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ABSTRACT

Spatial transcriptomics offers unprecedented insights into tissue organization, yet
current methods often overlook transitional zones between cellular niches. We
introduce NOLAN, a self-supervised framework that goes beyond detecting dis-
crete niches to capture the continuous spectrum of tissue organization patterns.
NOLAN learns cell representations informed by their neighborhoods, capturing
variation within niches and across their boundaries. Using these representations,
NOLAN constructs a graph-based abstraction of the tissue, modeling it as a net-
work of interconnected regions bridged by transitional zones. Applying NOLAN
to a multi-cancer spatial transcriptomics atlas, we uncover a landscape of both
tissue-specific and shared cellular niches. Crucially, NOLAN reveals the contin-
uous gradients of gene expression and cell type composition across these transi-
tional zones, showcasing the ability of NOLAN to build a common coordinate
system of tissues in an integrative analysis.

1 INTRODUCTION

Understanding tissue structure and organization is critical for deciphering cellular function and in-
teractions in health and disease. Spatial transcriptomics provides a powerful means to profile gene
expression at near-cellular resolution, allowing us to study cells within their native tissue context.
A common analysis strategy of the spatial data involves clustering cellular neighborhoods to iden-
tify spatial domains, also referred to as cellular niches. Several computational methods have been
to autmoatically detect these niches (Hu et al., 2021; Yuan, 2024; Varrone et al., 2024; Singhal
et al., 2024). However, many existing approaches assume a simplistic tissue model partitioned into
discrete regions. Recent work Bhate et al. (2022) demonstrates that tissue organization is consider-
ably more complex, with gradual transitions between the niches. This highlights a critical need for
computational methods that move beyond discrete partitioning and explicitly model the continuous
nature of tissue organization.

To address this, we introduce NOLAN (NO Label Analysis of Niches), a self-supervised model for
spatial transcriptomics analysis. NOLAN constructs a rich representation of each cell, incorporating
information from its spatially adjacent neighbors. The self-supervised strategy used by NOLAN
was adapted from DINOv2 (Oquab et al., 2024) by modifying the architecture, tokenization method
and augemntations. This strategy allows NOLAN to capture spatial prototypes with conserved gene
expression and cell type distribution, as well as transitionary zones between them.

NOLAN’s representations of the spatial transcriptomic data, sensitive to both intra-niche variation
and inter-niche transitions, enable a powerful new way to describe tissue architecture. We concep-
tualize this model as a tissue graph, where nodes represent individual cells, and edges connect cells
based on the similarity of their NOLAN representations. Crucially, the strength of these connections
reflects the abruptness of the transition between niches and the size of their interface. To assess the
accuracy of node assignments within the tissue graph, we developed novel biologically motivated
metrics. These metrics quantify the structural and cell type composition consistency of the identified
niches. We used these metrics across diverse spatial transcriptomic datasets, showcasing NOLAN’s
superior performance.

To demonstrate the broad applicability and power of NOLAN, we performed an integrated analysis
of a large and diverse collection of cancer spatial transcriptomics data, spanning multiple tissue
origins. In complex tissues like cancer, spatial organization is often obscure, yet it plays a crucial
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role in driving tumor progression and heterogeneity, as many pathological traits exhibit localized
patterns. Leveraging NOLAN’s unique ability to define both distinct niches and their transitional
zones within a unified tissue graph framework, we directly addressed the challenge of comparative
analysis across these heterogeneous samples. Applying NOLAN, we identified niches with diverse
cell type distribution, revealing both shared and unique niche compositions across different tumor
types. Critically, by mapping the transitional regions across samples, we were able to use them as
anchor points to describe spatially-associated changes in gene expression and cell-type distribution.

2 RELATED WORK

2.1 IDENTIFICATION OF TISSUE STRUCTURE

Several computational methods have been developed for tissue segmentation from spatial transcrip-
tomics data, reflecting the rapid advancements in this field. We discuss a few recent examples that
are relevant to our benchmarking analysis.

MENDER (Yuan, 2024) employs a two-stage clustering approach. First, it clusters cells into sub-
types based on their gene expression profiles. Then, it calculates the frequency of each subtype
within small neighborhoods around each cell. These neighborhood compositions are subsequently
used to cluster cellular environments, defining tissue domains. A consideration with MENDER is
its reliance on discrete cell-type assignments, which may not fully capture the continuous spectrum
of cell states often observed in vivo.

