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Abstract

Graph Neural Networks (GNNs) have become essential in interpreting relational
data across various domains, yet, they often struggle to generalize to unseen graph
data that differs markedly from training instances. In this paper, we introduce a novel
framework called General Retrieval-Augmented Graph Learning (RAGRAPH),
which brings external graph data into the general graph foundation model to improve
model generalization on unseen scenarios. On the top of our framework is a toy graph
vector library that we established, which captures key attributes, such as features and
task-specific label information. During inference, the RAGRAPH adeptly retrieves
similar toy graphs based on key similarities in downstream tasks, integrating the
retrieved data to enrich the learning context via the message-passing prompting
mechanism. Our extensive experimental evaluations demonstrate that RAGRAPH
significantly outperforms state-of-the-art graph learning methods in multiple tasks
such as node classification, link prediction, and graph classification across both
dynamic and static datasets. Furthermore, extensive testing confirms that RA-
GRAPH consistently maintains high performance without the need for task-specific
fine-tuning, highlighting its adaptability, robustness, and broad applicability.

1 Introduction

Graph Neural Networks (GNNs) [5, 48, 97, 63, 126] have recently burgeoned a surge of interest
in both academic and industry communities due to their robust capability to model complex,
real-world data in diverse domains, including societal [72, 55, 80], biochemical [17, 111, 107], and
traffic-related [54, 23, 44, 21] fields and etc [53, 37, 68, 15, 25, 24]. Utilizing a message-passing mech-
anism [48, 29], GNNs have transcended traditional node embedding approaches [28, 79, 95], enabling
the capture of intricate relationships within data through sophisticated architectures and advanced
graph representation learning techniques [48, 50, 54, 18, 97]. However, the challenge of generalizing
GNNs across different modalities, domains [62, 61], and tasks remains largely unexplored [56, 113].
This is in stark contrast to the significant successes of large models such as GPTs [74, 75] in NLP and
Sora [64] in CV, presenting a crucial frontier for further research and realms for graph data generalizing.
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In graph learning tasks, providing the necessary context is crucial for graph generaliza-
tion [129, 51, 73, 134], i.e., retrieve similar shopping context as illustrated in Figure 1 (c).
Therefore, our insight is to enhance the model’s generalization ability and prediction accuracy
by retrieving necessary contexts during graph learning through retrieval. Retrieval-Augmented
Generation (RAG) represents a prominent methodology, significantly augmenting language model
functionalities through the integration of a dynamic retrieval mechanism during the generation process
[135, 77] (e.g., a person asks what animal it is, and we use some visual [138] or text retrieval [2]
methods to retrieve more descriptive features or even the wanted category). RAG enriches not only
accurate and reliable content but also reduces factual errors, addressing challenges such as incorrect
answers, hallucinations, and limited interpretability in knowledge-intensive tasks [40, 2, 1], obviating
the need for updating model parameters and could be generalized even in unseen scenarios.

However, how to enable retrieval-augmented generation for graph learning, i.e., retrieving the user’s
historical purchasing behavior to enhance recommendation ability [30, 113, 35] and identifying fraud
crimes by searching for similar fraudulent relationship behaviors [85, 63], still remains unexplored
and faces the following challenges C1& C2.

C1. The first challenge is how to leverage the retrieved context i.e., features (X) and labels (Y ) into
the GNNs model under dynamic changing scenarios. Previous studies, such as PRODIGY [73],
have adopted the concept of in-context learning (ICL) by constructing consistent and static task
graphs for each specific task or dataset. These task graphs determine labels through the calculation
of similarities using hidden vectors, employing a few-shot learning approach. However, PRODIGY’s
reliance on a fixed set of examples as rules may not sufficiently address and generalize the variety
of scenarios encountered in real-world settings, which is particularly problematic in dynamically
changing environments, as the system focuses primarily on teaching the direct mapping paradigm
from inputs to outputs (X→ Y ), rather than truly integrate the input (X) and output (Y ) data into
the analysis. In contrast to RAG, PRODIGY struggles to incorporate external information (X and
Y ) related to data nodes, which is crucial for enriching the learning process in graph-based systems.

C2. Moreover, it is challenging to develop a tune-free prompt mechanism to support retrieved
knowledge and be applicable to seamlessly switch unseen scenarios and multi-tasks. Numerous
initiatives have been undertaken in the realm of graph pre-training [33, 116, 34, 81, 98, 36, 7, 88, 125],
however, the challenge persists in designing a plug-and-play RAG module that can seamlessly
interface with already pre-trained models. Insights derived from prior investigations into the graph
prompt [9, 26, 90, 65, 113, 20, 94], the knowledge obtained by RAG can be facilitated and injected
into prompt via a plug-and-play manner.

(a) NLP                       
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Figure 1: (a) RAG in NLP utilizes retrieval to enhance model responses,
based on a query to retrieve related features (e.g., a tail, primarily feeds
on mice) and answers (e.g., Cat). (b) In CV, RAG employs similar photo
retrieval to enhance model comprehension, assisting in downstream tasks
such as inpainting or image question answering. (c) For GNNs, RAG
could leverage retrieval of similar historical subgraphs or scenarios to aid
in graph-based tasks (e.g., recommendations or fraud detection).

For endeavoring to ad-
dress these two challenges
previously mentioned, we
put forward the General
Retrieval- Augmented
Graph Learning Frame-
work (RAGRAPH).
Drawing inspiration from
the success of RAG on
LLMs [135] and the
ICL on GNNs [73] (we
detail the difference
between RAG and ICL
in Appendix E), we
constructed a toy graphs
vector library by chunking
from resource graphs,
where the library key
stores key information,
including environmental,
historical, structural, and
semantic details, while
node features and label information (task-specific output vector) are stored as values. For downstream
tasks, the key value of the query node would be leveraged to retrieve toy graphs by the key similarities,
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and the stored features (X) and labels (Y) would be aggregated structurally to provide essential
knowledge to the query node, instead of the mapping paradigm, to address challenge C1. In prompt
mechanism design, we start by transferring features and task-specific output from the toy graphs to
their master nodes (the central node of the toy graph) via message-passing. Subsequently, features
from the master nodes and the query node’s neighbors are aggregated to the query node, along with
the task-specific output from master nodes. This process could be parameter-free, indicating that our
model can be applied across different tasks and datasets without the need to fine-tune for downstream
tasks, effectively addressing challenge C2.

In summary, our contributions are listed as follows:

• To the best of our knowledge, our proposed framework, RAGRAPH, is the first to integrate RAG
with pre-trained GNNs. By constructing a key-value vector library for toy graphs, RAGRAPH
facilitates explicit plug-and-play access to pre-trained GNNs, achieving commendable performance
even without fine-tuning, demonstrating its superiority on cross-task and cross-dataset capabilities.

• Our RAGRAPH employs a classic message-passing mechanism and introduces a well-designed
prompt mechanism to integrate knowledge. This approach effectively incorporates the retrieved
knowledge X and Y from toy graphs, into the pre-trained GNNs model, enhancing the accuracy and
relevance of the model’s outputs.

• We have extensively tested RAGRAPH on both static and dynamic graphs across multiple levels of
graph tasks (node, edge, and graph). The results validate the effectiveness of our model, showing
significant improvements over state-of-the-art baselines in both fine-tuned and tuning-free scenarios,
particularly in cross-dataset validations.

2 Related Work

2.1 Retrieval-Augmented Generation on Large Language Models

RAG integrates an external knowledge retrieval component and through prompt engineering into pre-
trained language models to enhance factual consistency, thus improving the reliability and interpretabil-
ity of LLM responses [131, 135, 49, 22, 43, 118, 57, 110, 127]. Traditional RAG approaches utilize
retriever models to source relevant documents from extensive knowledge corpora [106, 82, 69, 47],
which are then processed further by reader models—primarily LLMs [76, 84]. Furthermore, several
studies focus on fine-tuning reader LLMs by applying prompt-tuning with retrieved knowledge or using
RAG API calls [67, 40, 2, 115, 101, 128, 60]. While RAG has seen considerable success in the NLP
field, it has also been applied to tasks involving joint visual and text retrieval [138, 59, 58, 8, 124, 10],
code retrieval [66, 133], audio retrieval [6, 31] and video retrieval [3, 100]. Although there have been
applications of RAG on structured data such as KG-RAG for knowledge graphs [46, 43, 86, 92, 93, 38],
these primarily leverage the text information of knowledge graph nodes to enhance language or graph
models. In contrast, there are no significant studies utilizing RAG on structured graphs without text
information to enhance pre-trained GNNs. Our work aims to extend this successful approach similarly
to graph data, to enhance the capabilities of pre-trained GNNs, and can be adapted to various tasks and
across different graphs without additional fine-tuning by integrating a plug-and-play RAG module.

