0.8713 0.4753 0.4528
CASLTP SGD (Garcia Freitas et al., 2025) 0.8148 0.8218 0.9821 0.8935 0.5930 0.9421 0.2171 0.2110
LBP SGD (Garcia Freitas et al., 2025) 0.8492 0.8704 0.9493 0.9081 0.7164 0.8563 0.5068 0.4919
Hao & Bo (Hao & Bo, 2021) 0.6180 0.8368 0.6379 0.7239 0.5917 0.5985 0.1536 0.1394

Table 1: Performance comparison of the best DFPAL and DINTAL models, with and without the
Two-Stage Classification pipeline, alongside baseline attention layers (AAL, DPAL, NSDPAL) and
other state-of-the-art methods on benchmark datasets. All methods were trained for five trials over
1000 epochs, with test metrics averaged across trials.

Lucafo1 Lucafo2 LBP SGD CASLBP SGD CASLTP SGD AAL DPAL NSDPAL DFPAL DINTAL Two-Stage AAL Two-Stage DPAL Two-Stage NSDPAL Two-Stage DFPAL Two-Stage DINTAL
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Figure 2: Model Size Comparison across proposed attention-based solutions and state-of-the-art
comparison methods. Both one-stage and two-stage compositions are consdered.
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Figure 3: Performance comparison of DFPAL and DINTAL, with and without Two-Stage Classifi-
cation pipeline, across several values of λinit on GW5 PPG dataset. All the methods were trained
for 5 trials and 1000 epochs. The test set performance metrics were then averaged across all trials.
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Figure 4: Performance comparison of DFPAL and DINTAL, with and without Two-Stage Classifi-
cation pipeline, across several values of λinit on GW6 PPG dataset. All the methods were trained
for 5 trials and 1000 epochs. The test set performance metrics were then averaged across all trials.

Erroneous decisions and misjudgments resulting from unreliable signals are unacceptable for HMA.
Thus, assessing PPG signal quality is essential to prevent misinterpretation and differentiate between
reliable and noisy signals. To address this, in this study we leveraged ML models to develop robust
and high-performing models for classifying PPG segments with the purpose of estimating SQA.

Efficient Differential and Differential-Integral Attentive and Convolutional (CNN)-based ap-
proaches have been explored in this work to classify PPG signal segments as usable or not, further
verifying their effectiveness by applying them to four distinct expert-annotated photoplethysmo-
graphic datasets. The task they performed is framed as a binary classification problem and plays
a vital role in enabling reliable HMA, particularly in wearable devices. By employing NAS-based
techniques, we discovered a baseline CNN architecture that is small enough to be deployed on em-
bedded devices, facilitating real-time wearable HMA. Furthermore, we demonstrate that incorpo-
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Figure 5: Performance comparison of DFPAL and DINTAL, with and without Two-Stage Classifi-
cation pipeline, across several values of λinit on GW7 PPG dataset. All the methods were trained
for 5 trials and 1000 epochs. The test set performance metrics were then averaged across all trials.
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Figure 6: Performance comparison of DFPAL and DINTAL, with and without Two-Stage Classifi-
cation pipeline, across several values of λinit on RING PPG dataset. All the methods were trained
for 5 trials and 1000 epochs. The test set performance metrics were then averaged across all trials.

rating an additional fine-tuned differential attention layer enhances the performance of the baseline
CNN, effectively boosting classification metrics without incurring significant additional computa-
tional costs.

DECLARATION OF GENERATIVE AI AND AI-ASSISTED TECHNOLOGIES IN THE
WRITING

During the preparation of this work the authors used ChatGPT™ and Grammarly™ to review En-
glish usage and grammatical correction. After using these tools, the authors reviewed and edited the
content as needed and take full responsibility for the content of the publication.
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