BANKSY (Singhal et al., 2024) adopts a different strategy, directly analyzing gene expression gra-
dients using filter theory. Spatial kernels, including azimuthal Gabor filters, are used to encode the
transcriptomic environment around each cell. This approach allows BANKSY to integrate cell typ-
ing and tissue domain segmentation into a single framework and offers scalability for large datasets.
One aspect to consider is that BANKSY does not inherently include batch effect correction, which
can be important for analyzing data from multiple samples or experiments.

CellCharter (Varrone et al., 2024) leverages a graph neural network (GNN) architecture for spatial
domain identification. It uses scVI embeddings (Lopez et al., 2018) of gene expression as input to
the GNN, allowing it to learn complex spatial relationships between cells.

Existing methods, including those described above, have primarily focused on identifying discrete
tissue niches or domains. A key distinction of our approach, NOLAN, is its explicit modeling
and characterization of the transitional regions between niches, represented within a tissue graph
framework. This capability allows for a more nuanced understanding of tissue organization, going
beyond a simple partitioning into discrete regions.

3 METHODS

3.1 BACKGROUND

3.1.1 SELF-SUPERVISED LEARNING

Self-supervised learning (SSL) has emerged as a powerful paradigm in machine learning, encom-
passing two primary approaches: contrastive learning and self-distillation. These methods aim
to learn meaningful representations from unlabeled data, reducing the need for extensive labeled
datasets.

Self-distillation strategies leverage the model’s own predictions to generate supervisory signals, of-
ten within a teacher-student framework. In this setting, the student network is trained to match
the predictions of a teacher network. Let ps(x) and pt(x) denote the output probability distribu-
tions from the student and teacher networks, respectively. A common loss function used to enforce
consistency is the cross-entropy between these two distributions:

Ldistill = −
C∑

c=1

pt,c(x) log ps,c(x), (1)
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where C is the number of classes (or feature dimensions) and pt,c(x) and ps,c(x) are the probabilities
corresponding to class c.

One prominent example of self-distillation is DINO (DIstillation with NO labels) (Caron et al.,
2021), and its successor DINOv2 (Oquab et al., 2024). In these models, the teacher’s parameters
θt are updated using an exponential moving average of the student’s parameters θs, ensuring stable
training:

θt ← λθt + (1− λ)θs, (2)

where λ ∈ [0, 1] is a smoothing coefficient. The student network learns to produce consistent
predictions across different augmented views of the same input, guided by the teacher’s outputs.

DINOv2 additionally applies a masked image modelling loss, also referred to as iBOT (Zhou et al.,
2021). To compute this loss DINOv2 evaluates the cross-entropy between the softmax-normalized
teacher and student representations of the masked patches of the image.

3.2 OVERVIEW OF NOLAN

NOLAN is a self-supervised framework that uses knowledge distillation, a concept rooted in image
analysis to learn informative representations of cell neighborhoods (Figure 1). At both training
and inference time, the model samples cells as well as their cell neighborhoods, encodes them as a
sequence of tokens, appends a learnable classification token to this sequence, and passes it through
a transformer encoder network. Following this encoder network, the classification token is passed
through a projection head and is converted into a niche-aware representation of the center cell.

Figure 1: Overview of NOLAN. NOLAN is designed to learn niche representation of the cell based
on the gene expression distribution in its neighborhood. To learn robust representations, NOLAN
uses a self-supervised learning. Student and teacher networks are trained using correspondingly big
and small neighborhoods. The objective of the training is for the student to mimick the teacher’s
output. At inference the niche embeddings associated with each cell are collected and used to build
tissue graph and assign niche labels.
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Unlike DINOv2, which was designed for image analysis, NOLAN is specifically tailored for spa-
tial transcriptomics data, which can be represented as 2D point clouds of cells. Our tokenization
strategy departs significantly from DINOv2’s image-based approach. Instead of image patches, we
sample cells and their surrounding neighborhoods, treating each cell as a token. As an augmentation
strategy, we perform random rotation, flipping of the neighborhoods and stochastic masking of cells.