2.2 Graph Prompt Learning

Inspired by the application of pre-training models [74, 75] and prompt learning [102, 133, 41] in
NLP, recently, learning on the graph has been divided into pre-training models on large-scale graph
data [33, 116, 34, 81, 73, 130, 104, 89, 119, 121, 122, 120, 123], with or without labels, followed by
fine-tuning model parameters via prompts for diverse downstream tasks [65, 113, 73, 137, 89, 94].
The adoption of prompting mechanisms in graph learning represents a promising avenue to overcome
the constraints of traditional graph representation methods, striking a balance between flexibility and
expressiveness [91]. For instance, VNT [94] utilizes virtual nodes as prompts to refine the application
of pre-trained graph models. GraphPrompt [65] introduces a task-specific readout mechanism to
tailor models for various tasks, while GraphPro [113] implements spatial- and temporal-based gating
mechanisms suited for dynamic recommendation systems. Furthermore, PRODIGY [73] constructs
task graphs (prompts) and data graphs to enhance the model’s ICL capabilities. Leveraging the
successes in graph prompt learning, we aim to inject retrieved knowledge via prompt into pre-trained
GNNs to support downstream tasks.
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3 Preliminaries

In RAGRAPH, we focus on RAG on multi-level graph tasks. For consistency, we define the graphs as
dynamic graphs, considering static graphs as the special cases within this framework. The subsequent
definition provides a detailed description of toy graphs, including the definitions of keys and values
utilized in RAGRAPH. Additionally, inspired by GraphPrompt [65], we have unified node-level, edge-
level, and graph-level tasks into a cohesive framework, and employ query graphs to tackle downstream
tasks with precision.

Definition 1. (Dynamic Graph) Let G={Gt}Tt=1 denote a dynamic graph comprising a sequence of
graph snapshots, each represented as a static graph Gt=(Vt,Et,Xt,At,Yt). V=

⋃T
t=1Vt={v1,...,vn}

defines the combined set of nodes across all snapshots and E =
⋃T

t=1Et ⊆ V ×V is the edge set,
where Vt and Et represent the nodes and edges of the t-th snapshot, respectively. Feature matrix
Xt= {xv | v∈V}∈Rn×d contains the feature vectors for the nodes in the t-th snapshot, where d is
the feature dimension. At denotes the edge weight matrix at time t, where edge weight At[i,j]∈(0,1]
if vi,vj ∈ Vt and (vi,vj) ∈Et, and 0 otherwise. Furthermore, Yt represents the task-related labels
associated with nodes, edges, or the graph at time t. Note that a graph is static if T = 1 and for
consistency in terminology, we unify static graphs as a particular instance of dynamic graphs.

Definition 2. (Toy Graph Vector Base) Let GR = {GR
t }Tt=1 denote a dynamic resource graph.

We chunk GR into snapshots and take each node in GR as the master node vm of the corresponding
toy graph, and then store vm with its neighbors within k hops as subgraphs. Data augmentation
techniques [54, 132] such as node dropout, edge dropout, and random noise addition are employed on
subgraphs to enhance the robustness and variability when generating each toy graphGT (c.f. Section 4.1
for details). Each toy graphGT ⊆GR is associated with a specific timestamp τ and master node vm∈V ,
with each toy graph’s scale being considerably smaller in scale compared to their corresponding GR.
❶ Toy graphs can be retrieved using keys that include the timestamp τ , the hidden embedding of the
master node hτ

m∈Rf1 (e.g., embedded by pre-trained GNNs in RAGRAPH), the environmental key
(e.g., the neighbors setN (vτm)={vτi |Aτ [m,i]>0,vτi ∈GT }) and the structure-based position-aware
code sτm (cf. Appendix C.2 for details). ❷ By retrieving based on key similarity (c.f. Section 4.2 for
details), we can obtain the required values of GT , i.e. task-specific output vector {oτi ∈Rf2 |vi∈GT }
and hidden embeddings {hτ

i ∈Rf1 |vi ∈GT } of the master node and its neighbors, where f1 and f2
represent the dimensions. Finally, we denote the key-value vector base for the toy graph as GT .

Definition 3. (A Unified Graph Task Definition) Given a dynamic graph G, it can be divided into
training and testing subsets, i.e. G=Gtrain∪Gtest based on either snapshot or node set partitioning. The
label yi of a node vi, edge (vi,vj) or subgraph Gi can be observed only if they belong to Gtrain. The
objective of label prediction is to predict test labelsYtest∈Gtest. Following GraphPrompt [65], we unify
the three types of graph learning tasks (node-level, edge-level, and graph-level) into a single framework
via similarity comparison sim(·,·) of the task-specific output vector (abbreviated as O, where each
entry is o) with the ground-truth (i.e., the one-hot vector or the prototype embedding under few-shot
setting). It’s noted that o can be either low-dimensional (with the dimension equal to the number of
predicted classes) under normal settings [48, 126], or high-dimensional under few-shot settings [65]
or in link prediction tasks [113, 30]. In our experiment, ❶ for node-level and graph-level tasks, the
downstream tasks are given in few-shot settings following [65]: For node / graph classification on a
node / graph set, let C be the set of classes with yi ∈C denoting the class label of node / graph. For
each node / graph class, the class prototypical output vector is calculated by the mean value of the
κ-shot setD: õc= 1

κ

∑
(i,yi)∈D,yi=coi. The class yi of the node or graph is determined by calculating

similarity with the class prototype as: yi=argmaxc∈Csim(oi,õc). ❷ For edge-level tasks, to predict a
link between nodes vi and vq , if ∃vj ,(vi,vj)∈Etrain∈Gtrain and sim(oi,oq)≥sim(oi,oj)+ϵ, we regard
(vi,vq) as linked. Following PRODIGY [73] and GraphPrompt [65], we also apply a query graph GQ

that includes the center node and its neighbors within k hops. Specifically, for graph-level task, we
apply a full-link virtual node as the center node inside the query graph GQ.
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4 RAGRAPH Framework

In this section, we introduce RAGRAPH, a general and novel retrieval-augmented graph learning
framework that can operate on arbitrary graphs with or without additional fine-tuning, as illustrated
in Figure 2. Initially, in Section 4.1, we elucidate the methodology for constructing the Resource
Toy Graphs. Subsequently, in Section 4.2 we detail the Toy Graphs Retrieval Process. Finally, the
Training and Inference processes are elaborated in Section 4.3, which utilize retrieved toy graphs
from two propagation views—intra and inter-propagation—and handle two types of information:
hidden embeddings and task-specific output vectors in two techniques (noisy trainable approach or
parameter-free approach). The main notations of RAGRAPH are summarized in Table 3, Appendix A.
For enhanced clarity, the Toy Graph Construction is outlined in Algorithm 1 (cf. Appendix C.5) and
the Training and Inference with Toy Graphs Retrieval are detailed in Algorithm 2 (cf. Appendix C.5).
Moreover, in Appendix C.4, we theoretically prove the effectiveness of applying RAG on GNNs from
the perspective of mutual information gain.
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Store Values
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Figure 2: The overall framework of RAGRAPH. ❶ Given resource graph GR, we chunk it and augment
toy graphs {GT }, and feed them into pre-trained GNNs to generate hidden embeddings via the encoder
and task-specific output vectors via decoder, which are stored as values. Keys such as environment,
history, position-aware, and hidden embeddings are stored to form the key-value database of toy graphs
GT . ❷ For a given query graph GQ, the keys are fetched to retrieve the topK toy graphs GT

topK from
the database. ❸ Leveraging GT

topK, intra- and inter-propagation are performed to propagate hidden
embeddings and task-specific output vectors to pass retrieved knowledge to center node vc. Through a
weighted fusion, the aggregated output is used to perform graph-, node- and edge-level tasks.

4.1 Toy Graphs Embedding Pipeline

In graph-based learning, nodes with higher connectivity—typically with higher degrees—often hold
more significance, meaning their information is more extensively learned during graph-pre-training
processes. Conversely, less important nodes—those in the long tail—often have their features over-
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looked. This issue is particularly pronounced in LLMs performing RAG, where the predominance of
common knowledge overshadows the long-tail knowledge that RAG is meant to leverage. To tackle
this, we construct toy graphs using an inverse importance sampling strategy, thereby countering this
bias by preferentially sampling and augmenting toy graphs that accentuate the long-tail knowledge.

Inverse Importance Sampling Strategy. To achieve this, we calculate each node’s importance I(v)
for node v ∈GR

τ by combining PageRank PR(v) and Degree Centrality DC(v) using the formula
I(v)=αPR(v)+(1−α)DC(v), whereα∈(0,1) is the balance weight. We reverse the node importance
with I ′(v)= 1

I(v)+ϵ ,ϵ→0, normalize it to obtain node vi ’s sampling probabilities pi=
I′(vi)∑n
j=1I

′(vj)
, and

perform weighted sampling function WEIGHTEDSAMPLING(GR
τ , pi) to prioritize nodes with higher

sampling probability (lower importance) according to pi. When sampling, for each master node vm,
we generate its k-hop neighbors, termed an ego net Ge

τ (vm). Given the constrained size of the resource
graph, we adopt data augmentation techniques commonly used in contrastive learning [54, 117, 116] to
enhance the representativeness and diversity of the resultant toy graphs.

Toy Graphs Augmentation Strategy. For augmentation, we first calculate the average reversed
importance Ī ′(Ge

τ (vm)) of the nodes within an ego graph as Ī ′(Ge
τ (vm))= 1

|Ge
τ (vm)|

∑
v∈Ge

τ (vm)I
′(v),

which then determines the number of augmentations naug(G
e
τ (vm)) = ⌊K · Ī ′(Ge

τ (vm))⌋, where K
is a scaling constant that adjusts the intensity of the augmentation. For node vi,vj ∈Ge

τ (vm), the
augmentation techniques DATAAUGMENTATION(Ge

τ (vm), naug) employed include:

• ❶ Node Dropout: vi∈Ge
τ (vm) has a probability of being dropped: p(vi being dropped)=1−pi.