NOLAN’s training, like DINOv2, employs a teacher-student framework with two networks that
are architectural clones, but have different weight initializations. The teacher network processes
larger, ”global” views of the tissue, using cell neighborhoods typically with a 120 µm radius. The
student network uses both these global views and smaller, ”local” views (30 µm radius), providing
a multi-scale perspective. To accelerate training, we leverage pre-computed scVI embeddings of
gene expression (Lopez et al., 2018). These embeddings are projected to NOLAN’s dimensionality
using a linear layer with spectral initialization. Positional information is encoded using frequency-
based positional encodings (Dufter et al., 2022), relative to the center of each neighborhood. The
resulting positional and gene expression encodings are summed, and a learnable classification token,
analogous to DINOv2, is appended to the sequence of cell tokens and passed through a shallow
transformer encoder and a DINO head. Finally, mirroring DINOv2, we compute both classification
token and masked feature cross-entropy losses during training.

See the details about how we construct the tissue graph in the Supplementary.

3.3 EVALUATION METRICS

Because NOLAN is, to our knowledge, the first method to explicitly model transitions between
niches, our primary benchmarking focus was on evaluating the quality of the identified niches them-
selves. A commonly used benchmark for spatial transcriptomics methods involves comparing pre-
dicted niches to manual annotations. Following established practice, we compute Normalized Mu-
tual Information (NMI) between the predicted niches and the annotations from a merfish brain atlas.
However, due to the low resolution of the atlas annotation and the possible inaccuracies in how these
annotations were constructed, we extend our evaluation suite with additional biologically motivated
metrics.

First, we evaluated the degree of complexity of the predicted annotations. We measure niche com-
plexity as the Shannon entropy of the niche label distribution (n) within each tissue slice (S)(Formula
3). Higher entropy values indicate a more refined and detailed segmentation, capturing a greater di-
versity of spatial patterns.

p(n) =
|{c ∈ S | a(c) = n}|

|S|
, NC = −

∑
n∈N

p(n) log2 p(n) (3)

However, high complexity alone is insufficient; it must be balanced with spatial coherence. To
prevent degenerate solutions—where each cell is trivially assigned to its own unique niche, creating
a fragmented, biologically unrealistic pattern – we introduce tissue continuity (Fomula 4). For each
cell, we calculate the fraction of its ten nearest spatial neighbors that share the same niche label and
then report its mean value over a dataset.

f(s) =
|{c′ ∈ KNN(c, k) | a(c′) = a(c)}|

k
, TC =

1

|S|
∑
c∈S

f(s) (4)

Beyond spatial coherence, we also assess sample integration using the Adjusted Rand Index (ARI)
(Yang, 2016). ARI measures the agreement between the predicted niche labels and the known
sample origins, providing insight into whether the identified niches are consistent across different
biological samples. A low ARI suggests that the identified niches are not tissue specific and the
dataset is well integrated.

Finally, we measured cell type consistency within niches. For each cell, we consider its local
neighborhood (a 100-micrometer radius) and compare its cell type distribution to the overall cell
type distribution in the niche. Specifically, we use a two-sided t-test for proportions and Benjamini-
Hochberg correction (Benjamini & Hochberg, 1995) to identify cell types that are significantly en-
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riched or depleted within the neighborhood. A lower number of significantly different cell types
indicates higher consistency. Note that in the benchmarking section we report the success rate over
a series of trials with randomly selected neighborhoods where the success means that the method
identifies fewer differentially abundant cell types than the rest. And so for this metric the higher
values are better, suggesting that the identified niches maintain a stable cell-type composition across
their spatial extent.

More details about the datasets used in the analysis can be found in the Supplementary.

4 RESULTS

4.1 NOLAN PROVIDES GRAPH ABSTRACTION OF CONTINUOUS TISSUE VARIATION

A defining characteristic of NOLAN is its ability to capture the continuous variation of cell states,
reflecting the nuanced nature of tissue organization. We can visualize this by examining the manifold
structure learned by NOLAN. Using a UMAP projection of the cell embeddings, we observe a
topology composed of distinct clusters connected by thin ”bridges” (see Figure 2A). These clusters,
we find, correspond to the identified niches, and the connecting bridges represent the transitional
zones between them, reflecting the smooth transitions in cellular states. This manifold structure is
directly mirrored in our tissue graph abstraction: the UMAP clusters are mapped to nodes, each
representing a distinct niche, while the connecting bridges between clusters are represented by the
edges connecting these nodes in the graph (see Figure 2B). Furthermore, we can project the niche
assignments directly onto the spatial coordinates of the tissue section, revealing a coherent and
spatially organized structure (see Figure 2C).

Figure 2: NOLAN captures continuous niche variation. A. UMAP representation of the NOLAN
embedding space. B. Tissue graph colored by the NOLAN derived niche labels. C. Brain slice col-
ored by the the niche labels. D. Brain slice colored according to the atlas annotation. E. Tissue graph
colored according to the correspondence of nodes to regions from brain annotation. F. NMI scores
between NOLAN annotation and atlas annotation, the results are reported for different clustering
levels.
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Notably, the connectivity structure of the tissue graph, reflecting the relationships between niches,
exhibits a strong coherence with the spatial colocalization of niches. To demonstrate this, we color
the graph nodes by the corresponding labels from the brain atlas annotation and show that these
atlas-labeled niches form connected communities on the graph (see Figure 2E). This indicates that
niches from the same anatomical region tend to be interconnected, which demonstrates the accu-
racy of our representation of the spatial distribution of biological zones. Finally, we quantify the
concordance between the identified niche labels and the brain atlas annotation using the Normalized
Mutual Information (NMI), demonstrating a high degree of correspondence (see Figure 2F). By
visualizing tissue architecture as a graph, NOLAN provides a powerful and interpretable framework
for understanding the spatial relationships between niches.

4.2 BENCHMARKING

We conducted a comprehensive evaluation of our method to demonstrate two key aspects: (1) con-
firming that the identified niches correspond to biologically meaningful tissue domains, and (2)
demonstrating NOLAN’s superior ability to recover these structures.

Figure 3: NOLAN outperforms other methods across diverse metrics. A-F. Metrics that measure
structural properties of the niches. G-H. metrics that measure constancy of cell-type content. I.
Metric that measures quality of batch integration.

We first examined the balance between niche complexity and tissue continuity (Figure 3A-B), two
contrasting metrics that capture different aspects of tissue organization. The results revealed that
NOLAN consistently achieved an optimal balance, ranking as the top or joint-top method across
all datasets and evaluation criteria. For example, in cases where NOLAN shared the top rank with
BANKSY in terms of tissue continuity (Figure 3A), BANKSY exhibited significantly lower per-
formance in terms of tissue complexity (Figure 3B), highlighting its limited ability to capture the
fine-grained structure of the tissue. Conversely, while CellCharter excelled in tissue complexity
(Figure 3B), it underperformed in tissue continuity (Figure 3A), indicating a trade-off between
capturing detailed structure and maintaining spatial coherence. These findings collectively demon-
strate NOLAN’s ability to achieve a robust representation of tissue organization, simultaneously
preserving both spatial coherence and detailed tissue differentiation.
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Next, we evaluated the consistency of cell-type composition within the identified niches, providing
a direct link between the identified niches and their biological interpretation. To do this, we assessed
the consistency of cell type content across the identified niches (Figure 3 G-H). The results demon-
strated that NOLAN consistently outperformed other methods across both datasets, with the perfor-
mance gap widening as the number of identified niches increased. The only exception occurred in
the embryo dataset, where CellCharter surpassed NOLAN when the number of identified niches was
set low (Figure 3H). Overall, these results provide strong evidence that NOLAN’s identified niches
are directly interpretable from a perspective of cell type conservation and highlight NOLAN’s supe-
rior performance compared to state-of-the-art methods in capturing the spatial organization of cell
types.

Finally, we assessed the quality of batch integration across different methods (Figure 3 I). Notably,
most methods demonstrated high levels of batch integration; only BANKSY, which does not provide
batch correction, achieved a worse score. This underscores NOLAN’s utility in integrating multiple
slides and identifying shared niches effectively.

4.3 ANALYSIS OF PAN-CANCER DATA

Having demonstrated the robust performance of NOLAN in the benchmarking, we applied our
framework to a cohort of cancer biopsies representing diverse tissue origins. Our aim was to move
beyond simple tissue segmentation and perform a comparative analysis of tumor organization, un-
covering both conserved architectural principles and tissue-specific variations across different can-
cers.

Figure 4: Integrated view of the tissue structure in pan-cancer dataset. A. Tissue graph colored by
the abundance of different cancer types. B. Tissue graph colored according to the distribution of cell
types.