• ❷ Addition of Gaussian Noise: we add gaussian noise to node features as augmentation X ′(vi)=
X(vi)+N (0,σ2).

• ❸ Node Interpolation: a new node feature X ′(vnew) is created by linearly combining the features
of two existing nodes vi and vj , calculated as X ′(vnew) = λX(vi)+ (1−λ)X(vj),vi,vj ∈ GT .
And the edge weight between the new node vnew and node vi is updated to λA[i,j] and node vj is
(1−λ)A[i,j] accordingly [108].

• ❹ Edge Rewriting: we alter connections based on the average of the involved nodes’ sampling
probabilities, expressed as p((vi,vj) being rewired)= pi+pj

2 .

Key-Value Pairs Construction. After completing the sampling and augmentation procedures, the
generated toy graphs are transformed into key-value pairs for storage [109]. Specifically, we collect
each master node’s vm historical information (timestamps τ ), environmental information (neighbors
N (vτm)), structural encodings sτm (as described in the Appendix C.2), and the hidden embeddings hτ

m
(obtained by processing the toy graph through the frozen pre-trained GNNs) and store them as keys at
the master node vm of the toy graph. Additionally, we store task-specific output vectors {oτi |vi∈GT }
and hidden embeddings {hτ

i |vi ∈GT } as values at each node of the toy graph. For storage of these
key-value pairs, we utilize the FAISS vector library [14] to facilitate accelerated retrieval and storage.

4.2 Toy Graphs Retrieval Process

After constructing the key-value toy graphs vector database, we proceed with the retrieval process for
sub-tasks according to the four sub-similarities between the key values of the master node vm in the toy
graph and the center node vc in the query graph, as detailed in Appendix C.3. The final similarity score
is a weighted combination of these factors, and the topK toy graphs are selected as the retrieval results:

S(vc,vm)=w×[Stime(vc,vm),Sstructure(vc,vm),Senvironment(vc,vm),Ssemantic(vc,vm)]T, (1)

where w = [w1,w2,w3,w4] are the hyper-parameterized weights attributed to the time, structure,
environment, and semantic similarities, respectively. Using this composite similarity, we rank and
retrieve the topK toy graphs:

GT
TopK=TopKGT ∈GT S(vc,vm), (2)

where GT
TopK represents the subset of toy graphs that best match the query based on the combined

criteria. This process ensures that we retrieve the most relevant toy graphs based on a comprehensive
similarity measure, incorporating historical, structural, and environmental information.
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4.3 Training and Inference

In Section 4.3.1, we detail the Knowledge Injection Propagation process, which includes two distinct
propagation manners. Next, in Section 4.3.2, we present our approach for combining the retrieved
hidden embeddings with the task-specific output vectors. Additionally, to enhance the robustness of
RAGRAPH, a noise-based prompt tuning strategy is introduced in Section 4.3.3.

4.3.1 Knowledge Injection Propagation

After retrieving the topK toy graphs GT
TopK, knowledge, specifically the task-specific output vectors O

and hidden embeddings H , is propagated from these toy graphs to the master nodes (Toy Graph Intra
Propagation) and then to the center node vc (Query-Toy Graph Inter Propagation). This propagation
utilizes message-passing mechanisms via GNNs (cf. Appendix C.1). Each master node vm in the toy
graphs is connected to the center node vc of the query graph based on the similarity scores S(vc,vm)
computed in Eq.(1) and the connection weights dictate the influence of each toy graph, ensuring that
graphs with higher similarity have a more substantial impact. This process can be implemented using
either a parameter-free or a learnable approach. Moreover, it is worth noting that for learnable methods,
the parameters of GNN are different.

❶ Toy Graph Intra Propagation Within each toy graph, information z is propagated from neighbors
to the master node using pre-trained GNNs. The task-specific output vectors o and hidden embeddings
h from the neighbors are aggregated and transmitted to the master node. For each node vi in a toy graph
GT , the GNN aggregates information from its neighborsN (vi) to update the master node vm:

zm=GNN({zi |vi∈N (vm)}), (3)

where zi and zm represent the hidden embeddings hi,hm or task-specific output vectors oi,om of the
neighbor nodes and master node, respectively. For parameter-free situations, we can prepare zm in
advance when constructing the toy graph to improve inference efficiency.

❷ Query-Toy Graph Inter Propagation Next, information from the toy graphs is aggregated to the
query graph. Specifically, during propagation, information z from the neighbors and master node of
the toy graph is propagated to the center node using the same pre-trained GNNs. For a center node vc in
the query graph GQ, the GNN aggregates hidden embeddings H from its neighborsN (vc) and the
master node vm from the toy graph:

hc=GNN({hi |vi∈N (vc)∪{vm}}). (4)

When propagating the task-specific output vector O, only the master node’s information is passed to
the center node:

oc=GNN({oi |vi∈{vm}}). (5)
For scenarios where the propagation mechanism is learnable, attention mechanisms can be adapted on
the edges. In parameter-free scenarios—where there are no learnable weights—the attention on the
edges is determined based on the edge weights from the previous resource graph.

4.3.2 Knowledge Fusion Layer

Finally, at the data fusion layer, the aggregated hidden embeddings H of the center node vc are
processed through the pre-trained GNN’s decoder DECODER(·) to obtain an output vector O. This
output vector is then combined with the aggregated task-specific output vector in a weighted manner to
produce the final output for downstream tasks as illustrated in Definition 3. The combined output is
formulated as follows:

ôc=γoc+(1−γ)DECODER(hc), (6)
where γ is a reweighting hyper-parameter. The resulting vector ôc is then utilized to perform node-,
graph-, or edge-level tasks via a similarity function.

For the same task, the decoder can be directly used to generate outputs. For different tasks, the decoder
can be masked, allowing the model to utilize pre-computed embeddings without additional training.
Furthermore, the decoder can be fine-tuned to better meet the specific requirements of each task,
providing both flexibility and optimized performance. This approach ensures that the model effectively
integrates and leverages information from both the toy graphs and the query graph, enhancing its
effectiveness in various downstream tasks through the use of the aggregated task-specific output vector.
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4.3.3 Noise-based Graph Prompting Tuning

When prompt tuning, RAGRAPH employs the same prompt loss functionLprompt as the backbone model
(e.g., GraphPro, GraphPrompt). However, to mitigate the challenge of noise retrieval—a common issue
in traditional RAG where highly related but irrelevant data is often retrieved—we enhance the training
process by incorporating noise data to bolster model robustness, motivated by [53]. Specifically, we
implement two types of noise integration strategies:

• ❶ Inner-Toy-Graph Noise: This strategy involves artificially introducing irrelevant nodes (vj /∈
Ge

τ (vm)) into the toy graph during its construction, complementing other augmentation techniques.
• ❷ Toy-Graph Noise: Throughout the training phase, we not only retrieve the topK toy graphs

that are most relevant but also deliberately include the bottomK toy graphs to incorporate noise
knowledge.

The integration of these noise elements is intended to enhance the model’s ability to distinguish relevant
information from irrelevant information, significantly improving its robustness and overall performance
in downstream tasks by noise training. However, during the inference stage, we do not incorporate the
noise.

5 Experiments

In this section, we conduct a series of experiments to evaluate the performance of RAGRAPH against
state-of-the-art baselines on three dynamic and five static datasets on three-level graph tasks. Further
details and experiment results are provided in Appendix D.

5.1 Experimental Setup

Datasets. We use four static datasets PROTEINS, COX2, ENZYMES and BZR for graph classification
and node classification, as well as three dynamic datasets TAOBAO, KOUBEI and AMAZON for link
prediction. More details about these datasets can be found in Table 4 in Appendix D.1.

Methods and Baselines. We consider three versions of our proposed framework RAGRAPH: 1)
RAGRAPH/NF, which indicates we utilize the plug-and-plag RAGRAPH without fine-tuning on
the train set; 2) RAGRAPH/FT, which employs prompt tuning on the train set with RAG; and 3)
RAGRAPH/NFT, which applies noise prompt tuning on the train set with RAG. For the baseline of the
dynamic graph, we choose LightGCN [30], SGL [103], MixGCF [39], SimGCL [117], GraphPro [113]
and GraphPro+PRODIGY [73]. For the static graph, we choose GCN [48], GraphSAGE [29],GAT [97],
GIN [105], GraphPrompt [65], GraphPrompt+PRODIGY [73] as baselines. In addition, we denote
’/NF’ and ’/FT’ respectively to represent without fine-tuning and fine-tuning. A detailed description of
baselines can be referred to in Appendix D.3.

Settings and Evaluation. We establish a training-resource split with the remainder of the data
reserved as unseen during fine-tuning. For static graphs, the split is based on node partitioning with
the ratio of 50%:30% [65], while for dynamic graphs, it is based on partitioning snapshots with the
history snapshots as resource graph [73]. For fair comparisons, for methods employing PRODIGY and
RAGRAPH, ❶ we fine-tune models using the training set while retrieving the resource graph to prevent
information leakage and over-fitting; ❷ when testing, we retrieve the combined training and resource
graphs. For other methods, fine-tuning was directly performed on the combined train and resource set
for fairness. For the evaluation of static graphs, we refer GraphPrompt, utilizing pre-trained GNNs for
both node- and graph-level tasks within a k-shot classification framework. For dynamic graphs, we
follow GraphPro to employ pre-trained GNNs on a substantial dataset fraction, with fine-tuning and
testing conducted on later snapshots. Moreover, we pre-train GraphPro and GraphPrompt unsupervised
on other datasets within the similar domain following [65, 73] to avoid information leakage. For
classification tasks, we utilize the accuracy as evaluation matric; For link prediction tasks, we use
standard metrics Recall@k and nDCG@k at k=20, in line with existing methodologies [30, 103, 117].
The metrics used in the experiment are detailed in Appendix D.2 and the implementation details of
RAGRAPH and baselines are in Appendix D.4.
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Table 1: Accuracy evaluation on node and graph classification. All tabular results (%) are in mean±
standard deviation across five seeds run, with best bolded and runner-up underlined.