Our analysis begins with an integrated pan-cancer niche graph, constructed from NOLAN’s learned
embeddings (see Figure 4A). This global view of tumor structure immediately reveals a striking
pattern: while, as expected, the majority of identified niches are tissue-specific—reflecting the well-
known heterogeneity of cancers—a distinct core network of interconnected niches emerges, shared
across multiple tumor types. This observation strongly suggests the existence of conserved orga-
nizational features within the tumor microenvironment, despite the diverse origins of the cancers.
To understand the biological basis of this shared structure, we examined the cell-type composition
of the niches within the pan-cancer graph (Figure 4B). This revealed that the tissue-specific niches
were predominantly composed of neoplastic cells, which, as expected, exhibit highly divergent tran-
scriptional profiles. And in contrast, the shared niches were enriched in stromal components –
fibroblasts, endothelial cells, and immune cells – cell types known to play conserved roles in the
tumor microenvironment.
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Intrigued by these shared niches, we zoomed in, on a few of them (nodes connected by the red edges
in Figure 4A). These niches, present in at least four different cancer types (Figure S4A), showed
subtle yet significant variations in the proportions of CD4 T cells, B cells, and fibroblasts (Figure
S4B), suggesting a dynamic interplay between these cell types. The spatial localization of these
niches confirmed their location in the peritumoral stroma, the interface between the tumor and the
surrounding tissue (Figure S4C).

To investigate the dynamics of cellular interactions within the shared tumor microenvironment, we
focused on a specific transition between two adjacent niches: niche 54, characterized by a low abun-
dance of CD4 T cells (”CD4-poor”), and niche 64, enriched in these cells (”CD4-rich”) (Figure
S5A). Analyzing the compositional changes along this transition across multiple samples (Figure
S5B) revealed a marked shift: a decrease in fibroblasts, lymphatic, and arterial endothelial cells,
coupled with a concurrent increase in multiple immune cell subtypes, including naive, Th1, and
regulatory T cells, as well as memory and plasma B cells. This pattern suggests a functional spe-
cialization of these niches: niche 54 likely represents a vascularized region, potentially serving as an
entry point for immune cells, while niche 64 constitutes a more immunologically active zone where
these cells accumulate and exert their functions.

To further refine this model, we examined molecular changes within key cell types across this same
transition. In CD4 T cells, moving from niche 54 to niche 64, we observed a significant upregulation
of genes critical for T cell activation and function (TAPBP, CD2, CD27, and TNFRSF13C; (Papadas
et al., 2023; Skartsis et al., 2022) (Figure S5C), supporting the notion of increased immune activity
in niche 64. Concurrently, in endothelial cells, we detected changes suggesting an active role in
modulating the immune response (Figure S5D). Increased expression of NFKBIA and STAT1 in-
dicated activation of inflammatory pathways, potentially promoting immune cell recruitment, while
decreased expression of FLT4 and CCND1 suggested a shift in endothelial function from prolifera-
tion towards facilitating immune cell trafficking (Zhang et al., 2011; de Prati et al., 2005; Lee et al.,
1996; Pi et al., 2018). This shows that in these regions immune modulation in endothelial cells is
associated with the activation of CD4 T cells and is negatively correlated with the remodeling of the
vasculature.

Overall, this work highlights the unique capabilities of NOLAN. We have shown that NOLAN can
not only identify spatially distinct niches across diverse cancer samples, revealing both shared and
cancer-specific organizational features, but also and critically characterize the transitions between
these niches.

5 CONCLUSION

This paper introduces NOLAN, a self-supervised learning framework specifically designed for the
analysis of tissue architecture from spatial transcriptomics data. NOLAN’s key innovation is its
ability to model not only distinct tissue niches but also the continuous transitions between them,
providing a more nuanced and biologically relevant representation of tissue organization than meth-
ods that rely on discrete partitioning. To effectively capture and visualize this continuous variation,
we introduce a tissue graph representation, where nodes represent distinct niches and edges represent
the transitional zones connecting them.

We demonstrate the utility of NOLAN through a comprehensive analysis of a pan-cancer dataset,
providing an integrated, cross-tumor perspective on tissue composition and organization. This anal-
ysis revealed distinct tissue-specific niches, identified a core network of conserved niches shared
across multiple tumor types, and allowed for a detailed characterization of changes in their cellu-
lar and molecular profiles in transitional zones. This integrated study highlights the potential of
NOLAN to serve as a foundational model by identifying generalizable principles of tissue organiza-
tion.
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A SUPPLEMENTARY

A.1 SUPPLEMENTARY METHODS

A.1.1 CONSTRUCTING TISSUE GRAPH

During inference, we process every cell c in the dataset C. For each cell, we extract a representation
of its neighborhood from the teacher network. In contrast to common practice in computer vision,
where backbone features are often used, we leverage the representations from the network’s projec-
tion head. We found that the ”pseudolabels” (cluster assignments) generated by this head closely
reflect known biological zonation patterns in tissues. Furthermore, our implementation uses a rela-
tively low-dimensional projection head, where the output dimensionality directly corresponds to the
number of identified niches N. This makes the head representations more interpretable and directly
relevant for downstream analysis compared to the higher-dimensional backbone features. The em-
bedding matrix, E, contains these representations, where Ec,n represents the activation of cell c for
niche n. To assign a primary niche label, a(c), to each cell, we perform an argmax operation across
the niche dimensions of the classification token:

a(c) = argmax
n∈N

Ec,n. (5)