Methods
Node Classification Graph Classification

PROTEINS ENZYMES PROTEINS COX2 ENZYMES BZR
(5-shot) (5-shot) (5-shot) (5-shot) (5-shot) (5-shot)

GCN 46.63±03.04 52.80±12.89 54.80±06.64 67.87±03.39 22.67±05.20 58.76±05.08

GraphSAGE 48.87±02.64 48.75±01.59 52.99±10.57 67.02±05.42 21.17±05.49 58.27±04.79

GAT 48.13±07.90 47.75±01.23 55.82±07.31 64.89±03.23 20.67±03.27 57.04±06.70

GIN 49.61±01.58 48.82±01.58 56.17±08.58 62.77±02.85 19.00±03.74 56.54±04.20

GraphPrompt+

Vanilla/NF 44.88±13.17 48.81±01.88 56.68±03.63 53.04±04.13 36.50±03.31 68.77±03.44

Vanilla/FT 48.99±01.88 51.99±01.36 57.04±03.88 64.04±08.20 40.00±04.36 69.01±02.21

PRODIGY/NF 47.32±08.12 43.80±14.03 53.48±06.72 53.97±10.34 22.12±13.84 67.18±08.93

PRODIGY/FT 53.26±06.42 57.98±12.37 57.14±10.34 65.31±04.28 25.94±05.12 68.08±06.68

RAGRAPH/NF 56.12±04.11 75.92±01.72 58.48±03.93 55.32±04.15 38.17±03.39 77.53±05.26

RAGRAPH/FT 58.74±00.87 75.74±01.92 62.33±02.52 76.60±02.30 47.71±06.88 76.79±05.02

RAGRAPH/NFT 59.83±00.40 76.23±01.63 59.08±03.50 71.70±04.29 49.17±04.64 74.81±04.25

5.2 Retrieval-Augmented Graph Results

As discussed, we conduct experiments and report the results of the three graph tasks for static graph
and dynamic graph, as illustrated in Table 1 and Table 2. From the reported accuracy, we can find the
following observations:

Outperforming SOTA Methods. First, our proposed RAGRAPH outperforms almost all the base-
lines across the three graph tasks, demonstrating the effectiveness of RAGRAPH in transferring
knowledge from the pre-training to downstream tasks compared to traditional GNNs i.e., GCN and
GraphSAGE. It achieves the highest average accuracy across almost all tasks on ENZYMES, with
an improvement of at least 5.19% in the static graph, and up to 1.81‰ on the dynamic graph over
the best baseline PRODIGY/FT. We argue that by virtue of the integration of hidden embedding and
task-specific output vector, RAGRAPH is able to comprehend more knowledge than simply learns the
paradigm from X→Y . Second, compared with the models of PRODIGY/NF and RAGRAPH/NF,
the introduction of noise training in noise prompt tuning also improves the robustness of the model,
avoiding the influence of a large amount of noise on the information aggregation inside the query graph.

0 1 2 3 4 5
k

40

45

50

55

60

65

70

75

80

A
cc

ur
ac

y 
(%

)

PROTEINS ENZYMES
0 1 5 10 15 20

topK

40

45

50

55

60

65

70

75

80

A
cc

ur
ac

y 
(%

)

PROTEINS ENZYMES

Figure 3: Hyper-parameter study with hopsk (Left) from 1
to 5 andtopk from 1 to 20 (Right) on node classification with
PROTEINS, and ENZYMES datasets with the setting in Table 1.

Strong Retrieval-Augmented Perfor-
mance on Unseen Datasets. We ob-
serve that PRODIGY/NF and RA-
GRAPH/NF are better to Vanilla/NF, in-
dicating that the retrieval knowledge
truly works when testing on unseen
datasets. Moreover, the difference be-
tween PRODIGY/NF and PRODIGY/FT
is much greater than that of RAGRAPH,
which also indicates that a simple learn-
ing paradigm for ICL is not enough
and that RAGRAPH can achieve accept-
able results even on unseen downstream
datasets without the need for sophisti-
cated fine-tuning.
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Table 2: Performance evaluation (‰) on link prediction.

Method TAOBAO KOUBEI AMAZON

Recall nDCG Recall nDCG Recall nDCG

LightGCN 22.47±02.53 21.89±02.80 30.21±06.45 22.24±05.83 15.07±06.48 06.53±02.66

SGL 22.15±02.20 22.12±03.09 35.54±05.18 25.39±06.25 15.78±07.12 07.90±02.49

MixGCF 22.84±02.15 23.05±03.87 34.83±06.06 25.98±06.08 15.24±08.98 07.40±03.44

SimGCL 22.18±02.22 23.15±02.75 33.32±06.64 25.18±05.04 16.10±07.91 07.58±03.51

GraphPro+

Vanilla/NF 20.10±02.07 20.15±02.45 28.42±04.21 20.09±03.26 12.09±07.72 05.45±03.36

Vanilla/FT 26.58±01.11 26.22±01.85 36.17±02.43 26.13±03.73 15.61±04.16 08.01±02.03

PRODIGY/NF 21.67±01.42 23.15±03.20 29.02±04.82 20.67±02.31 11.88±02.61 05.84±01.84

PRODIGY/FT 27.05±01.76 23.68±02.85 38.83±04.76 27.68±03.12 16.72±04.28 08.09±02.66

RAGRAPH/NF 20.31±01.60 20.45±01.44 29.24±01.45 21.60±02.91 12.40±07.40 06.16±03.81

RAGRAPH/FT 26.18±03.42 24.30±01.21 37.92±03.71 26.34±04.33 17.68±07.47 08.76±03.98

RAGRAPH/NFT 27.53±02.24 26.47±01.29 37.98±03.65 27.13±05.17 18.53±04.63 09.02±02.45

5.3 Hyper-parameter Study

In this section, we examine the impact of various hyper-parameters on RAGRAPH. We specifically
analyze the effects of varying the number of hops k in toy graphs from the list [1,2,3,4,5] and the
number of linked toy graphs topK from the list [1,5,10,15,30,50] to verify the sensitive:

Figure 3 (Left) illustrates relationships between accuracy and the toy graph hop k. We observe
that as k increases, the volume of retrieved knowledge grows exponentially. However, an excessive
accumulation of knowledge not only fails to enhance accuracy but also introduces increased irrelevant
noise that burdens the GNNs. Notably, accuracy shows a trend of initial improvement followed by a
decline as k is increased. This pattern suggests that at lower k values, the retrieved information tends to
consist of isolated, less useful knowledge. In contrast, at higher k values, the GNNs struggle to process
extensive reasoning chains, leading to the utilization of complex and abundant information that is less
effective than even the baseline model’s performance. Figure 3 (Right) shows effects on accuracy with
different numbers of toy graphs topK. As with the previous figure, increasing topK demonstrates that
an excessive amount of knowledge can hinder the GNNs’ comprehension capabilities. Conversely,
smaller topK results in insufficient knowledge to enhance performance on downstream tasks.

6 Conclusion

We introduced RAGRAPH, a novel and general framework that enhances Graph Neural Networks
(GNNs) by integrating Retrieval-Augmented Generation (RAG) techniques. This plug-and-play
approach improves GNNs’ ability to generalize to unseen data by retrieving relevant information.
Experimental results show that RAGRAPH outperforms state-of-the-art methods in various graph
learning tasks, demonstrating its adaptability and robustness. While RAGRAPH is currently limited to
retrieving subgraphs, future research could explore using more graph-structured data such as nodes,
edges, and trees to further enhance its capabilities. In general, our work provides valuable insights and
serves as a reference for future Large Graph Models.
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A Notations

The notations in this paper are summarized in Table 3.

Table 3: Notations Tables in RAGRAPH
Notation Definition
G / V / E The dynamic graph / node / edge set with Gt/ Vt / Et as its entry
GR The resource graph with GR

t as its entry
GQ The query graph with vc as its center node
GT The toy graph database

GT
TopK The topK retrieved toy graphs
GT The toy graph

Ge
τ (vm) k-hop ego net for node vm

Xt / At / Yt The feature / edge weight / label matrix at time t
C The set of label classes
N (v) The neighbors of node v
H / O The hidden embeddings / task-specific output vector with hi / oi as its vi vector
D The κ-shot labeled set
t/τ Timestamp
n Number of nodes
d The dimension of node feature
vi The i-th node

vm/vc The master node of toy graph / The center node of toy graph
f1/f2 The dimension of hidden embedding / task-specific output vector
ϵ The minimum value
k k hop

I(v) The node importance for node v∈GR

PR(·)/DC(·) The PageRank / Degree Centrality value
pi The sampling probability of node vi
K The scaling constant

naug(G
T ) The number of augmentations of toy graph GT

S(vc,vm) The weighted similarity between query node vc and master node vm
l The layer of a GNN
α The balance weight with α∈(0,1)
λ The weight of mixup
wi The weights of the time, structure, semantic, and environment similarities
γ The reweight hyper-parameter

B More Motivation Details

B.1 Why Toy Graph Augmentation is needed

The reasons for toy graph augmentation:

• Expanding toy graph base, enriching the scale of the knowledge repository [114].

• Simulating Real-World Scenarios: Real-world graphs often encounter challenges such as missing
nodes [42], noisy attributes [52], and unexplored connections [96]. We introduce node dropout, noise
injection, and edge removal to simulate these scenarios accurately.

• Addressing Graph Domain Shift: To mitigate domain shift between the graph knowledge base and
testing graphs, our augmentations employ Mixup techniques such as Node Interpolation and Edge
Rewiring. These techniques interpolate between training samples to generate synthetic samples,
effectively smoothing decision boundaries in embedding and reducing the model’s sensitivity to
minor variations in input data, thereby stabilizing predictions on domain shift testing samples [108].

19



B.2 Why Noise-based Graph Prompt Tuning is needed

To address inherent challenges in toy graph quality, we introduce Noise-based Graph Prompting
Tuning (c.f. Section 4.3.3). This method involves fine-tuning the model with artificially introduced
noisy toy graphs (Inner-Toy-Graph Noise & Toy-Graph Noise), inspired by noise-tuning techniques in
NLP [19, 12, 115]. Our approach enhances the model’s robustness against real-world retrieval noise,
as evidenced by superior performance compared to traditional tuning methods (in Main Text Tables
1 and 2). This approach reduces the stringent requirement for an exceptionally high-quality graph
vector base, thereby ensuring robust performance across various tasks within our RAGRAPH, and
significantly mitigating data quality impacts.

B.3 Difficulty to construct and maintain high-quality and diverse graph vector base

In RAGRAPH, the toy graph base largely leverages significant prior research datasets in pre-trained
GNNs [65, 104, 73, 123], which are trained on meticulously curated graph datasets and cover diverse
domains, such as biology, chemistry, medicine recommendation tasks, etc. For example, the PROTEINS
dataset [4], derived from cryo-electron microscopy and X-ray crystallography, and the ENZYMES
dataset [99], based on EC enzyme classification, are meticulously annotated by medical experts.

B.4 Why Inverse Importance Sampling Strategy is needed

The adoption of the Inverse Importance Sampling strategy is crucial. In RAGRAPH, subgraphs are
sampled as toy graphs, where nodes with higher degrees (non-long-tail knowledge, extensively learned
and embedded into GNN parameters) are more frequently included in subgraphs due to their extensive
connections with neighbors, resulting in higher frequency in toy graph base [27]. Conversely, nodes
with low degrees (long-tail knowledge), are more important but ignored. To mitigate this issue, we
propose this by prioritizing nodes with lower degrees to capture long-tail knowledge when sampling.

B.5 Why Four Similarities are needed

In practical applications, the four similarities all contribute to performance improvement and we state
the significance as follows:

• Time information is crucial to predict future states or trends [113] via node history, i.e. in social
networks, analyzing historical user interaction aids in predicting future behaviors.

• Structure pertains to how nodes are interconnected and overall graph topology, vital for capturing
similar graph structure patterns [13, 42, 112]. In transportation networks, factories are always
located on the outer ring of the city, sharing similar structural connectivity, aiding in the discovery of
spatiotemporal patterns [54, 16].

• Sharing similar neighborhoods is essential for evaluating node similarity and correlation. In recom-
mendations, shared purchase histories between users and products indicate potential interests, akin
to collaborative filtering [87].

• Semantic information measures similarity based on features [73]. In knowledge graphs, identifying
relevant subgraphs to query nodes enhances retrieval accuracy based on semantic similarity.

B.6 Why Knowledge Fusion is needed

Fusion and decoder here represent one of the core contributions of RAGRAPH:

• Overall Task Perspective: For the same tasks, the decoder can be directly employed to obtain outputs.
For different tasks, the decoder can be masked and utilize pre-computed embeddings without training
or be tuned to better adapt. This underscores our primary contribution, where the decoder functions
as a versatile "plug-and-play" and "tune-free" component.

• Integral Fusion Strategy: Fusion Strategy facilitates concurrent information propagation from toy
graphs X (hidden embeddings) and Y (task-specific output vector) to query graph, aligning with our
secondary contribution.
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B.7 How RAGRAPH works on par with RAG in NLP and CV

In NLP, RAG enhances the generation of LLM by retrieving relevant information via prompts. Similarly,
in RAGRAPH, we enhance downstream graph learning by integrating information from retrieved toy
graphs. Using these toy graphs with shared patterns assists the model inference. In our framework, the
"generation" involves the retrieval-enhanced Graph Prompt: Toy Graph Intra Propagate & Query-Toy-
Graph Inter Propagate to propagate retrieved knowledge (X and Y) into the query graph. To illustrate,
we analyze this from both experiment and theory.

1. Experiment 1: We perform a case study to illustrate how "generation" works by displaying specific
instances of node vectors in Appendix D.6.

2. Experiment 2: In traditional GNN tasks, GCN, GAT, and GIN typically expand their receptive
fields through stacked message-passing layers or neighborhood subgraph sampling for inference.
Patterns learned in these contexts are often localized within the constrained receptive field. In
contrast, in RAGRAPH, we observe that subgraphs sharing similar patterns often exhibit properties
more aligned with downstream tasks. These subgraphs provide richer information for inference
compared to simply enlarging receptive fields. As shown in Main Text Tables 1 and 2, Figure 3,
RAGRAPH’s strategy of incorporating toy graphs significantly outperforms baselines.

3. Theory 1: Furthermore, we provide a theoretical justification of retrieval augmentation in GNNs
(see Appendix B.4). From an information-theoretic perspective, introducing RAG knowledge into
GNNs enhances the mutual information between input features X and output labels Y , such that:

I(X,RAG;Y )≥I(X;Y ),

thereby improving the performance of downstream tasks. This is aligned with the information
theory of RAG in NLP [71].

4. Theory 2: Recent studies [11, 136] also suggest the generalization error diminishes with an increase
in the node number of the graph in Theorem 1.1 [136]: the generalization error between the expected
loss Rexp(Θ) = E(x,y)∼µG

[L(Θ(x),y)] and empirical loss Remp(Θ) = 1
m

∑m
i=1L(Θ(xi),yi) are

super bounded:

|Rexp(Θ)−Remp(Θ)|≤
√

C

m
q(n),

where C represents the model complexity (e.g., parameters), m denotes the training set size,
and q(n) = En∼νG

[n− 1
D+1 ] depends on the average graph size (node number) with ν as the

graph size distribution and D is the metric-measure space dimension. In RAGRAPH, retrieving
similar toy graphs significantly increases the number of graph nodes (via Query-Toy-Graph Inter
Propagate, linking toy graph nodes to query graph), significantly augmenting n while reducing
q(n). Consequently, the upper bound of generalization error decreases, promoting smoother graph
learning convergence and enhancing pattern learning.

C Further Methods Details

C.1 Revisiting Graph Neural Networks

The goal of a GNN is to learn node embeddings based on an iterative aggregation of messages from the
local network neighborhood. We use embedding matrix {z(L)

v }v∈V to denote the embedding for all the
nodes after applying an L-layer GNN. The l-th layer of a GNN, {z(L)

v }=GNN(l)({z(l−1)
v }), can be

written as:
m(l)

u→v=MSG(l)(z(l−1)
u ,z(l−1)

v ),

z(l)v =AGG(l)
(
{m(l)

u→v |u∈N (v)},z(l−1)
v

)
,

(7)

where z(l)v is the embedding for v∈V after passing through l layers, z(0)v =xv or hv or ov, m(l)
u→v is

the message embedding, andN (v) is the set of direct neighbors of v. Different GNNs can have various
definitions of message-passing functions MSG(l)(·) and aggregation functions AGG(l)(·) and these
two functions could be parameter-free.
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C.2 Key Construction of Position-aware Code

Given a randomly selected node anchor set VS⊂V , we calculate the minimal distances, a.k.a. hops
between the two node sets. Suppose vu ∈ V, vw ∈ VS , the distance similarity between node vu
and vw can be depicted as dis(vu,vw). By normalizing the similarity to [0, 1], distance-to-centroid
d2c(vu,vw):

d2c(vu,vw)=


1

dis(vu,vw)+1
, if dis(vu,vw)<disq

0, otherwise
, (8)

here hyperparameter disq is the maximum hops, the distance beyond this boundary is considered
invalid. The structure feature of node vu is d2c(vu,VS). By collecting all distances with anchor-set VS ,
the structure S∈Rn×|VS | is written as follows:

d2c(vu,VS)=[d2c(vu,vw)|vw∈VS⊂V],
S=[d2c(vu,VS)|vu∈V],

(9)

where [·] means the concatenation operation. The distance-to-centroid feature converts the non-
Euclidean structure to the Euclidean structure. d2c dramatically reduces the size of the matrix and
meanwhile contains more structure information instead of identifier information, the size of the anchor
set is log2n follows P-GNNs[45, 42].