Notably, cells within transitional regions tend to exhibit high activation values across multiple em-
bedding dimensions, reflecting their intermediate state between niches. To identify these transitional
cells and infer connectivity between niches i and j, we first calculate the difference, dc, between the
activation of cell c for niche j and its activation for niche i:

dc = Ec,j − Ec,i (6)

We consider all pairs of i and j, s.t. i ¡ j

We then determine the minimum (dmin) and maximum (dmax) values of this difference across all
cells:

dmin = min
c∈C

dc, dmax = max
c∈C

dc. (7)

To define a threshold for identifying transitional cells, we use a parameter, alpha (0 ¡ alpha ¡ 0.5), to
calculate lower and upper bounds (dleft and dright) on this difference:

dleft = dmin + (dmax − dmin)× α, (8)
dright = dmin + (dmax − dmin)× (1− α). (9)

Finally, we define the set of cells, cells2edges(i, j), that constitute the transitional region (edge)
between niches i and j as those cells whose primary assigned niche is either i or j, and whose
activation difference dc falls between dleft and dright:
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cells2edges(i, j) = {c ∈ C | a(c) ∈ {i, j}, dleft ≤ dc ≤ dright}. (10)

This process yields a tissue graph representation: where a(c) nodes represent distinct niches, and
edges, defined by the cells2edges sets, represent the transitional regions connecting them.

A.1.2 DATASETS USED IN THE BENCHMARKING

Since various spatial technologies have different limitations, we made sure to include in our bench-
marking datasets from two principally different experimental methods: MERFISH and Stereo-Seq.
The MERFISH dataset that we selected was murine brain atlas (Zhang et al., 2023), which we sub-
sampled to five mid-coronal sections. The sequencing-based dataset that we included in out analysis
consisted of one sagittal slice of a mouse embryo binned with cell-level resolution Chen et al. (2022).

A.1.3 DETAILS ON RUNNING THE ALGORITHMS FOR BENCHMARKING

To ensure a robust comparison, we selected three state-of-the-art programs recently published in Q1
journals as benchmarks: MENDER, BANKSY, and CellCharter. Among these, MENDER relies on
prior cell-type labels, while CellCharter requires scVI embeddings as input. Similarly, NOLAN re-
quires embeddings from scVI or a comparable method. Therefore, we first ran scVI on the input data
to generate embeddings, which were subsequently used as input for both NOLAN and CellCharter.
For MENDER, we further performed clustering of the cell types based on these scVI embeddings
and provided these clusters as input to ensure a consistent and fair comparison.

Recognizing that all methods in our analysis are based on clustering, we ensured a fair comparison
by evaluating each method across multiple resolution levels.

A.1.4 PANCANCER DATASET

As a test case of the method utility for the analysis of large-scale data, we collected a variety of
openly available Vizgen MERSCOPE cancer datasets provided by Vizgen (2025), performed re-
segmentation using ProSeg of this data yielding a high-quality cross-tissue spatial transcriptomics
dataset with 12 million cells. The dataset consists of various tumors: melanoma, uterine cancer,
prostate cancer, breast cancer, colon cancer, lung cancer, and liver cancer. Except for breast cancer,
all other cancers had two replicates. For this data we performed 2 level hierarchical cell typing based
on manually curated marker gene signatures.

A.2 SUPPELEMENTARY FIGURES
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Figure S1: Brain atlas niche annotation with various methods
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Figure S2: Embryo niche annotation with various methods
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Figure S3: Liver cancer niche annotation

Figure S4: Properties of the subnetwork shared by tumors. A. Tissue distribution in detected niches.
B. Cell-type distribution. C. Spatial visualization of the tumor network.
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Figure S5: Transitional regions identified by NOLAN. A. Visualization of transition between niches
54 and 64 in uterine cancer. B. Changes in subtype content associated with the transition between
niches. C. Changes in gene expression associated with transition between niches in CD4 T cells. D.
Changes in gene expression associated with transition between niches in endothelial cells.

15