C.3 Similarity Functions

For the history key, we adopt an exponential decay function to measure the time similarity values.
We smooth the impact of time differences and provide a controlled decay coefficient η>0. The time
similarity, Stime, between the same node vc and vm with different timestamp t(vm),t(vc), is defined as:

Stime(vc,vm)=e−η|t(vc)−t(vm)|, (10)

where η is a positive parameter that controls the rate of exponential decay.

For the environment key, we match the environment of node v using Jaccard similarity to compare the
sets of neighborsN (vc) in the query graph andN (vm) in the toy graph:

Senvironment(vc,vm)=
|N (vc)∩N (vm)|
|N (vc)∪N (vm)|

. (11)

For the hidden embedding key, we input the query graph into pre-trained GNNs to obtain the hidden
embedding for the query node, with the similarity defined as:

hc=GNN(XGQ), Ssemantic(vc,vm)=cosine(hc,hm). (12)

For the position-aware code, we denote sc,sm as the position-aware code of node vc,vm, and utilize
cosine similarity as before, defined as Sstructure(vc,vm)=cosine(sc,sm).

C.4 Proof of the Effectiveness of RAG

In this section, we will theoretically prove that introducing RAG knowledge can significantly improve
the predictive performance of the model.

Assume X represents the input features, Y represents the target output labels, and RAG represents
external knowledge related to the input features (or even the output labels). We analyze from the mutual
information view, where I(X;Y ) quantifies the dependency between X and Y , which reflects the
performance of the model, the larger the value, the better the performance of the model [54, 70]. By
introducing RAG knowledge RAG into GNNs, we can effectively increase the mutual information
between the input features X and the output labels Y as I(X,RAG;Y )≥I(X;Y ), thereby improve
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the model’s downstream task performance. The derivation is as follows:
I(X,RAG;Y)−I(X;Y)

=
∑

X,RAG,Y

p(X,RAG,Y)log
p(X,RAG,Y)

p(X,RAG)p(Y)
−
∑
X,Y

p(X,Y)log
p(X,Y)

p(X)p(Y)

=
∑

X,RAG,Y

p(X,RAG,Y)log
p(X,RAG,Y)

p(X,RAG)p(Y)
−

∑
X,RAG,Y

p(X,RAG,Y)log
p(X,Y)

p(X)p(Y)

=
∑

X,RAG,Y

p(X,RAG,Y)log

(
p(X,RAG,Y)

p(X,RAG)
· p(X)

p(X,Y)

)

=
∑

X,RAG,Y

p(X,RAG,Y)log
p(X,RAG,Y)

p(RAG |X)p(X,Y)

=
∑

X,RAG,Y

p(RAG,Y |X)p(X)log
p(RAG,Y |X)

p(RAG |X)p(Y |X)

=I(RAG;Y |X)≥0, (13)
where

∑
X,RAG,Y=

∑
X

∑
RAG

∑
Y. Moreover, I(RAG;Y |X) measures that how much additional

knowledge RAG provides to assist in predicting Y based on X , this term will approach zero when the
RAG is noise to the prediction task. In summary, the integration of RAG knowledge can enhance the
mutual information betweenX andY , thereby improving the performance and accuracy of downstream
tasks.

C.5 Algorithms

In this section, we will provide a detailed description of the algorithms of Toy Graph Construction
(Algorithm 1) and Training and Inference with Toy Graphs Retrieval (Algorithm 2).

Algorithm 1. We outline the process for constructing toy graphs in Algorithm. 1. In line 1, the toy
graph database GT is initialized.

Lines 2-15 describe the steps to construct toy graphs by iterating through each snapshot of the dynamic
resource graph GR.

In more detail, lines 3-5 details calculate the importance and reverse importance of each node within
the snapshot. Following this, lines 6-7 involve normalizing the sampling probabilities according to the
reverse importance values. The selection of a master node and the generation of its k-hop ego network
are carried out in lines 8-9. Subsequently, line 10 involves augmenting the toy graph through specific
data augmentation techniques.

Lines 11-16 detail the generation of key-value pairs for each toy graph. This includes saving the
timestamp as the history key, the neighbors of the master node as the environment key, the structural
encoding as the structure key, the hidden embedding as the semantic key, and the task-specific output
vectors as the value. Each toy graph is then stored in the database GT .

Ultimately, in line 18, the algorithm returns the toy graph database GT .

Algorithm 2. We introduce the algorithm for training and inference with toy graph retrieval in
Algorithm. 2. Initially, in line 1, we define the required inputs, including the testing graph Gtest, the toy
graph database GT , and other relevant parameters. The final output is the aggregated result õc.

The RETRIEVETOYGRAPHS function, detailed in lines 3-11, initializes an empty similarity list and
iterates over each toy graph in the database. Lines 5-6 compute various similarity metrics, and the
overall similarity is determined in line 7. This similarity score is then added to the list. After sorting by
similarity, the topK toy graphs are retrieved and returned in line 11.

Within the PROPAGATION function (lines 12-17), each retrieved toy graph undergoes intra-propagation
in line 14. The intra-propagation step follows in line 16, ultimately returning the propagated results zc.

The KNOWLEDGEFUSION function, found in lines 18-21, combines the outputs from previous steps.
The final combined outputs õc are generated by the decoder and returned in line 21.

23



Algorithm 1 Toy Graph Construction

Require: Dynamic Resource GraphGR, node importance balance weightα, toy graph scaling constant
K, maximum hop k

Ensure: Toy graph embedding key-value database GT
1: Initialize toy graph database GT ←∅
2: for each snapshot GR

τ ∈GR do ▷ Construct Toy Graphs
3: for each node v∈GR

τ do
4: Calculate importance I(v)←αPR(v)+(1−α)DC(v)
5: Reverse node importance I ′(v)← 1

I(v)+ϵ

6: end for
7: for each node v∈GR

τ do
8: Normalize sampling probabilities pi← I′(vi)∑n

j=1I
′(vj)

9: end for
10: Sample master node vm←WEIGHTEDSAMPLING(GR

τ , pi) based on probability pi
11: Generate k-hop ego net Ge

τ (vm) for node vm
12: Augment toy graph {GT }← DATAAUGMENTATION(Ge

τ (vm), naug) with naug(G
e
τ (vm))=

⌊K ·Ī ′(Ge
τ (vm))⌋

13: for each GT ∈{GT } do ▷ Generate keys-values pair
14: Save timestamp τ as history key
15: Save neighborsN (vτm) of master node vm as environment key
16: Save structural encoding sτm of node vm via Eq. (9) as structure key
17: Save hidden embedding hτ

m by feeding GT into pre-trained GNNs as semantic key
18: Save the hidden embedding {hτ

i |vi∈GT } as value
19: Save task-specific output vectors {oτi |vi∈GT } by feeding {hτ

i |vi∈GT } into decoder as
value

20: Store toy graph GT into database GT
21: end for
22: end for
23: return Toy graph database GT

The main algorithm begins in line 22. If fine-tuning is enabled and the prompt loss has not converged,
lines 23-34 detail the process of toy graph retrieval and propagation for each query graph. This includes
the optional addition of noise in lines 26-29. The hidden embedding and task-specific output vectors
are propagated in lines 30-31, and the aggregated outputs are fused in line 32. The prompt loss is
computed, and fine-tuned parameters are updated in lines 33-34.

If fine-tuning is not required, lines 35-39 describe a similar process of toy graph retrieval and propaga-
tion, without the fine-tuning steps. The aggregated outputs are computed directly.

D Further Experiment Details

D.1 Datasets Statics

We employ eight benchmark datasets for evaluation including four public static classification datasets
for node- and graph-level tasks.

(1) PROTEINS [4] is a collection of protein graphs, including the amino acid sequence, conformation,
structure, and features such as active sites of the proteins. Each node represents a secondary structure,
while each edge illustrates the neighboring relationship either within the amino acid sequence or in
3D space. The nodes are divided into three categories, and the graphs are classified into two distinct
classes. This dataset is used for node and graph classification tasks, containing 1,113 graphs with an
average of 39.06 nodes and 72.82 edges per graph, with a density of 4.8e-2.

(2) COX2 [83] is a dataset of molecular structures, including 467 cyclooxygenase-2 inhibitors. Each
node represents an atom, and each edge signifies a chemical bond between atoms, such as single,
double, triple, or aromatic bonds. All the molecules belong to two categories. This dataset is used for
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Algorithm 2 Training and Inference with Toy Graphs Retrieval

Require: Testing graph Gtest, toy graph database GT , pre-trained GNN model GNNΘ0(·), number of
TopK toy graphs to retrieve, similarity weights w1,w2,w3,w4, fine-tuning flag fine_tune, noise
prompt-tuning flag add_noise

Ensure: Aggregated output õc
1: function RETRIEVETOYGRAPHS(GQ, GT , TopK)
2: Initialize similarity list {S}←∅
3: for each toy graph GT ∈GT do
4: Calculate time similarity Stime, environment similarity Senvironment, structure similarity

Sstructure and semantic similarity Ssemantic
5: Compute similarity S←w1 ·Stime+w2 ·Sstructure+w3 ·Senvironment+w4 ·Ssemantic
6: Add (GT ,S) to {S}
7: end for
8: Sort {S} by similarity in descending order
9: Retrieve topK toy graphs GT

TopK←{GT ∈{S}with topK similarities}
10: return Retrieved toy graphs GT

TopK
11: end function
12: function PROPAGATION(GQ, GT

TopK)
13: for each toy graph GT ∈GT

TopK do
14: Perform Intra Propagation zm← INTRAPROPAGATION(GT )
15: end for
16: zc← INTERPROPAGATION(GQ, GT

TopK)
17: return zc
18: end function
19: function KNOWLEDGEFUSION(hc,oc)
20: Combined output ôc←γoc+(1−γ)DECODER(hc)
21: return Combined outputs õc
22: end function
23: if fine_tune &Lprompt not converged then
24: for each query graph GQ∈Gtest do ▷ Toy Graph Retrieval and Propagation
25: GT

TopK← RETRIEVETOYGRAPHS(GQ, GT , TopK)
26: if add_noise then
27: for each toy graph GT ∈GT

TopK do
28: Introduce noise GT ← ADDNOISE(GT ) ▷ Inner-Toy-Graph Noise
29: end for
30: Add bottomK toy graphs to GT

TopK ▷ Toy-Graph Noise
31: end if
32: hc← PROPAGATION(GQ, GT

TopK) ▷ Propogate hidden embedding
33: oc← PROPAGATION(GQ, GT

TopK) ▷ Propogate task-specific output vector
34: Aggregated outputs ôc← KNOWLEDGEFUSION(hc,oc)
35: Compute lossLprompt via õc and ôc ▷ Based on task-specific loss function
36: Update fine-tuned parameters Θ by minimizingLprompt
37: end for
38: else
39: for each query graph GQ∈Gtest do ▷ Toy Graph Retrieval and Propagation
40: GT

TopK← RETRIEVETOYGRAPHS(GQ, GT , TopK)
41: hc← PROPAGATION(GQ, GT

TopK) ▷ Propogate hidden embedding
42: oc← PROPAGATION(GQ, GT

TopK) ▷ Propogate task-specific output vector
43: Aggregated outputs ôc← KNOWLEDGEFUSION(hc,oc)
44: end for
45: end if
46: return Aggregated outputs õc
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Table 4: Statistics of the experimental datasets and summary of datasets.
Statistics TAOBAO KOUBEI AMAZON PROTEINS COX2 ENZYMES BZR

# Nodes per Graph 204,168 221,366 238,735 39.06 41.22 32.63 35.75
# Edges per Graph 8,795,404 3,986,609 876,237 72.82 43.45 62.14 38.36
# Density 8.6e-4 3.3e-4 6.2e-5 4.8e-2 2.6e-2 5.9e-2 3.0e-2
# Graphs 1 1 1 1,113 467 600 405
# Graph Classes / / / 2 2 6 2
# Node Features 1 1 1 1 3 18 3
# Node Classes / / / 3 / 3 /

Snapshot Granularity daily weekly weekly / / / /
Task Edge Edge Edge Node, Graph Graph Node, Graph Graph
Type Dynamic Dynamic Dynamic Static Static Static Static
Dataset Partition Snapshot Snapshot Snapshot Node, Graph Graph Node, Graph Graph

graph classification tasks, with each graph having an average of 41.22 nodes and 43.45 edges and a
density of 2.6e-2.

(3) ENZYMES [99] is a dataset of 600 enzymes collected from the BRENDA enzyme database. These
enzymes are labeled into 6 categories according to their top-level EC enzyme classification. This
dataset is used for node and graph classification tasks, with each graph having an average of 32.63
nodes and 62.14 edges and a density of 5.9e-2.

(4) BZR [83] is a collection of 405 ligands for the benzodiazepine receptor. Each ligand is represented
by a graph, and all ligands are categorized into two groups. This dataset is used for graph classification
tasks, with each graph having an average of 35.75 nodes and 38.36 edges and a density of 3.0e-2.

Additionally, we leverage three publicly available datasets encompassing a wide array of real-world
scenarios in dynamic recommendation (link prediction):

(5) The TAOBAO dataset captures implicit feedback data from Taobao.com, a prominent Chinese
e-commerce platform, collected over a span of 10 days. This dataset is used for edge classification
tasks, containing 204,168 nodes and 8,795,404 edges, with a density of 8.6e-4.

(6) The KOUBEI dataset records 9 weeks of user interactions with nearby stores on Koubei, a platform
integrated within Alipay. This dataset is used for edge classification tasks, containing 221,366 nodes
and 3,986,609 edges, with a density of 3.3e-4.

(7) The AMAZON dataset comprises a collection of product reviews sourced from Amazon, spanning
a duration of 13 weeks. This dataset is used for edge classification tasks, containing 238,735 nodes and
876,237 edges, with a density of 6.2e-5.

These datasets’ detailed statistics are summarized in Table 4. The "Task" column provides information
about the type of downstream task conducted on each dataset: "Node" denotes node classification tasks,
"Graph" signifies graph classification tasks, and "Edge" indicates tasks related to link prediction. The
"Type" column indicates the type of graph dataset: "Dynamic" for dynamic dataset t≥1, and "Static"
for static dataset t=1. For dynamic datasets, the "Snapshot Granularity" denotes the time granularity
for each dataset. In our experimental setup, for dataset partition, dynamic graphs are partitioned
according to snapshots, while static graphs are partitioned either by node or by the entire graph.

D.2 Evaluation Matrices

Node and Graph classification evaluation. For the node classification, we use the prediction accuracy
to measure the model.

Link prediction evaluation. For the link prediction, we evaluate the recall and ranking quality of the
effects of recommendation following previous studies [117, 30]. We use Recall@k and NDCG@k as
metrics. Note that this task should be a binary task. We denote the topk largest value as relij ,j∈ [1,k]
for node vi.
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Recall@k measures the ratio of true positive links contained in the top k predicted links for each node:

Recall@k=
1

n

n∑
i=1

k∑
j=1

relij∑
I(A[i :]>0)

, (14)

where relij=1 if the j-th predicted link for node vi exists, otherwise 0. I(·) is the indicator function,
and if A[i :]>0 then I(A[i :]>0)=1.

NDCG@k (Normalized Discounted Cumulative Gain) is computed by normalizing DCG@k (Dis-
counted Cumulative Gain) which accounts for the position of correctly predicted links. DCG@k is
defined as:

DCG@k=
1

n

n∑
i=1

k∑
j=1

relij
log2(j+1)

. (15)

D.3 Baseline Details

In this section, we present the details of baselines.

Table 5: Baseline Code URLs of Github Repository

Baseline Type Code Repo URL
GCN Static https://github.com/tkipf/gcn
GraphSAGE Static https://github.com/williamleif/GraphSAGE
GAT Static https://github.com/PetarV-/GAT
GIN Static https://github.com/weihua916/powerful-gnns
LightGCN Dynamic https://github.com/kuandeng/LightGCN
SGL Dynamic https://github.com/wujcan/SGL-Torch
MixGCF Dynamic https://github.com/Wu-Xi/SimGCL-MixGCF
SimGCL Dynamic https://github.com/Wu-Xi/SimGCL-MixGCF
GraphPro Dynamic https://github.com/HKUDS/GraphPro
GraphPrompt Dynamic, Static https://github.com/Starlien95/GraphPrompt
PRODIGY Dynamic, Static https://github.com/snap-stanford/prodigy

• GCN [48]: GCN is an end-to-end learning framework for graph-structured data. It utilizes
neighborhood aggregation to integrate structural information, which is particularly effective in node
classification and graph classification tasks.

• GraphSAGE [29]: GraphSAGE, is a general and inductive framework that leverages node feature
information (e.g., text attributes) to efficiently generate node embeddings for previously unseen data.

• GAT [97]: GAT is a spatial domain method, which aggregates information through the attention-
learned edge weights.

• GIN [105]: GIN utilizes a multi-layer perceptron to sum the results of GNN and learns a parameter
to control residual connection.

• LightGCN [30]: LightGCN learns user and item embeddings by linearly propagating them on the
user-item interaction graph, and uses the weighted sum of the embeddings learned at all layers as the
final embedding.

• SGL [103]: SGL is to supplement the classical supervised task of recommendation with an auxiliary
self-supervised task, which reinforces node representation learning via self-discrimination.

• MixGCF [39]: MixGCF generates the synthetic negative by aggregating embeddings from different
layers of raw negatives’ neighborhoods to perform collaborative filtering.
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• SimGCL [117]: SimGCL applies unsupervised contrastive learning to enhance representation
learning, making it suitable for link prediction tasks. It is applied to dynamic graphs to test its
adaptability and performance.

• GraphPro [113]: GraphPro extends GraphPrompt by introducing spatial and temporal prompts
tailored for dynamic graph learning, enhancing the ability to capture both structural and temporal
relationships within graph data.

• GraphPrompt [65]: GraphPrompt integrates pre-training and downstream tasks using a unified
template approach and employs task-specific prompts to enhance sub-task learning, applicable to
both dynamic and static graph contexts.

• PRODIGY [73]: PRODIGY focuses on facilitating downstream tasks through in-context examples
and learning from the X→Y paradigm. It is implemented to enhance learning in both dynamic and
static graphs by leveraging contextual learning strategies.

D.4 Implementation Details

Implementations are done using the PyTorch 2.3.0 framework [78] in Python 3.11, on an Ubuntu server
equipped with 1 V100 GPU and an Intel(R) Xeon(R) CPU.

In node and graph classification tasks: For baseline GCN [48], we employ a 2-layer architecture and
set the hidden dimension as 256. For GraphSAGE [29], we utilize the mean aggregator and employ
a 2-layer architecture. The hidden dimension is also set to 256. For GAT [97], we employ a 2-layer
architecture and set the hidden dimension as 256. Besides, we apply 8 attention heads in the first GAT
layer. Similarly, for GIN [105], we also employ a 2-layer architecture and set the hidden dimension as
256. For GraphPrompt, we follow [65] to employ a 2-layer GCN as the backbone and set the hidden
dimensions as 256.

In the link prediction task: For LightGCN, SGL, MixGCF, SimGCL and GraphPro, we employ a
3-layer GNN architecture and set the hidden dimension as 64 with Low-Rank Adaptation (LoRA) [32]
rank equals to 16. For GraphPro, the backbone graph encoder is SimGCL.

Moreover, for all three tasks, the hyper-parameters of baselines are based on the recommended values
provided in the paper. In PRODIGY and RAGRAPH, k is set to 2, topK is set to 5, γ is set to 0.8 for
PROTEINS and 0.5 for ENZYMES in node level, γ is set to 0.5 for PROTEINS, 0.6 for COX2, 0.8 for
ENZYMES and 0.5 for BZR in graph level, α=λ=0.5,K=3,w1=w2=w3=0.05,w4=0.85.

D.5 Resource Graph Scalability Study
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(b) Node Classification on PROTEINS dataset

Figure 4: Performance comparisons of RAGRAPH and several baselines with different proportions of
training and resource data.

We assess the impact of varying amounts of training and resource data on model performance. As
illustrated in Figure 4, we vary the proportion of train and resource graph size from 10% to 80%,
with increments of 10%, and conduct experiments on node classification tasks using the ENZYMES
and PROTEINS datasets, respectively. For comparative analysis, we select GIN, GraphPrompt, and
PRODIGY as baseline models. To ensure fairness in our experiments, we maintain a consistent ratio of
train to resource data at 3:5 during fine-tuning, utilizing the sum of these as a retrieval database.
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As shown in Figure 4, there is a clear trend where the accuracy of the model improves as the proportion of
the dataset increases. However, the rate of accuracy improvement starts to plateau once a certain dataset
proportion is reached (i.e., 30% in PROTEINS for PRODIGY and RAGRAPH, 40% in PROTEINS for
GraphPrompt). Among the evaluated models, GIN and GraphPrompt show the slowest convergence
rates, whereas PRODIGY converges at a moderate pace, and RAGRAPH converges the fastest. This
rapid convergence in PRODIGY and RAGRAPH is attributed to its ability to engage in effective
knowledge retrieval, significantly enhancing the model’s comprehension abilities. Remarkably, both
PRODIGY and RAGRAPH can achieve commendable results in downstream tasks even with a small
proportion of the dataset. Compared to PRODIGY, RAGRAPH exhibits superior performance because
while PRODIGY primarily learns a mapping from X to Y , RAGRAPH not only learns this mapping
but also integrates additional knowledge into GNNs more effectively. This integration becomes
increasingly beneficial as the dataset proportion grows, allowing RAGRAPH to outperform other
models, particularly at higher data volumes where it can better leverage its knowledge integration
capabilities.

D.6 Qualitative Analyses of Toy Graphs Retrieving

In this section, we conduct qualitative analyses of the toy graphs retrieving experiment. For the sake
of understanding, we conduct experiments under normal settings where the dimensionality of the
task-specific output vector is equal to the number of classes.

On the ENZYMES dataset, for a 3-class node classification task, regarding node "13984", which
belongs to class 3, if we only use the GraphPrompt Backbone, the resulting one-hot encoding is
[0.28,0.34,0.38].

However, since the node is of class 3, we expect the one-hot encoding to be as close as possible to
[0,0,1]. In RAGRAPH retrieval, taking the top 3 retrieved graphs as examples, the connection weights
for these 3 toy graphs to query graphs are 0.5, 0.7, and 0.1, respectively, and their corresponding label
one-hot encodings are [0,0,1], [0,0,1], and [0,1,0]. Therefore, the result obtained by propagating the
task-specific output vector through toy graphs is: [0,0.1,1.2], and after normalization, the result is
[0,0.08,0.92].

Meanwhile, the vector obtained by propagating toy graphs hidden embedding and via decoder is
[0.37,0.32,0.66]. The retrieval of toy graphs notably enhances performance at both the task-specific
output vector and hidden embedding levels. The final vector is obtained through a weighted sum with
γ = 0.5 in Eq(6) is [0.185,0.20,0.79], after normalization the result is [0.157,0.170,0.673], which
greatly enhances the model’s discriminative ability compared to GraphPrompt [0.28,0.34,0.38].

13984
[0.3, 0.2, 0.5]

13997
[0.2, 0.1, 0.7]

13983
[0.3, 0.3, 0.4]

13994
[0.1, 0.6, 0.3]

0.5

0.7

0.1[0.37, 0.32, 0.66]

[0, 0, 1]

[0, 0, 1]

[0, 1, 0]

[0, 0.1, 1.2]
Task-specific Output Vector

Output Vector via Decode the Hidden Embedding 

Task-specific Output Vector  

Output Vector via Decode the Hidden Embedding 

[0.37, 0.32, 0.66]

[0, 0.1, 1.2]

Normalization

[0.185, 0.20, 0.79]

[0.157, 0.17, 0.673]

Center Node of the Query Graph

Master Node of the Toy Graph

Figure 5: Qualitative analyses of toy graphs retrieving – how “generation” works.
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E Difference between ICL (PRODIGY) and RAG (RAGRAPH)

In this section, we explore the distinctions between PRODIGY and RAGRAPH from several critical
perspectives, as illustrated in Figure 6:

• PRODIGY: This approach utilizes fixed examples as rules, which may not be optimal for dynamic
and evolving scenarios. PRODIGY primarily focuses on learning direct mappings from X to Y
through in-context learning. However, it encounters challenges in integrating external information
that is more pertinent to the query node. This is particularly problematic when the distribution of
each node belonging to the same label class varies, and simply learning the mapping based on the
prototype node will somehow be misleading.

• RAGRAPH: In contrast, RAGRAPH is designed to handle non-static, streaming knowledge, making
it well-suited to dynamic graph structures and evolving tasks. It actively retrieves relevant knowledge
on-demand, effectively incorporating information about both X and Y from external sources into
GNNs. Moreover, RAGRAPH can operate without the need for model fine-tuning, providing
substantial flexibility. This adaptability enables RAGRAPH to excel in tasks that require continuous
adaptation to changing conditions and the integration of external, relevant information.

In summary, we argue that a qualified Retrieval-Augmented Generation (RAG) system for Graph
Learning should fulfill several essential criteria to effectively support complex reasoning tasks: 1)
It should retrieve ample feature and task-related label information, analogous to how attributes are
gathered in the NLP domain to stimulate the reasoning capabilities of LLMs; 2) The system should adapt
to new tasks or unseen datasets without requiring fine-tuning of model parameters; 3) Knowledge within
the system must be dynamically updated and stored, ensuring current and relevant data utilization.

F Broader Impacts

Our work builds on the widespread application of Retrieval-Augmented Generation (RAG) in large
language models (LLMs) and aims to extend its success to graph data, thereby constructing graph
foundation models. This approach allows models to transfer rapidly without requiring learnable
parameters, avoiding potential performance degradation from fine-tuning pre-trained models. As a
result, RAG is particularly effective in domains with scarce and long-tail data, such as network anomaly
detection, rare disease diagnosis/treatment, supply chain disruption, and new user recommendations.
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Additionally, our model establishes an excellent paradigm by incorporating retrieved features and label
information into the learning process, significantly enhancing the model’s understanding capabilities.
Our work provides valuable insights and serves as a reference for future Large Graph Models.

G Data Ethics Statement

To evaluate the efficacy of this work, we conducted experiments that only use publicly available datasets,
namely, PROTEINS, COX2, ENZYMES, BZR3, TAOBAO, KOUBEI and AMAZON in accordance to
their usage terms and conditions if any. We further declare that no personally identifiable information
was used, and no human or animal subject was involved in this research.

3https://chrsmrrs.github.io/datasets/
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the introduction section, we delineate the problems addressed by this work
and outline our contributions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made
in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or NA
answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In the conclusion section, we highlight the limitations of the current work and
suggest directions for future research.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and
how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will be
specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?
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Answer: [Yes]

Justification: We provide the complete theoretical proofs in Appendix C.4.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide detailed experiment settings in Appendix D.4. Besides, code is
anonymously available at https://anonymous.4open.science/r/GLM-RAG-049D/.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of whether
the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: Code is anonymously available at https://anonymous.4open.science/r/
GLM-RAG-049D/.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide experiment settings in Section 5.1 and Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For each experiment, we conducted 5 repeated experiments and reported the
standard deviation in Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the
main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula, call
to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of

the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

Justification: We provide sufficient information on the computer resources in Appendix D.4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than

the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: I have read the NeurIPS Code of Ethics and I confirm our research in the paper
conforms with Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special considera-

tion due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [Yes]

Justification: We have discussed the potential impacts in Appendix F.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional
or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The graph neural network framework proposed in our paper does not extend to
application domains requiring safeguards. Additionally, the datasets used are widely-used
node classification datasets, thus eliminating the need for specific safeguards.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best faith
effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We provide source links for all datasets and baselines in Appendix D, and we
have cited all referenced works.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We release our code anonymously at https://anonymous.4open.science/
r/GLM-RAG-049D/.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well
as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution)
were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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